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ABSTRACT

Tuan Anh Nguyen: OPTIMIZING VXLAN NETWORK MANAGEMENT
Master of Science thesis
Tampere University
Communication Systems and Networks - Information Technology
December 2023

This thesis presents an in-depth exploration of Virtual Extensible LAN (VXLAN) technology, a
key development in modern networking. VXLAN has emerged as a solution to the limitations of
traditional VLANs, particularly in scalability and segmentation, which are essential in the context of
large-scale data centers and cloud computing environments. The study focuses on the key compo-
nents of VXLAN, such as VXLAN Tunnel Endpoints (VTEPs) and VXLAN Network Identifiers (VNI)
and their role in the facilitation of advanced networking capabilities. It positions VXLAN within the
’Programmable Age’ of networking, linking it with important technologies like Software-Defined
Networking (SDN) and Network Function Virtualization (NFV), crucial for supporting containeriza-
tion and the complexities of contemporary multi-tenant environments.

The thesis explores the integration and management of VXLAN networks, highlighting the
need for advanced integrated network management tools to handle the complexities inherent in
these advanced networks. The exploration covers various tools and technologies, including SDN,
Ansible, Prometheus, Grafana, Zabbix, and the PLG stack, focusing on Grafana Loki and Promtail
for log aggregation and analysis. The interaction between these tools and their roles in improving
operational efficiency, security, and performance within VXLAN networks is carefully examined.

A crucial component of this study is the Proof-of-Concept (PoC) conducted to demonstrate the
practical application and interoperability of these tools within a VXLAN environment. The PoC
involved the use of two droplets in Digital Ocean to simulate a VXLAN network, employ Open
vSwitch for connections, and deploy network management tools within Docker containers. This
practical application not only bridged the gap between theoretical research and real-world imple-
mentation, but also provided insightful observations into the challenges and solutions inherent in
VXLAN network management.

Furthermore, the thesis points out several avenues for future research, including enhanced
traffic flow control through SDN controllers in VXLAN, the incorporation of deep learning strategies
to improve QoS, and the application of zero-trust security principles in VXLAN environments. Each
of these areas presents exciting opportunities to further develop the field of network management.

In summary, this thesis provides a detailed examination of VXLAN technology, its critical role in
modern networking, and the importance of an integrated approach to network management. The
insights gained from this study make a significant contribution to the network management domain,
offering useful perspectives for academic research and practical applications in the changing land-
scape of network technology.

Keywords: VXLAN, SDN, cloud, optimize, network automation, Ansible, Prometheus, Grafana,
Zabbix, ELK stack

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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1. INTRODUCTION

The development of Virtual Extensible LAN (VXLAN) technology marks a significant step

in network architecture, addressing the increasing needs for better scalability and seg-

mentation in modern data centers. This advancement goes beyond the limitations of

traditional VLANs, introducing a new level of network flexibility and efficiency. However,

implementing VXLAN introduces new complexities in network management, which calls

for a comprehensive and integrated approach to effectively manage these sophisticated

networks.

A key focus of this thesis is the exploration of advanced network management tools in

VXLAN infrastructures, emphasizing their role in improving network efficiency, security,

and performance. Software-Defined Networking (SDN) is identified as a critical element

in this context, offering a new approach that significantly improves network management

by separating control and forwarding functions. This separation is especially useful in

complex VXLAN setups, allowing more dynamic and adaptable network configurations.

Ansible’s role in automating network operations is noteworthy. Its integration into VXLAN

networks is crucial to reduce operational complexities and ensure configuration reliability,

key factors in large-scale network environments.

Prometheus, Grafana, and Alertmanager are important in the monitoring and visualiza-

tion aspect of networks. Prometheus stands out by collecting network metrics in real

time, laying a strong foundation for network analysis. Grafana complements Prometheus

with sophisticated data visualization tools, allowing network administrators to obtain a

complete view of network performance, aiding in quick and informed decision-making.

Alertmanager, on the contrary, is essential in managing network alerts from Prometheus.

Its efficient handling of notifications ensures that network operators can react quickly to

issues, maintaining network stability and performance.

Integration of the PLG stack (Promtail, Loki, and Grafana) is also a major part of this study,

due to its effectiveness in log aggregation and analysis in VXLAN networks. Grafana Loki

is notable for its ability to handle large amounts of log data, a typical challenge in VXLAN

environments.

In addition to these tools, the thesis recognizes the potential of the ELK stack (Elastic-

search, Logstash, and Kibana) as a strong logging solution. Despite its capabilities, the
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commercial nature of the ELK stack and associated costs have led to its exclusion from

the practical component of the thesis. This decision reflects a preference for more acces-

sible and cost-effective tools for the management of the VXLAN network.

The practical application of these tools is shown in a detailed Proof-of-Concept (PoC).

This PoC uses two droplets on the Digital Ocean platform to simulate a VXLAN network,

establishing VXLAN connections using Open vSwitch. It also includes the deployment

of various network management tools within Docker containers, providing a flexible and

scalable environment for testing. This PoC validates the theoretical aspects and offers

practical information on managing VXLAN networks.

In conclusion, this thesis presents a detailed study of VXLAN technology and its essen-

tial role in modern networking. It supports an integrated approach to network manage-

ment, showing the effectiveness of combining tools such as SDN, Ansible, Prometheus,

Grafana, the PLG stack, and Alertmanager. This approach not only addresses the chal-

lenges in VXLAN network management, but also prepares the way for future develop-

ments in this fast-changing field. The insights from this study are valuable both for aca-

demic research and practical applications.
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2. VXLAN TECHNOLOGY AND ITS ROLE IN MODERN

NETWORKS

2.1 Introduction of VXLAN Network Virtualization

The introduction of VXLAN technology has been a key development in network archi-

tecture, providing a solution to the scalability and segmentation limitations that tradi-

tional VLANs exhibit. Conceived through the collaborative efforts of industry leaders

such as VMware, Arista Networks, and Cisco, VXLAN was designed to extend Layer

2 segments across Layer 3 infrastructures, accommodating the increasing demands of

complex, large-scale data centers. This approach has effectively addressed the critical

limitations of previous network technologies, such as the Spanning Tree Protocol, and has

alleviated issues associated with server virtualization, including the increasing number of

MAC addresses in switch tables [62, 86].

2.1.1 VXLAN Network Components: VTEPs and VNIs

At the core of the VXLAN architecture are VXLAN Tunnel Endpoints (VTEPs) and VXLAN

Network Identifiers (VNIs). VTEPs are responsible for encapsulating native data frames

into VXLAN packets, enabling their transit across the network and their subsequent de-

capsulation at the destination. This encapsulation and decapsulation process is effec-

tively illustrated in Figure 2.1, which depicts a tunnel between two Top of Rack (ToR)

switches transporting data frames via an underlying IP network. In particular, VTEPs can

be implemented as standalone network devices, such as Huawei CloudEngine series

switches, or as virtual switches on servers.

The depiction in Figure 2.1 clarifies the role of the source VTEP in wrapping original data

frames in VXLAN packets for IP network transmission and the function of the destination

VTEP in reverting these packets to their initial form to reach the destination server.

VNIs play a crucial role in VXLAN by offering a significantly larger identifier space com-

pared to traditional VLAN IDs. Where VLAN IDs are limited to a 12-bit field, VNIs provide

a 24-bit field, which greatly expands the network’s segmentation capabilities. This is

essential for the modern data center environment that requires the accommodation of nu-
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Figure 2.1. A detailed schematic representation of VXLAN encapsulation and packet flow
[81].

merous tenants. This process is captured in Figure 2.4, where encapsulation includes the

addition of a 24-bit VNI to each VXLAN packet, ensuring isolation of tenant environments.

Moreover, VNIs contribute to Layer 2 isolation, preventing inter-tenant communication at

this layer. For operational purposes, VNIs are differentiated into two types: Layer 2 VNIs

are associated with bridge domains for intra-subnet VXLAN packet forwarding, whereas

Layer 3 VNIs are tied to VPN instances to route VXLAN packets across subnets, as de-

tailed in the EVPN documentation.

2.1.2 VXLAN’s Role in Network Virtualization

The historical progression of the network architecture is summarized in Table 2.1. This

table provides an overview of the evolution from basic VLAN and Spanning Tree protocols

to more sophisticated systems such as Software-Defined Networking (SDN), Multiproto-

col BGP, and VXLAN. The table delineates the impacts of these technologies on network

design and operation, situating VXLAN within the ’Programmable Age’ and highlighting its

facilitation of key technologies like Network Function Virtualization (NFV) and container-

ization, which are essential in contemporary networking.

Table 2.1. Evolution of Networking Eras with an Emphasis on Technologies Including
VXLAN, adapted from [62].

Era Stone Age Bronze Age The Renaissance Programmable Age

Technologies
/ Protocols

Spanning
Tree,
VLANs

Routing Proto-
cols, WAN De-
sign, IP-magedon

SDN, OpenFlow,
Controllers, Over-
lays, MP-BGP,
VXLAN, Micro-
Segmentation,
White Box

Cloud, Python,
REST / APIs, NET-
CONF / YANG,
"Fabrics", Network
Function Virtualiza-
tion (NFV), DevOps,
Containers
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The role of VXLAN in network virtualization supports both existing functionality and the

future development of data centers. By enabling scalable and efficient network design,

VXLAN helps in the swift deployment of network services, thus improving management

and operational efficiency. The sophisticated encapsulation/de-encapsulation process,

along with VNI’s extensive isolation capabilities, demonstrates the complexity and critical

nature of VXLAN in modern and future network environments [81].

VXLAN is fundamental in network virtualization, maintaining the original frame structure

while allowing it to traverse through an IP network. This capability is crucial for allowing

separate virtual network segments to co-exist on the same physical network infrastruc-

ture, thereby enhancing overall network efficiency.

Figure 2.2. The underlay-overlay paradigm in VXLAN (Modified from [62]).

The efficacy of the model is rooted in its underlay-overlay architecture, as outlined in

Figure 2.2, which differentiates the physical network (underlay) from the virtual networks

(overlay) that carry customer traffic. This dual-layered approach aligns with the Spine-

Leaf network architecture, providing a scalable and adaptable data center topology, as

depicted in Figure 2.3.

2.1.3 VXLAN Encapsulation Process

In networking, VXLAN represents a significant advancement over traditional VLAN (Vir-

tual LAN) technologies, providing enhanced capabilities in network isolation and scala-
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Figure 2.3. The 2-tier-spine-leaf architecture adapted for VXLAN.

bility. The VXLAN encapsulation mechanism extends the scope of the network both in

scale and in the flexibility of virtual machine (VM) migrations across Layer 2 networks.

This process, depicted in Figure 2.4, involves the addition of headers to the original Eth-

ernet frame, which increases the network’s tenant isolation capacity and overcomes the

limitations inherent to VLANs.

The VXLAN protocol encapsulates a traditional MAC frame, augmenting it with additional

headers to form a VXLAN packet, as detailed in Table 2.2. This process includes the orig-

inal frame components and adds the layers necessary for the encapsulation of VXLAN,

ensuring proper identification and routing within a VXLAN environment [37, 44, 21, 86,

62].

The structured encapsulation method employed by VXLAN, particularly the implementa-

tion of the VXLAN header and outer headers, bestows the protocol with marked improve-

ments in terms of scalability and the ability to extend Layer 2 networks across Layer 3

infrastructures. These features allow VXLAN to bypass the limitations associated with

traditional VLANs, eliminate the reliance on the Spanning Tree Protocol, and improve

efficient network spanning operations [37, 44, 21, 86].
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Figure 2.4. A detailed depiction of the VXLAN encapsulation process [62].

2.2 Advantages and Challenges of VXLAN

VXLAN has emerged as a cornerstone in the realm of network virtualization, with its ben-

efits and applications resonating well within the dynamic requirements of contemporary

cloud computing and data center environments.

2.2.1 Advantages and Applicability of VXLAN

With its inception, VXLAN introduced an architecture that significantly improved the scale

of network segmentation. Supporting up to 16 million logical networks through a 24-bit

VNI, VXLAN allows the creation of extensive Layer 2 virtual networks across a common

physical network infrastructure [78]. This is particularly beneficial for cloud data centers,

enabling smooth migration of virtual machines across different physical hosts and ad-

dressing the limitations of traditional VLANs, which are restricted by their 12-bit identifier

space [37].

Moreover, VXLAN’s optimization of routing and connectivity translates to superior network
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Table 2.2. VXLAN Packet Structure

Packet Component Description

VXLAN Header This header consists of an 8-byte field. The initial 8 bits
are designated as flags, where the ’I’ flag must be set to 1,
indicating the presence of a valid VNI. The next 24 bits rep-
resent the VXLAN segment ID or VNI, which uniquely iden-
tifies the overlay network within the VXLAN environment.
This is succeeded by reserved fields that should be set to
zero during transmission and are ignored at the receiving
end.

Outer UDP Header The outer UDP header assigns a well-recognized destina-
tion port, which is typically 4789 as specified by the Internet
Assigned Numbers Authority (IANA). While this port num-
ber should be used by default, the UDP header allows for
configurable port numbers to support different operational
environments. The UDP source port is dynamically se-
lected, commonly based on the hash of the encapsulated
packet’s headers. This strategy introduces entropy that is
beneficial for equal-cost multipath (ECMP) routing and load
balancing. The presence of a UDP checksum is optional;
if used, it must be accurately calculated to ensure data in-
tegrity.

Outer IP Header This header specifies the source and destination IP ad-
dresses, which correspond to the VTEPs connected to the
source and destination VMs, respectively. The destination
IP can be unicast, for point-to-point communication, or mul-
ticast, to support scenarios that involve multidestination traf-
fic.

Outer Ethernet Header The outermost header may carry an optional VLAN tag,
which facilitates traffic segregation. It also includes the
MAC addresses that direct the encapsulated packet either
to the destination VTEP or towards an intermediate routing
device.

performance, as it circumvents the limitations of traditional MAC address tables in TOR

switches by utilizing Layer 3 networks for Layer 2 frame transport. This not only improves

network efficiency, but also strengthens security by segmenting traffic, thus providing a

robust communication channel for virtual machines regardless of their physical location

[78, 21].

Furthermore, the independence of VXLAN from broadcast, unicast unknown, and multi-

cast traffic enhances its adaptability. This independence makes VXLAN a versatile so-

lution for extending virtual machines across large networks, ensuring traffic isolation in

multi-tenant architectures, and extending data centers across distributed geographical
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locations [78].

2.2.2 Challenges in VXLAN Deployment

Despite these advantages, the deployment of VXLAN is not without challenges. The

setup of VXLAN networks is complex and requires a comprehensive strategy for man-

aging MAC and IP address databases. This complexity increases with the scale of the

deployment, which requires robust control mechanisms, especially when implementing

centralized overlay network controllers [87, 80].

The encapsulation process introduces additional overhead, which can potentially degrade

network throughput. The need for underlying multicast support for efficient BUM traffic

handling adds to the complexity of deployment. Moreover, since various vendors offer

various VXLAN solutions, interoperability issues can arise, which require continuous ef-

forts to validate and comply with security standards [87, 80].

2.3 Network Management Challenges in VXLAN Deployment

The VXLAN deployment heralds a significant shift in networking paradigms, much like the

way cloud formations redefine the skyscape. The IETF’s endorsement of VXLAN through

protocols like RFC 7348 facilitated an evolution in tunneling mechanisms, enabling the

encapsulation of data frames with extended headers that encompass outer IP and UDP

addresses. This evolution is a testament to VXLAN’s ability to cater to an extensive array

of tenants within a singular cloud ecosystem [37, 91].

However, the administration of VXLAN networks is accompanied by its own set of com-

plexities. Understanding the intricate dance between Layer 2 and Layer 3 architectures

becomes imperative as data center numbers burgeon. The growing number of VNIs re-

quires a more sophisticated approach to network management, an endeavor that conven-

tional monitoring tools are not equipped to handle [91]. Ensuring the security of encapsu-

lated traffic and preventing unauthorized access becomes increasingly critical. Integrating

with systems such as SDN is essential to navigate the challenges associated with large-

scale VXLAN deployments effectively. Furthermore, the amplification of signaling traffic,

especially through IP multicasting, presents a challenge that must be managed with care

[43].

To summarize, the transformative potential of VXLAN in data networking is undeniable.

However, achieving its full capabilities requires meticulous planning, a deep understand-

ing of the technology, and an adaptive management approach that can meet its sophisti-

cated deployment challenges.
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3. ASPECTS OF VXLAN MANAGEMENT

3.1 Software-Defined Networking (SDN) in VXLAN

3.1.1 Introduction to SDN

SDN has gained significant traction in recent times as a transformative approach to de-

signing and managing networks. Its defining characteristic, regardless of its various def-

initions or applications such as OpenFlow-based SDN, is the clear delineation between

the network control and data transmission functions [70].

Figure 3.1 provides a comparative visual between conventional networking and software-

defined networking. The conventional setup connects devices such as routers, switches,

and servers. However, the SDN model places emphasis on a centralized "SDN controller"

that communicates directly with these devices. This controller is at the helm of various

network applications, including, but not limited to, MAC Learning, Routing Algorithms,

Intrusion Detection Systems, and Load Balancers.

A centralized architecture, as seen in SDN, offers multiple advantages. For example, the

unified abstraction model, facilitated by the control platform and network programming

languages, streamlines software development and guarantees consistency throughout

the network [10]. Provides a holistic network perspective, enabling applications to take

advantage of consistent network data. This data access helps in informed policy formu-

lation and taps into the software modules of the shared control plane [10].

The visual emphasis on the SDN controller in Figure 3.1 highlights its ability to execute a

wide range of actions throughout the network. This includes reconfiguring forwarding de-

vices and bypassing complex strategy formulation for new function placements [10]. The

distinct separation of the control and data planes enables the independent optimization of

each, giving rise to specialized devices and efficient servers. This structure reduces ser-

vice providers’ capital expenditure (CAPEX) and streamlines network orchestration and

monitoring by centralizing network information, applications, and services [79, 27].

In conclusion, the SDN overarching framework improves the cohesion of various applica-

tions, fostering a more synchronized networking environment [10]. With the foundational

understanding of SDN established, subsequent sections will further delve into SDN within
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Figure 3.1. Traditional vs. SDN: SDN simplifies management and delivers middlebox
services through controller applications (Modified from [27]).

VXLAN ecosystems and its pivotal role in managing VXLAN’s challenges and threats.

3.1.2 Architecture and Functioning of SDN

Within computer networking, three critical planes characterize its core functionalities:

data, control, and management, depicted in Figure 3.2. The data plane predominantly re-

sides within the domain of networking hardware and is focused on efficient data transmis-

sion. On the contrary, the control plane embodies the protocols responsible for shaping

the data-centric forwarding databases. The management plane encompasses software

services, prominently including those related to the simple network management protocol

(SNMP) [49]. Its central role is to facilitate remote supervision and to configure control

operations. Drawing a distinction between the planes, the management plane defines the
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network policy, the control plane enforces this policy, and the data plane operationalizes

it by directing data accordingly. [27]

Figure 3.2. Layered view of networking functionality

Control Plane

Central to the SDN framework is the SDN controller, which offers a standardized cen-

tral programming interface that is crucial for network monitoring and management. The

controller facilitates access to the Network Information Base (NIB) for northbound applica-

tions. This NIB is enriched with essential data elements, from nodes and links to topology

and statistics, empowering applications with the insights required for sound decision mak-

ing. Operating on commodity servers, the controller guarantees a unified perspective of

the network landscape.

Figure 3.3 illustrates the intricate design and competencies of the SDN controller. Serving
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Figure 3.3. An illustrative depiction of the SDN architecture emphasizing the role and
interaction between the SDN controller, network applications, and SDN device flow tables
in the context of OpenFlow protocols [27].

as an intermediary, the controller bridges high-level application paradigms with detailed

network operations. Adapts high-tier terminologies to their respective granular network

addresses. A comprehensive SDN controller amalgamates protocol handlers for network

protocol management, applications leveraging network information, and a collection of

libraries tailored for varying southbound interfaces. Globally, the controller seamlessly

interfaces with dedicated network orchestration tools and robust support systems, laying

the foundation for pioneering customized solutions [90, 27].

In the SDN context, conforming packets with flow entry induce the refresh of relevant

counters and activate the stipulated action. Packets that do not find a match are directed

to the controller for nuanced processing. Through these packet transitions and flow initia-

tions, the controller meticulously crafts its perception of the network, orchestrating traffic

pathways. It goes beyond packet interpretation to accommodate node and link failures,

recalibrating routes to accommodate emerging changes.

Figure 3.4 presents the centrality of the controller, which orchestrates communication

with data plane elements using a refined application programming interface (API). The

OpenFlow protocol serves as a salient example of such interfaces [41]. Within an Open-

Flow switch, flow tables encompass directives for packet processing. These directives,

shaped by the controller, identify diverse types of traffic and administer actions, ranging

from forwarding and modification to packet dismissal. Under the controller’s aegis, an

OpenFlow switch can assume manifold responsibilities, be it routers, switches, or spe-

cialized roles. The underlying ethos of SDN emphasizes the separation between policy

formulation, hardware orchestration, and traffic management. This segregation improves

operational nimbleness, simplifies network control, and promotes novel networking ab-

stractions, revitalizing network management, and fostering innovation [27].
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Figure 3.4. Overview of SDN Architecture.

Data Plane

The data plane is an integral layer of the SDN architecture, predominantly represented by

Forwarding Devices (FD). Whether manifested as hardware or software constructs, these

FDs play a crucial role in the realization of the determinations of the network. They pro-

cess incoming packets on the basis of a predefined set of instructions, commonly termed

flow rules. Upon reception of these packets, FDs might forward them to designated ports,

modify certain packet attributes, or undertake other specified actions, all contingent on

the instruction they adhere to. [27]

Several protocols facilitate the exchange of instructions between the SDN controller and

the FDs. Among these, OpenFlow [41] has gained notable traction due to its pioneering

nature in the SDN realm. However, other southbound interfaces, such as ForCES [14]

and protocol-oblivious forwarding (POF) [71], also play a crucial role. It is through these

channels that the SDN controllers impart directives that guide the operational trajectory

of the FDs. [27]

To further elucidate the importance of FDs, one must consider the dynamics of a network,

where seamless data transmission and reception are paramount. In traditional network
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configurations, static configurations sometimes hindered timely and efficient responses

to data flow changes. With the advent of SDN and the decentralized nature of FDs,

there is a newfound agility. The FDs, working in tandem with the controllers via protocols

like OpenFlow, ensure adaptive, resilient, and efficient data handling, paving the way for

robust and flexible network architectures. [27]

In essence, the harmonious collaboration between the controller and the FDs, facilitated

by southbound interfaces, is foundational to the SDN model. This synergy ensures that

the data plane remains adaptive, efficient, and attuned to the evolving needs of network

traffic, marking a transformative phase in network management and operations.

Southbound and Northbound Interfaces

In the SDN paradigm, two pivotal interfaces emerge: the Northbound and Southbound

interfaces. These interfaces not only form the crux of SDN’s architectural hierarchy, but

also epitomize the communication flow within the SDN ecosystem.

The Northbound Interface, often called the Application Layer, bridges the application

plane with the SDN controller, encompassing business, networking, and monitoring func-

tionalities [79]. Through this interface, applications convey their requirements, ensuring

that SDN aligns with desired service quality, security standards, and managerial effi-

ciency. However, variations in the definitions of the northbound interface across SDN

controllers complicate the scenario. While platforms such as Cisco Systems adopt pro-

tocols such as RESTconf, Easy-QoS, and PnP [27], others, like OpenDayLight (ODL),

prefer RESTCONF, NETCONF, and AMQP [64].

Among the diverse protocols, the Representational State Transfer (REST) API has emerged

as a forerunner, chiefly operating through HTTP. By transporting configuration and per-

formance data, and through the integration of RESTful protocols in Open APIs like Open-

Stack and Virtual Private Cloud (VPC) API, it has facilitated a standardized interaction

with network resources, promoting both proprietary and third-party application develop-

ment.

Conversely, the Southbound Interface, synonymous with the Infrastructure Layer, acts as

the conduit connecting the control plane with the data plane. Here, the SDN controller

interacts with network nodes such as switches. Protocols that pave the way for this inter-

face include OpenFlow from the Open Networking Foundation (ONF), Cisco OpFlex, and

Open vSwitch. OpenFlow, in particular, operating unencrypted over TCP or through the

encrypted TLS protocol, reigns supreme in the Southbound interface landscape. [90]

The essence of southbound APIs lies in their ability to offer users unparalleled control

over their networks. By enabling the SDN controller to dynamically manage the internal

flow table of routers and switches, these APIs optimize real-time traffic responsiveness
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[27]. The shift from viewing SDN as merely an academic endeavor to recognizing its

commercial potential is profound. The centralization of the network’s control logic, dis-

tinct from the underlying hardware, underscores SDN’s promise for agility and centralized

governance.

Highlighting the Open-Flow protocol accentuates the transformative nature of SDN. By

strategically decoupling the control and data planes, Open Flow has instigated a signif-

icant shift in network management approaches [3]. Central to its success are OF mes-

sages that synchronize the SDN controller and OF switches to ensure consistent entry in

the flow table [3]. The emergence of the Open Daylight (ODL) SDN controller, backed by

industry stalwarts such as IBM, Cisco, and Juniper, serves as a testament to the evolving

SDN landscape. The open source Java-based architecture of ODL, characterized by its

adaptability and durability, showcases the zenith of SDN excellence. [65]

3.1.3 Models of SDN and Their Practical Implementations

The advent of SDN heralded a transformative era in network design and operations, em-

phasizing the decoupling of control and data planes. Various SDN models have emerged

to meet different requirements and use cases. Table 3.1 summarizes these models, their

descriptions and practical implementations [69, 83, 84, 85].

3.1.4 The Synergy of SDN and VXLAN in Cloud Computing

Contemporary cloud computing paradigms have seen a prominent emphasis on the in-

tegration of SDN with VXLAN architecture. The profound work of Zhao et al. (2017)

introduced a groundbreaking three-tier SDN-based VXLAN model, promising to optimize

communications, especially during virtual machine migrations [91]. This model offers an

economical solution to IP multicasting challenges while capturing the benefits of SDN-

VXLAN integration through improved threshold management and enhanced load balanc-

ing [91].

Kumar et al. (2017) provided an exposition on the transformative nature of SDN, em-

phasizing its potential to transform traditional network operations such as routing and

switching into software-oriented challenges, pushing beyond the restrictions of standard

network management systems [28].

The union of SDN with VXLAN has truly redefined network architectures. By merging

the SDN control plane with VXLAN’s data-centric design, this collaboration benefits from

global oversight and increased programmability, as detailed by Lee et al. (2015) [31]. As

such, it further enhances the capabilities of VXLAN.[91]

In terms of IP multicasting, the SDN-integrated VXLAN differs fundamentally from its tra-
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Table 3.1. SDN Models and Their Practical Implementations

SDN Model Description Practical Imple-
mentations

Open SDN Based on the OpenFlow protocol, the Open SDN model
facilitates direct interactions between the SDN controller
and switches through the Southbound API. This ap-
proach is a true embodiment of the principles of SDN,
focusing on controlled data flows [69, 83].

OpenDaylight
(ODL), Flood-
light, Ryu

SDN via APIs
(API SDN)

Moving beyond the constraints of OpenFlow, the API
SDN model seamlessly integrates with conventional net-
working hardware. It capitalizes on tools like SNMP, CLI,
and modern REST APIs. Although the architecture is
generally open, certain APIs might be vendor-specific
[69, 83, 85].

Cisco APIC-EM,
Arista EOS

SDN Overlay
Model

Instead of directly engaging hardware, the overlay model
overlays a virtual network atop existing infrastructures.
By establishing dynamic tunnels, it ensures flexibility in
data flow without compromising the integrity of the core
network [83, 84].

Nutanix Flow,
Cumulus VX,
VMware NSX

Hybrid SDN Combining elements of traditional networking and SDN,
the hybrid model operates in an environment marked by
synergy. Expertly manages traffic, allowing seamless in-
tegration of SDN capabilities into established systems
[69, 83, 84, 85].

Junction Contrail,
Brocade Vyatta
Platform

ditional version. As illustrated in Figure 3.5, the source virtual machines synchronize

with the centralized system before initiating multicasting, bypassing ARP-like address

resolution protocols. This shift ensures optimized link resource allocation and minimizes

potential network disturbances.[13]

Additionally, VM migrations witness enhanced efficiency under the SDN-integrated VXLAN.

Unlike traditional VXLAN, which faced setbacks due to manual configurations, the SDN-

enabled version benefits from centralized control and intelligent oversight. Figure 3.5 il-

lustrates a network architecture that integrates proactive and passive VM migration strate-

gies within an SDN-enhanced VXLAN framework. The control layer features dual SDN

controllers surrounding an intelligent center, tasked with load balancing and migration

decision-making. Below, the core layer with two spine switches facilitates VXLAN traf-

fic across the network. The access layer shows hypervisors and VMs before and after

migration, marked by dashed and solid lines, indicating passive and proactive migration,

respectively. This visual representation emphasizes the SDN’s role in automating and

optimizing VM placement within a VXLAN network. [40, 33]

Figure 3.6 zooms in on the SDN-integrated VXLAN architecture during a VM migration
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Figure 3.5. Comparative Overview of Proactive and Passive VM Migration Mechanisms
in SDN-integrated VXLAN Architecture [91]

process. A single SDN controller at the control layer highlights the centralized manage-

ment approach. The core layer’s spine switches, and the access layer’s hypervisors

demonstrate the migration’s aftermath. The blue dashed line traces the VM’s journey,

while the red dashed line signals the establishment of new network connections postmi-

gration. This figure underscores the seamless transition and continuity of service facili-

tated by SDN in VXLAN environments. [40, 33]

Furthermore, the combination of SDN and VXLAN introduces advanced load balancing

capabilities. The intelligent center adeptly evaluates network performance and adapts

migration thresholds accordingly, optimizing the efficiency of Spine and VTEPs. This
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Figure 3.6. SDN-based VXLAN Architecture Depicting the VM Migration Procedure and
Establishment of New Connections [91]

adaptability indicates future enhancements through innovative algorithms.[24, 25, 47]

Although SDN-VXLAN integration offers significant potential, developing a complete PoC

is challenging due to the extensive resources and time required. Therefore, this thesis will

focus on automation tools such as Ansible in conjunction with SDN controllers, providing

a narrower but equally valuable exploration.

In conclusion, the fusion of SDN and VXLAN presents a revolutionary architectural ap-

proach, reshaping cloud network dynamics through improved IP multicasting, efficient VM

migrations, and sophisticated load-balancing techniques. This union not only addresses

the inherent challenges of VXLAN, but also sets the stage for the design of powerful,

scalable multitenant cloud networks.

3.2 Network Automation

3.2.1 Introduction to Network Automation

The transition to SDN has transformed modern networking, emphasizing the role of

VXLAN in enabling layer 2 network connectivity across geographically dispersed locations

via Layer 3 links. The transition to SDN has caused increased complexity in networks.
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As a result, the need for efficient management and configuration of these networks has

become increasingly vital.[7, 27].

Network Automation addresses this challenge. Although automation in technology is not

novel, its adoption within SDN-augmented networks is revolutionary. Designed to stream-

line the intricate tasks associated with the configuration, management, and surveillance

of software-focused networks. Through automation, NetOps can realize the full potential

of SDN, achieving improved resource allocation and peak network performance.[7]

The merits of Network Automation extend beyond simplifying tasks for network engineers.

It plays a crucial role in minimizing human-driven errors, often involved in network disrup-

tions. In an era where data traffic flows from various sources, relying on manual network

configurations prone to mistakes and inconsistencies becomes impractical. Hence, the

adoption of automation emerges as an essential step, guaranteeing the seamless func-

tionality of SDN-centric networks.[7]

In conclusion, the confluence of SDN, VXLAN, and Network Automation heralds the ad-

vent of advanced networking solutions. Subsequent sections will delve into the integral

tools and methodologies of Network Automation, underscoring their significance in forti-

fying and adapting contemporary networks.

3.2.2 Comparative Analysis of Network Automation Tools

In the dynamic domain of network engineering, configuration acts as the cornerstone,

ensuring that network infrastructures operate seamlessly. Given the increasing traffic

from various data sources, manual configurations often lead to inefficiencies and errors.

To address this, network automation has introduced advanced tools to facilitate more

effective infrastructure management.

Among the numerous tools at the disposal of NetOps, Ansible, Puppet, and Chef stand

out. They are designed to ensure that servers adhere to configurations specified in their

automation scripts, such as the playbook in Ansible or the cookbook in Chef. Whenever

manual configurations deviate, these tools can revert the system to its predefined state

[57].

A notable report by Forrester Research sheds light on the competitive landscape in in-

frastructure automation, as shown in Figure 3.7. The application of Red Hat emerges as

a leader in this space, outperforming its peers [77]. However, each tool has its strengths.

Puppet’s declarative approach outlines the desired result and lets the system handle the

rest. In contrast, Chef, known for its imperative approach, provides explicit instructions for

system tasks.

Research underscores the impact of Ansible on network automation. Its playbook-driven
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Figure 3.7. The Forrester Wave™: Infrastructure Automation, Q1 2023[77].

methodology aligns well with scenarios that require swift automation [20]. Salazar-Chacón

and Parra further validate Ansible’s utility as a Network Automation Server for managing

VXLAN-type networks [63]. Such networks, connecting Layer 2 over distant locations

using Layer 3 links, greatly benefit from Ansible’s capabilities. Collaborative use with

Git as a version control system ensures consistency of configuration and minimization of

errors.[63]

Ansible’s versatility is evident from its deployment across devices, such as configuring

routing protocols on Cisco routers and Mikrotik [22]. Its simple task representation and

agent-free nature make it a preferred choice for EIGRP configurations [16].

However, while Ansible sees increasing adoption, the merits of Puppet and Chef remain
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Table 3.2. Comparison of network management approaches, adapted from [9]

Approach
Adaptation

to
Change

Resistance
to Config.

Drift

Syntax
error re-
silience

Effective
Config.
Deploy-

ment

Scalability

CLI × × × × ×
SDN (OF) ✓ × ✓ ✓ ✓

Python and
REST APIs

× × × ✓ ×

Chef ✓ × ✓ ✓ ×
Puppet ✓ × ✓ ✓ ×

Chef and Git ✓ ✓ ✓ ✓ ×
Puppet and Git ✓ ✓ ✓ ✓ ×

Proposed
Solution (Ansible

and Git)
✓ ✓ ✓ ✓ ✓

clear. Luchian et al. delve into Puppet’s architecture, tailored for network devices, ensur-

ing cohesion between ideation and execution [35]. Chef, originally created for software

installation automation, now boasts an ecosystem centered on the Chef node to synchro-

nize device configurations with server directives [46].

Blessing and Aaron present a meticulous comparison of these tools [9]. Table 3.2 elu-

cidates attributes such as adaptability, resilience to configuration drift, and deployment

efficiency. Such insights are invaluable to professionals in the IT and network domains,

guiding their tool selections.

3.3 Monitoring, Logging, and Visualization in VXLAN Management

3.3.1 Overview of Monitoring, Alerting, and Visualization

Monitoring is a pivotal tool in the realm of system maintenance and optimization, en-

compassing the collection, storage, analysis, and visualization of data from the system

landscape [75]. Paint a comprehensive picture of the current state, providing informa-

tion on potential future behaviors and comparisons with past performance. In SaaS, it is

paramount to achieve refined granularity ideally up to the microservice level [75].

The monitoring mechanism extends beyond mere data visualization to include a critical

component known as ’alerting.’ This involves actions initiated by changes in the mon-

itored metrics. Central to alerting are two elements: the threshold, which denotes the

value beyond which action is warranted, and the actual action, generally an informative
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notification sent to designated personnel, that highlights the location and timing of the

event [75]. Alerts serve as sentinels that sound the alarm when metrics exceed thresh-

olds, whether they are historical, projected, or deduced by machine learning techniques

[75].

In contemporary system architectures, the demand for adept monitoring and alert so-

lutions such as Zabbix, Prometheus, Grafana, and the Prometheus AlertManager has

surged. These tools form a cohesive framework, enabling proactive detection and mitiga-

tion of system vulnerabilities, thus boosting performance [12]. Moreover, as network mon-

itoring becomes an indispensable component of this domain, traditional manual oversight

is now being overshadowed. Integrating advanced functionalities into these tools heralds

a paradigm shift, paving the way for incisive and real-time insights into network dynamics

[23].

3.3.2 Introduction to Logging and Its Significance

In today’s advanced technological landscape, the swift flow of information signifies the

progress we have made. This flow is based on the adept management of network re-

sources by network administrators [60]. Networked devices frequently encounter various

anomalies. Each of these, minor or significant, is consistently documented in the sys-

tem’s’syslog’ [60, 32].

As computer networks expand, filled with various devices, the task of identifying the

sources and causes of these anomalies becomes a challenge for administrators. Cen-

tralized log management emerges as an essential solution in this context. It gathers

logs from different devices into one accessible platform, enabling efficient analysis and

reporting [60]. Such logs, which capture daily operations and user activities, serve as

foundational elements to enhance system security and prevent threats from being ad-

dressed [72, 38].

In networking, logs not only monitor, but also proactively detect network anomalies and

failures, reinforcing their indispensable role [26].

3.3.3 Evaluating Modern Monitoring and Logging Solutions: A

Comparative Analysis

The dynamic world of network management in the context of evolving cyber threats re-

quires a dual focus on both monitoring and log solutions. Efficient network management

is based on the ability to not only monitor network activities in real time but also log these

activities for analysis, troubleshooting, and predictive insights. In this regard, the choice

and integration of the right tools are paramount.
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The ELK stack, which includes Elasticsearch, Logstash, and Kibana, has been a promi-

nent solution in this space, offering a powerful combination for both the logging and moni-

toring aspects of network management. It provides a comprehensive platform for central-

izing log processing and enhancing visual analytics, allowing administrators to effectively

differentiate between standard and anomalous network activities [60, 72, 74].

In contrast, the PLG stack, which includes Promtail, Loki, and Grafana, has emerged as

a formidable alternative, especially noted for its log aggregation and real-time data anal-

ysis capabilities in high-performance computing environments [6]. A detailed comparison

between the ELK and PLG stacks reveals that while the PLG stack demonstrates greater

efficiency in CPU and memory usage, especially for real-time log indexing, the ELK stack

stands out for its faster query response times and user-friendly interface [15].

The choice between these two stacks involves weighing their respective strengths. While

ELK is a comprehensive commercial software offering robust features, the PLG stack

is an open-source solution, providing easy integration and a cost-effective approach for

organizations. The Loki component within the PLG stack, specifically, offers efficient stor-

age through its metadata indexing approach, which contrasts with Elasticsearch’s method

of indexing full document contents. This distinction underlines Loki’s storage efficiency,

albeit with a trade-off in search capabilities compared to Elasticsearch.

In monitoring, Grafana’s expertise in web metrics visualization complements Prometheus’s

strengths in data source interoperability, showcasing adaptability for diverse monitoring

needs [4, 68, 12]. Integration of these tools with Zabbix, which offers an all-encompassing

suite of visualization and alert functionality, forms a comprehensive monitoring solution.

This integration is further illustrated in Figure 3.8, showing the difference between push-

and pull-based monitoring methodologies.

Focusing on the monitoring aspect, the role of Prometheus becomes crucial. As a pull-

centric framework, Prometheus is particularly suited for large-scale VXLAN networks

spread across diverse regions. Its fundamental pull focus, complemented by support

for push metrics, showcases its adaptability in contemporary network settings [5, 2]. This

adaptability is vital in an era where network scalability and flexibility are key.

Pairing Prometheus with Grafana takes real-time network monitoring to the next level,

especially crucial for extensive cloud setups. This combination contrasts sharply with

platforms like Graphite, which, although proficient, offer limited functionality to manage

time-series data [66, 52].

Additionally, Zabbix’s comprehensive suite for visualization and alert functionalities stands

out in the monitoring landscape. Its support for a wide range of databases and its adher-

ence to SNMP protocols and ISO / IEC 27002: 2013 standards emphasize its robustness

for network monitoring tasks [11, 30, 58]. The user-friendly interface and advanced au-
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Figure 3.8. Differentiation between push and pull based monitoring methodologies.

tomation capabilities of Zabbix further enhance its effectiveness in managing complex

network setups, and its SQL-centric design allows intricate data analyses, even extend-

ing into neural network domains [45, 36].

In summary, integration of the ELK or PLG Stack with Prometheus & Grafana and Zabbix

presents a robust and versatile solution for VXLAN network management. The combina-

tion of these tools offers a comprehensive approach, is adaptable, and resilient, which

is crucial for modern network environments. Figure 3.8 further illustrates the differenti-

ation between push and pull-based monitoring methodologies, highlighting the different

approaches in network monitoring. In summary, integration of the ELK or PLG stack with

Prometheus & Grafana and Zabbix presents a robust and versatile solution for VXLAN

network management. The combination of these tools offers a comprehensive approach,

is adaptable, and resilient, which is crucial for modern network environments. Figure 3.8

further illustrates the differentiation between push and pull-based monitoring methodolo-

gies, highlighting the different approaches in network monitoring.

The choice between ELK and PLG for logging should be based on a thorough assessment

of organizational needs, considering factors such as efficiency, usability, scalability, and

cost. The perfect blend of real-time monitoring, analytical prowess, and visualization

achieved with either stack sets a high standard in VXLAN network administration, catering

to a diverse range of network management requirements.



26

3.3.4 Alerting with Prometheus’ Alertmanager

In the complex domain of network management, the importance of advanced alerting

systems is paramount, and Prometheus AlertManager embodies this advancement with

critical efficiency [51, 61]. Alertmanager is designed to handle alerts sent by client ap-

plications, such as the Prometheus server. Its core functionalities involve the intricate

processes of deduplication, grouping, and routing of alerts, which are indispensable to

maintain a clear operational state during network incidents.[61]

The Alertmanager’s grouping feature adeptly addresses the issue of alert floods during

significant outages [51]. By aggregating similar alerts into a unified notification, it prevents

information overload, allowing teams to maintain focus on the resolution of critical events.

The inhibition mechanism is another innovative feature, in which noncritical alerts can

be intelligently silenced in the wake of a related critical alert, ensuring that attention is

not diverted from critical issues. The silences feature further allows network adminis-

trators to preemptively disable alerts, facilitating uninterrupted workflow during planned

maintenance windows or known system changes.[51]

The nuanced integration of Prometheus’ Alertmanager in network management work-

flows epitomizes the evolution of alerting systems. Its purpose extends beyond mere

anomaly detection; it refines alerts to make them actionable intelligence, helping to speed

up the resolution and maintenance of the quality of network service [51, 61].

In essence, Alertmanager is a sophisticated tool that complements the Prometheus ecosys-

tem, providing a robust framework for alert management that is aligned with the high

demands of contemporary network infrastructures.

3.4 Additional Aspects of VXLAN Management

3.4.1 Security and Compliance in VXLAN

The rise of VXLAN in modern data centers has generated significant interest in its security

and compliance dimensions. At the heart of VXLAN security lies the triad of data confi-

dentiality, integrity, and authentication within the overlay network. This includes protecting

VTEP devices, securing VXLAN packets in transit, and ensuring a consistent application

of policies.

Currently, several technologies address these concerns. IPSec, for example, is commonly

used to encrypt VXLAN traffic during transit. Similarly, firewalls and IDS/IPS solutions are

positioned at VTEP gateways to inspect and safeguard VXLAN encapsulated data. On

the compliance front, tools like Cisco’s TrustSec help to endorse security policies and

maintain VXLAN compliance.
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For a robust VXLAN security posture, organizations should consider harnessing the syn-

ergy of IPSec with potent firewall and IDS/IPS solutions. In addition, regular audits and

the adaptation of security protocols using compliance tools can further fortify the secu-

rity landscape. Given the dynamic nature of cyber threats, it is anticipated that further

exploration into VXLAN’s security aspects will be invaluable in the future.

3.4.2 Scalability and Performance in VXLAN

VXLAN, by design, is poised to address scalability challenges and bypass the limitations

inherent to traditional VLANs. Performance in VXLAN infrastructures usually depends on

factors such as packet overhead, latency, and the efficiency of VTEP gateways.

To address these concerns, high-performance VTEP gateways are used, optimized for

rapid encapsulation and decapsulation. Additionally, the adoption of jumbo frames, con-

figured to account for the VXLAN header, mitigates packet fragmentation.

For optimal performance, it is prudent to deploy high-end VTEP gateways and support

jumbo frames in network configurations. As the demand on networks grows, it is fore-

seeable that scalability and performance will draw more attention, necessitating deeper

insights and solutions.

3.4.3 VXLAN Reliability: Redundancy and failure mechanisms

Reliability remains a cardinal principle in networking, and VXLAN is not exempt. Re-

dundancy in VXLAN refers to duplicating essential components, whereas failover mecha-

nisms ensure continuous network operations even in the face of unexpected failures.

To increase reliability, technologies such as MC-LAG offer redundancy by distributing

loads across VTEPs. Similarly, ECMP provides multiple paths for VXLAN traffic, enhanc-

ing load balancing.

Adopting both MC-LAG and ECMP can significantly improve network resilience. As net-

work architectures grow in complexity, the domains of redundancy and failover are ready

for further exploration and innovation.

3.5 Gaps and Opportunities in Current VXLAN Management

Approaches

In the domain of network management, where technological advancements unfold at a

breakneck pace, practitioners and academics face a dichotomy of fascination and chal-

lenge. The survey of existing literature exposes an array of techniques and tools that have

significantly altered the landscape of modern networking. Despite these advances, there
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are substantial gaps that warrant focused academic scrutiny and pragmatic resolution.

One of the most pressing challenges identified is the issue of consistency in network con-

figurations. Automation tools like Chef and Puppet have been at the forefront of managing

configurations, yet they have not completely eradicated the problem of configuration drift.

This phenomenon, a discrepancy between the intended and actual configurations, threat-

ens the integrity of the network and requires constant and vigilant oversight to ensure that

the configurations are as intended, as emphasized in the literature.[46]

In addition, the integration of a wide range of tools and platforms remains a formidable

challenge. Individual tools possess considerable potential; however, the true test lies in

achieving interoperability among these disparate systems. Current solutions often fail in

this area, suggesting the need for a more integrated approach to network management.

Scalability is another aspect where current tools and methodologies reveal their limita-

tions. Not every existing tool is capable of adapting to the needs of growing and evolving

network infrastructures. The comparison presented in table 3.2 underlines this concern,

pointing to a requirement for scalable solutions that do not compromise on performance

or efficiency.

Yet, within these challenges lie opportunities. The incorporation of Ansible, known for

its automation strengths, alongside the version control capabilities of Git, may offer a

resolution to the persistent issue of configuration drift. This combination could improve

the consistency and reliability of network configurations.

Furthermore, a unified monitoring suite that brings together Prometheus, Grafana, Zab-

bix, and now the ELK stack holds the potential for a new era of network management.

The ELK Stack provides powerful logging, data processing, and visualization capabilities

to enhance VXLAN management. Using these tools, networks transform from a lofty goal

to an attainable reality.

The concept of a PoC is also instrumental in this regard. By developing a PoC that

takes advantage of the collective capabilities of these tools, both the practicality and the

theoretical underpinnings of such an integrated approach can be empirically validated.

This validation is crucial not only for academic pursuits but also for paving the way for

robust, real-world network management solutions.

In summary, as the intricacies of VXLAN environments grow, it is imperative not only to

identify and bridge existing gaps in management approaches but also to take advantage

of the opportunities these gaps present. The future of network management lies in the

ability to adapt, integrate, and scale with precision, a challenge that is as daunting as it is

exciting.
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4. TOOLS FOR VXLAN NETWORK MANAGEMENT

OPTIMIZATION

In the "Programmable Age", network management has undergone a radical transforma-

tion, especially in virtualized contexts. The shift is evident through the integration of mod-

ern cloud technologies, automation tools such as Ansible, and monitoring utilities such as

Prometheus, Grafana, and Zabbix, as shown in Table 2.1. This integration emphasizes

the improved efficiency, scalability, and adaptability of today’s networks. Subsequent sec-

tions dive into VXLAN management optimization strategies, leveraging these advanced

tools and technologies.

4.1 Ansible in Automated VXLAN Network Configuration

Red Hat’s Ansible has carved a niche in IT automation. The driving force behind its pop-

ularity is its architecture, portrayed in Figure 4.1. The architecture of Ansible is intricate,

yet intuitive. It is powered by the Ansible orchestration engine. It also interacts smoothly

with both private and public cloud services and a Configuration Management Database

(CMDB) [20].

Figure 4.1. Ansible Architecture.
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Understanding Ansible’s architecture, as presented in Figure 4.1, requires familiarization

with its key components. These components are summarized in Table 4.1, which provides

a detailed description of each component [20].

Table 4.1. Components of Ansible and Their Descriptions.

Components of
Ansible

Description

Inventory This contains a detailed list of nodes or hosts with information
such as IP addresses and servers designated for management.

APIs Crucial to Ansible, these APIs are the bridge between various
cloud services.

Modules Ansible distributes these transient modules across nodes, exe-
cutes them, and then removes them after task completion. They
operate on multiple machines without the need for databases or
servers.

Plugins The components can be standard or custom made. They boost
Ansible’s primary capabilities.

Playbooks In YAML format, playbooks outline the tasks for Ansible to exe-
cute. They are versatile, supporting both synchronized and inde-
pendent task starts.

Hosts These are the node systems within Ansible’s range, covering ma-
chines from RedHat to Linux and Windows, set for automation.

Networking Ansible’s network automation strength stems from its agentless
automation framework.

Cloud Representing a group of distant servers, the cloud is vital for data
handling and processing.

CMDB This data repository holds information for IT installations.

The rapid evolution of digital domains highlights vulnerabilities due to human errors. Red

Hat’s Ansible® Automation Platform addresses these by converting intricate manual pro-

cesses into streamlined workflows. This highlights the vital role of automation tools such

as Ansible in present-day network management. [76]

Integration of platforms like Git and GitHub can enhance Ansible’s capabilities. Git is a

distributed version control system. GitHub serves as its cloud-based hosting counter-

part. Together, they aid in efficient code monitoring and cooperative adjustments. When

integrated with Ansible, this combination enhances the automation process, making it

stronger, more trackable, and more cooperative. [67, 63].This process is enriched with

versioning features and supports a community-centric automation approach. Though this

thesis does not explore integration in depth, the combined strengths are evident in current

IT landscapes.
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4.2 ELK Stack: The Established Commercial Standard for VXLAN

Logging

In VXLAN environments, where monitoring and log analysis are critical, the ELK stack

stands out as a commercial standard. Integrates Elasticsearch, Logstash, and Kibana -

components that harmonize the logarithmic process from ingestion to visualization [82,

59].

Elasticsearch lies at the heart of the stack, serving as a powerful search and analytics

engine. It is capable of efficiently indexing a wide array of data types and facilitating near

real-time search and analytics. Elasticsearch ensures high availability and fault tolerance

through its distributed nature [73].

Logstash’s role as a data processing intermediary is indispensable. With its flexible

plugin architecture and powerful processing capabilities, Logstash can ingest data from

numerous sources, transform it, and ship it to Elasticsearch for indexing [73, 82].

Kibana offers extensive visualization capabilities, enabling users to create dashboards

that provide insights into their data. With Kibana, administrators can manage and monitor

the health of their Elastic Stack cluster and control user access [73].

Alongside these core components, the Elastic Stack includes Beats and the Elastic

Agent for data collection, APM for application performance monitoring and Fleet for

centralized agent management [73].

Figure 4.2. The ELK data processing workflow in a VXLAN context, illustrating the com-
prehensive logging capabilities of the stack (Adapted from [73]) .

The ELK stack workflow, as shown in Figure 4.2, shows a structured process from data

collection to consumption. Each component plays a critical role in ensuring that data are

accurately ingested, processed, stored, and made available for analysis and visualization

[73].
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In recent developments, the OpenSearch project has emerged in response to licensing

changes, ensuring the ongoing availability of an open-source version for Elasticsearch

and Kibana. This move underscores the adaptability of the stack and the community’s

commitment to open source software [73].

The ELK Stack, with its commercial offerings, provides organizations with a dependable

and scalable solution for their logging and monitoring needs. Its comprehensive nature

not only streamlines VXLAN log management but also fortifies the resilience of the infras-

tructure against complex challenges such as SIEM and observability [82].

4.3 PLG Stack with Grafana Loki: The Open Source Innovator in

Logging Solutions

Following the discussion of the ELK stack as a commercial solution for VXLAN logging,

our attention turns to the PLG stack, particularly spotlighting Grafana Loki as a com-

pelling open source alternative. Free to use and developed with the principles of modern

observability systems in mind, Grafana Loki prioritizes cost-effectiveness and efficiency.

Figure 4.3 shows the architecture of Grafana Loki, a streamlined and efficient logging

system within the PLG stack. In this schematic, logs from two applications are collected

by an agent, typically Promtail, which then forwards the logs to the Loki server. Loki is de-

signed to index only the log metadata, optimizing storage and retrieval processes. Users

can interact with the log data through Grafana, utilizing LogQL for complex queries, or

directly via the command line with LogCLI for simplicity and convenience. This architec-

ture underscores Loki’s ability to integrate with existing systems seamlessly, offering a

lightweight yet powerful solution for log analysis.

Figure 4.3. The architecture of Grafana Loki

Loki’s design prioritizes minimalistic storage requirements by indexing only the metadata

of logs. This innovative approach ensures a lightweight and less resource intensive solu-

tion, providing a nimble, yet powerful tool for developers and operators who require fast

and reliable log analysis capabilities [34].
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Integral to the PLG stack is Promtail, a log collector specifically designed for Loki. Prom-

tail is responsible for gathering logs and forwarding them to the Loki system, maintaining

a crucial link in the observability chain. It adheres to Loki’s philosophy of simplicity and

efficiency, allowing seamless integration with the logging architecture [56].

Together, Grafana Loki and Promtail offer a streamlined solution that stands out for its

open source accessibility and alignment with the evolving needs of scalable infrastructure

monitoring and logging [34, 56].

4.4 Prometheus for In-depth VXLAN Monitoring and Alert

4.4.1 Prometheus monitoring

Prometheus was developed using the Go programming language and has attracted at-

tention as a time series monitoring system and database. This powerful tool is adept

at scraping metrics from a range of sources, each piece of data being precisely time-

stamped to provide clarity on its chronological context. Prometheus was initially devel-

oped by SoundCloud, a leading music platform. It soon became a standalone project

with a robust developer community, highlighting its significance. Its affiliation with the

Cloud Native Computing Foundation (CNCF) in 2016 further emphasized its importance

in the IT sector. [55, 50]

Figure 4.4. Prometheus architecture (Modified from [54]).
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A closer examination of its architecture, illustrated in Figure 4.4, reveals the central role

of the Prometheus server. This entity is responsible for storing time-series data, lever-

aging a custom local TSDB (time-series database) for structured data storage. While its

default modus operandi involves the ’pull’ method for data retrieval, it also accommodates

the ’push’ approach via the Pushgateway, ensuring data consistency even for short-lived

processes.

Various exporters support its functioning, transforming data from active applications into

a digestible format for Prometheus [53]. Such transformation allows metrics collection

either directly from specific exporters, such as node exporter, or through intermediaries

such as the Push gateway. Service discovery is another feature that simplifies the mon-

itoring process by automatically identifying candidate monitoring. Simultaneously, Alert-

manager integrates with Prometheus to manage alert notifications, ensuring stakeholders

are informed through channels such as email, HipChat, PagerDuty, and Slack [51, 1].

Prometheus’ distinctiveness in the monitoring landscape is further accentuated by PromQL,

its specialized querying language. Through PromQL, users can not only retrieve metrics

in real time but also interpret results in various formats. While PromQL offers unparalleled

flexibility, it requires a steeper learning curve. In the broader monitoring ecosystem, the

collaboration of Prometheus and Alertmanager often sees Grafana as the visualization

tool of choice [54, 61].

4.4.2 Prometheus Alertmanager

Within the Prometheus ecosystem, Alertmanager is more than a mere add-on; it is a

critical entity tasked with managing notifications originating from the Prometheus server.

By handling these alerts, it ensures the seamless transition from anomaly detection in

Prometheus to the communication of actionable insights to operation teams [51, 2].

Alertmanager’s core offerings include grouping of alerts, which aids in consolidating sim-

ilar alerts, preventing potential information overload. The tool’s ability to filter out less

critical alerts during a major incident demonstrates its focus on operational efficiency.

Further enriching its user-centric design, Alertmanager provides options for manual alert

muting based on certain conditions, ensuring that relevant alerts reach the intended re-

cipients. Its commitment to maintaining a robust monitoring setup is evident in its support

for high-availability configurations. [51]

An overview of Alertmanager’s workflow, presented in Figure 4.5, portrays it as a service

that processes requests from Prometheus servers. After deduplication, these alerts are

routed based on established parameters. Its Web interface supports alert visualization, si-

lencing, and the application of inhibition rules. During network partitions within its cluster,

Alertmanager’s design ensures notifications are sent from both partition sides, reflecting
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Figure 4.5. High-Level Overview of Prometheus Alertmanager (Modified from [5]).

a priority on delivery. [5]

Alert routes in Alertmanager can be visualized as hierarchical structures. Upon activation

of a specific route by an alert, a predetermined integration is set into motion. Several out-

of-the-box integrations cater to common communication channels like email and Slack.

For custom solutions, webhook integration allows an HTTP POST request to send the

firing alert’s JSON payload to a specified endpoint. [5]

4.5 Grafana: Advanced Dashboards for Network Analysis

Grafana has emerged as the leading open source platform for data visualization and

dashboard creation[18, 17, 75]. Unlike other similar systems, Grafana can unify data

from diverse sources such as Kubernetes clusters, cloud services, or even Google Sheets

without the need to ingest it into a back-end store[17]. This independence of the database

gives Grafana unparalleled flexibility in data visualization.

At its core, Grafana advocates the democratization of data. It aims to break organizational

silos, ensure wide access to data, and foster a culture grounded in collaborative data-

driven insights[17].

Figure 4.6 provides a detailed visualization of network storage and temperature readings,

using Grafana gauge and bar gauge panels. The upper section of the dashboard presents

data storage metrics across multiple devices, with color gradients for quick status assess-

ment. LCD-style bar gauges offer an at-a-glance view of storage usage, while basic bar

gauges allow for straightforward comparisons across devices. The lower section presents

temperature readings from various locations in gradient mode, translating numerical data

into a visual format that highlights critical temperature zones with color intensity.
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Figure 4.6. Grafana’s Gauge Dashboard Representation [17]

Figure 4.7 presents Grafana’s time series visualizations, which demonstrate the ability of

the platform to represent changes in data over time through line graphs with shaded ar-

eas, multiple Y-axes for different units of measurement, and stacked bars for comparative

analysis. The dashboard also utilizes bars with opacity gradients and dashed lines with

threshold regions to differentiate between normal operating ranges and potential outliers

or points of interest.

These figures exemplify Grafana’s capability to transform complex datasets into acces-

sible and actionable insights, fostering collaborative data-driven decision-making within

network analysis.

Grafana offers a wide set of features, ranging from heat maps and histograms to complex

data querying and transformations[17]. Its dynamic dashboards provide a comprehen-

sive environmental view, enabling end users to rapidly gauge the prevailing scenarios.

Moreover, these dashboards can be shared and imported using various methods, and

the platform’s alerting system consolidates notifications. Users can configure these alerts

directly within dashboards and notifications can be transmitted to a variety of communica-

tion platforms[18]. To augment its inherent capabilities, Grafana supports a wide spectrum

of plugins, sourced from both Grafana Labs and the wider community. [17]

Grafana’s adaptability stands out. Catering to both novice and expert users, the platform

offers customized configurations, from metric exploration to advanced provisioning. This

versatility extends to its authentication methods, and the enterprise edition even facilitates

team-specific user assignments. [17]
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Figure 4.7. Grafana’s Time Series Dashboard Visualization [17]

Furthermore, Grafana Labs champions several open-source projects. Among these are

Grafana Loki, a logging solution optimized for the Kubernetes ecosystem, and Grafana

Tempo, a distributed trace back-end. Projects such as Grafana Mimir and Grafana Phlare

exemplify Grafana Labs’ unwavering commitment to both the open-source community and

the broader realms of data visualization and management. [17]

Grafana’s comprehensive approach to data visualization, combined with its compatibility

with data sources like Prometheus and Zabbix, positions it as an indispensable tool for or-

ganizations striving for data-driven excellence. Such integrations amplify the insights ob-

tainable from data, enhancing operational efficacy and strategic decision-making. When

combined with tools like Prometheus and Alertmanager, Grafana becomes part of a

formidable infrastructure monitoring solution, optimizing service performance and prompt

issue resolution.

4.6 Zabbix for Comprehensive Network Monitoring

Zabbix stands out as an open-source enterprise-class monitoring solution. Aleksei Vladi-

shev developed it and has received support from Zabbix SIA due to its comprehensive

network monitoring capabilities [89]. Beyond merely examining network parameters, Zab-

bix effectively supervises servers, applications, virtual machines, and a host of other IT

assets.

A hallmark of Zabbix lies in its alert mechanisms. Its adaptable email notification system,

together with its proficiency in metrics collection, anomaly detection, and easy deploy-
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ment, puts it in a distinguished position within monitoring solutions. [89, 42]

Deeper into its architecture, as illustrated in Figure 4.8, the Zabbix server emerges as the

central coordinating entity. It has responsibilities related to data processing, the formula-

tion of monitoring definitions, the configuration of triggers, and the delivery of notifications

[88, 48]. Zabbix, while compatible with a set of databases, integrates a proxy in its ar-

chitecture. This proxy plays a crucial role in collecting and caching data and liaising with

devices and agents operating in both passive and active stances.

Figure 4.8. Zabbix architecture (Modified from [88]).

Modern improvements in Zabbix accentuate its prowess in detecting network threats. This

capability amplifies its contribution to the field of information security [8]. Furthermore,

Zabbix’s versatility is evident in its potential for integration. A testament to this is its collab-

oration with Telegram, which allows real-time network monitoring [39]. Research validates

Zabbix’s stature as an open-source network management tool, highlighting its proactive

methodology in maintaining the integrity of diverse IT assets. It constantly adapts to

meet the demands of present-day network management [19, 75]. In scenarios that re-

quire open source utilities, specific database compatibility, effective device management,

and all-encompassing monitoring, Zabbix is the best option. Its ability to integrate with

Grafana offers enhanced visualization options. However, its repertoire currently does not

encompass an equivalent to that of Prometheus exporters [42, 29].

4.7 Unified Approach to VXLAN Management

The evolution of VXLAN encapsulation reflects rapid advances in network management

tools. Integrating tools such as Ansible with advanced logging solutions like the ELK
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stack and the emerging PLG stack, featuring Promtail, Loki, and Grafana, showcases the

transformative potential achievable in VXLAN management.

Ansible’s role in simplifying network configurations is crucial, aligning with modern digital

infrastructure needs, although our focus excludes direct SDN experimentation, consider-

ing its well-established efficacy. The study introduces a dual approach to log manage-

ment, presenting both the ELK and PLG stacks as viable options. Although ELK offers a

comprehensive solution, PoC emphasizes the PLG stack for its open-source nature, sim-

plicity, and cost-effectiveness, marking a shift towards more resource-efficient solutions.

Prometheus, Grafana, and Alertmanager form a cohesive unit for network monitoring

and alerting. Prometheus handles the collection of network metrics, Grafana visualizes

these metrics for better understanding, and AlertManager manages the routing of alerts.

Similarly, Zabbix provides robust network device monitoring, using predictive analytics to

proactively manage network health.

The ELK stack’s combination of Elasticsearch, Logstash, and Kibana offers an advanced

platform for log management and analytics. However, the PoC’s preference for the PLG

stack underscores the evolving landscape in VXLAN management, where cost and ease

of use become decisive factors.

The orchestration of these tools presents network administrators with a holistic view of

network performance, blending Ansible’s automation with the chosen stack’s analytical

capabilities to enhance operational workflows.

Empirical evidence from the PoC highlights the operational and financial benefits of this

integrated approach, suggesting a strong return on investment for organizations adopting

these strategies. While financial and resource considerations are important, the primary

focus remains on validating the effectiveness and efficiency of the chosen tool suite in a

VXLAN environment.

In conclusion, this unified management approach, which integrates various tools, heralds

a new era in VXLAN management. It equips network administrators with the resources

to effectively manage network virtualization complexities, ensuring readiness for future

data-centric challenges.

This comprehensive understanding of the tools and methodologies in VXLAN manage-

ment sets the stage for the PoC, which will empirically demonstrate the practical applica-

tion and integration of these tools in a VXLAN setup, with a particular focus on the PLG

stack for its accessibility and open-source benefits.
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4.8 Proof of Concept (PoC): A Simplified Implementation

The discussion of unified VXLAN management leads to the PoC phase. The PoC show-

cases the efficient integration of select tools into a VXLAN environment, even when re-

sources are constrained. A simplified VXLAN setup is prioritized, featuring the deploy-

ment of Prometheus, Grafana, Zabbix, and Grafana Loki within containerized environ-

ments. The decision to utilize the PLG stack over the ELK stack is informed by its open

source nature, aligning with the aim of an efficient and cost-effective implementation.

The PoC is designed to provide a tangible representation of network operations within a

VXLAN framework, highlighting the capacity of these tools to enhance the system admin-

istration and monitoring capabilities.

In this case, the complexity of SDN is bypassed to mitigate the extensive laboratory re-

quirements and associated expenses. VXLAN configuration spans two droplets, with

containers established for the tools mentioned. This method is designed to emulate real-

world operations between data centers, offering actionable insights into the integration

and functionality of the tools.

Ansible is utilized for remote SSH configuration of the Droplets, directly from a personal

laptop, which simplifies the setup and management processes.

The PoC aims to present a clear and pragmatic view of network operations within a

VXLAN environment, illustrating how these tools can be leveraged to enhance the effi-

ciency of system administration and monitoring.

4.8.1 Implementation and Configuration Details

The PoC was deployed using the Digital Ocean platform, using two Droplets named AN-

DC1 and AN-DC2. Both droplets are configured with substantial computing resources: 16

GB of memory, 4 AMD CPUs, and 200 GB of disk space, running the Ubuntu 22.04 (LTS)

x64 operating system within the Frankfurt region (FRA1). This configuration is vital for the

VXLAN setup within our PoC. Figure 4.9 provides a detailed illustration of the setup of the

Droplets, showing each Droplet with its corresponding IPv4, IPv6 enabled, and private IP

within the ANH-VXLAN-FRANKFURT-VPC.

Figure 4.10 presents a comprehensive visualization of the network infrastructure de-

signed for the PoC using VXLAN within a DigitalOcean environment. The diagram de-

lineates a clear and structured overview of the two main components within the network

setup, labeled AN-DC1 and AN-DC2, which represent individual nodes or droplets.

Each node is equipped with its own suite of network management tools, demonstrating

a Docker-facilitated microservice architecture. For example, AN-DC1 includes container-

ized instances of the Blackbox exporter for monitoring, Grafana for analytics and visualiza-
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Figure 4.9. Digital Ocean Droplets configuration for the PoC

tion, and Prometheus for time series data monitoring and alerting. This is complemented

in AN-DC2 with instances of Zabbix for additional monitoring capabilities, Alertmanager

to handle Prometheus alerts, and Grafana Loki for advanced log aggregation.

Central to the network architecture is the VXLAN tunnel connecting AN-DC1 and AN-DC2,

denoted by VXLAN1 with a network identifier (VNI) of 2023, which facilitates an overlay

network over the physical network infrastructure, referred to as the underlay network. The

tunnel encapsulates network frames using a Virtual Tunnel Endpoint (VTEP) on UDP port

4789, enabling secure and efficient communication between nodes.

Open vSwitch (OvS) is depicted on both nodes with the identifier ’br1,’ acting as a virtual

multilayer switch that provides the binding framework for the containers and the VXLAN

tunnel. This setup illustrates how VXLAN can be used to extend layer 2 networks over a

layer 3 infrastructure, allowing for enhanced scalability and segmentation.

The establishment of a VXLAN network between the two drops was a critical part of the

setup. Open vSwitch, a multi-layer software switch, was installed on both Droplets to

enable the VXLAN connections. Alongside, Docker was utilized to create and manage

containers needed for the deployment of various tools and services integral to the PoC.

The setup process began with the creation of a virtual switch, termed br1 and used Open

vSwitch. This was achieved through the command:

sudo ovs-vsctl add-br br1

Subsequently, a virtual interface named’veth1’ was added to the ’br1’ bridge. This step
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Figure 4.10. PoC Network Infrastructure Diagram with VXLAN and Tools

was crucial for the interconnection within the virtual network. The command executed

was:

ovs-vsctl add-port br1 veth1 -- set interface veth1 type=internal

The next phase involved assigning IP addresses to the bridge interfaces and ensuring

their operational status. The commands used were:

ip address add 10.x.x.1/24 dev veth1
ip link set dev veth1 up mtu 1450

For each container, a unique IP address was assigned to ensure seamless communica-

tion within the VXLAN network. This involved running containers and attaching them to

the created bridge with specific IP configurations. The command used was:

sudo docker run -d --name AN-DC1-Grafana --net=none grafana/grafana
sudo ovs-docker add-port br1 eth0 AN-DC1-Grafana --ipaddress=
10.x.x.5/24 --gateway=10.x.x.1

The crucial step of establishing VXLAN tunneling between AN-DC1 & AN-DC2 was car-

ried out. This step involved setting up a VXLAN port on the bridge and configuring the

remote IP address, which is the IP address of the opposite droplet. The command used

was:
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ovs-vsctl add-port br1 vxlan1 -- set interface vxlan1 type=vxlan
options:remote_ip=10.114.16.x options:key=2023

In setting up the VXLAN environment, specific containers were deployed on two separate

Droplets, AN-DC1 and AN-DC2, each serving distinct functions within the network. Below

are detailed tables outlining the containers deployed in each Droplet and their respective

functionalities.

Table 4.2 provides an overview of the containers deployed in AN-DC1, each of which

plays a crucial role in monitoring and data analysis within the VXLAN network.

Table 4.2. Containers and Their Functions on AN-DC1

Container on AN-DC1 Function

AN-DC1-Prometheus Collects and stores metrics for monitoring and alert-
ing purposes.

AN-DC1-Blackbox-Exporter Monitors endpoint availability and response times.

AN-DC1-cAdvisor Provides container-level resource usage and perfor-
mance data.

AN-DC1-Node-Exporter Fetches hardware and OS metrics exposed by *NIX
kernels.

AN-DC1-Zabbix-Agent Gathers various system data for Zabbix monitoring.

AN-DC1-Grafana Visualization tool for metric analysis and alerting.

Table 4.3 lists the containers set up in AN-DC2, focusing on log aggregation, alert man-

agement, and monitoring, integral to the efficient functioning of the network.

Table 4.3. Containers and Their Functions on AN-DC2

Container on AN-DC2 Function

AN-DC2-Alertmanager Manages alerts sent by Prometheus server.

AN-DC2-Loki Aggregates and stores logs for analysis.

AN-DC2-Zabbix Centralized monitoring solution.

AN-DC2-Promtail Collects and ships logs to Loki.

AN-DC2-MySQL An open-source relational database management
system (RDBMS).

The configuration details for the Prometheus server, the Zabbix agent, and Alertmanager

are described in YAML files located in the Appendix A (see Figures A.2, A.3 and A.1).

For configuration management, Ansible was used within Windows Subsystem for Linux

(WSL) on a Windows 11 system to control Ubuntu-based droplets. AWX provided a web-

based interface for easier inventory and playbook operations. Automated tasks included

Docker installations and container management, executed securely via SSH.
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4.8.2 Monitoring and Visualization Outcomes

In the PoC final stage, our monitoring and alerting configurations come to fruition. De-

tailed logs and metrics, as visualized in the ensuing figures, illustrate the efficacy and

synergy of our monitoring tools. These visual outcomes not only affirm the tools’ integra-

tion, but also display the practical results of our VXLAN configuration, encapsulating the

core objectives of the PoC.

In Figure 4.11, Prometheus shows the graphical representation of the metric access_

evaluation_duration_bucket, which offers insight into the performance of the AN-DC1-

Grafana server. This metric is indicative of the duration distribution for access evaluations.

The count of 4587 within a specific duration bucket reflects the cumulative number of

events, providing a measure of server responsiveness. Analyzing this metric helps to

recognize typical response time patterns and identify performance deviations.

Figure 4.11. Graphical visualization of metrics in Prometheus.

In Figure 4.12, the Prometheus Service Discovery feature is shown, illustrating an auto-

mated process that significantly streamlines the monitoring infrastructure within network

systems. Service Discovery dynamically scans for active services across the network, au-

tomatically identifying and registering their endpoints. This capability is crucial for main-

taining an up-to-date monitoring landscape and ensuring that new services are promptly

incorporated into the monitoring framework without the need for manual updates or con-

figurations.

The figure shows a succinct interface of Prometheus with a list of services, such as AN-

DC1-Grafana, AN-DC1-Node-Exporter, and AN-DC2-Zabbix-Agent, each with an active

target status indicating their current monitoring state. Automation of this discovery pro-

cess is exemplified by the detailed labels assigned to each service, such as ’_address’

access_evaluation_duration_bucket
access_evaluation_duration_bucket
'_address'
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, ’_metrics_path’ and ’scheme,’ which provide essential information for Prometheus to

accurately scrape and collect metrics.

For example, the service labeled AN-DC1-Grafana is assigned a specific address and

a metrics path, denoting its location and the endpoint from which Prometheus can re-

trieve metrics. The inclusion of a ’scrape_interval’ label specifies the frequency at which

Prometheus collects data, and a ’scrape_timeout’ label defines the maximum duration

to wait for a scrape request before timing out, highlighting the customizable nature of

monitoring intervals to suit various network demands.

This level of detail in Service Discovery not only facilitates the organization and querying

of service metrics but also contributes to a more efficient and resilient monitoring system.

It allows network administrators to swiftly adapt to changes in the network infrastructure,

ensuring continuous and comprehensive coverage of all services for performance anal-

ysis and alerting. The automated detection and labeling process depicted in the figure

represent a small yet integral part of Prometheus’s robust monitoring capabilities, en-

abling scalable and flexible network management.

Figure 4.12. Service Discovery in Prometheus.

In Figure 4.13, Prometheus’s Targets page is depicted, providing a crucial interface for

network administrators to monitor the status of various endpoints within the network. Each

row represents a monitored target, detailed with endpoint addresses and current opera-

tional states, such as ’UP’ for active and ’DOWN’ for inactive, which allows for immediate

assessment of service availability.

The ’Labels’ column offers a quick reference to the specific characteristics of each end-

point, such as the instance and job name, enhancing the manageability of the network.

This labeling system is integral to the Prometheus setup as it categorizes the metrics

'_metrics_path'
'scheme,' 
'scrape_interval'
'scrape_timeout'
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collected from each endpoint, enabling efficient filtering and querying.

Crucially, the ’Last Scrape’ timestamp informs administrators of the most recent success-

ful data collection attempt, providing insights into the periodicity and reliability of monitor-

ing operations. Correspondingly, the ’Scrape Duration’ indicates how long the last scrape

took, serving as an indicator of the performance and health of the monitoring system

itself. Any errors encountered during the scraping process are also recorded, offering

immediate diagnostic information to troubleshoot potential issues.

The figure presents a clear visual summary of the health and status of network services,

with color-coded indicators that provide at-a-glance recognition of system health. This

real-time overview is vital for maintaining network reliability and performance, as it en-

ables prompt response to any identified issues. The Targets page, therefore, is not just

a monitoring tool, but a critical component of proactive network management, ensuring

high availability and minimal service disruption.

Figure 4.13. Monitoring targets in Prometheus.

Figure 4.14 presents the Zabbix Dashboard, a critical interface for network administrators,

providing a real-time overview and health status of the entire monitored IT environment.

The dashboard is thoughtfully laid out, offering immediate visibility into critical network

metrics, including the number of hosts and the count of active monitoring items and trig-

gers, which are essential parameters for assessing the network’s robustness.

Central to the dashboard is the ’Problems’ section, which meticulously catalogs every

issue detected within the network, arranged by severity level from ’Disaster’ to ’Informa-

tion.’ This hierarchy of problems enables administrators to quickly identify and prioritize

problems for troubleshooting. Each entry within this section is timestamped for temporal

context and includes identification tags for the affected host, ensuring that the origin of
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the issue is readily apparent. Detailed descriptions accompanying each problem entry

provide actionable intelligence, allowing swift, informed response actions.

This holistic approach to network health visualization, encapsulated in the Zabbix dash-

board, exemplifies the platform’s utility in ensuring network resilience and operational

continuity. The intuitive design of the dashboard, combined with its depth of information,

makes it an indispensable tool for contemporary network management.

Figure 4.14. Zabbix monitoring dashboard.

Figure 4.15 presents a screenshot of the Zabbix interface during the crucial process of

adding the host. This interface is integral to the Zabbix monitoring system, allowing ad-

ministrators to seamlessly incorporate new network nodes. It displays a comprehensive

list of hosts, each with associated details such as the number of linked applications, the

number of monitoring items, and the count of defined triggers which are imperative for the

operational awareness of the network.

Each host entry shows essential connection parameters like IP address and port num-

ber, offering a snapshot of the node’s network footprint. The status column indicates

whether the host is actively being monitored (denoted "Enabled"), and the availability col-

umn provides immediate visibility into the host’s current monitoring state, with color-coded

indicators reflecting the operational status.

The integration of hosts within the Zabbix platform is a testament to the system’s ability

to scale and adapt to new network entities. The interface is meticulously designed to en-

sure that administrators can efficiently manage the network’s expanding scale, reflecting

Zabbix’s commitment to providing a dynamic, responsive network monitoring solution.

Figure 4.16 shows Zabbix’s ’Problems’ tab, a centralized hub for tracking network issues.

Problems are listed chronologically, with color-coded severity levels from ’Information’ to

’Disaster,’ enabling quick prioritization. Each entry specifies the affected host and pro-
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Figure 4.15. Host addition in Zabbix monitoring.

vides a brief description of the issue, such as ’Zabbix agent is not available’, indicating

where attention is needed. ’Recovery time’ and ’Duration’ fields offer temporal context to

each problem, suggesting how long an issue has persisted and if it has been resolved.

The dashboard also allows for problem acknowledgment and displays available actions,

streamlined the troubleshooting process. The tags associated with each problem enable

filtering, helping administrators categorize and navigate through issues efficiently.

Figure 4.16. Problems and alerts in Zabbix.

Figure 4.17 illustrates Grafana Loki log aggregation in action, displaying a clear layout

of log entries from multiple containers. This dashboard is instrumental for administrators,

providing a time-sequenced visualization of logs, which is essential for chronological anal-

ysis. Each log is meticulously detailed, with labels that include the ’filename’, indicating
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the precise location of the log file within the container’s filesystem. These filenames serve

as a direct reference point for administrators to trace back logs to their source, which is

particularly helpful in environments with extensive container setups.

The entries also include unique identifiers (’id’), which are critical for pinpointing specific

logs during in-depth system analysis or debugging. Alongside the log details, one can see

metadata fields such as timestamps that are precise to the nanosecond (’tsNs’), offering

high-resolution insights into the timing of each logged event.

These structured log data, when used in conjunction with Loki’s querying capabilities,

allow for efficient searching and analysis, facilitating swift operational responses to main-

tain the integrity of VXLAN network operations. The integration of such detailed logs

with Grafana’s visualization tools exemplifies the stack’s utility in real-time monitoring and

troubleshooting within complex network infrastructures.

Figure 4.17. Log aggregation in Grafana Loki for container logs.

The Grafana dashboard depicted in Figure 4.18 serves as a powerful interface that syn-

thesizes complex time series data from Prometheus in a user-friendly and interactive

graphical format. Visualization likely includes various metrics such as response times,

server requests, and system utilization rates, all of which are vital for real-time mon-

itoring. The dashboard enhances the user’s ability to interpret extensive Prometheus

metrics quickly, pinpoint trends, identify anomalies, and make informed decisions based

on the comprehensive analysis that Grafana facilitates. This integration exemplifies how

Grafana acts as a window to Prometheus’s extensive data, enhancing observability and

operational oversight within network environments.

The PoC effectively demonstrated the functional interplay and compatibility of a compre-

hensive set of network management tools within a VXLAN environment. The successful

implementation highlighted not only the PLG stack, but also a suite of other vital tools,

including SDN solutions, Prometheus, Grafana, Zabbix, and Alertmanager. These tools
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Figure 4.18. Grafana dashboard visualizing Prometheus metrics.

collectively contribute to a robust and dynamic network management system, underscor-

ing the potential for enhanced system administration and real-time monitoring in complex

network architectures.
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5. CONCLUSION

As this extensive study of VXLAN technology concludes, it is clear that the journey

through the complexities of VXLAN has revealed pivotal advancements in network ar-

chitecture. VXLAN’s emergence as a transformative solution for scalability and segmen-

tation challenges in traditional VLANs represents a significant leap in network design.

This advancement not only has enhanced network flexibility and efficiency, particularly

for large-scale data centers and cloud environments, but has also introduced new layers

of complexity in network management. This requires a sophisticated, integrated approach

to effectively handle these advanced networks.

The exploration of SDN within this context has revealed its dynamic and transformative

impact. The ability of SDN to offer flexibility and adaptability, critical in managing VXLAN

infrastructures, cannot be overstated. Although SDN was not implemented in the practical

component of this thesis, its theoretical importance in VXLAN network optimization is

undeniably profound.

The integration of Ansible into VXLAN management has proven indispensable. Ansible

has simplified network operations, enhancing reliability and efficiency in network config-

urations. Its automation capabilities have reduced operational complexities, enabling a

smoother management of extensive network infrastructures.

The combined use of Prometheus and Grafana has emerged as a crucial aspect of this

study. Prometheus, with its proficiency in collecting real-time network metrics, has be-

come the backbone of network analysis. Grafana, with its advanced visualization tools,

has brought these metrics to life, enabling comprehensive insight into network perfor-

mance. This synergy has enabled detailed monitoring and proactive management within

VXLAN networks.

The role of Alertmanager in network management has been vital. As part of the Prometheus

ecosystem, Alertmanager has efficiently managed and routed network alerts, ensuring

operational clarity and responsiveness. Its ability to deduplicate, group, and route alerts

has provided a clear and organized view of network health.

The PLG stack, specifically Grafana Loki and Promtail, has played a key role in log ag-

gregation and analysis within VXLAN networks. Grafana Loki’s ability to manage large

volumes of log data, coupled with Promtail’s log collection capabilities, has effectively
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addressed common challenges in VXLAN environments.

The PoC conducted in this study was instrumental in demonstrating the practical applica-

tion and successful integration of these tools into a VXLAN setup. Using the Digital Ocean

platform with two droplets named AN-DC1 and AN-DC2, each equipped with substantial

computing resources, a VXLAN network was established using Open vSwitch. This set-

up illustrated a practical implementation of VXLAN technology, including the configuration

of VXLAN tunnels and the deployment of various network management tools. The PoC

provided a step-by-step guide that included the process of setting up Ansible for remote

management, configuring Prometheus for monitoring, and using Grafana for visualiza-

tion. This detailed depiction allows for the replication of the PoC in similar environments,

thereby showcasing a practical model for the integration and utilization of these tools

within VXLAN networks.

In addition to the primary tools, the thesis acknowledged the potential of the ELK stack as

a robust logging solution. Although the ELK stack boasts strong capabilities, its commer-

cial nature and associated costs led to its exclusion from the PoC. However, its inclusion

in the study reflects a comprehensive evaluation of various tools suitable for different or-

ganizational needs and resources.

Looking ahead, the thesis identifies several promising areas for future research. En-

hanced traffic flow control via SDN controllers in VXLAN presents an exciting avenue

for exploration. The potential of deep learning to improve network performance within

VXLAN, particularly in QoS enhancement, is another area that deserves investigation.

Furthermore, the application of Zero Trust security principles to VXLAN networks, in re-

sponse to increasing cybersecurity threats, offers challenges and opportunities for future

research.

In conclusion, this thesis has provided a thorough examination of VXLAN technology and

its crucial role in modern networking. The integration of various network management

tools within VXLAN networks has set a new benchmark, providing valuable information

for academic research and practical applications. The journey of VXLAN and its man-

agement continues, filled with opportunities for innovation and advancement in the ever-

evolving field of network technology.
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APPENDIX A: YAML CONFIGURATION FILES

This chapter provides the configuration details for AlertManager, Prometheus, and Zab-

bix, which are integral to the PoC presented in this document.

A.1 Alertmanager Configuration

The configuration file for Alertmanager, depicted in Figure A.1, serves as a fundamental

blueprint for implementing alert routing, notification management, and defining how alerts

are grouped, acknowledged, and silenced. In the file, we see the global block specifying

the Simple Mail Transfer Protocol (SMTP) settings, which are critical for the dispatch of

email alerts. This includes the SMTP server address and port, the email address from

which alerts will be sent, and the authentication credentials necessary for server access.

The route block beneath defines the grouping parameters of the alerts, such as grouping

them by alert names, which is an essential feature to reduce noise and prevent alert

fatigue. It also details the waiting times before a new group of alerts is sent (group_wait),

the interval between repeated alerts (group_interval), and how often a repeated alert

should be sent (repeat_interval). These timings are crucial for managing the flow of

alert notifications without overwhelming the recipients.

The receiver line within the route block designates the receiver for the alerts, which

in this case is specified as email-notifications. Below this, the receivers block

provides configurations for defining the receiver, including the email address to which

notifications will be sent. The send_resolved flag, when set to true, ensures that noti-

fications are also sent out when an alert has been resolved, closing the loop on an alert

lifecycle.

The inhibit_rules section allows the suppression of notifications for certain alerts if an-

other alert with higher severity is already running. This is configured using source_match
and target_match labels that align with severity levels, preventing less critical alerts from

overshadowing more urgent ones.

This YAML configuration file is crucial for the Alertmanager’s operation, translating these

declarative configurations into operational behaviors that ensure alerts are handled effi-

ciently and effectively. It reflects the operational logic for managing alerts and embodies
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Figure A.1. Alertmanager YAML configuration file.

the Alertmanager’s capability to streamline incident response through structured and au-

tomated alert handling.

A.2 Prometheus Configuration

As shown in Figure A.2, the configuration file for the Prometheus server delineates a

host of critical parameters that guide the monitoring service’s behavior. This YAML file is

divided into several sections, each with a distinct purpose. The rule_files block lists

the rule files to be loaded by Prometheus, allowing the service to periodically evaluate the

rules based on the global evaluation_interval.
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Figure A.2. Prometheus YAML configuration file.

Following this, the scrape_configs section comprises the core of the monitoring con-

figuration, where each scrape target is meticulously defined. For instance, the job name

’AN-DC1-Grafana’ corresponds to a specific scrape target, which Prometheus will poll

to retrieve metrics. These targets are not just limited to internal endpoints, but may also

include external ones, as indicated by the various URLs listed.

This section of the configuration file also specifies the job names for each set of targets,

which become part of the time series data. The metrics_path and scheme parameters

within this section default to ’/metrics’ and ’http’, respectively, but can be tailored

as needed for different endpoints.
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The static_configs blocks within scrape_configs detail the actual endpoints to be

monitored, each associated with a respective job name. Here, parameters such as

targets list the individual scrape endpoints, while labels provide additional context

for the data being collected, enhancing the granularity and usability of the metrics.

Moreover, the file contains advanced configurations such as relabel_configs, which

allow for the alteration of labels before they are ingested into the time series database.

This enables more sophisticated control over how metrics are categorized and handled.

This carefully structured configuration ensures that Prometheus can not only collect and

store meaningful metrics efficiently, but also allows for significant customization to adapt

to the varied needs of a complex monitoring environment.

A.3 Zabbix Agent Configuration

Figure A.3 displays the Zabbix agent configuration file opened for editing. This file is

a cornerstone of the agent’s functionality, as it dictates the behavior of the agent in the

network monitoring setup. The ‘ServerActive‘ parameter is set to the IP address of the

Zabbix server, which is crucial for establishing a connection between the agent and the

server for active checks.

The ‘Hostname‘ parameter is left blank, which implies that the hostname will be autode-

tected or is defined elsewhere, typically within the Zabbix server’s configuration. The

‘HostnameItem‘ setting, defaulted to ‘system.hostname‘, specifies that the agent should

use the system’s hostname as its identifier if no explicit ‘Hostname‘ is provided.

Further down, the configuration file includes parameters ‘HostMetadata‘ and ‘HostMeta-

dataItem‘, which are used in the host auto-registration process. The metadata provided

here enriches the data collected by the Zabbix server, allowing for more nuanced identifi-

cation and categorization of the host within the monitoring system.

This configuration snapshot is pivotal as it encapsulates the specific settings that enable

the Zabbix agent to report metrics to the server, thus playing a significant role in the

operational integrity of the monitoring infrastructure outlined in the PoC.
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Figure A.3. Zabbix agent YAML configuration file.
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