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Abstract—To provide a high-quality user experience in Ex-
tended Reality (XR) applications, high-throughput and low-
latency communication is essential. A promising solution is the
use of distributed networks operating in the higher frequency
bands, such as millimeter-wave (mmWave) wearable Personal
IoT Networks (PINs). However, in crowded environments, intra-
network interactions can disrupt the Quality of Experience (QoE)
for users. To improve the QoE, the understanding of the system-
level performance trade-offs in these networks is important. This
paper investigates the impact of various system parameters on
the system-level performance of mmWave wearable PINs with 3D
beamforming and data rate adaptation to the channel conditions
in an environment with human body blockage. We employ
an analytical methodology that combines stochastic geometry
and queueing theory to devise an expression for the stationary
distribution of the system and use it to compute the key metrics
that describe the system-level performance. To assess mmWave
PINs for XR in crowded environments, we examine the system
operation trade-offs and explore the performance scaling.

Index Terms—Wearable Personal IoT Networks, millimeter-
wave communication, spatial sharing, elastic traffic, stochastic
geometry, queueing theory.

I. INTRODUCTION

Forthcoming high-end wearables such as Extended Reality
(XR) headsets (i.e., Augmented Reality (AR) glasses and
Mixed Reality (MR) goggles) for immersive applications are
expected to have a form-factor and weight similar to regular
eyeglasses, which results in hardware constraints such as
limited processing power, memory, and battery capacity. XR
headsets also impose stringent wireless connectivity require-
ments, including high reliability, extremely high data rates,
and low latency, all stemming from the nature of human visual
perception. To meet these requirements, XR headsets may tap
into the millimeter-wave (mmWave) frequency band.

Additionally, XR headsets may offload certain tasks to more
capable personal devices, such as smartphones or tablets, by
tethering via a mmWave link [1], [2], thereby effectively
forming a wearable Personal IoT Network (PIN). Wearable
PIN refers to a personal network of wearable devices con-
nected via direct radio links in close proximity to a user. The
direct connection may include 3GPP and non-3GPP access in
licensed or unlicensed spectrum. In this setup, user personal
devices can process power-intensive tasks and also act as a
relay by providing IP connectivity.

An example XR application that could benefit from this
setup is the metaverse, which has the potential to significantly
impact the ways we interact with digital content and each
other in the future. The 3GPP is currently working on defin-
ing the requirements and specifications for Localized Mobile
Metaverse Services (LMMS) [3] to facilitate user access to
virtual worlds and metaverses with high-quality graphics and
real-time interactions in a specific geographic area. Here, XR
applications can rely on split-rendering mechanisms, where the
XR headset requests the personal device to render frames [4].
However, in dense environments, PINs are exposed to inter-
ference from neighboring networks, which can cause a sharp
deterioration in throughput and reliability.

Prior research on mmWave PINs has primarily focused
on static systems to address the spatial aspects of network
interactions and assume full-buffer traffic. For example, studies
in [5], [6] employed stochastic geometry to analyze the
system-level performance of mmWave PINs equipped with
directional antennas and evaluate the impact of interference.
The work in [7] proposed a joint PHY-MAC approach to
achieve higher data rates and improve the coexistence be-
tween different networks. Similarly, the work in [8] utilized
stochastic geometry to assess the interference and perfor-
mance of mmWave wearable networks in high-density settings.
However, these studies are limited to the spatial aspect of
network interactions and do not fully consider the temporal
dimension of system operation. Capturing the PIN’s temporal
interactions in addition to its spatial characteristics is crucial
for a comprehensive evaluation of the system performance.

To address this limitation, individual works have attempted
to capture both temporal and spatial characteristics of differ-
ent types of networks by applying stochastic geometry and
queueing theory. For instance, in [9], the session-level service
dynamics of user equipment (UE) capable of operating in
both microwave and mmWave bands were studied. Similarly,
stochastic geometry and queueing theory have been used to
investigate the end-to-end delay for XR services that offload
traffic to the network infrastructure over THz links [10].
While these models capture the spatio-temporal impact of
traffic on network performance, dynamic interactions between
distributed networks with directional communication have not
been fully explored. Consequently, in our previous study [11],
we examined the system-level performance of mmWave PINs
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Fig. 1: Motivating scenario: deployment of wearable PINs.

using CSMA/CA channel access without taking into account
the impact of human body blockage in the channel. Moreover,
the channel was assumed to be occupied exclusively by a
single user for the duration of its session, and in the event
of contention, other users were denied access to the channel.

To the best of our knowledge, there is no prior research that
has utilized a joint stochastic geometry and queuing theory
modeling approach to evaluate the performance of mmWave
PINs where the channel resources may be shared among the
coexisting networks. To bridge that gap, in this study, we
investigate the impact of 3D directional communication in
a system of PINs operating in the mmWave band. In this
system, the data rate on a link adapts according to the channel
conditions in an environment with human body blockage. The
main contributions of this study are twofold:

• We apply a spatio-temporal modeling approach to of-
fer an analytical methodology for evaluating distributed
mmWave XR networks with dynamic data rates in a 3D
setup with directional beams and blockers.

• We analyze the system-level performance of mmWave
PINs for various system parameters and provide insights
into the system-level performance trade-offs and scaling.

The remainder is structured as follows. Section II provides an
overview of our system model and its corresponding assump-
tions. Section III outlines the proposed analytical framework,
3D modeling, and approximation techniques used to derive the
relevant metrics. Section IV presents the selected numerical
results, and the conclusions are offered in Section V.

II. SYSTEM MODEL

This section outlines our system model and its underlying
assumptions. We start by presenting our network deployment,
then examine the traffic-related considerations for data trans-
mission and the antenna abstraction, and finally provide details
on the radio-specific assumptions.

1) Network Deployment: We consider an area of size SR
in R2, with a total number of M users distributed uniformly
within this area of interest. Each user is associated with a
wearable PIN, which includes a personal device (Tx) and an
XR headset (Rx), as shown in Fig. 1. Every user is modeled as

a cylinder with a fixed height hb and an internal radius rb. The
Tx and Rx are assumed to be located on the associated user at
fixed heights htx and hrx, respectively. The 2D position of the
Rx is determined using the front-facing direction of the user.
The front-facing direction is selected randomly and uniformly
within [0, 2π), and it also determines the 2D position of the
Tx. The Tx device is placed on the surface of the cylinder at
a fixed central angle φ from the Rx, where φ ∈ [0, π2 ]. The
resulting constant distance between the paired devices is given
by:

d =
√
(2rb sin

φ
2 )

2 + (htx − hrx)2. (1)

2) Traffic Model: In this study, we primarily focus on the
downlink data transmission (from the Tx to the Rx), since in
immersive XR applications, the XR headset primarily receives
rendered data [12]. We refer to this data as a file and model the
arrivals of file transmission requests as a Poisson process with
rate λR for each user (i.e., requests per second per user). The
size of the files to be transmitted is distributed exponentially
with an average of s bits.

3) Antenna Model: The transmission beams are directional
in 3D space, all having an axially symmetric main lobe and
no side lobes due to tapering. The main lobe is defined by
the parameter θ, which denotes the half-power beamwidth
(HPBW). The antenna directivity gain is approximated by
the product of two components: the maximum directivity
factor Gmax = 2

1−cos θ
2

and the gain reduction factor ρ(α)
defined by the deviation angle α from the antenna boresight,
i.e., Gtx = Gmaxρ(α). The reduction factor ρ(α) determines
the pattern of the antenna radiation in 3D space. For an
HPBW θ, the antenna pattern is approximated as:

ρ(α) = 1− α

θ
, α ≤ θ. (2)

The maximum antenna gain is achieved for the deviation
angle α = 0. To disregard the impact of side lobes, we
assume efficient tapering mechanisms, such as Chebyshev
tapering, with an attenuation of 60 dB [13]. A realistic antenna
pattern obtained for a uniform antenna array, along with our
approximation using (2), is illustrated in Fig. 2.

Additionally, we assume that the HPBW is equal for all the
transmitting devices within the area of interest.

4) Received Power and Data Rate: We consider the on-
body and off-body signal propagation models separately. We
also assume that each user in the area may act as a blocker.
The average path loss at the distance d is modeled as:

PLb/ℓ/η(d) = Lb/ℓ/ηd
−γb/ℓ/η , (3)

where L is the propagation constant and γ is the prop-
agation exponent. The subscripts b/ℓ/η represent the on-
body, off-body line-of-sight (LoS), and off-body non-line-of-
sight (nLoS) channels, respectively.

The received power Prx depends on the radio parameters
and fixed position of the devices. The received power at the



Rx in our model for the case of on-body transmission can be
calculated as:

Prx=PtxGmaxLbd
−γb=PtxGmaxLb(4r

2
b sin

2 φ
2 + d2v)

− γb
2 ,

(4)
where dv is the vertical distance between the Tx and the Rx de-
vices, and Ptx is the fixed transmit power for all transmitting
devices in the area of interest. For selected radio parameters
and device placement on the body, the instantaneous rate
during a file transfer is dictated by the Shannon–Hartley the-
orem as:

r = w log

(
1 + min

(
Prx

Pn
,SNRmax

))
, (5)

where Pn is the noise power, w is the bandwidth, and
SNRmax is the maximum SNR corresponding to the selected
modulation and coding scheme (MCS). If the SNR at the Rx
is greater than SNRmax, the rate r is limited to the maximum
achievable data rate rSNR corresponding to the selected MCS.

5) Interference: Interference at the user transferring the i-th
file from the user transferring the j-th file located at the 3D
distance di,j for the LoS and nLoS cases is given as:

Ii,j =

{
PtxGmaxLℓd

−γℓ
i,j

(
1− αi,jθ

−1
)
, for LoS,

PtxGmaxLnd
−γn
i,j

(
1− αi,jθ

−1
)
, for nLoS.

(6)

Interference at the user is only detected when Ii,j > Pthr,
where Pthr is the Rx sensitivity.

The IEEE 802.11ad/ay standards support Service Pe-
riod Channel Access (SPCA), which allows multiple sta-
tions (STAs) to share the channel without introducing back-
off delays. In SPCA, data exchange between STAs is sched-
uled using time division multiple access (TDMA). These
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Fig. 2: Radiation pattern for realistic antenna array and its
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Fig. 3: SPSH abstraction.

standards also offer improvements such as clustering and
spatial sharing (SPSH) to mitigate interference and enable
concurrent transmissions. Clustering facilitates coordination
between networks to avoid co-channel interference by schedul-
ing transmissions in non-overlapping time slots. The SPSH
allows for a further improvement in network performance by
coordinating between non-interfering networks in a cluster to
schedule their transmissions simultaneously.

In the context of IEEE 802.11ad/ay networks, mmWave
PINs formed by the tethering of personal devices and XR
headsets can be referred to as a personal basic service
set (PBSS) control point (PCP) STAs and non-PCP/non-AP
STAs, respectively [14]. Within a mmWave PIN, STAs can
communicate directly, and if multiple PINs contend for the
channel access, one of the PCPs is chosen as the Synchroniz-
ing PCP (S-PCP), which acts as the cluster head. The S-PCP
then broadcasts the schedule by allowing all the listening STAs
to transmit in non-overlapping periods to avoid co-channel
interference.

By utilizing SPCA with SPSH, the channel can be used by
several STAs simultaneously, thereby increasing the overall
network capacity. An example is presented in Fig. 3, which
illustrates an abstraction of SPSH. Four users need to access
the channel, where each succeeding user is in the coverage
area of the preceding user’s PIN. In the absence of SPSH, the
data of all four users is transmitted in a TDMA manner due to
the direct interference they cause to each other. However, with
SPSH, users 1 and 2 can transmit their data simultaneously
with users 3 and 4, as they are not in direct contention for
the channel. As a result, SPCA with SPSH enables more
efficient utilization of the channel and improves the system
performance in the crowded environments typical for XR
applications.

Therefore, we assume that the neighboring active users can
share the channel in a collision-free manner by employing the
SPCA, and the actual data rate then depends on scheduling.
If the employed clustering protocol (i.e., decentralized cluster-
ing) is efficient and leverages SPSH, some of the transmissions
within a cluster can be scheduled in parallel. We consider a fair
policy among the STAs to share the channel equally; hence,
the actual data rate for the i-th file transmission r̃i can be
approximated as:

r̃i =
r

ki + 1
, (7)

where ki is the number of neighboring PINs sharing the
channel with the user i in TDMA.



III. PERFORMANCE EVALUATION METHODOLOGY

In this section, we present our approach to evaluating
the performance of distributed mmWave XR networks with
dynamic data rates. We use a combination of queuing theory
and stochastic geometry to model the system dynamics and
derive expressions for the transition rate that facilitates the
characterization of the stationary distribution of the system.
These expressions allow us to obtain the key metrics of
interest, such as the mean number of active transmissions, the
mean data rate, and the mean file transmission time.
A. State Aggregation

We model the system behavior as a Markov process X(t),
in which every state is characterized by the number of ac-
tive transmissions, user location, and locations of the user’s
devices. Given n ongoing file transmissions, the state of the
system at time t can be defined as X(t) = (n; ξ1, ..., ξm),
where ξi is the information related to the user associated with
the i-th file transfer, such as the location of the user with its
devices and the remaining file size.

An explicit analysis of the process X(t) is complex due
to its uncountable number of states. To simplify the analyti-
cal modeling, we employ the state aggregation technique to
transform X(t) into an aggregated birth-death process X̃(t),
the states of which are described by the number of active
transmissions N(t) ∈ [0,M ] at any given time t. Transition
rates from state n to state n+1 and from state n to state n−1
are denoted as pn and qn, respectively, see Fig. 4.

Importantly, the aggregated process X̃(t) does not keep
track of the locations of each user and device explicitly; how-
ever, the transition rates pn and qn are specifically designed
to incorporate an estimation of network dynamics. As a result,
the aggregated process allows us to obtain an approximation
that reflects the averaged system behavior.

The stationary distribution, πn, of the process follows from
the corresponding birth-death formulation [15] and can be
obtained as:

πn = π0

n∏
j=1

pj−1

qj
, n = 1, ...,M, (8)

where π0 =
(
1 +

∑M
j=1 πj

)−1

. The rest of this section
focuses on estimating the transition rates, pn and qn.
B. Transition Rates

For the aggregated process X̃(t), the transition rate pn that
takes the process from state n to state n + 1 is the arrival
rate of file transfer requests within the area of interest; it is
described as:

pn = λR(M − n), (9)

where λR is the arrival rate of file transfer requests per user
and M is the total number of users.

The derivation of the transition rate qn from state n to
state n − 1 is more complex, as it is determined not only
by the number of ongoing files transfers n, but also by
their transmission time T , which depends on the file size ϵ
distributed exponentially with mean s, the instantaneous data

Fig. 4: Illustration of state aggregation principle.

rate r, and the number of neighboring PINs k. Given n active
simultaneous transmissions, qn can be expressed as:

qn=
n

E[T |n]
=

n

E
[
ϵ
r̃ |n

]≈ rn

s(E [k|n] + 1)
, (10)

where E [k|n] is the average number of users sharing the
channel. We assume that the channel is sensed by the de-
vice i as occupied if the received interference level from the
neighboring device j exceeds the power threshold at the Rx,
Ii→j ≥ Pthr. This occurs when the user transmitting the i-th
file is within the volume of a 3D beam of the device j. In
this scenario, the user j and its kj neighbors already utilize
the channel and share it equally, which results in a reduced
data rate of r̃j = r

kj+1 . To estimate the average number of
neighbors E[k|n], we consider the projection of the 3D beam
originating from the Tx onto the horizontal 2D plane located
at the same height as the Rx, as shown in Fig. 5. We obtain
the slice of the beam on the 2D horizontal plane as a conic
section.

We further calculate the semi-apex angle of the circular
cone ψℓ/η as shown in Fig. 5. The value of ψ is dependent

on Rℓ/η =
(
PtxGmaxLℓ/η

Pthr

) 1
γℓ/η , which represents the maxi-

mum coverage distance of the beam. Using Rℓ/η , we can deter-
mine the distance between the beam axis and the border of the
effective beam coverage as lℓ/η(α) = Rℓ/η (1− α/θ)

1
γℓ/η . We

equate the distance along x-coordinate x(α) = lℓ/η(α) cos(α)
to the fixed distance d and solve this numerically for an-
gle α = ψ in LoS and nLoS cases as:

lℓ/η(ψℓ/η) cos(ψℓ/η)=Rℓ/η

(
1−
ψℓ/η

θ

) 1
γℓ/η

cos(ψℓ/η)=d. (11)

The above is a transcendental equation with respect to ψℓ/η .
As a result, the sought angle ψℓ/η at distance d for both LoS
and nLoS cases can be determined numerically. Further, the



angle ϕ, which represents the angle between the horizontal
plane cutting the cone and the axis of the cone, is dependent
on the position of the devices. We define the angle in question
as follows:

ϕ = arctan

(
dv
dh

)
= arctan

(
dv

2rb sin
φ
2

)
. (12)

Proposition 1: The elliptical area on the 2D plane, Aℓ/η ,
is calculated as follows:

Aℓ/η =


πd2v sin(ψℓ/η) sin(2ψ)

2(sin2(ϕ)− sin2 (ψℓ/η))
3
2

, Rℓ/η > d,

0, Rℓ/η ≤ d.

(13)

Proof. The area of the elliptical conic section is determined
by the semi-minor axis [16] aℓ/η= dv sin(ψℓ/η)√

sin2(ϕ)−sin2(ψℓ/η)
and by

the semi-major axis bℓ/η=
dv sin(2ψℓ/η)

2(sin2(ϕ)−sin2 ψℓ/η)
. Therefore, the

sought elliptical area that corresponds to the beam, within
which the users may be interfered in LoS/nLoS, can be
obtained as Aℓ/η = πaℓ/ηbℓ/η .

Note that the center of the ellipse and the axis of the
oblique cone do not align; the distance between the center
of the ellipse and the axis of the cone is represented as c in
Fig. 5. We calculate this distance only for the LoS interference
case, thus cℓ = bℓ − d sin(ψℓ)

sin(π−ψℓ−ϕ) . To account for human body
blockage of the interfering signal from other users, we utilize
the exponent-based expression for the LoS probability [17]
and adjust it to our system. The resulting blockage probability
for the LoS beam at the state n > 1 may be approximated as:

Pb = 1− e
− (n−2)

Sr

(
2rb

(
2
3 (dh+cℓ)+

4bl
3π

)
+2rb

2
)
. (14)

Proposition 2: An approximation for the number of users
sharing the channel resources is:

E[k|n] = (n− 1)Aη
SR

+ Pbµn
Γ(n, µn)

(n− 1)!
, (15)

where µn =
(n−1)(Aℓ−Aη)

SR
, Pb is given by (14), and Γ(n, µn)

is the upper incomplete gamma function.

Proof. The 2D elliptical area Aℓ that corresponds to the area
where the users may be interfered in LoS is larger than the
respective area Aη for nLoS due to a substantial decrease in

Tx

Horizontal
 2D plane{

Rx{

{

 Elliptical conic slice

Fig. 5: Elliptical projection of 3D beam onto 2D plane and
related parameters.

power received in nLoS. We observe that when a new user is
located within the nLoS beam, it always senses the interference
and, thus, should share the channel in TDMA. However, if it
appears in the region outside of the nLoS beam and inside
the LoS beam, it might share the channel, subject to being
blocked by other users. For n actively transmitting users, we
approximate the number of interfered users, which eventually
share the channel, as follows:

E[k|n] = E[kη|n] + E[kℓ|n], (16)

where E[kη|n] is the average number of users experiencing
nLoS interference and E[kℓ|n] is the average number of users
sharing the channel due to LoS interference. The average
number of users under nLoS interference can be approximated
due to their uniform distribution as E[kη|n] = (n−1)Aη

SR
.

Further, the probability that m uniformly distributed users
are located in the region between the borders of nLoS and
LoS ellipses is given by µm

n

m! e
−µn , where µn =

(n−1)(Aℓ−Aη)
SR

denotes the product of the area and the current density of users
at the state n. The probability that i out of m users are not
blocked and, therefore, are interfered by the LoS beam, can
be coarsely approximated using the binomial distribution as(
m
i

)
P

(m−i)
b (1 − Pb)

i. We note that in reality, the blockage
events are not independent, as several radio links can be
obstructed by a single blocker. However, for the purposes
of this study, the binomial distribution serves as a suitable
approximation at the system level. Meanwhile, the expected
number of users appearing inside the region between the bor-
ders of nLoS and LoS ellipses, subject to blockage probability
Pb, can be approximated as:

E[kℓ|n]=
n∑

m=1

m∑
i=1

µmn
m!

e−µni

(
m

i

)
P

(m−i)
b (1−Pb)i=Pbµn

Γ(n, µn)

(n−1)!
,

(17)

where Γ(n, µn) is the upper incomplete gamma function.

Theorem: The stationary distribution of the process X̃(t)
can be approximated as:

πn=
π0M !

n!(M−n)!

(
sλR
r

)n n∏
j=1

(
(j−1)Aη
SR

+Pbµj
Γ(j, µj)

(j−1)!
+1

)
,

(18)

where µj =
(j−1)(Aℓ−Aη)

SR
, Pb is given by (14) and Γ(j, µj)

is the upper incomplete gamma function.

Proof. By substituting into (8) the expressions for pn and qn
given by (9) and (18), respectively, we obtain the intended
result.

With the above stationary distribution, we establish the
relevant system-level metrics such as the mean number of
users simultaneously transferring files E[N ], the mean data
rate E[r̃], and the mean file transmission duration E[T ]:

E[N ]=

M∑
n=1

nπn, E[r̃]=

M∑
n=1

rπn
E[k|n]+1

, E[T ]=
E[N ]

M∑
n=0

(M−n)λRπn
.

(19)
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Fig. 6: Impact of small-scale movement and beam misalignment during on-body communication on system performance.

TABLE I: System parameters

Parameter Notation Value
Area of interest SR 100 m2

Number of users M 200
Mean human blocker height hb 1.8 m
Mean human blocker radius rb 0.15 m

Height of Rx rR 1.75 m
Height of Tx rT 0.9 m
Central angle φ 60◦

Carrier frequency f 60 GHz
Carrier bandwidth w 2.16 GHz

Mean file size δ 20 MB
Receiver sensitivity Pthr -78 dBm

Transmit power Ptx 10 dBm
Noise figure NF 9 dB

Power spectral density of noise N0 174 dBm/Hz
Maximum SNR [18] SNRmax 17 dB (MCS 17)

IV. NUMERICAL RESULTS

In this section, we present our numerical results to illustrate
the impact of various parameters. We consider an environment
where each user is equipped with an XR headset and an
accompanying personal device, which are wirelessly paired
to each other via direct mmWave links using IEEE 802.11ay
radio technology. The personal device sends the rendered data
to the XR headset, and we consider its size to be exponentially
distributed with the mean of s, which we refer to as a file.
To validate our analytical results, we perform Monte Carlo
simulations using Matlab. For these, the height and width of
users are assumed to follow a Gaussian distribution, which
leads to a variable distance between devices. The height of
the users has a standard deviation of 0.05, while the radius of
the users has a standard deviation of 0.01.

In our model, we differentiate between on-body propaga-
tion, LoS off-body propagation, and nLoS off-body propaga-
tion. We employ several channel propagation models, which
we adapt to the PL(d) = Ld−γ pathloss format. For on-body
propagation, we use LB = 71.2 and γB = 4.1 [19]. For LoS
off-body propagation, we use Lℓ = 68.15 and γℓ = 1.88 [20],
while for nLoS off-body propagation, a 30 dB penalty is
applied to the link budget when a beam is blocked by a

human body [21]. We evaluate the impact of different antenna
radiation patterns with varying numbers of antenna elements
by utilizing Matlab’s Sensor Array Analyzer for uniform rect-
angular arrays (URAs) of 2x2, 4x4, 8x8, and 16x16 elements.

To reduce the sidelobes and focus the transmit energy within
the main lobe, we apply a 60 dB Chebyshev taper to all our
antenna models in simulation. In our analytical results, we
approximate the shape of the main lobes by using the pattern
obtained using (2) with the corresponding HPBW angle θ.
In the proposed analysis, we employ a cascade of approx-
imations, which includes antenna abstraction, state aggrega-
tion, and approximation for the number of users sharing the
channel resources in a TDMA manner. We validate selected
analytical results by comparing them with simulation output to
demonstrate the tightness of our analytical approximations for
the parameters of interest. The rest of the system parameters
utilized throughout this section are summarized in Table I.

In Fig. 6a, we evaluate the impact of transmit power on
the mean number of simultaneous file transmissions and the
mean data rate for different numbers of antenna elements.
The number of simultaneous transmissions decreases with
higher transmit power and with an increase in the number of
antenna elements. Additionally, the data rate grows for a higher
transmit power and a larger number of antenna elements in an
antenna array. The data rate saturates when the instantaneous
rate approaches rSNR. Since for wider beams (fewer antenna
elements), more users are sharing the channel, the effective
data rate is lower as compared to that for antennas with a
higher number of elements that yield smaller coverage areas.
The number of simultaneous transmissions decreases drasti-
cally for antennas with fewer elements, while for antennas with
more antenna elements, the number of transmissions saturates.
Antennas with a higher number of elements perform better in
terms of data rate than antennas with fewer elements due to
higher received power and smaller interference footprints. If
power control [22] and beamwidth control [23] algorithms at
the MAC layer of IEEE 802.11ay are additionally applied,
the performance of distributed networks such as wearable
PINs can be significantly improved while also enhancing their
energy efficiency.



In Fig. 6b, we examine the impact of the increased arrival
rate of transmission requests per a unit area on the mean
data rate for different numbers of antenna elements. It can be
observed that the mean data rate decreases as the arrival rate
grows and the effect of a higher arrival rate is more pronounced
for antennas with fewer elements. This is because a larger
coverage area enables users to share the channel resources
more frequently, thereby ultimately reducing the mean data
rate. Here, antennas with more antenna elements have a
lower impact on the system performance, as then PINs have
comparatively fewer users sharing the channel resources due to
a smaller coverage area. We also note that the analytical results
align tightly with the simulation output for the parameters of
interest despite our cascade of approximations.

Finally, in Fig. 6c, we present the impact of blocker (user)
density on the mean transmission time for different numbers of
antenna elements. Our analytical results indicate that antennas
with fewer antenna elements benefit the most from a higher
blocker density, which improves the chances of occlusion,
thereby preventing the interfering signals from reaching other
users and providing spatial isolation from interference. For
narrower beams (more antenna elements), the blockage effect
becomes less prominent due to a smaller interference footprint.

V. CONCLUSION

In this paper, we investigate the system-level performance
of wearable PINs that utilize 3D directional mmWave beams
with adaptive data rates in an environment subjected to the
presence of human blockers. We provide a tight analytical
approximation that allows studying various XR system trade-
offs associated with the averaged performance indicators, such
as the number of active users, data rate, and transmission time.

We observe that increased numbers of antenna elements and
transmit powers lead to enhanced performance. The use of a
higher number of antenna elements has a lower impact on the
performance in scenarios with high arrival rates and frequent
blockages, while fewer antenna elements yield more noticeable
performance effects.

In addition, increasing the transmit power beyond a certain
threshold does not lead to further improvements in perfor-
mance, which means that the energy efficiency of the system
at hand may be enhanced by employing appropriate power
control schemes and by utilizing a larger number of antenna
elements. Finally, we note that wearable PINs may display
better performance in the presence of more blockers, as these
offer improved spatial isolation.
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