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Abstract. Exploiting instruction level parallelism (ILP) is a widely
used method for increasing performance of processors. While traditional
very long instruction word (VLIW) processors can exploit ILP energy-
efficiently thanks to static instruction scheduling, they suffer from bad
code density with serial parts that cannot utilize the multi-issue capabil-
ities. Transport triggered architecture (TTA) is a variation of the VLIW
paradigm with an exposed datapath that improves scaling of VLIW pro-
cessors with the cost of even wider instructions by exposing the datapath
interconnection network to the programmer.
To this end, we propose Dual-IS, an architecture that implements a TTA
multi-issue and RISC-V compatible single-issue instruction-set modes
by means of a microcoded control path. By utilizing the instruction set
modality, the TTA mode can be used in codes that benefit from ILP,
while a single-issue RISC-V ISA mode reduces instruction stream energy
and code size for sequential programs. Thanks to the TTA programming
model, the static multi-issue mode can be implemented without addi-
tional register file ports.
The processor was synthesized on a 28 nm ASIC technology. For this
design point, when instruction-set mode was selected based on energy-
delay product at the program granularity, with CHStone benchmarks,
Dual-IS had on average 14% lower energy-delay product compared to a
single-mode TTA processor with a similar datapath, while only adding
a 3% overhead in the core area. Dual-IS achieved on average 15% and
in the best case 33% smaller run times than a single-issue RISC-V im-
plementation by running programs in the TTA mode only when it was
beneficial in terms of performance.

Keywords: instruction level parallelism · microcode · multiple instruc-
tion set architecture · transport triggered architecture

1 Introduction

In order to achieve higher performance, processors exploit instruction level par-
allelism (ILP) either statically in very long instruction word (VLIW) style or
dynamically in superscalar processors. The benefit of the VLIW style is simpli-
fied hardware implementation acquired by static scheduling which yields better
results in terms of energy efficiency and area in digital signal processing appli-
cations compared to dynamically scheduled processors. However, VLIWs suffer
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from high instruction stream energy and code size in programs that cannot uti-
lize ILP. This is caused by the use of no-operation instructions (NOPs) when
the VLIW instruction packet cannot be completely filled with useful operations.

To make designs more flexible, designers have incorporated multiple hetero-
geneous cores that can be used depending on the desired use case into their
system-on-chips (SoCs). While this results in increased flexibility, it is not an
optimal solution from an area utilization point of view as it effectively adds
“dark silicon” [18] to the design.

Exposed datapath processors [12] provide an instruction-set that exposes low-
level aspects of the datapath to the programmer. Transport triggered architec-
tures (TTAs) are highly modular architectures that follow the exposed datapath
paradigm, which makes them an interesting base for VLIW processor designs.
In TTAs, the programming interface is based on moves that transport operands
and execute operations as a side-effect. Their key drawback is that like tradi-
tional VLIW processors, TTAs suffer from high code size and instruction stream
energy in sequential programs. In addition, the low-level programming interface
exposes more information in the instruction format which correspondingly re-
quires more bits in the instruction word. However, the programming interface
of TTAs allows efficient exploitation of ILP thanks to optimizations enabled by
exposing the interconnection network to the programmer.

With the aim to provide the best of two worlds, we introduce Dual-IS, a
processor that implements both a RISC-V single-issue and an exposed datap-
ath VLIW instruction set. Dual-IS enables optimizing execution of programs in
terms of performance, code size and energy efficiency by supporting two differ-
ent instruction sets. We maximize the reuse of the core’s datapath resources by
implementing the RISC-V mode with the use of microcode that maps and se-
quences transport triggered move instructions for the exposed datapath. Thanks
to the exposed datapath architecture, we can support a multi-issue instruction
set with a register file (RF) complexity of a single-issue implementation.

This paper makes the following contributions:

– A novel dual-mode (RISC-V single-issue and an exposed datapath VLIW)
instruction set for exploiting instruction level parallelism statically when
available in the program, but not suffering from the VLIW’s poor code den-
sity when there’s a lack of it.

– Datapath resource sharing between the RISC-V and exposed datapath ISAs
via a low-level microcode-based control implementation.

– A proof-of-concept implementation and ASIC synthesis of the dual-mode
instruction set architecture as well as its performance and energy efficiency
evaluation.

2 Related Work

There have been various instruction set processor approaches in the past. Lin et
al. [17] proposed a unified processor architecture that had both a scalar MIPS-
like reduced instruction set computer (RISC) instruction set and a 4-way VLIW
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mode. The mode was set by a dedicated mode encoding that was specified for
each instruction. To minimize code size, the architecture formed 512-bit bun-
dles that could contain both VLIW and RISC instructions. In their approach,
the VLIW mode did not implement control instructions and therefore control
instructions were always executed in RISC mode.

Hou et al. [11] built on this concept with their FuMicro processor. In their
approach, the processor had a superscalar and VLIW ARM mode. The two
modes had a different issue width: The superscalar mode had an issue width
of two to minimize dependency checking while the VLIW mode was a 7-issue
architecture. The instructions were fetched in 256-bit packets that could contain
16- or 32-bit instructions.

Contrary to the previous two processors, Karaki et al. [13] proposed a pro-
cessor that could run both ARM and x86 instructions on shared hardware. The
processor utilized a hardware interpreter that translated and sequenced ARM
micro-operations from x86 instructions which enabled sharing the processor dat-
apath between instruction-set modes. This concept is quite interesting as it com-
bines two completely different ISA design philosophies: reduced and complex
instruction set computer (CISC).

Crepaldi et al. [4] presented a multi-one instruction set computer that fol-
lowed the one instruction set computer (OISC) principle. The processor had
two modes that could be selected during startup. The first mode was a standard
OISC mode that was based around the subleq instruction. The second mode was
called CISC mode and it could change between 14 different run modes depending
on a control register value that was explicitly stated in each instruction. In their
work, however, the different modes were not used to exploit ILP.

Another interesting architecture utilizing multiple modes is Nvidia’s Den-
ver project [2]. Denver implemented a traditional hardware-decoder mode that
decoded two ARM instructions per cycle and executed them in parallel if possi-
ble. The second mode, microcode mode, was used together with dynamic code
optimization that formed optimized packets of micro-operations in software. In
this mode, hardware-decoder was bypassed and the optimized micro-operation
packets were passed directly to the in-order hardware scheduler to execute up
to 7 instructions per cycle. This architectural concept is quite close to the one
introduced in this paper. However, we use a an exposed datapath as the stati-
cally scheduled multi-issue instruction set together with a microcode unit that
implements the RISC-V frontend for the processor core.

VLIWs have also been used in commercial designs together with code transla-
tion. For example, the Crusoe processor [14] that implemented x86 compatibility
with the use of software translation to run native VLIW code. The concept is
quite different from our work, as we add hardware decoding support for both
instruction sets instead of using software to translate code during runtime.

Some previous work regarding microcoded control design with the RISC-
V ISA has been done. Albartus et al. [1] introduced a RISC-V implementation
using microcoded control logic. In their work, the datapath of the processor only
allowed one transaction per cycle to occur which meant that execution of RISC-V



4 K. Hepola et al.

instructions required multiple cycles due to operand transportations. Klemmer
and Große [15] used an OISC microarchitecture to implement the RISC-V ISA
through microcoded control logic. In their work, they implemented the RISC-V
instructions as a chain of subleq micro-operations with the use of microcode.
Because of this microarchitecture, multiple cycles were needed to implement
single RISC-V instructions.

Previous work on microcoded RISC-V design is close to the concept of con-
trol logic design used in this work except that the internal microarchitecture is a
transport triggered architecture. In our microarchitecture, we directly map the
RISC-V instructions to equivalent operations in the function units without im-
plementing them as a chain of operations and use the microcoded control logic
for operand transportations on the exposed datapath. In addition, the operand
transports are sequenced in parallel to minimize cycle counts when executing
instructions. Contrary to previous work, we also make use of the microcoded
control logic design by using it to support multiple instruction set modes.

3 Transport Triggered Architectures

Transport triggered architectures are highly modular exposed datapath proces-
sors. Like traditional VLIW processors, TTAs are statically scheduled and allow
programmers to directly exploit ILP. However, programming TTAs differs vastly
from the traditional “operation triggered” architectures [9]. The TTA program-
ming model is based on data moves on the datapath interconnection (IC) network
which executes operations as a side-effect as demonstrated in Fig. 1. That is, the
programmer is exposed to the datapath connections of the processor. The ad-
ditional degrees of freedom in the programming model, however, leads to wider
instruction words [12].

Compared to traditional operation triggered multi-issue machines that re-
quire a notorious amount of register file IO to support concurrent operations,
transport triggered architectures can exploit ILP with reduced register file con-
nectivity and port amount. This is thanks to the function unit (FU) ports be-
ing registered, and can therefore be used to store values between clock cycles.
Hoogerbrugge and Corporaal [8] showed that transport triggered architecture
required an average amount of 0.5 read and 0.35 write ports per operation,
compared to two read and one write ports of traditional operation triggered
architectures. This difference becomes quite substantial when designing VLIW
architectures as increased register file complexity affects the area, timing and
energy efficiency of the processor core. Multiple TTA-specific optimizations con-
tribute to the reduced register file traffic:

– Operand sharing is used when two sequential operations share the same
operand. This potentially saves one register file read as the input operand
has already been transported to the function unit input register.

– Software bypassing [5] allows programmer to directly move data from
function unit output port to function unit input port without routing the
data through the register file.
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ALU LSU RF

LSU.out → RF.1

RF.2 → ALU.in2
LSU.out → ALU.in1.add

Fig. 1. Example of TTA programming model. Colored lines describe moves on the
exposed datapath between function units and a register file which triggers an add
operation as a side-effect.

– Dead result elimination reduces redundant register writes when an output
operand is not needed to be written to the register file. This happens when
a software bypass is used to transport the output operand to a function unit
and the value is no longer needed.

In addition to reduced register file IO requirements, TTAs can be imple-
mented with a reduced datapath connectivity when compared to operation trig-
gered VLIWs [3]. Contrary to dynamic data hazard detection implemented in
operation triggered architectures, TTAs solve data hazards in compile time which
reduces hardware complexity together with static software bypasses. In addition,
software bypassing eases customization of the interconnect network as the pro-
grammer is aware of the connections of the processor datapath.

The low-level programming interface of TTAs allows efficient use of latency
hiding with delay slot filling where delay slots of pipelined operations can be
used statically by the programmer to execute other operations.

Due to additional state data in function unit ports, external interrupts and
exceptions are expensive to implement in TTA processors. However, this is not
an issue when a TTA is used as a programmable accelerator as interrupts are
rarely justified in this type of use case. The problem of context saving during
interrupts can be solved with the concepts introduced in this work where the
RISC-V mode can be used for traditional register file base context saving.

4 Dual-IS Processor

Dual-IS processor combines both a RISC-V single-issue mode for sequential code
and a TTA-based VLIW mode for exploitation of ILP. An overview of the pro-
cessor structure is presented in Fig. 2. From the instruction set modality point
of view, the most important component is the microcode unit that translates
and sequences RISC-V instructions to TTA instructions during run time. In our
approach, using microcoded control logic for a RISC architecture enables the
processor to share resources with the TTA mode due to the exposed datapath
programming model.

The microcode unit is a crucial component that connects the two instruction
set interfaces of Dual-IS processor. In addition to instruction translation and
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Fig. 2. Overview of the Dual-IS structure with a microcode unit between the instruc-
tion fetch and decode components.

micro-operation sequencing, the microcode unit implements all the operation
triggered features that are not found in transport triggered architectures, for
example, dynamic data hazard detection. In our work, we automatically generate
the microcode RTL based on a high-level architecture definition which enables
to heavily customize the instruction set of the TTA mode.

The internal structure of the microcode unit is presented in Fig. 3. As seen
in the figure, the microcode unit is split into multiple subcomponents that im-
plement parts of the decoding and control logic of the processor. The internal
structure of the microcode unit is explored in greater detail in later sections.

By using TTA for the VLIW mode, we could expand the processor datapath
without adding register file IO due to the decreased register file usage as dis-
cussed in Section 3. This enables to extend a traditional single-issue processor
with a VLIW mode with relatively inexpensive hardware changes. A traditional
operation triggered VLIW would need the minimum of 2 write and 4 read ports
to support the same amount of peak issue width as Dual-IS.

4.1 Instruction Translation

Inside the microcode unit is a translation table that translates RISC-V instruc-
tions to TTA instructions. The translation table holds entries for each RISC-V
operation and format combination that correspond to parallel moves on the ex-
posed datapath. As the translation table does not need to be reprogrammed, it
is constructed purely of combinatorial logic to minimize the hardware overhead.

To reduce the amount of entries, register file indexes and immediate values
are not stored in the translation table. Instead, when a RISC-V instruction ar-
rives to the microcode unit, bits representing register file indexes and immediate
values are sliced from the instruction which leaves only the function unit and op-
eration codes. This information is sufficient for the translation table to translate
the correct function unit and socket encodings that control function unit port
multiplexers. After the instruction is read from the translation table, register file
indexes are inserted to the translated instruction.
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Fig. 3. Dual-IS microcode unit combines instruction translation and dynamic micro-
operation sequencing. Data hazards are solved during run time with bypass lookup
tables and dynamic data hazard detection. The microcode unit supports instruction
set modality with the use of a control signal that is used to bypass the microcode.

Immediate values require more attention, as supporting the full immediate
ranges of RISC-V instruction formats takes a considerable amount of encoding
space from TTA instructions. To optimize this, the immediate values are sliced
from RISC-V instructions and assigned directly to the interconnect immediate
signals by bypassing the decoder. This allows having different immediate ranges
between different instruction-set modes to preserve encoding space on TTA in-
struction formats.

4.2 Micro-operation Sequencing

Vast differences between the programming interfaces of operation and trans-
port triggered architectures, as mentioned in Section 3, require the translated
instruction to be split into multiple micro-operations. The reason behind this
are the explicit moves that transport result operands on the exposed datapath
after the operation has been executed. An example of such a phenomenon is a
simple RISC register add instruction that requires a minimum of two separate
instructions on a TTA:

Cycle 0 : RF. 1 → ALU. in2 , RF.2 → ALU. in1 . add
Cycle 1 : ALU. out → RF.3

On the first cycle, the input operands are transported to the ALU and the
add operation is triggered. On the next cycle, the result operand is transported to
the register file. To implement this feature dynamically on the Dual-IS RISC-V
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mode, the microcode unit splits the translated TTA instruction to two micro-
operations where the first micro-operation moves the input operands and the
second the output operands after the operation has been executed.

In order to support multi-cycle operations, the microcode unit is embedded
with an additional lookup table (LUT) that stores entries for operation laten-
cies. Fig. 3 describes the internal logic of the micro-operation sequencing. By
default, the result move is delayed by one clock cycle by registering it in the
micro-operation sequencer. For each instruction, operation latency is read from
a lookup table. If the operation is a multi-cycle operation, the moves transport-
ing input operands are sequenced after which the pipeline is bubbled until the
operation has been executed and the second micro-operation sequenced.

4.3 Control and Data Hazards

Control instructions are more complex to sequence compared to other instruction
types. The complexity stems from architectural differences: RISC-V ISA does not
use programmer visible delay slots to hide latencies of control instructions. In
order to preserve delay slots, and to follow the TTA programming model for the
TTA mode, the microcode unit is embedded with a controller that solves control
hazards during the execution of control instructions by stalling the processor
pipeline. The execution of control instructions could be improved with the use
of a branch predictor but we chose not to include one to minimize the amount
of RISC-V specific hardware.

The programming interface of RISC-V enables manipulation of the program
counter register directly without routing the data through the later stages of
the processor pipeline. This is especially beneficial when the control instruc-
tion does not have a dependency on the register file. In Dual-IS, direct RISC-V
jump instructions are implemented by bypassing the interconnect which reduces
operation latency by one clock cycle when executing them in RISC-V mode.

In addition to control hazards, solving data hazards requires additional hard-
ware in the microcode unit due to the static software bypasses used in TTAs.
To implement dynamic bypasses in the Dual-IS processor, the microcode unit is
embedded with additional lookup tables. A LUT is required for each of the reg-
ister operands. These LUTs contain the bypass move from the source function
unit output port to the target function unit input port for the hazard operand.

As there can be multiple function units, a third LUT that maps operations to
function units is required. To support bypass moves between multiple different
function units, the two LUTs containing bypass moves must be two-dimensional
where the operation encoding and the source function unit form a set of keys.

Fig. 3 presents the dynamic bypass feature in more detail. The LUT compo-
nent contains the translation, bypass source and operand bypass LUTs that are
constructed of purely combinatorial logic. When a data hazard is detected, the
register file move on the data hazard bus is discarded by multiplexing it with the
move read from the bypass lookup table. This way, the correct operand value is
moved directly to the function unit input port by bypassing the register file.
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4.4 Mode Switching

Supporting multiple instruction sets induces problems for the instruction fetch
(IF) design. The main challenge is how to support the different instruction word
sizes of different instruction-set with minimal complexity. In our approach, we
chose to bundle the RISC-V instructions to a wider instruction packet that is
fetched at a time. The width of the packet corresponds to one TTA instruction
width which allows simple instruction fetch design. Effectively this restricts the
TTA instruction word to be a multiple of the single-issue instruction word size
while minimizing the hardware overhead.

This design choice, however, does not come without issues because branches
between non-bundle-aligned addresses must be supported. This also has an over-
head in terms of fetched instruction bits because when jumping between non-
bundle-aligned addresses, redundant instructions are fetched. This problem could
be minimized by aligning all jump targets with the cost of larger code size.

In Dual-IS, the instruction-set mode is controlled by a signal that is visible
in the hardware interface of the processor. The mode switching itself requires
very little additional logic because the RISC-V mode shares the same decoder
with the TTA mode. In the microcode unit, the translated and sequenced micro-
operations are multiplexed with the fetched instruction which enables to bypass
the microcoding and execute TTA instructions as demonstrated in Fig. 3. Be-
cause we chose to decode RISC-V immediate values directly in the microcode
unit to save encoding space in TTA instruction formats, the decoder requires
an additional multiplexer that discards the immediate value output by the mi-
crocode unit and assigns the one produced by the decoder instead. Overall, the
additional hardware changes required by mode switching are relatively small.

5 Evaluation

For evaluation, we generated multiple designs that are discussed in more depth
in Section 5.1. The generated designs were synthesized with Synopsys Design
Compiler and a 28 nm ASIC technology to acquire post-synthesis properties of
the cores. In addition, the cores were benchmarked with the widely used CHStone
benchmark suite [6] in ModelSim RTL simulation to acquire cycle counts and
switching activity information for power estimation.

5.1 Evaluated Designs

We used the open-source OpenASIP toolset [7] to generate and design our eval-
uated cores. OpenASIP supports customization, generation, simulation and pro-
gramming of TTA-based application-specific instruction-set processors (ASIPs).
It ships with an automatically retargeting LLVM-based compiler that supports
heavy customization of the processor architecture.

To evaluate the overhead of multiple instruction-set modes, an in-order 4-
stage single-issue RISC-V core with hardware multiplier support was designed
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with the toolset by using a TTA with a reduced interconnect network connec-
tivity and hardware resources as the internal microarchitecture together with
a generated microcode unit. Similarly, a TTA core was generated without the
RISC-V mode and the RISC-V specific branch, call and auipc instructions that
cannot be utilized by the OpenASIP’s compiler. The architectures were targeted
for small embedded applications without floating point computation.

Both Dual-IS and single-mode TTA processors have five interconnect buses
and concurrently accessible function units which enables the execution of a mem-
ory, an arithmetic and a control flow operation in parallel. The TTA instruction
set has an instruction width of 64 bits that is double the width of RISC-V in-
struction word which enables to bundle instructions without using padding bits.
For the single-mode TTA and Dual-IS, instruction memories consisted of 64-
bit banks to match the instruction fetch width. The instruction memory of the
single-issue processor consisted of 32-bit elements.

To optimize the critical path, load and multiply operations were implemented
as 2-cycle operations. For the single-issue instruction sets, execution of these
operations caused one stall cycle. The TTA instruction sets, thanks to their
low-level programming model, were able to utilize static latency hiding to mini-
mize the overhead of multi-cycle operations. In addition to multi-cycle load and
multiply operations, control operations had programmer-visible delay slots that
could be exploited by the TTA instruction set.

5.2 Synthesis Results

Out of the three designs, the single-issue core achieved the highest clock fre-
quency of 2.08 GHz. The maximum clock frequency for the single-mode TTA
design was 2.04 GHz and for Dual-IS 2.00 GHz. The negligible overhead of Dual-
IS comes from the more complex control unit that adds additional multiplexers
to the interconnect which has a small effect on timing. The additional hardware
of Dual-IS, however, was not directly on the critical path of the design.

Table 1 lists the area utilization and breakdown of the designs. Dual-IS uti-
lized 3% more area than the single-mode TTA core and compared to the RISC-V
core, the area overhead was 17%. In Dual-IS, the microcode unit itself utilized
3% of the area and in the single-mode RISC-V design only 2%. The larger area
overhead of the microcode unit in Dual-IS was due to the additional multiplexers
that are required to switch instruction-set modes. Overall, the area overhead of
the microcode unit was negligible.

5.3 Performance

In this work, we utilized instruction set modality only at program scope which
allowed to use the same program binaries for Dual-IS and single-mode architec-
tures. While in-program mode switching would offer more flexibility and gain
from the Dual-IS architecture, choosing the instruction set mode at program
scope works well for applications that are clearly either control oriented or par-
allel. Thereby, Dual-IS instruction set runs have the same clock cycle counts as
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Table 1. Area breakdown of the cores.

Dual-IS TTA RISC-V

Area (µm2) 12900 12500 11000
RFs 37% 40% 42%
FUs 35% 40% 38%
IF 8% 3% 8%
Decoder 5% 5% 3%
IC 10% 12% 8%
Microcode 3% - 2%

the matching single-mode processors as the instruction set modality does not
have an overhead in terms of cycle counts. The clock cycles of TTA and RISC-V
instruction sets are presented in Table 2.

Running programs with the TTA instruction set reduced clock cycle counts
by 17% on average and 21% if mips was excluded. The most notable improvement
was seen in the blowfish benchmark which had a 35% reduction in clock cycles
when run with the TTA instruction set. The control-oriented mips benchmark
did not benefit from ILP, which is why cycle counts were 15% higher than in
RISC-V mode. The use of branches and lower jump latency contributed to the
lower clock cycle count as the TTA instruction set used a slower predicate +
direct jump to implement branches. Run times followed the same trend as the
clock cycles. However, as the single-mode RISC-V and TTA implementations are
able to achieve higher clock frequencies, Dual-IS runs suffer a run time overhead
of 4 and 2% when compared to their matching single-mode TTA and RISC-
V implementations. With Dual-IS, when running mips in RISC-V mode and
other benchmarks in TTA mode, the run time was only 0.4% higher on average
compared to the single-mode TTA architecture. Compared to the single-mode
RISC-V architecture, the run time was on average 15% lower.

5.4 Energy Efficiency

Energy consumption of the processors was evaluated by generating switching
activity information files (SAIFs) in RTL simulation and using them to generate
power reports for the synthesized designs. As a 128 kB instruction memory was

Table 2. Cycle counts and instruction code sizes.

TTA RISC-V TTA RISC-V
Benchmark cycles cycles code size code size

adpcm 138480 168448 13 kB 8 kB
aes 23753 25894 12 kB 5 kB
blowfish 542882 837995 7 kB 6 kB
gsm 13058 17518 11 kB 6 kB
mips 37670 32839 5 kB 2 kB
motion 2140 2641 6 kB 3 kB
sha 428790 602243 12 kB 7 kB
jpeg 2262176 2617326 85 kB 44 kB
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Fig. 4. Energy consumption relative to single-mode RISC-V baseline.

required to successfully compile all the benchmarks, we evaluated the system
with that instruction memory size. For the instruction cache, we chose a direct-
mapped 2 kB cache with a line size of 16 bytes. The data memory size was 64
kB because that was sufficient for compiling all the benchmarks.

We evaluated the instruction and data stream energy by generating memory
access traces in RTL simulation and used Cacti [16] for generating estimates of
the access energies. The memory access traces generated in RTL simulation were
processed with a cache simulator to find the amount of accesses to the instruction
cache and memory. The evaluated energies at maximum clock frequencies are
described in Fig. 4 where energy foot print of the core, data memory, instruction
cache and instruction memory are separated.

From the instruction stream energy point of view, bundling the RISC-V
instructions to packets of two was beneficial as wider banks have lower access
energy per bit which lowered the instruction stream energy of the Dual-IS RISC-
V runs by 29% on average. Dual-IS had the same amount of cache misses as the
single-mode RISC-V processor because the bundles never exceed cache lines.
Furthermore, even though Dual-IS fetched more bytes from the cache due to
excess instructions that are fetched in the bundle during jumps, it had the same
amount of fetched bytes from the instruction memory because during a cache
miss the whole line is replaced in the cache.

The reduced energy achieved by bundling instructions compensates for the
energy overhead of the more complex datapath and control logic of Dual-IS. In
Dual-IS RISC-V runs, the core itself, however, consumed 27% more energy on
average compared to the single-mode RISC-V core. The energy overhead of the
core is expected due to the underlying multi-issue microarchitecture that exe-
cutes the single-issue RISC-V instructions. In addition, Dual-IS function units
are more complex compared to the single-mode RISC-V implementation because
extra registers are required to store values in the function unit input ports be-
tween cycles to implement the transport triggering behaviour for the TTA mode.

The TTA instruction set suffered a significant overhead in terms of energy
consumption in benchmark applications that expose little ILP. This is expected
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due to the wider instruction word that contained NOPs when move slots could
not be utilized for operand transports. Furthermore, the programmer-visible
delay slots increased the number of redundant instructions when they could not
be utilized for operations in sequential code. On average, compared to the single-
mode RISC-V processor, the single-mode TTA processor consumed 48% more
energy in total. Dual-IS TTA mode consumed 1% more energy in total compared
to the single-mode TTA processor due to the extra hardware that is required for
the RISC-V instruction set and switching of instruction sets but the overhead
was also compensated by the slightly lower clock frequency of Dual-IS.

With Dual-IS, it is beneficial to run benchmarks in RISC-V mode when
frequent instruction cache misses and lack of ILP cause the instruction stream
energy to be significant. Energy-delay product (EDP) [10] is a widely used metric
that combines energy efficiency and execution speed of circuits. When instruction
set was chosen based on the lowest EDP value, Dual-IS had 14% lower EDP
compared to the single-mode TTA design. This way, the run time was 6% higher
than with the TTA processor but energy consumption was lowered by 18%.

Power breakdown of different components is listed in Table 3. In the single-
mode RISC-V core, the microcode unit consumed on average 6% power. In Dual-
IS, the equivalent power consumption was 9%. The difference is due to the
additional multiplexers that are needed to switch between RISC-V and TTA
modes. When running Dual-IS on TTA mode, the microcode unit consumed 4%
of the total power due to multiplexers responsible for mode switching.

Table 3. Power breakdown of the designs.

Dual-IS Dual-IS
Component RISC-V RISC-V TTA TTA

Register Files 15% 16% 13% 13%
Function Units 31% 34% 47% 42%
Instruction Fetch 7% 7% 5% 7%
Decoder 11% 14% 14% 15%
Interconnect 16% 15% 18% 16%
Microcode 6% 9% - 4%

5.5 Discussion

With the evaluated benchmark set we were able to reduce cycle counts on average
by 17% with the TTA instruction set. Higher average performance improvement
could be acquired by concentrating on benchmarks with more exploitable ILP.
However, it should be noted that this benchmark set was chosen to evaluate
the benefit of flexible architectures and their efficient use in the minimization of
the instruction stream energy in statically scheduled multi-issue machines when
ILP is scarce. Additional improvements to minimize the TTA instruction stream
energy could be done by using a loop oriented L0 cache such as a loop buffer that
would fit the program hot spots. That would steer the design towards using the
TTA mode mostly for loop kernels and the RISC-V mode for control oriented
parts and to retain binary compatibility with unmodified RISC-V binaries.
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6 Conclusions

In this paper, we introduced Dual-IS, a processor that provides both a single-
issue RISC-V and exposed datapath VLIW instruction-set modes with shared
resources. To support the two instruction sets in the same microarchitecture, we
implemented the RISC-V mode with the use of microcode-based control that
extends the exposed datapath core with decoding and control logic. By using an
exposed datapath instruction set for the TTA mode, we could implement the core
with the same level of register file complexity as a single-issue implementation.
Instruction set modality of Dual-IS enables to select instruction-set modes to
optimize performance, energy efficiency or code size which adds flexibility.

Dual-IS achieved on average 15% and in the best case 33% smaller run times
than a single-issue RISC-V processor when instruction-set modes were selected
at the program scope to optimize performance. Compared to a single-mode TTA
processor, when selecting the instruction set modes of Dual-IS based on energy-
delay product, 14% lower EDP was achieved. This way benchmarks not benefit-
ing from instruction level parallelism were run in RISC-V mode which lowered
the energy consumption by 18% and increased run time only by 6% on average
compared to a single-mode TTA processor.

The hardware overhead from instruction set modality and RISC-V ISA was
negligible (3%), as was the impact to the clock frequency (2%) when compared to
a single-mode TTA processor with similar datapath resources. This demonstrates
that multi-issue TTA processors can be extended with RISC-V binary support at
a low cost while providing the ability to minimize VLIW overhead in sequential
programs with the serial execution mode.

In this paper, we used different instruction-set modes at a program gran-
ularity to optimize either performance or energy efficiency. In the future, we
plan to investigate compiler support for switching of instruction-set modes and
study at which granularity it is most beneficial to toggle modes. In addition to
decreased instruction stream energy for the TTA, in-program mode switching
would allow to share the local data in the caches and register files, which would
be beneficial in terms of performance and latency compared to offloading tasks
to a separate co-processor. In-program mode switching would be especially well
suited for programs that have both control-oriented and parallel code regions.
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