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Summary/Abstract 

DNA microarray data preprocessing is of utmost importance in the analytical path starting from 

the experimental design and leading to a reliable biological interpretation. In fact, when all relevant 

aspects regarding the experimental plan have been considered, the following steps from data 

quality check to differential analysis will lead to robust, trustworthy results. In this chapter, all the 

relevant aspects and considerations about microarray preprocessing will be discussed. 

Preprocessing steps are organized in an orderly manner, from experimental design to quality check 

and batch effect removal, including the most common visualization methods. Furthermore, we will 

discuss data representation and differential testing methods with a focus on the most common 

microarray technologies, such as gene expression and DNA methylation. 
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1. Introduction  

DNA microarrays have led the way from studies of individual genes or, at best, pathways, towards 

a global investigation of cellular activity. The vast amounts of data obtained through microarrays 

represent a valuable source of information for solving biological questions and hypotheses. 



 

However, this cannot be achieved without proper data processing and consideration of the biases 

caused by the microarray experimental steps. Fortunately, these biases are recognized, and can be 

dealt with through different data processing steps which include careful quality assessment, sample 

and probe filtering, data normalization, batch effect estimation and correction, as well as probe 

annotation (Figure 1). These steps represent the golden standard of data preprocessing for gene 

expression and DNA methylation microarrays, both of which are covered in this chapter (1). 

 

[Figure 1 near here] 

 

The technology of DNA microarrays is based on nucleic acid hybridization, allowing the 

complementary sequences in the array (probes) and the sample to bind to each other by base 

pairing, while the signal is measured through fluorescent dyes. The several steps from 

experimental design to sample hybridization can introduce various sources of systematic errors 

that need to be carefully considered. Mindful experimental design avoids generation of 

unmanageable biases, paving the way for reliable, reproducible and good-quality data through the 

subsequent preprocessing steps. Data quality starts from proper technical execution of sample 

collection, RNA/DNA quality and purity assessment, and the microarray experiment itself. The 

experimental activities are followed by further quality assessment of the data, which helps to 

identify outlier samples, systematic biases or other errors. Furthermore, microarrays are 

intrinsically prone to a level of background noise as a result of cross-hybridizing probes and the 

saturation of the signal, setting the need for probe filtering. Normalization, on the other hand, is 

not only crucial for scaling the signals of individual measurements and arrays to allow relevant 

comparisons between molecular targets and samples, but also the key to meaningful cross-study 



 

comparisons (2, 3). While normalization has the power to adjust some of the bias introduced by 

different batches of samples, proper mitigation of batch effects can be achieved through batch 

effect evaluation and correction. Finally, the probes are annotated to known targets, such as genes, 

genomic regions or CpGs, to support the interpretation of the results in a meaningful way. 

Typically, the output is further analyzed by differential expression or methylation to understand 

the changes introduced by the varying conditions between groups of samples. 

 

When properly designed, performed, and processed, microarray experiments provide an effective 

and reliable way to study the key players of different developmental stages, pathological processes 

and molecular responses to perturbations, including exposure to drugs and toxic compounds, as 

well as the effects of gene knockout and knockdown (4). Altogether, this chapter provides an 

overview of the general workflow that can be applied to achieve robust and reliable results from 

gene expression and DNA methylation microarray data to unravel the mechanisms underlying a 

range of biological processes.  

 

2. Methods 

2.1. Experimental design 

Microarrays provide an effective way to study and understand the state of, and changes in 

biological systems. However, successful microarray experimentation requires a deep 

understanding of the technology and all the possible pitfalls. A careful and intelligent experimental 

design is the first step towards effective and reliable microarray analysis. Experimental artifacts 

and technical effects are a common issue in scientific experimentation and results in an unwanted 

variation in the data. Such artifacts can heavily affect the experiment, leading to biased results or, 



 

in the worst case, to discard the entire experiment. Thus, a rigorous study/experimental design is 

needed in order to mitigate, if not avoid, artifacts due to technical nuisances (5). An experimental 

design begins from proper sample selection. To achieve a statistical significance for meaningful 

downstream analysis, a proper number of replicates, with corresponding control samples are 

needed. The number of replicates depends on the origin of the sample. With a more homogenous 

sample set, derived from a cell line for example, less replicates are most likely needed to cover the 

biological variance than in the case of heterogeneous patient samples. As microarrays are relatively 

expensive assays, usually a tradeoff between the number of different treatments, sample groups 

and the number of replicates will be needed. Nonetheless, as a priority, a proper set of relevant 

control samples is required to make meaningful comparisons between the treatment/disease and 

the steady/healthy state. In addition to the negative (untreated or base-line) control, a positive 

control and/or midpoint controls might provide meaningful, comparable, replicable and usable 

results. After proper sample selection and extraction (RNA, DNA, protein), the second most 

important step is to ensure the quality of the obtained samples. For this, the sample quantity as 

well as its integrity need to be ensured. Data quality measures will be discussed in paragraph 2.2. 

Given the different microarray technologies, vendor specific platforms and solutions, array-

specific procedures need to be considered case-by-case as part of the experimental design. 

However, common features include the use of fluorophore dyes for labeling and intensity 

detection. In a two-color assay, a simple mistake is to dye the same sample group with the same 

dye causing a dye-effect that cannot be corrected from the obtained data. This will result in 

consistently higher or lower intensity values in the particular sample group. Thus, when dual-

colors microarrays are used, a careful randomization between samples and the dyes needs to be 

performed. Even with a one-color assay, a controlled sample randomization is required to 



 

minimize the bias from sample groups or sample position on the arrays during hybridization. When 

the experiment is well designed with proper randomization, most of the technical biases can be 

corrected during the following data pre-processing steps. For this, a thorough recording of each 

sample feature is required to recognize the additional artefacts caused by uncontrolled technical 

aspects such as sample processing dates, variation in sample processing or collection, dyes and 

slide/chip area. This information provides an important starting point for proper data quality check, 

normalization and batch effect correction discussed in detail in the following paragraphs. 

When appropriately designed and implemented, microarrays provide a valuable set of molecular 

descriptors that can be used to study the state of the biological system and draw comprehensive 

conclusions about the mechanism of action. 

 

2.2. Quality check  

 
2.2.1. DNA/RNA quality check 

 
The output of microarray data critically depends on the quality of the sample hybridized onto the 

microarray (6–8). Although several different quality criteria for RNA integrity and microarray data 

quality have been formulated, a clear consensus has not been achieved. Despite this, using a pure 

and intact sample is crucial for obtaining reliable data. 

The assessment of nucleic acid quality can be achieved through several methods. For instance, 

spectrophotometers and fluorometers can help to assess the quantity and purity of the nucleic acid 

while electrophoresis-based methods are typically used for more detailed quality evaluation. This 

type of quality control is routinely performed by running a traditional agarose gel electrophoresis 

or through an automated electrophoresis system that is often combined with data processing 

software providing numeric values that represent sample quality. The bands on the denaturing 



 

agarose gel are evaluated to assess the presence of typical patterns of intact RNA. Similarly, the 

automated systems provide corresponding graphs that can be used for evaluation alongside the 

provided quality value, such as the RIN or RQN values for RNA in the case of Agilent Bioanalyzer 

and Fragment Analyzer, respectively. 

 

2.2.2. Data quality check  

2.2.2.1. Chip image analysis 

The quality assessment of the data starts by evaluating the quality of the hybridization. This can 

be carried out through carefully inspecting the chip image post scanning to address the presence 

of smears, dark spots, or other irregularities in the image. Feature extraction process transforms 

the scanned image into raw data files comprising computable values and is generally performed 

with software coupled with the microarray scanner. This step can further provide a quality report 

summarizing aspects of the hybridization to evaluate its success and consistent quality across 

arrays.  

Given satisfactory hybridization results, the quality assessment continues with a more thorough 

inspection of the data. 

 

2.2.2.2. Data Quality check 

 
As discussed, gene expression and methylation estimates measured through microarray 

experiments can be significantly affected by different sources of systematic and random technical 

noise that may occur at different stages of the experimental procedure (9). For this reason, Quality 

Check (QC) methods aim to homogenize the shape of gene expression distributions, to identify 

RNA/DNA degradation signals, and to increase the robustness of probe intensity measures across 



 

different samples. Several QC methods have been proposed which are often based on visual 

inspection of the data (10). We will outline the main QC methods to consider in the next 

paragraphs.  

 

2.2.2.3. Expression specific data quality check 

In this paragraph, we outline a short list of visual methods for quality check of gene expression 

microarray data. 

 
MA plot: 
 
MA plot is a common visualization method used for general QC purposes. It is widely applied to 

represent probe intensity distributions of two samples or groups of samples. In the MA plot, the x 

axis shows the average probe intensities of the compared samples, denoted as A, while on the y 

axis the absolute difference (in log2 scale) of the probe intensities, denoted as M is shown. The 

simplest application of the MA plot is the comparison of the intensities coming from the Cy3 and 

Cy5 dyes. Overall, the two intensities are supposed to be constant. Significant variations or 

aberrations between the trend of the intensities arising from the two dyes may suggest a bias 

occurred during the preparation of the experiment. The MA plot is a precious instrument that can 

be used before and after the normalization, in order to check the correctness of the procedure. 

Since the majority of the genes are supposed to have constant intensity values across the samples, 

it is expected that all the points would lie on the zero of the y axis. Variations from this trend 

suggest that a normalization is necessary, and one can follow the data transformation through the 

inspection of the MA plot. 

 

[Figure 2 near here] 



 

 

Distance-based methods: 

The quality of microarray experiments can be further evaluated using so-called distance-based 

methods. These methods allow the comparison among several arrays by computing pairwise 

distances among them and representing such distances through specific exploratory plots. For 

instance, one of the most utilized graphs is the heatmap of the mean absolute difference, where the 

pairwise distances among samples are expressed by a color scale and a dendrogram shows how 

the samples cluster together on the base of such distances. This method is very useful if the aim is 

to identify outliers (11). Furthermore, biological replicates are expected to cluster together giving 

indication of potential batch effects in the data if, for instance, samples are observed to cluster 

based on the processing date instead. Another useful visualization falling into this category is the 

horizontal barplot which summarizes the pairwise distances among samples. In this graph, a 

threshold is determined based on the distribution of values across all the arrays and represented by 

a vertical line. Arrays with the summarized distance larger than the threshold are considered 

outliers (1). 

 

2.2.2.4. Methylation specific data quality check 

Methylation arrays have their own set of quality control plots to assess the performances of 

different reactions using different sets of dedicated probes. Illumina control probes can be broadly 

divided into two types: i) Sample-Independent Controls and ii) Sample-Dependent Controls. 

Sample-Independent Controls are used to evaluate the quality of specific steps in the process flow 

while Sample-Dependent Controls are used to evaluate reaction performance across samples.  

 

Sample-Independent Controls include:  



 

● Staining controls, used to measure the efficiency and sensitivity of the staining step. 

These controls can be used to compare background and signal for Staining control in the 

red and green channel.  

● Extension controls, used to measure the extension efficiency of A, T, C, and G 

nucleotides from a hairpin probe, in the red and green channel.  

● Target removal controls, test the efficiency of the stripping step after the extension 

reaction. 

● Hybridization control, test the overall performance of the Infinium Assay using synthetic 

targets, perfectly complementing the sequence on the array instead of amplified DNA. 

Synthetic targets are present in the hybridization buffer at three concentrations: low, mid 

and high. This control should be monitored only in the green channel. 

Useful representations for this set of controls are scatter plots or bar plots for the signal of each 

sample or scatter plot of the median intensity of the M channel against the median intensity of 

the U channel as implemented in the Minfi package (12). 

Sample-Independent Controls include: 

● Bisulfite conversion control measures the efficiency of bisulfite conversion of the 

genomic DNA. 

● Specificity controls check for non-specific detection of methylation signals over an 

unmethylated background. 

● Negative control probes define the system background and provide a comprehensive 

measurement of background, including signal resulting from cross-hybridization, as well 

as non-specific extension and imaging system background. 



 

● Non-polymorphic controls test the overall performance of the assay, from amplification 

to detection, by querying a particular base in a non-polymorphic region of the bisulfite 

genome. They let us compare assay performance across different samples.  

Useful representations for this set of controls are scatter plots or bar plots for the signal of each 

sample or scatter plot of the median intensity of the M channel against the median intensity of 

the U channel as implemented in Minfi (12). 

 

2.2.2.5. Platform independent data quality check 

 
The first set of QC plots are utilized for general purpose exploratory data analysis. These 

plots are employed for the representation of general properties of the microarray data and for 

outlier detection and management. In detail, they are computed on raw data and aim to give insight 

in the sample quality, the quality of the hybridization and the overall signals. Furthermore, they 

evaluate the comparability of signal strength and distribution within- and between-arrays, 

detecting deviating arrays (bias diagnostic), and assesses the correlation and grouping of samples 

based on the numeric array data. Alternatively, the next set of QC plots is computed for pre-

processed (annotated and normalized) data and allows evaluating the performance of the 

normalization.  

 

Histograms: Histograms are a common representation of probe intensity distributions in a 

microarray experiment. The assumption in a microarray experiment is that the measured 

intensities of the probes is directly proportional to the gene expression or methylation 

levels. For the purpose of representing the distribution of the gene expression/methylation 

estimates, the values are transformed in a logarithmic scale, in order to fit the distribution 



 

to a normal one. In this way, the x axis reports the log2 transformed values of the gene 

expression/methylation estimates, while on the y axis the frequencies for that estimates in 

the experiment are reported. 

 

[Figure 3 near here] 

 

Density plots: Density plots represent an alternative visualization method to the histogram. 

It is broadly employed to obtain a smoothened view of the gene expression/methylation 

estimates in a particular experiment. 

Sample quality is assessed by comparing the distribution of expression/methylation values 

among samples and between different probe-sets (e.g., green/red channels in methylation 

arrays). This can be done by means of density plots (over beta- (b) of M-values) and by 

grouping samples based on different technical and biological features. Samples (or groups 

of samples) deviating from expected distribution should be marked for further investigation 

and eventually removed. 

 

[Figure 4 near here] 

 

Scatterplots: Scatterplots are a very common graphical visualization method in order to 

highlight variation between-arrays. The values on the x and y axes of the scatter plot are 

log transformed intensity values of the compared samples. Scatterplot is a precious 

instrument in order to identify problematic arrays and to study, for instance, the consistency 

of technical or biological replicates. 

 



 

[Figure 5 near here] 

 

Dimensionality reduction: Dimensionality reduction techniques help identifying 

problematic samples/features by representing them in a low-dimensional space and 

annotating them using known biological technical grouping. Samples/features deviating 

from the expected grouping can be candidates for further investigation and eventually 

filtered out. When using dimensionality reduction techniques particular attention should be 

paid to the amount of variance of the original dataset associated to each used dimension 

and to the association between each dimension and known variables. Commonly used 

methods to perform dimensionality reduction on microarray data are MultiDimensional 

Scaling (MDS), Uniform Manifold Approximation and Projection (UMAP, Figure 6) and 

Principal Component Analysis (PCA). 

 

[Figure 6 near here] 
 
2.3. Filtering 

2.3.1. Filtering 
 

The hypothesis underlying microarray analysis is that the measured intensities for each arrayed 

gene represent its relative expression level. Biologically relevant patterns of expression are 

typically identified by comparing measured expression levels between different states on a gene-

by-gene basis. However, before the levels can be compared appropriately, a number of 

transformations must be carried out on the data to eliminate questionable or low-quality 

measurements, to adjust the measured intensities to facilitate comparisons, and to select genes that 

are significantly differentially expressed between classes of samples (3). Probe filtering is the first 

step of such transformations and is intended to identify and remove probes on the array with 



 

spurious values that do not represent the underlying expression/methylation state and can thus lead 

to incorrect results. Common strategies to address these values are described below. 

 
2.3.2. Expression specific probe filtering 

 
Since microarray technology relies on complementary nucleic acid hybridization, it is often prone 

to a level of noise arising from non-specific binding as well as optical noise from the background. 

Failing to address this noise during preprocessing can lead to biased results, hence low-intensity 

probes should be filtered out prior to normalization. Often, the non-specific binding shows little 

variation across samples, thus combining low intensity with low variability (13). In many gene 

expression microarrays, this can be addressed by comparing the signal intensity to the negative 

control probes present in the platform and investigating the signal variance between samples. 

Probes displaying intensities in a similar range as the negative control probes across the arrays are 

removed from the subsequent analysis. Another approach is based on the detection p-value which 

is commonly applied for Illumina gene expression and methylation microarrays (14). This 

approach is described in more detail under the context of methylation specific probe filtering, 

although a comparable strategy is applied for Illumina expression arrays. 

 
2.3.3. Methylation specific probe filtering 

 
Probe filtering approaches over methylation can be divided in two groups: technical probe filtering 

and biological probe filtering. Technical probe filtering is based on detection p-values, namely the 

probability that a methylation value reported for a probe is distinct from the background noise. 

The most commonly used p-value cut-offs in the literature range from 0.05 and 0.01. Biological 

probe filtering, on the other hand, is based on the biological property of the particular probe 

sequences used to capture methylated/unmethylated oligos that can make the associated values 



 

unreliable in certain situations. Among the latter are i) the presence of a SNP on the interrogation 

or the extension site and ii) the localization of the probe on a heterosome. 

The presence of a mutation on the interrogation or the extension site can alter the reliability of the 

measured value, common polymorphisms thus increase the probability of this event. The 

population frequency of the SNP, along with the knowledge of genetic background of the sample, 

are determinant factors in deciding if a probe hosting a SNP can be kept or should be discarded.  

Probes that are localized on heterosomes show different signals between male and female subjects 

due to the different number of copies that are found on the two chromosomes. 

The choice of whether probes localized on heterosomes are to be discarded is dependent on the 

sample sex composition and the planned comparisons. In fact, comparison of probes on the 

heterosomes between male and female subjects could lead to spurious results if not adequately 

taken into account in the statistical model.  

 

2.3.4. Platform independent filtering 

 
While some filtering approaches are platform specific, some can be seamlessly applied in many 

expression and methylation array platforms. The first being the removal of cross hybridizing 

probes. This refers to probes that have a high probability of hybridization with different 

oligonucleotides thus lacking specificity for the desired target. Literature provides tools and lists 

for identifying cross-hybridizing probes in methylation arrays (15) as well as in expression array 

(16) experiments.  

The second filtering approach that can be applied to any microarray platform is based on outlier 

detection, namely the inspection of the probe value distribution among samples and the 

identification of probes characterized by extreme values not accountable to any biological feature. 



 

Boxplots and scatterplots are useful graphical tools to perform this kind of inspection. Automated 

outlier detection can be implemented by summarizing the distribution of values measured for each 

probe and marking outlier probes based on thresholds that can be based on percentiles (e.g., 

consider outliers all values outside the interval formed by the 2.5 and 97.5 percentiles) or the values 

outside the interval formed by the median, plus or minus 3 median absolute deviations or using 

dedicated statistical tests like the Grubbs’s (17) or the Dixon’s test (18). 

  
2.4. Imputation 

Missing measurements, due to missing signal or user filtering, can cause problems to successive 

downstream analyses when they require the input set of observations to be complete. Thus, 

depending on the analysis to be performed, a second version of the data matrix where missing data 

are imputed (i.e., replaced with substituted values) can be produced.  

Several methods exist in literature to perform data imputation, spanning from general purpose 

methods (e.g., KNN, regression models, central tendency values, etc.) to methods specifically 

designed for data obtained from microarray experiments (19, 20). 

 

2.5. Normalization 

Normalization is a crucial step in the preprocessing of microarray data allowing robust and 

meaningful comparisons between molecular targets, samples, and experiments. The goal of data 

normalization is to adjust the signal intensities and to remove sources of variation that might affect 

the results, such as dye effects and hybridization artifacts (21). A plethora of different strategies 

for the normalization of microarray data have been proposed, yet the preferred method is highly 

dependent on the data. Some of the methods are also platform-specific, meaning that they are 

distinctly oriented to gene expression or methylation studies. Others are rather nonspecific for the 



 

platform, and they can be employed in any kind of microarray analysis. More importantly, the 

normalization methods can be classified into “within-array normalization” and “between-array 

normalization” based on the data taken into account for the data transformation. In particular, the 

within-array normalization methods only take into account the statistical information of each 

single array (22). While this provides effective normalization between molecular targets within the 

array, separate arrays will likely not be comparable making reliable differential analysis virtually 

impossible. Conversely, in the between-array normalization, information about the statistical 

properties across all the arrays included in the study are retrieved and exploited in order to make 

them comparable for differential analysis and other multi-sample analyses (Figure 7). This is 

achieved through a number of statistical approaches outlined in the following paragraphs. 

 

[Figure 7 near here] 

 

2.5.1. Expression specific data normalization 

As widely reported by Bilban et al. 2002 (23), the simplest expression microarrays specific 

normalization strategies are aimed at the identification of genes whose expression is stable across 

different arrays as well as not differentially expressed. A number of strategies have been 

formulated in order to identify such invariant genes. Among others, the global normalization was 

one of the most employed, before more sophisticated methods were developed. This approach is 

based on the assumption that the amount of mRNA labeled with Cy3 or Cy5 is comparable. 

Therefore, in DNA microarrays encompassing thousands of probes (i.e., Agilent 450K), the signals 

from both of the labeled probes should be averaged. In this way, the ratio of the means of the 

intensities across all the probes should be equal to one (24–27). However, these kinds of strategies 

are not preferred nowadays, since the number of invariant genes may not be wide enough to cover 



 

the range of signal intensities, and therefore, not achieve a proper fitting for non-linear 

normalization (23, 28). On the other hand, more robust normalization methods have been 

developed in the recent years. One of these is the locally weighted scatterplot smoothing 

(LOWESS) method, which was used in the past for smoothing scatterplots in a weighted, least-

squares fashion (29, 30). LOWESS takes into account the effects due to the probe intensities and 

partially corrects for background effects. Other variants of the LOWESS take also into account 

local effects (e.g., print-tip LOWESS). Such normalization method is commonly used for two-

color arrays (31). 

 

2.5.2. Methylation specific data normalization 

Data normalization for methylation microarrays is used to normalize the values between-arrays in 

order to account for assay related variation but also within an array to account for the difference 

in the distribution of values derived from distinct types of probes used in the same array design (as 

in the case of type 1 and type 2 probes in some Illumina platforms). Commonly used methods for 

within-array data normalization are Subset-quantile Within-Array Normalization (SWAN) (32), 

that allows within-array normalization of Infinium type I and II probes by reducing the differences 

in their signal distribution, Beta-Mixture Quantile Method (BMIQ) (33), that works by adjusting 

the distribution of Infinium II probes using as reference the distribution of type I probes, Normal-

exponential using Out-Of-Band probes (noob) (34), that performs background correction and dye-

bias adjustments on raw intensity values and Regression on Correlated Probes (RCP) (35) that 

normalizes probe intensities by taking into account the probe spatial correlation methylation 

values.   

 



 

Common between-array normalization methods, on the other hand, include Functional 

Normalization (FunNorm) (36), that allows to remove unwanted between-array variation by using 

a quantile normalization approach based on the set of control probes, dasen (37), that performs 

between-array background correction and normalization separately for each probe type and 

stratified quantile normalization (pQuantile) (12), that performs between sample quantile 

normalization by stratifying probes based on their genomic region. 

 

As in many other cases, the choice of the normalization method to be applied depends on the 

characteristics of the dataset and on the kind of downstream analyses to be performed. Within-

array techniques are useful to remove intrinsic differences linked to different chemistries 

implemented in 450k and Epic array, while between-array techniques help to reduce technical 

noise arising from the distribution of samples over different chips. Usually within-array 

approaches are preferred, especially when followed by the explicit application of methods to 

remove batch effects that include array differences among the others. 

 

2.5.3. Platform independent data normalization 
 

Beside technology-specific normalization methods, a number of statistical methods can be applied 

for DNA microarray platform-independent normalization tasks. For instance, a simple, but widely 

used method is the standardization of the data. The term “standardization” is generally meant to 

describe the transformation of the expression or methylation estimates into Z scores. In detail, this 

approach scales microarray data within each array, and the values for individual genes are 

expressed as a unit of SD from the normalized mean of zero (38). In this way, different arrays 

underlying distinct biological conditions become comparable for differential analysis. The 



 

differences detected between-arrays are, therefore, differences between the Z scores (Z ratios). 

Another approach that is worth mentioning, is the quantile normalization. This method is one of 

the most widespread normalization methods (39), not only employed in microarray data 

preprocessing but also in high-throughput sequencing technologies. The aim of the quantile 

method is to make the probe intensity distributions across a number of arrays identical. This kind 

of normalization originated from the quantile–quantile plot representation, where the points of two 

data vectors having the same distribution form a straight diagonal line. This implies that we can 

give each array the same distribution by taking the mean quantile and substituting it as the value 

of the data item in the original dataset (31).  

 
2.6. Batch effect estimation and correction 

As previously discussed, microarray data is prone to undesirable variation arising from technical 

aspects, sample handling, and even environmental conditions. This type of systematic variation 

observed between groups of samples is commonly referred to as a “batch effect”. While some 

batch effects cannot be completely avoided, their effect can be minimized through careful planning 

and technical execution, and further mitigated during data preprocessing, given the correct 

precautions have been taken during experimental design. Failing to consider and address batch 

effects can result in misleading conclusions as the technical bias can be strong enough to mask the 

true biological signal (40). 

Each of the potentially interfering variables (processing date, sample handler, separate batches of 

reagents etc.) should be carefully reported in the metadata alongside the biological variables and 

exposure details (exposure time, dose, treatment, donor etc.) in order to observe meaningful 

patterns in the data. Additionally, batch effects can arise from hidden sources not explained by the 

reported variables. These types of unknown sources of variation can be estimated by running a 



 

surrogate variable analysis (SVA) from the R library sva (41). SVA identifies variables that work 

as surrogates for the technical variation observed in the data. These variables can then be included 

in the metadata, after which they are handled similarly to the known variables. 

 

Although powerful approaches to evaluating and correcting batch effects have been established, 

they can only be applied on variables that are not confounded with the biological signal or other 

variables of interest, as the goal is to only attenuate the variation associated with technical variables 

while retaining the biological variation. The relationship between variables can be assessed by 

evaluating their correlation, typically by using a confounding plot (40). The presence of batch 

effects, on the other hand, can be assessed by clustering the samples to reveal grouping related to 

sources of technical bias, as well as through a principal component analysis (PCA). PCA helps to 

quantify the effect of the technical variables by breaking down the data into principal components 

that work as estimates for the patterns observed in the data. If batch effects independent from 

biological variables are observed, they can be corrected to alleviate the technical noise in the data. 

Methods that tackle batch effects in high-throughput data include various statistical methods such 

as the use of linear mixed models (LMM) (42) and empirical Bayesian approach (43). The 

empirical Bayesian approach has been implemented as a method called ComBat in the R package 

sva (41). ComBat has been found to outperform most of the other methods proposed for batch 

effect correction (42, 44), which has led to its widespread use and popularity. 

 
2.7. Probe annotation 

The probes on the microarray chip represent known biological entities, such as genes or CpGs 

associated to them, and need to be mapped to commonly used annotations to allow meaningful 

interpretations. While the sequences of the oligonucleotides on the array are rarely subject to 



 

changes, the genome assemblies are revised as the knowledge expands, requiring frequently 

updated sources. Probe annotations are platform specific, which can sometimes lead to 

discrepancies between microarray platforms. However, a general approach to probe annotation is 

the use of specific annotation files that can be provided and updated by the manufacturer (Agilent) 

or available through databases such as Brainarray (http://brainarray.mbni.med.umich.edu/, last 

accessed in March 2021), which provides up-to-date annotations for Affymetrix microarrays. 

Additionally, platform specific annotation packages are available for R, such as the Bioconductor 

AnnotationDbi (45) and Illumina Human Methylation EPICanno (46). 

During the annotation phase, probes are mapped to known molecular entities represented in the 

chosen format (e.g., Ensembl IDs, Entrez gene IDs, symbols). Probes mapped to the same entity 

are typically aggregated, meaning that the values obtained for each of the replicated probes are 

combined, for instance, based on their median values. 

 
2.8. Data representation for expression and methylation microarrays 

 
The preprocessing steps outlined in this chapter are aimed at moderating technical biases and 

making microarray data coming from different biological samples comparable. An important 

aspect to take into consideration when evaluating gene expression or methylation estimates is the 

way in which we represent their differences among samples. In expression microarray 

experiments, the expression differences can be represented by the Expression Ratio 

(ER=geneA/geneB). However, this representation is not very intuitive in case the genes are up- or 

down-regulated, since in case of up-regulation, the scale spans from 1 (no change in gene 

expression) to infinite, while in case of down-regulation the value spans from 0 to 1 (47). For this 

reason, the logarithmic transformation of the expression ratio (log2(ER)) is almost universally used 

as a gene expression representation for microarray data. In fact, by reporting the expression ratio 



 

in a logarithmic scale, the expression ratios are much more intuitively interpretable, being 

distributed symmetrically around zero (up-regulated genes will have positive values whereas 

down-regulated ones will have negative values) (47). Moreover, by applying a log transformation, 

the data will be projected on a normal distribution, making them exploitable for differential 

expression analysis based on linear regression. 

Regarding methylation estimates, they are in general represented in two alternative ways: beta 

values and M-values. Both of the methods are widely employed having, however, their strengths 

and weaknesses (48). Beta values reflect the formula beta=meth/meth+unmeth+𝛼, being meth the 

value of the methylated probe intensities, unmeth the value of the unmethylated probe intensities 

and 𝛼 an offset generally posed equal to 100 in order to stabilize meth and unmeth in case they are 

very small (49). Beta values range between 0 and 1 and can be interpreted as the percentage of 

methylation. For these characteristics, the beta values do not comply with the normal distribution 

assumption on which many statistical methods for differential analysis are based.  

On the other hand, M-values reflect the formula M=log2(meth/unmeth), so, in its formulation is 

very similar to the abovementioned log ratio used in gene expression studies, since it represents 

the log scaled ratio between methylated versus unmethylated probes. This makes the M-values 

suitable to be utilized in differential methylation analyses. A relationship exists between beta and 

M-values and it is expressed by the following formula: M=log2(beta/1-beta), so it is quite 

straightforward to transform beta values into M-values and vice versa. As a general comment, beta 

values provide a more intuitive biological significance to the methylation estimates, since it 

expresses the percentage of methylation of a certain CpG site. M-values, instead, suffer from a 

lower biological interpretability, but they are more robust than beta values in statistical terms. 

Therefore, the use of M-values is highly recommended for differential methylation analysis. 



 

 

3. Differential testing  
 

Differential analysis aims at identifying genes (in case of gene expression) or CpGs (in case of 

DNA methylation) whose values show a statistically significant difference between two 

experimental conditions (e.g., treated vs. untreated samples). The classical analysis for microarray 

experiments uses linear models to estimate the variability between the experimental conditions 

(also defined as contrasts) and its covariate dependencies, which can be distinguished from the 

random variation. Classical covariates can be experimental variables (e.g., slide, array, date of 

sample handling) or biological variables (tissue/cell type, dose, time). The log-fold-change is a 

quantitative estimation of the differences between the gene expression values in two experimental 

conditions. For every gene or CpG, the log-fold-change is computed as the ratio between the mean 

value of the samples belonging to the first condition vs. the mean value of the samples in the second 

condition. A positive log-fold-change indicates a positive increase in the gene expression or DNA 

methylation in the first condition vs. the second condition, while a negative log-fold-change 

indicates a decrease in the gene expression or DNA methylation, respectively. Moreover, the log-

fold-change is usually associated with a p-value that estimates its statistical significance. Classical 

thresholds for identifying differentially expressed genes are absolute log-fold change > 0.58 and 

p-value < 0.05. A typical method used to graphically represent the log-fold changes and p-values 

after a differential analysis is the volcano plot (Figure 8).  

Due to the high dimensionality of microarray data, the p-values are usually corrected to decrease 

the risk of errors. The strongest correction technique is the Bonferroni methodology, which divides 

the p-values by the number of tests (in this case the number of genes/molecules). A more 

sophisticated and less conservative correction is the false discovery rate (FDR) which addresses 



 

the proportion of false positive in the dataset. A classical differential expression analysis can be 

conducted by using the R library Limma from the Bioconductor repository (50). 

 

[Figure 8 near here] 
 

 
4. Conclusions  

    
DNA microarrays represent a milestone in the history of biomedical science. This technology 

opened the doors to the so-called omics data, which have revolutionized the way of thinking to 

profile a molecular compartment of the cell, such as the transcriptome or the methylome. However, 

the nature of data coming from a DNA microarray experiment posed several challenges, starting 

from the assessment of standard quality check procedures to data transformation. Over time, 

countless algorithms and methods were developed in order to carry out a rigorous data 

preprocessing and assure reliable downstream analysis. These procedures are mostly devoted to 

the mitigation of biases that might occur during the different steps of the preparation of the 

experiment. In this chapter, we outlined the main principles and techniques employed in 

microarray preprocessing, starting from the experimental design of a microarray experiment to 

differential analysis, focusing our attention mainly on the transcriptome and DNA methylation 

analysis. 
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Figure Captions 
 

 
Figure 1 - Microarray preprocessing workflow covered in this chapter. Steps 1–7 represent crucial 

points to consider for achieving high-quality data from microarray experiments regardless of the 



 

selected platform and application. Pink box marks the input data for preprocessing, while the blue 

color indicates the output data. 

 

Figure 2 - MA plot representation of gene expression distribution between lesional and unaffected 

skin of patients affected by atopic dermatitis (AD). Microarray data for this and the following 

figures were retrieved from GEO (GEO Dataset ID: GSE34248). 



 

 

Figure 3 - Histogram showing the distribution of gene expression estimates in a microarray 

experiment. 



 

 

Figure 4 - Density plot of gene expression distribution between lesional and non-lesional skin of 

atopic dermatitis (AD) patients. The curves (mostly overlapping in this figure) indicate the amount 

of probes showing a certain intensity. In this experiment, most of the probes show a low intensity 

range. 



 

 

Figure 5 - Scatter plot showing the comparison between gene expression estimates of two samples 

of the dataset GSE34248. 



 

 

Figure 6 - Uniform Manifold Approximation and Projection (UMAP) plot showing the projection 

of samples in a low-dimensional space. Given its position in the plot, the sample rounded by the 

red circle could be a candidate outlier. 



 

 

Figure 7 - Boxplot showing gene expression distribution of lesional and non-lesional skin of atopic 

dermatitis (AD) patients before (A) and after between-arrays normalization (B).  



 

 
Figure 8 - Volcano plot showing the magnitude of deregulation in terms of log-fold changes and 

the p-values of the genes after differential analysis. The blue dots represent differential expressed 

genes. 

 
 


