
Verification of Approximate Hardware Designs
with ChiselVerify

Hans Jakob Damsgaard, Aleksandr Ometov, Jari Nurmi
∗Electrical Engineering Unit, Tampere University, Finland, {first.last}@tuni.fi

Abstract—Many popular applications show resilience to com-
putational errors. Approximate Computing (AxC) exploits this to
reduce their execution time and energy consumption by introduc-
ing approximations in software and hardware. Using AxC raises
new challenges to ensure that hardware designs satisfy their
demands before deployment, which hardware designers address
by spending significant efforts on verification flows for their
designs. However, there exist no tools for verifying approximate
hardware designs, meaning that designers must replicate code to
keep track of circuit outputs and subsequently compute relevant
error metrics. We aim to solve this issue with a library that
abstracts away port sampling and error computations behind
a simple interface. With the library, designs can retrieve error
metric values and constraint satisfaction results with only a few
extra lines of code. We demonstrate these features with code
examples and by characterizing a collection of inexact adders
and multipliers and an approximate matrix-vector multiplier.

Index Terms—approximate computing, chisel, electronic design
automation, hardware verification

I. INTRODUCTION

Historically, computers solved complex but well-defined
problems whose outputs were judged on correctness. Moore’s
law and Dennard scaling meant that the underlying hard-
ware’s performance grew to match increasing problem com-
plexities [1]. The end of these trends complicates satisfying
compute requirements of popular applications such as Ma-
chine Learning (ML), Digital Signal Processing (DSP), and
multimedia progressively [2]. This issue is pertinent to energy-
constrained devices operating at the Edge of the internet, but
also to datacenters where the common solution is to integrate
power-hungry application-specific accelerators; something that
is infeasible in Edge devices [2]. As the Internet of Things
(IoT) is expected to grow in popularity and scale, there is a
need to develop and evaluate alternative techniques to improve
performance and reduce energy consumption.

The aforementioned algorithms fortunately show resilience
to constrained computational errors. Moreover, their outputs
are often consumed by humans who evaluate them by their
acceptability rather than correctness. This allows for exploiting
their error resilience to reduce their execution time or energy
consumption [1], [3], [4]. Within the AxC domain, this is

The authors gratefully acknowledge funding from European Union’s Hori-
zon 2020 Research and Innovation Programme under the Marie Skłodowska
Curie grant agreement No. 956090 (APROPOS: Approximate Computing for
Power and Energy Optimisation, http://www.apropos-itn.eu/). An early version
of this work was presented at the Workshop on Approximate Computing
(WAPCO), co-located with the HiPEAC 2023 conference.

done by introducing approximations at various system levels
ranging from the application layer – in software – through
the architecture layer down to the circuit layer – both being
in hardware. Until recently, most research has focused on these
layers individually, though expectedly much greater effects can
be achieved by optimizing across them [2].

In this paper, we maintain a focus on AxC in hardware. We
note that unless approximate hardware designs are made to be
reconfigurable at run-time, application-layer approximations
have one major benefit over them: they can easily be adjusted,
even after deployment. Hardware is much more costly to
replace and must, therefore, be thoroughly verified [1], [5],
for example, through simulation with constrained-random
techniques [6] or fuzzing [7]. Yet, to the best of our knowledge,
despite most papers employing similar evaluation strategies
and error metrics [2], there exist no tools for performing this
on generic hardware designs; prior work [7] being limited to
C-based Hardware Description Language (HDL)s.

We target this lack of tools for AxC and propose a library
for verifying generic approximate hardware designs. Integrated
with ChiselVerify [6], it provides access to port sampling
and error computation, abstracted away behind a very simple
interface. Using our tool, hardware designers can easily write
or adapt tests applying a selection of error metrics – including
custom ones written by the developer following our library’s
structure. Our library extends upon and is fully compatible
with ChiselVerify’s existing constrained-random verification,
functional coverage, and bus functional model features.

The rest of the paper is structured as follows: Section II
covers necessary background and related work. We present our
library and motivate its implementation details with code ex-
amples in Section III. Next, we demonstrate the library’s func-
tionality by characterizing a collection of approximate adders
and multipliers and by verifying an approximate matrix-vector
multiplier in Section IV. Finally, Section V concludes the
paper and outlines directions for future work.

II. RELATED WORK

Before covering our proposed verification library, we find it
necessary to describe its context. Specifically, we outline some
common AxC techniques, introduce the Chisel framework, and
describe what hardware verification is and what it entails in
the AxC scope. For more details, interested readers may refer
to [2], [4], [6], [8].

A. Approximate Computing Techniques

In hardware, AxC techniques are distributed across the
circuit and architecture levels. At the circuit level, the com-
mon ones are voltage over-scaling, inexact arithmetic, and
function approximation. Voltage over-scaling can bring vast
energy savings but requires optimizing designs at lower-than-
Register Transfer Level (RTL). Inexact adder designs include
Ripple-Carry Adders (RCAs) with approximate full-adders
and Carry-Lookahead Adders (CLAs) with speculative carry
prediction [1]. Most inexact multipliers have their partial
product trees truncated or approximately compressed [9], [10].
Function approximation aims at substituting complex, time-
consuming kernels by, e.g., simple ML models [11]. These
are examples of broadly applicable techniques that may require
stringent design-time or run-time quality management [2]. We
use several inexact arithmetic units for our demonstration later.

Many papers have explored integrating AxC into various
architectures. Some focus on general-purpose architectures
for which approximations include inexact arithmetic, mem-
oization, and unreliable inter-core communication and cache
coherence. Regrettably, the adoption of these techniques is
hindered by their need for Instruction Set Architecture (ISA)
support and limited benefits due to execution flow overheads
in modern processors [2]. Other papers focus on application-
specific architectures for ML, DSP, and video processing
tasks [4]. The applied techniques are similar but often lead
to much greater gains [2]. Unlike in the other application do-
mains, work on ML stands out as it frequently applies multiple
AxC techniques in software and hardware concurrently [9].

B. Hardware Design with Chisel

Chisel is a hardware construction language embedded in
Scala [8]. It is an RTL language that simplifies the design
process compared with traditional HDLs through abstraction
and flexible programming. Being embedded in Scala permits
making use of object-oriented and functional programming
constructs for hardware construction; a feature yet to be avail-
able in the design context in either (System)Verilog or VHDL.
Abstracting away the clock and reset signals from single-
clock designs brings further simplicity and avoids verbosity.
Combined, these features vastly reduce the complexity of
designing capable, flexible hardware generators.

In order to ensure compatibility with common synthesis
flows, Chisel’s compiler backend first lowers designs into an
intermediate representation in the FIRRTL language and later
into a subset of (System)Verilog [8], [12], [13]. The backend
permits legacy designs in (System)Verilog to be included
directly as black boxes. Aided by the ChiselTest library,
this enables simulation of designs using the Treadle engine
directly on the intermediate FIRRTL representation or other
tools, such as Verilator, on the output (System)Verilog [14].
As other compilers, the backend can be extended with custom
optimization or instrumentation passes.

DUT Test bench

Engine

Chisel FIRRTL

FIRRTL Verilog

HW
SW

Treadle

Verilator Binary

Reports

Fig. 1: The dynamic verification flow of a Chisel design using
ChiselVerify and either Treadle or Verilator.

C. Hardware Verification

Verification refers to the process of testing a hardware
design, a Device Under Test (DUT), prior to tape-out [15].
Dynamic verification is the most common strategy. It involves
specifying a test bench that manages the DUT during a
simulation, providing it with inputs and comparing its out-
puts against a golden model, as illustrated in Fig. 1. Both
Verilog and VHDL support these features and provide a
limited set of non-synthesizable constructs for verification.
SystemVerilog extends Verilog with several object-oriented
programming features that permit users to, e.g., define custom
data types, collect coverage information, and generate random
values [15]. However, unlike in Chisel, these features can only
be used for verification purposes, not for hardware description.
The Universal Verification Methodology (UVM) builds atop
these features and defines a way of writing composable and
reusable test benches in SystemVerilog [16]. UVM suffers
from inherent verbosity and a steep learning curve, but its
promise of reusability and support for advanced techniques
like constrained-random verification [17] and fuzzing [18]
means it is set to become the industry standard [6].

Within the Chisel context, dynamic verification is enabled
by the ChiselTest library [19], which simplifies interfacing
with various simulation engines, including Treadle and Veri-
lator [14]. As such, it lets users poke values on inputs, peek
or expect (i.e., assert) values on outputs, and advance time
by stepping the clock. The ChiselVerify library extends
upon these basic features with support for functional coverage,
constrained random verification, bus functional models, and
timed assertions [6]. Unfortunately, neither library provides
any features for verifying the error characteristics of approxi-
mate hardware designs.

While we focus on dynamic verification in this paper, we
find it necessary to mention formal techniques that aim at prov-
ing, and thus guaranteeing, properties of a module. Contrary to
simulation-based verification styles, formal techniques are yet
to be well supported for Chisel. Although libraries like Chisel’s
own formal allow for checking simple temporal properties,
they require modifications directly in the module’s description
and, thus, do not work with black boxes [6]. Similarly, recent
work remains limited in the languages it supports [20].

TABLE I: Currently implemented error metrics, their types
and result types, and their formulas.

Name I/H A/R Formula

Error
Distance

I A ED(a,b) = |b−a|

Soft Error I A SE(a,b) = ED(a,b)2

Relative ED I R RED(a,b) = ED(a,b)
b

Mean ED H A MED(v,u) =
∑

len(v)−1
i=0 ED(vi ,ui)

len(v)

ED Variance H A VED(v,u) =
∑

len(v)−1
i=0 (ED(vi ,ui)−MED(v,u))2

len(v)
ED Standard
Deviation

H A SDED(v,u) =
√

VED(v,u)

Mean RED H R MRED(v,u) =
∑

len(v)−1
i=0 RED(vi ,ui)

len(v)

Mean SE H R MSE(v,u) =
∑

len(v)−1
i=0 SE(vi ,ui)

len(v)
Root MSE H R RMSE(v,u) =

√
MSE(v,u)

Hamming
Distance

I A HD(a,b) = popcount(a⊕b)

Normal letters a and b are scalars. Bold letters v and u are vectors. The
function len(v) gives the number of elements in v. All HistoryBased
metrics assume that len(v) = len(u).

III. OUR VERIFICATION LIBRARY

With the necessary background covered, we turn our at-
tention to our proposed verification library that is written in
Scala and targets approximate hardware designs in Chisel or
Verilog [8]. Our library is integrated into ChiselVerify and
is inspired by its existing functional coverage features, also
relying on ChiselTest’s testing features [6]. It provides ele-
ments, Watchers, for watching either pairs of module ports –
one being approximate and the other exact – or a standalone
approximate port whose exact reference values are computed
in software, for subsequent reporting on, or verification of, a
collection of popular error Metrics (identified in [2]). Our
library retains Chisel’s and ChiselTest’s aims at simplicity
through abstraction.

A. Error Metrics

Currently, we have implemented the error metrics listed in
Table I. As shown, we associate each metric with two traits.
The purpose of this is two-fold: 1) it enforces similar metrics
to define common methods (in particular, a compute method),
and 2) users may find them informative when working with the
available metrics. Specifically, we consider Instantaneous
metrics that are computed on a single sample and its reference
in contrast to HistoryBased metrics that are computed on
sequences of samples and references, both extending a base
Metric trait. And in parallel, Absolute metrics that return
non-normalized results versus Relative metrics that return
normalized or otherwise relative results (e.g., Error Rate (ER)),
both extending a MetricResult trait. For example, Error
Distance (ED) is Instantaneous Absolute whereas Mean
RED (MRED) is HistoryBased Relative. As users may
wish to compute Instantaneous metrics on sequences of
data, we include methods to do so directly in the base trait.

For verification purposes, all metrics take an optional maxi-
mum value argument, which may be left out if a metric is used

Listing 1 Companion object for the ED metric.
case object ED {
/** Create an unconstrained ED metric */
def apply(): ED = new ED
/** Create a constrained ED metric */
def apply(maxVal: Double): ED = new ED(Some(maxVal))
/** Create an unconstrained ED metric and apply

it to the given samples */
def apply(v1: BigInt, v2: BigInt): Double =

(new ED).compute(v1, v2)
}

only for tracking. Additionally, all metrics are provided with
so-called companion objects, allowing users to create them
without explicitly calling their constructor and to apply them
to data outside a Watcher. As an example, consider the com-
panion object for the ED metric in Listing 1. Users wishing
to implement custom error metrics can do so by extending
either Instantaneous or HistoryBased and mixing in either
Absolute or Relative. Companion objects are optional.

B. Sampling

Our library abstracts away sampling and storage using
two types of Watchers: Trackers and Constraints. For
simplicity, we keep most of the library private, as shown in
Fig. 2, providing only the following public end-points to users:
• track(approxPort, metrics*) defining a PlainTracker

and track(approxPort, exactPort, metrics*) defin-
ing a PortTracker. Both Tracker types can sample the
approximate port relative to either a user-provided reference
value or another module port producing exact results and
report on the metrics provided, but not verify that their
maximum values, if any, are met.

• constrain(approxPort, metrics*) defining a
PlainConstraint and constrain(approxPort,
exactPort, metrics*) defining a PortConstraint.
These Constraint types extend upon their equivalent
Trackers by also supporting verification, requiring all
given metrics to have defined maximum values.

• ErrorReporter(watchers*) is the main class of the li-
brary that maintains given Trackers and Constraints,
sampling their ports and reporting their results.

As for the metrics, composing Trackers and Constraints
hierarchically ensures that they share common methods and
functionality. Most importantly, all classes inheriting from
Watcher define a sample(expected) method, which peeks
the approximate port and stores its value with the given
expected value, and a report() method, which computes
the comprised metrics on stored samples and returns the
results in a printable Report. In addition to these, PortBased
Watchers define a sample() method that peeks the ex-
act port as the expected value, and Constraints define a
verify() method that computes the comprised metrics and
returns true if they all satisfy their maximum values and
false otherwise. For consistency, the ErrorReporter defines
methods of the same names that each iteratively calls its
equivalent in the comprised Watchers. Expected values are

abstract trait
 PortBased

object track object constrain class
ErrorReporter

abstract trait
WatcherStyle

abstract trait
ReferenceBased

abstract class
Watcher

abstract class
Tracker

abstract class
Constraint

class
PlainConstraint

class
PortConstraint class

PortTracker

class
PlainTracker

pr
iv
at
e

pu
bl
ic

abstract class
Report

case class
ConstraintReport

case class
ErrorReport

case class
TrackerReport

Fig. 2: Overview of the classes and objects in our library,
excluding error metrics.

passed to PlainTrackers and PlainConstraints through the
ErrorReporter’s sample(expected) method.

The library’s reporting module implements case classes for
Trackers and Constraints separately and composes their
contents together in the generic ErrorReport case class.
These classes differ in what data they include in their re-
ports: TrackerReports state the mean and maximum values
of Instantaneous metrics and the value of HistoryBased
metrics. ConstraintReports instead state if a metric is sat-
isfied and otherwise reports the maximum value and its index
for Instantaneous metrics or the value of HistoryBased
metrics. We include a sample report in Section III-D.

C. Storage

Internally, a Watcher must store samples of approximate
ports and their expected values. The type of this storage is
determined by the input and output types used in the metrics,
leading us to carefully consider the available Scala data types
for these. We decided on BigInts for all inputs, as their
flexible size means they work well with arbitrary module IO,
and Doubles for all outputs, regardless of metric types. In
our experience, Doubles have sufficient dynamic range and
precision to represent the values that the implemented metrics
produce. Moreover, consistently using only two data types is
well in accordance with our aim for simplicity.

A downside of BigInts is their, potentially, large memory
footprint. In anticipation of this becoming an issue in large-
scale tests, we implement pre-emptive computation and cache
the results in the Watchers. By default, the sample storage
is collapsed into a single data point every 1024 samples,
yet this frequency is user-adjustable through the track and
constrain functions. Applying the same strategy to the
cache, maintaining sufficient information for later reporting,
enables us to hypothetically support infinitely long tests1.
When collapsing the cache, we rely on the central limit the-
orem and compute weighted arithmetic and geometric means

1We examined memory dumps of some long, crashing tests and
found ChiselTest’s threaded backend to be the culprit as it stores costly
timestamps for each clock step. We avoid these crashes by using the
NoThreadingAnnotation.

Listing 2 Test of an approximate adder.
"Approximate adder" should "verify with software model" in {
test(new ApproximateAdder(32, 8)) { dut =>
val er = new ErrorReporter(
constrain(dut.io.s, RED(.1), MRED(.025)),
constrain(dut.io.cout, ER(.01))

)
val mask = (BigInt(1) << 32) - 1
val rng = new Random(42)
for (_ <- 0 until 10000) {
val (a, b) = (BigInt(32, rng), BigInt(32, rng))
val (cout, s) = (((a + b) >> 32) & 1, (a + b) & mask)
dut.io.a.poke(a.U)
dut.io.b.poke(b.U)
er.sample(Map(dut.io.cout -> cout, dut.io.s -> s))

}
er.verify() should be (true)
println(er.report())

} }

Listing 3 Report from the test in Listing 2 reformatted for
readability here.
======================= Error report =======================
Constraint on port cout has results:
- History-based ER(Some(0.01)) metric is satisfied with
error 0.0!

Constraint on port s has results:
- Instantaneous RED(Some(0.1)) metric is satisfied with
maximum error 7.90743868572043E-5!

- History-based MRED(Some(0.025)) metric is satisfied with
error 2.0970120714029623E-7!

==

for Absolute and Relative metrics, respectively. Naturally,
when operating with floating-point data, this approach leads
to slight round-off errors, yet we verify that for practical use
cases, results are less than 0.5% off a non-cached baseline.

D. Using the Library

Using the library within a test requires instantiating an
ErrorReporter and passing it any number of Trackers
and Constraints with related error metrics. Subsequently,
the registered ports must be sampled by manually calling
the ErrorReporter’s sample(expected) method. At the
end of a test, the report() and verify() methods can be
used to produce an error report and verify all the speci-
fied Constraints. We note that as ChiselTest permits test-
ing only one module at a time, using PortTrackers and
PortConstraints requires defining a top-level module that
contains both the approximate and exact modules. This can
be done within the test class with little overhead.

As an example, consider the test of a 32-bit adder whose
least significant eight sum bits are approximated by carry-
free XORs, shown in Listing 2. For illustrative purposes, we
use both an Instantaneous and a HistoryBased metric,
include code for random input generation and expected value
computation, but leave out the class wrapping the test. The
resulting report is shown in Listing 3. Note that the measured
ER of 0.0 on the adder’s carry output, cout, may be an artifact
stemming from the limited number of test cases executed.

TABLE II: Measured error and post-synthesis area metrics for
the selected exact and approximate adders.

Identifier Area Error metrics
[LUTs] ER MED SDED MRED

RCA(32) 32 – – – –
CSA(32, 8) 67 – – – –
CLA(32, 8) 56 – – – –

LOA(32, 12) 32 98.4% 1.02e+3 1.02e+3 4.20e−6
LAXA1(32, 12) 26 100% 4.10e+3 1.67e+3 2.01e−5
LAXA2(32, 12) 39 97.9% 1.20e+3 1.17e+3 6.20e−6
LAXA3(32, 12) 45 87.2% 1.02e+3 1.23e+3 3.26e−6
OFLOCA(32, 12, 4) 26 99.8% 6.39e+2 4.96e+2 3.33e−6
OFLOCA(32, 16, 8) 22 99.9% 2.74e+4 8.59e+6 5.71e+0
GeAr(32, 6, 2) 35 41.2% 1.67e+7 1.89e+8 1.25e+1
GeAr(32, 8, 8) 49 0.38% 5.76e+4 1.05e+7 5.97e+0

IV. DEMONSTRATION

To demonstrate the capabilities of our library, we use it
to characterize a collection of inexact adders and multipliers
and an approximate constant matrix-vector multiplier that em-
ploys the computation coding scheme proposed in [21]. These
designs are illustrative examples of circuit and architecture
level AxC techniques, respectively, for which we also provide
Chisel implementations [22], [23].

A. Inexact Arithmetic Units

First, we consider four different adder designs, some of
which we provide several configurations of: 1) the well-
known lower-part OR adder (LOA) that substitutes some least
significant full adders by OR gates; 2) an adder we denote
by lower-part approximate adder (LAXA) that uses inexact
full adders [24] instead of OR gates; 3) an extension of the
LOA concept with a simple error compensation scheme in
the lower-part constant-OR feedback adder (OFLOCA) [25];
and 4) the segmented generic accuracy-configurable adder
(GeAr) with overlapping sub-adders [26]. For each adder,
we compute 1,000,000 random sums and track only the sum
output, ignoring the adder’s carry-out.

Table II lists the results of this characterization and synthesis
results achieved for an Artix-7 FPGA with Xilinx Vivado
2022.2. We only report Lookup Table (LUT) utilization as
all adders are purely combinational. The listed parameters
indicate the width, number of stages, or widths of the adders’
sub-elements. Refer to [22] for further specifications. As the
LOA, LAXA, and OFLOCA adders approximate the RCA
and GeAr resembles a Carry-Select Adder (CSA) or a CLA,
we include area metrics for such exact ones too. The results
show how different adders achieve different error metrics.
The overall trend is that approximating many Least-Significant
Bits (LSBs) or reducing carry chain lengths near the Most-
Significant Bits (MSBs) greatly increases errors. Consistent
with prior work [2], some approximate adders trade off in-
creased area for reduced errors: notably, GeAr has a low ER.

Next, having examined some inexact adders, we consider
two different multiplier architectures for unsigned numbers.
Firstly, a radix-2 array multiplier that constructs a pyramid-
shaped array of partial product bits and compresses (adds)

TABLE III: Measured error and post-synthesis area metrics
for the selected exact and approximate unsigned multipliers.

Identifier Area Error metrics
[LUTs] ER MED SDED MRED

R2M(32) 1347 – – – –
REC(32) 1662 – – – –

R2M(32, RTrunc(2)) 1270 100% 2.88e+18 2.36e+18 3.61e+ 0
R2M(32, RTrunc(4)) 1184 100% 3.58e+18 2.84e+18 8.16e+ 0
R2M(32, CTrunc(16)) 1188 99.9% 2.46e+ 5 9.54e+ 4 1.70e−12
R2M(32, CTrunc(32)) 706 100% 3.33e+10 9.06e+ 9 1.48e− 7
R2M(32, ORCmp(16)) 1244 99.5% 1.81e+ 5 9.39e+ 4 1.24e−12
R2M(32, ORCmp(32)) 968 99.9% 2.90e+10 9.06e+ 9 1.17e− 7
R2M(32, Miscnt(16)) 1296 99.9% 1.90e+ 5 9.56e+ 4 1.30e−12
R2M(32, Miscnt(32)) 999 100% 2.92e+10 9.27e+ 9 1.20e− 7
REC(32, Approx(16)) 1404 92.4% 2.59e+17 7.88e+17 1.18e+ 0

them in a tree. We approximate this multiplier by truncating
some least significant rows or columns of partial product bits
(denoted by RTrunc and CTrunc), by collapsing columns of
partial product bits into one (denoted by ORCmp) [27], or
by employing inexact compressors (denoted by Miscnt) [28].
Secondly, a recursive multiplier implementing the algorithm
of [29], which we approximate by using inexact 2×2-bit mul-
tiplier primitives in some least significant sub-products [30].
For each multiplier, we compute 1,000,000 random products
and track the product output.

Table III lists the results of this characterization. Again,
as all considered multipliers are purely combinational, we
only show LUT utilization numbers, including these for the
two exact baseline designs. The parameters listed indicate the
width and any approximations applied to the multipliers, as
outlined above. These results initially show the importance of
Relative error metrics when comparing approximate designs
that exhibit large Absolute errors. Secondly, our observation
about adders from above also applies to multipliers: truncating
too many LSBs or sub-products increases errors. Performing
instead some, albeit inexact, compression on these bits can po-
tentially reduce these errors; in line with observations in [28].

B. Approximate Matrix-Vector Multiplier

Finally, we focus on approximate constant matrix-vector
multipliers developed specifically for implementation on
FPGA. We utilize the computation coding scheme proposed
in [21], which slices matrices into narrow sub-matrices and
iteratively approximates these as products of sparse matrix
factors whose non-zero elements are restricted to signed
powers of two, as illustrated in Fig. 3. The resulting hardware
implementation, thus, requires only adders and (constant)
shifters, i.e., wires. The scheme is interesting as it enables a
controllable balance between quality and hardware costs: the
more matrix factors, and thus hardware, spent on approximat-
ing each slice, the higher its output quality should be.

In our current implementation [23], we allow for three de-
grees of freedom when decomposing matrices: 1) the number
of non-trivial matrix factors p, 2) the number of non-zero
elements in matrix factors rows e, and 3) the number of bits
used to represent the matrix factor elements n. We choose the
width of the slices to be the nearest power of two greater

1

2

1

2

3

4

The random matrix.

The set of signed powers of two for .

The matrix factors of the dashed slice in
reverse mathematical order.

The hardware implementation of the dashed slice.

Legend

3

Slice Trivial matrix factor Non-trivial matrix factors

4

Fig. 3: Illustration of the computation coding scheme applied to a random 4×8 matrix.

2 3 4 5

8

10

12

M
ea

su
re

d
M

R
ED

n = 4
n = 5
n = 6

2 3 4 5
p

0.6

0.8

1.0

U
til

iz
at

io
n

[L
U

Ts
]

×104

n = 4
n = 5
n = 6

Fig. 4: Results from verifying different decompositions of the
same random 16×16 matrix. Note, the designs with n= 5 and
n = 6 have nearly identical LUT utilization.

than e or at most 8 as this balances algorithm run-time and
hardware utilization well. For our experiments, we decompose
the same random 16×16 matrix while varying p from 2 to 5
and n from 4 to 6, holding e a constant at 2. For each of these
configurations, we compute 1,000,000 random matrix-vector
products and track all product outputs.

Rather than tabulate the results of this experiment, we plot
each design’s geometric mean MRED and LUT utilization in
Fig. 4. We notice that, contrary to our expectations outlined
above, the measured geometric mean MRED does not appear
inversely proportional to p and n, despite these designs clearly
consuming more LUTs. We believe this may be due to
our decomposition algorithm [23] being a slightly erroneous
interpretation of the original [21] and leave unraveling this
issue as future work.

V. CONCLUSION AND FUTURE WORK

In this paper, we have described a library for verifying ap-
proximate hardware designs within a chiseltest test bench.
The library abstracts away details of sampling outputs and
computing error metrics with a simple, yet flexible interface
and its well-defined internals allow for easily integrating
new metrics. Moreover, we have demonstrated our tool by
characterizing a collection of inexact adders and multipliers
as well as an approximate matrix-vector multiplication unit
from the literature.

We are currently working on extending our library with
error metrics for sequence- and image-like data types used in
DSP and image/video processing contexts, like (peak) signal-
to-noise ratio and structural similarity [31]. Their support
requires being able to potentially assemble signals temporally
with many port samples. Once implemented, we plan to move
beyond the scope of simulation-based verification that may
require infeasible or unreasonable efforts to be exhaustive
even for simple designs, including 32-bit adders like the
ones used in Section IV. We will explore formal verification
approaches as a potential solution to this, as highlighted in
related work [1], [5], [32].

Source Access

The proposed verification library is available in open source
at https://github.com/chiselverify/chiselverify. Code snippets
needed to reproduce the results of Section IV are available
at https://github.com/hansemandse/wapco.

REFERENCES

[1] Q. Xu et al., “Approximate Computing: A Survey,” IEEE Design &
Test, vol. 33, no. 1, pp. 8–22, 2015.

[2] H. J. Damsgaard et al., “Approximation Opportunities in Edge Com-
puting Hardware: A Systematic Literature Review,” ACM Computing
Surveys, vol. 55, no. 12, pp. 1–49, 2022.

[3] A. Ometov and J. Nurmi, “Towards Approximate Computing for
Achieving Energy vs. Accuracy Trade-offs,” in Proceedings of Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2022, pp. 632–635.

https://github.com/chiselverify/chiselverify
https://github.com/hansemandse/wapco

[4] S. Mittal, “A Survey of Techniques for Approximate Computing,” ACM
Computing Surveys (CSUR), vol. 48, no. 4, pp. 1–33, 2016.

[5] S. Venkataramani et al., “Approximate Computing and the Quest for
Computing Efficiency,” in Proceedings of 52nd Design Automation
Conference (DAC). ACM, 2015, pp. 1–6.

[6] A. Dobis et al., “Verification of Chisel Hardware Designs with Chis-
elVerify,” Microprocessors and Microsystems, vol. 96, p. 104737, 2023.

[7] K. Yoshisue et al., “Dynamic Verification of Approximate Computing
Circuits using Coverage-based Grey-box Fuzzing,” in 2021 IEEE 27th
International Symposium on On-Line Testing and Robust System Design
(IOLTS). IEEE, 2021, pp. 1–7.

[8] J. Bachrach et al., “Chisel: Constructing Hardware in a SCALA Embed-
ded Language,” in Proceedings of 49th Design Automation Conference
(DAC). ACM, 2012, pp. 1212–1221.

[9] G. Zervakis et al., “Approximate Computing for ML: State-of-the-art,
Challenges and Visions,” in Proceedings of 26th Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 2021, pp. 189–196.

[10] Y. Wu et al., “A Survey on Approximate Multiplier Designs for Energy
Efficiency: From Algorithms to Circuits,” ACM Transactions on Design
Automation of Electronic Systems, 2023, just Accepted.

[11] H. Esmaeilzadeh et al., “Neural Acceleration for General-Purpose Ap-
proximate Programs,” in Proceedings of 45th International Symposium
on Microarchitecture (MICRO). IEEE, 2012, pp. 449–460.

[12] C. Lattner et al., “MLIR: Scaling Compiler Infrastructure for Domain
Specific Computation,” in 2021 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). IEEE, 2021, pp. 2–14.

[13] S. Eldridge et al., “MLIR as Hardware Compiler Infrastructure,” in
Workshop on Open-Source EDA Technology (WOSET), 2021.

[14] Veripool, “Verilator,” 2023. [Online]. Available: https://www.veripool.
org/verilator/

[15] C. Spear, SystemVerilog for Verification: A Guide to Learning the
Testbench Language Features. Springer Science & Business Media,
2008.

[16] A. S. Initiative, “Universal Verification Methodology (UVM) 1.2 User’s
Guide,” 2015. [Online]. Available: https://www.accellera.org/images/
downloads/standards/uvm/uvm users guide 1.2.pdf

[17] A. Dobis et al., “Towards Functional Coverage-driven Fuzzing for Chisel
Designs,” in Workshop on Open-Source EDA Technology (WOSET),
2021.

[18] T. Trippel et al., “Fuzzing Hardware like Software,” in 31st USENIX
Security Symposium (USENIX Security 22), 2022, pp. 3237–3254.

[19] R. Lin et al., “chiseltest,” https://github.com/ucb-bar/chiseltest, 2022.
[20] J. Kumar et al., “Formal Verification of Integer Multiplier Circuits

using Binary Decision Diagrams,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 42, no. 4, pp.
1365–1378, 2022.

[21] A. Lehnert et al., “Most Resource Efficient Matrix Vector Multiplication
on FPGAs,” IEEE Access, vol. 11, pp. 3881–3898, 2023.

[22] H. J. Damsgaard, “approx: A Library of Approximate Arithmetic Units
in Chisel,” https://github.com/aproposorg/approx, 2022.

[23] ——, “cmvm: Hardware-Optimized Approximate Matrix-Vector Multi-
plication,” https://github.com/aproposorg/cmvm, 2023.

[24] Z. Yang et al., “Approximate XOR/XNOR-based Adders for Inexact
Computing,” in Proceedings of 13th International Conference on Nan-
otechnology (IEEE-NANO). IEEE, 2013, pp. 690–693.

[25] A. Dalloo, “Enhance the Segmentation Principle in Approximate Com-
puting,” in Proceedings of International Conference on Circuits and
Systems in Digital Enterprise Technology (ICCSDET). IEEE, 2018,
pp. 1–7.

[26] M. Shafique et al., “A Low Latency Generic Accuracy Configurable
Adder,” in Proceedings of 52nd Design Automation Conference (DAC),
2015, pp. 1–6.

[27] T. Yang et al., “Design of a Low-Power and Small-Area Approximate
Multiplier using First the Approximate and Then the Accurate Com-
pression Method,” in Proceedings of Great Lakes Symposium on VLSI
(GLSVLSI), 2019, pp. 39–44.

[28] A. Momeni et al., “Design and Analysis of Approximate Compressors
for Multiplication,” IEEE Transactions on Computers, vol. 64, no. 4,
pp. 984–994, 2014.

[29] A. N. Danysh and E. E. Swartzlander, “A Recursive Fast Multiplier,” in
Proceedings of Asilomar Conference on Signals, Systems and Comput-
ers, vol. 1. IEEE, 1998, pp. 197–201.

[30] P. Kulkarni et al., “Trading Accuracy for Power with an Underdesigned
Multiplier Architecture,” in Proceedings of 24th Internatioal Conference
on VLSI Design, 2011, pp. 346–351.

[31] Z. Wang et al., “Image Quality Assessment: From Error Visibility to
Structural Similarity,” IEEE Transactions on Image Processing, vol. 13,
no. 4, pp. 600–612, 2004.

[32] K. Palem and A. Lingamneni, “Ten Years of Building Broken Chips: The
Physics and Engineering of Inexact Computing,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 12, no. 2s, pp. 1–23, 2013.

https://www.veripool.org/verilator/
https://www.veripool.org/verilator/
https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://github.com/ucb-bar/chiseltest
https://github.com/aproposorg/approx
https://github.com/aproposorg/cmvm

	I Introduction
	II Related Work
	II-A Approximate Computing Techniques
	II-B Hardware Design with Chisel
	II-C Hardware Verification

	III Our Verification Library
	III-A Error Metrics
	III-B Sampling
	III-C Storage
	III-D Using the Library

	IV Demonstration
	IV-A Inexact Arithmetic Units
	IV-B Approximate Matrix-Vector Multiplier

	V Conclusion and Future Work
	References

