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ABSTRACT
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Web search engines accumulate substantial quantities of personal data extracted from the
queries of internet users. These datasets encompass a range of sensitive factors, including in-
dividual interests, engagements, health issues, work chronicles, religious principles, and political
orientations. This aggregation of data components heightens the threat to user privacy, especially
in situations characterised by data breaches, unauthorised access, or inappropriate exploitation
of their private information.

The present thesis introduces a unique solution Privacy Extension for Search Engine (PESE),
which combines the concepts of unlinkability and indistinguishability to enhance the privacy and
anonymity of web users. Our solution employs a Trusted Execution Environment (TEE) to ensure
the confidentiality of search queries, thereby thwarting any potential monitoring or interception by
search engines and external entities. TEE consists of a secure processor component that offers
selected programmes executing on the processor with data security, secrecy, as well as integrity.
It effectively isolates these applications from the Rich Execution Environment (REE).

We utilize Enarx, an open-source deployment framework for designing and building our TEE
application. It provides a robust and flexible environment that facilitates the secure execution of
workloads within a TEE. Enarx’s flexibility in accommodating different hardware architectures and
platforms allows our PESE solution to be easily deployed across diverse systems without signif-
icant adjustments. This wide-ranging compatibility increases the applicability and accessibility of
our solution, making it suitable for a wider array of environments.

Throughout this thesis, we expand on the implementation of PESE via TEE, elaborating on its
operation’s complexities. Furthermore, we conduct a thorough review of the Enarx deployment
framework, highlighting its central role in the design and development of our TEE application.

Keywords: Enarx, TEE, Trusted Execution Environment, Trusted Computing, Confidential Com-
puting, Confidentiality, Privacy, Anonymity, privacy-preserving

The originality of this thesis has been checked through the Turnitin Originality Check service.
Furthermore, AI tools such as Grammarly, Quillbot, and ChatGPT have been used to improve the
writing style of this thesis in accordance with Tampere University guidelines [150].
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1. INTRODUCTION

The internet has seamlessly integrated into our daily lives, fundamentally transforming our

modes of communication, information retrieval, and global interaction. The most preva-

lent action performed by Internet users is querying search engines, which enables them to

efficiently access content from the tremendous quantity of data available on the Internet.

When users conduct searches, they inadvertently reveal their interests and intentions,

leaving behind a digital footprint. Search engines and potential eavesdroppers could use

this information to generate user profiles and infer sensitive personal information. The

user’s expectations for their privacy and security are growing more rigorously; however

as current systems continue to become more sophisticated and open, new difficulties

continue to present themselves. Traditional security technologies are no longer effica-

cious [122]. Data confidentiality, privacy, and integrity solutions can not simply account

for network-based attacks, but also those that emerge from a subgroup of software and

hardware elements on the same platform or from an attacker with physical access [127].

A Trusted Execution Environment (TEE) represents a cutting-edge approach to confi-

dential computing, offering reliable systems that surpass targeted defenses against spe-

cific attacks [121]. TEE is an isolated and restricted part of the main CPU whose pri-

mary purpose is to offer an additional layer of trust to programs executing within the

processing unit. It operates independently and concurrently with the Rich Execution En-

vironment (REE). The TEE possesses its isolated Read Only Memory (ROM), Random

Access Memory (RAM), core processor(s), peripherals, cryptographic accelerators, and

One Time Programmable (OTP) cryptographic assets, including hardware keys [13]. It

meets every criterion for increased privacy, protection, and authenticity of data in the

process. In TEE, when an application is authenticated, the untrusted modules load the

trusted section into memory, and the trusted program is then protected from interference.

Several hardware manufacturers offer TEE implementations, such as Intel Software Guard

Extensions (SGX), AMD Secure Encrypted Virtualization (SEV), ARM TrustZone, Intel

Trusted Domain Extensions (TDX), and RISC-V Keystone [114]. Developing an applica-

tion for TEE presents a formidable task, requiring the utilization of specific development

frameworks or containers to streamline the process. One such platform-agnostic frame-

work that facilitates the execution of sensitive workloads within TEE is Enarx [23]. It is an

open-source project that aims to simplify the development and deployment of secure ap-
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plications, enabling users to leverage the heightened security offered by TEE technology.

In this thesis, we aim to delve into various aspects of TEE and conventional privacy and

anonymity solutions. In addition, we are going to delve into Enarx and its various aspects,

including implementation and technical specifications. At last, we present Privacy Exten-

sion for Search Engines (PESE), specifically designed to operate within Enarx Keeper.

The primary goal of PESE is to enhance user privacy and anonymity by concealing user

online web queries. The forthcoming chapters of this thesis will offer a detailed exploration

of TEE, Enarx, and PESE, encompassing their distinctive features, potential applications,

limitations, and the potential ramifications on privacy and anonymity.

1.1 Motivation and Goals

Privacy is emerging as a significant concern for internet users, particularly in the context

of their web search activities. Web search engines (WSEs) amass substantial quanti-

ties of user data, including search queries, browsing history, IP addresses, and device

information [146]. This data can be used for the purpose of monitoring users’ online ac-

tivity, developing detailed profiles of their interests, and customizing advertising content

accordingly.

One compelling solution to mitigate these privacy challenges involves the utilization of

TEE. TEEs establish a secure and secluded enclave within the computing system, effec-

tively segregating sensitive data and code from the operating system and other applica-

tions [44]. This isolation endows TEEs with remarkable resilience against unauthorized

access, breaches, and data leaks. Consequently, TEEs hold significant potential in pro-

tecting user privacy and anonymity in web searches and online activities. Integrating TEE

technology into WSE and associated digital infrastructure has the potential to create a

more secure and privacy-conscious digital ecosystem.

The primary objective of this thesis is to create a solution that proficiently augments the

privacy and anonymity of user’s online search activities via integrating TEE. The overar-

ching ambition is to thoroughly investigate TEE, Enarx, and subsequently implementation

of PESE. Furthermore, a meticulous examination of the technical intricacies of PESE will

be undertaken, including a comprehensive analysis of its distinctive characteristics and

an assessment of its inherent limitations. Our overall objective is to empower individuals

with enhanced capabilities to safeguard their personal information within the expansive

online landscape.

1.2 Objectives and Contributions

This introduction serves as a comprehensive overview of the thesis, providing the reader

with a concise map to visualize the structure and logical connections of the work. The
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objective is to assist the reader in comprehending the significance and organization of

the research and to provide a clear path for exploring the various topics presented in this

thesis.

The map facilitates seamless navigation and augments the reader’s comprehension of the

research. Positioned beneath the designated topic are the pertinent research inquiries,

which are subsequently followed by an exposition of the background information and a

comprehensive overview of related research, thereby constituting the foundation upon

which the research is conducted. Following the delineation of the background and related

research, the subsequent section presents the research investigations and their corre-

sponding outcomes, serving as the mechanism through which the research questions

are addressed.

This thesis research is substantiated by our publication entitled "A Systematic Review of

TEE Usage for Developing Trusted Applications," which plays an important role in the

pursuit of RQ1. The primary objective of our publication is to undertake a meticulous

examination of the TEE ecosystem and its practical usability. To this end, the publication

compiles a diverse array of academic and practical illustrations, synthesizing them to pro-

vide valuable insights into the evolution of TEE technology while concurrently conducting

a thorough analysis of the tools accessible to developers. Additionally, the publication

encompasses an evaluation of trusted container projects, performance testing, and the

identification of prerequisites for application migration into these containers, all of which

contribute substantively to the overarching thesis objective of selecting the Enarx frame-

work for the development of PESE.

For the purpose of enhancing the reader’s comprehension of the subject matter, this pub-

lication is thoughtfully included in the appendix. Furthermore, the inclusion of PESE code

fragments is also included in the appendix demonstrates the commitment to open sci-

ence principles and provides a concrete representation of the research conducted for the

present thesis. The research questions that form the core of this thesis will be thoroughly

explored in the subsequent section.

1.3 Research Questions

The research questions in this thesis are focused on the implementation and viability of

PESE, a novel application based on TEE and constructed using the Enarx framework,

with the objective of enhancing the privacy and confidentiality of web users. These ques-

tions can be articulated as follows:

RQ1. What is the importance of TEE in augmenting the security of data and op-

erational processes?

RQ2. How do conventional solutions address privacy and anonymity concerns for
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Investigating the significance of TEE in confidential computing

Examining the TEE and Trusted Applications
Analyzing the fundamental components of TEE
Evaluating various Trusted Containers for the development of Trusted Applications

(PESE) Privacy Extension for Search Engines

Objective I: Examine TEEs significance in terms of data and operations security
Objective II: Analyse traditional web user's privacy and anonymity solutions
Objective III: Evaluate the Enarx framework in TEE via the development of PESE 
Objective IV: Result and conclusion of PESE on the privacy and anonymity of web users

An Assessment of Enarx Framework

Analysis of Enarx Design Principles, Trust Architecture and Threat Model
Investigating the Enarx requirements, core components, operational method and security
aspects

PESE Development using Enarx

Investigating current privacy and confidentiality solutions for web user queries
Comprehending the system and establishing an adversary model
Introducing a solution and elucidating its methodology

Results and Conclusion answering our Research Objectives

To fulfill Objective I, a comprehensive examination of TEE is undertaken, encompassing a detailed
analysis of its applications, architecture, and TCons

To achieve Objective II, an exploration of privacy and anonymity is conducted, comprising a brief
historical overview, analysis of the evolutionary systems, and modern adopted solutions

To address Objective III, an in-depth study of Enarx framework is carried out covering different aspects,
and further assessed via the development of PESE

The attainment of Objective IV is accomplished through the development of PESE, with a subsequent
evaluation of its impact on the privacy and anonymity of web users

Analyses of conventional privacy and anonymity solutions for web user's

Analyzing the historical context of Privacy and Anonymity
Tracing the evolution of Privacy and Anonymity systems
Evaluating the Privacy and Anonymity Contributions of Tor, I2P, and Bitcoin Mixers

Figure 1.1. A detailed map that visualize the structure and scope of the thesis
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web users?

RQ3. How effective is the Enarx framework for developing privacy-enhanced ap-

plication PESE?

RQ4. What are the results and conclusions regarding the impact of PESE on the

privacy and anonymity of web users?

The research questions of this thesis will be addressed as follows:

For RQ1: In Chapter 2, we will undertake an exhaustive examination of TEE, delving

into its multifaceted importance. Our analysis will encompass an evaluation of TEEs

role in enhancing the security and privacy of sensitive data and processes, as well as a

comprehensive exploration of how TEEs function as a means to mitigate potential threats.

For RQ2: In addition to the detailed exploration of TEE, Chapter 2 provides a comprehen-

sive overview of the conventional solutions that pertain to user privacy and anonymity.

Within this chapter, we not only present these existing traditional solutions but also high-

light the inherent challenges and complexities associated with their implementation.

For RQ3: Chapter 3 is dedicated to a comprehensive exploration of the core principles un-

derlying the Enarx framework. Within this chapter, we will provide a detailed exposition of

the framework’s architectural intricacies and functional attributes, emphasizing its pivotal

role in enabling the creation of TAs that harness the capabilities of TEE. Subsequently, in

Chapter 4, we will delve further into the evolution of TAs, focusing on the development of

PESE via the Enarx framework.

For RQ4: While Chapter 4 predominantly centers on the in-depth exploration of the de-

velopment of PESE, Chapter 5 will be dedicated to the comprehensive assessment of

PESE’s effectiveness in augmenting the privacy and confidentiality of end users, Subse-

quently Chapter 6 will encapsulate the findings and conclusions derived from the evalua-

tion of PESE, in conjunction with addressing other research objectives.

1.4 Structure

The present thesis is comprised of Six chapters, with the Chapter 1 serving as an intro-

duction to the scope of the thesis. To enhance reader comprehension, Table 1.1 offers a

structured representation illustrating the alignment between the research questions and

the corresponding chapters where they are addressed.

In essence, this thesis offers a comprehensive exploration encompassing TEE, the Enarx

framework, and the privacy and anonymity solution, PESE, designed to protect web users

search activity. The research encompasses technical intricacies, real-world implementa-

tions, and Enarx’s contributions to the development of PESE through the utilization of TEE

technology. Furthermore, it presents a comprehensive evaluation of the project’s findings
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Research Questions Answered in

RQ1 What is the importance of TEE in augmenting the se-
curity of data and operational processes?

Chapter 2, Section 2.1 - Sec-
tion 2.4

RQ2 How do conventional solutions address privacy and
anonymity concerns for web users?

Chapter 2, Section 2.5 - Sec-
tion 2.8

RQ3 How effective is the Enarx framework for developing
privacy-enhanced application PESE?

Chapter 3, Chapter 4

RQ4 What are the results and conclusions regarding the
impact of PESE on the privacy and anonymity of web
users?

Chapter 4, Chapter 5

Table 1.1. Mapping between Research Questions and corresponding Chapters

and acknowledges its limitations.
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2. BACKGROUND

In this chapter, we present a synopsis of the current state of knowledge concerning TEE

and Privacy and Anonymity which is significant to the objective of the thesis.

2.1 Trusted Execution Environment

The convergence of cutting-edge connectivity solutions, advanced sensing technology,

and purposeful digital communities has sparked an unprecedented surge in the genera-

tion and utilization of personal data. Traditional manual processes, once limited in scope,

such as banking, healthcare sectors and resource monitoring, have evolved into potent

sources of interconnected digital information tied to individuals [10]. There has been a

notable trend in sending data to cloud servers, leading to the dominance of cloud com-

puting in the technology landscape [90]. Organizations now place a strong emphasis on

robust security measures to safeguard sensitive code and data. Different sectors face

unique challenges when it comes to ensuring data confidentiality, integrity, and privacy,

ranging from financial transactions to citizen data and classified documents. Compliance

with regulations such as HIPAA [68], GDPR [117], protection of intellectual property, and

national security are crucial aspects of their data protection strategies. To maintain trust in

customer and stakeholder relationships, organizations must prioritize security measures

and innovative solutions to thrive in this environment.

To address the critical need for enhanced security, the integration of trusted computing

concepts has become a prevailing trend, ensuring the protection of sensitive data in these

dynamic architectures. Data can undergo protection in three distinct states: while at rest,

during transit, and while in use [80]. While encrypting data at rest and during transit has

become a standard procedure in cloud computing, the encryption of data in use, which

constitutes the fundamental concept of Confidential Computing, remains an emerging

concern [1].

Traditional trusted computing uses a dedicated hardware module called the Trusted Plat-

form Module (TPM) [15] for platform security. However, it lacks the ability to execute

third-party code in an isolated environment. A new approach allows tamper-resistant ex-

ecution of arbitrary code within a confined environment. This environment is known by

various names such as closed-box VM [54], TrustZone software (TZSW) [155] and trusted
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language run time [126] however the term Trusted Execution Environment (TEE) coined

by GlobalPlatform [58] is the one used in our thesis.

TEE is a cutting-edge security solution designed to create a secure zone within the central

processing unit (CPU). Its primary function is to process data in a protected environment,

completely isolated from REE operations [44]. REE also known as the Normal World, is

the standard computing environment where most applications are developed for and de-

ployed to [39], This isolation includes the hypervisor and the operating system, ensuring a

high level of security. It possesses distinct processing, memory, and storage capabilities

[17]. In comparison to the REE, TAs execute within a more secure environment due to

the isolated nature of TEE [70]. This isolation is instrumental in preserving data privacy

and integrity, irrespective of the individual with authorization to the host system in which

an application is in operation.

The Figure 2.1 illustrates a device portrayed as a sequence of separate environments,

each characterized by its distinctive attributes and functions. The terminologies intro-

duced by GlobalPlatform [58] are used to describe the concepts illustrated in the Fig-

ure 2.1.

Memory

Computing System Hardware

Trusted Components

Memory

OS and Apps

Rich Execution Environment Trusted Execution Environment

Figure 2.1. Generic overview of REE and TEE

One of the key benefits for developers is the ability to design REE applications and ser-

vices that maintain an adequate level of security, even when the OS is compromised.

This resilience is achieved as sensitive operations are confined within the TEE, effec-

tively protecting confidential data such as cryptographic keys. The TEE utilizes security

mechanisms [25] rooted in hardware, including encryption and secure boot, to establish

an advanced and secure context for the execution of applications, execution of transac-
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tions, and storage of confidential information. By doing so, TEE offers a reliable and

effective solution to enhance overall data protection.

2.2 TEE Applications

In complex scenarios, involving multiple entities with varying levels of trust, the imple-

mentation of hardware-backed TEEs provides a strong and specialized environment to

safeguard sensitive operations and data, even when interacting with potentially untrusted

parties. As a result, TEE provides a valuable foundation for building secure and privacy-

preserving applications in complex, multilateral settings [139]. TEE applications exhibit

diverse classifications, but the most prevalent usage scenarios are as follows:

Cloud Computing: Cloud computing has revolutionized how users store and access

their data, but it entails certain trade-offs, including the loss of direct control over the

physical infrastructure where data is stored [67]. This lack of direct management raises

privacy concerns, especially when dealing with sensitive data, which poses a significant

drawback of cloud systems [56]. In order to effectively tackle these difficulties and provide

a secure cloud computing environment, TEEs have garnered increasing attention due

to their ability to offer a specialised security solution that safeguards against possible

dangers arising from compromised infrastructure. By restricting the adversary’s access

to specific sections of the TA, TEEs protect sensitive code and data from unauthorized

access and tampering. The improved security measures provide significant assurances

about privacy, hence promoting wider acceptance of cloud services. Users may be certain

that their data will be protected and kept secret inside the cloud environment.

Financial payments: Digital wallets, online payment gateways, cryptocurrency wallets,

and the utilization of computing devices as point-of-sale terminals all have well-stated

security requirements. Blockchain technology also finds application in both online pay-

ments and enhancing transaction security, as it enables secure and transparent recording

of transactions across multiple nodes in a network. TEE integrating with Blockchain can

play a central role in protecting sensitive information, encompassing user credentials, pay-

ment card details, and transaction data [93]. This is achieved through a secure hardware

channel between the TEE and the payment application, effectively encrypting and isolat-

ing data from the device’s regular system and other applications. Functioning as a trusted

backend systems, TEE elevates the security of financial transactions, necessitating users

to input a PIN, password, or biometric identifier. This comprehensive approach substan-

tially reduces the risk of data breaches and unauthorized access, thereby fortifying overall

transaction security.

Content protection: TEE provides a secure environment for Digital Rights Management

(DRM) systems, and copyright holders use TEE to protect digital content, such as movies,

music, and e-books, from unauthorized access and piracy [105]. Furthermore, the estab-
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lishment of a secure hardware link between the TEE and the device’s display effectively

restricts the device owner’s ability to get access to any confidential information held in-

side the TEE. TEEs play a vital role in ensuring that digital content is only accessible by

authorized users and connected devices [16, 44].

Healthcare Data: Effectively managing medical information, encompassing electronic

health records (EHRs), telemedicine data, and sensitive outputs from body sensors,

poses substantial challenges when processing on third-party untrusted clouds while pre-

serving user privacy. Furthermore, the continuous and voluminous nature of data gener-

ated by medical sensors necessitates efficient and secure processing, even under strong

adversarial models. Fortunately, the emergence of consumer-grade processors with TEE

offers a promising solution, surpassing less flexible approaches like homomorphic encryp-

tion [130]. TEE plays a pivotal role in ensuring patient privacy protection and maintaining

the confidentiality of medical information.

Authentication: TEE has emerged as a crucial component for enhancing authentication

processes, especially with regard to biometric identity methods. Biometric data, such

as facial recognition and fingerprints, are processed and stored securely within the TEE,

effectively preventing unauthorised access. In addition, the TEE supports cryptographic

private keys, thereby facilitating the implementation of authentication standards that do

not require a password. TEEs transfer the authentication locus from remote servers to

user devices by creating a secure and isolated environment, resulting in authentication

experiences that are not only convenient, reliable, and theft-resistant [19]. This paradigm

shift accomplishes robust security properties comparable to traditional two-factor authen-

tication without requiring a separate device [118].

Run-time Verification: In the context of cryptographic protocol implementation, vulner-

abilities and malware attacks that target specific runtime can compromise the security of

an otherwise proven safe protocol design. Despite proven safe protocol designs, incor-

rect implementation and runtime attacks can compromise security. TEEs enable runtime-

verification approaches to continuously monitor protocol execution, detecting anomalies

in real-time [36, 85]. Additionally, TEEs create secure environments for critical compo-

nents like kernel binaries, ensuring they remain isolated and protected from potential

attacks. In the occurrence of an unauthorised breach, the security monitoring service

within the TEE can promptly shut down, preventing further exploitation and safeguarding

the application’s integrity [18]. Leveraging TEE for run-time integrity enhances the secu-

rity of cryptographic protocols, providing a robust defence against real-time threats and

reinforcing the trustworthiness of applications even under challenging circumstances.

Machine Learning: The increasing demand for Machine Learning as a Service (MLaaS)

provided by prominent cloud providers such as Amazon AWS, Microsoft Azure, and

Google Cloud [22] has raised concerns about protecting user input privacy. Deploying
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pre-trained models in the cloud requires strong measures to maintain the confidentiality

of user data, particularly during inference. While conventional methods like data encryp-

tion address data protection during storage and communication, TEE provide a promising

approach to ensuring data security throughout computational processes. By leveraging

a combination of hardware and software techniques, TEE effectively segregate and pro-

tect confidential data and computational processes. This approach presents a resilient

and all-encompassing strategy to augment privacy and security in the domain of machine

learning inference inside cloud-based settings [96].

Identity Management: The prevalence of online platforms that collect, share, and mone-

tize user data has raised concerns about the privacy and fairness of users. By analyzing

this data, these platforms infer user behaviours and preferences, generating detailed user

profiles [107]. However, TEE offers a viable solution to safeguard user confidentiality and

ensure fairness among different entities involved [115]. Various applications, including

those managing digital identities, national ID systems, and digital signature systems, can

benefit from TEE secure environment to protect digital identities and thwart unauthorized

access, thereby enhancing overall security and privacy measures.

Secure Modular Programming: In the context of secure modular programming, TEEs

allow developers to partition sensitive components and critical operations into separate

trusted modules. These modules can be executed in a secure and isolated environment,

away from the potentially less secure REE. As a result, TEEs provide a strong foundation

for building applications with enhanced security, confidentiality, and integrity [57]. Using

TEEs in secure modular programming ensures that critical functions, such as crypto-

graphic operations and key management, remain protected from potential attacks and

unauthorized access. It also helps prevent information leakage and tampering with sensi-

tive data during program execution. Furthermore, TEEs offer a standardized interface for

interacting with the secure modules, allowing developers to integrate their secure func-

tionalities seamlessly into the overall application. This promotes code reusability, ease of

maintenance, and efficient development of secure applications.

TEE offers a highly secure environment for diverse applications, leveraging hardware-

based security features to create an isolated space separate from the primary operating

system and other software on the device. Our publication on "A Systematic Review of

TEE Usage for Developing Trusted Applications" presents Figure 2.2, which illustrates

various usage examples, highlighting the significant relationships between categories,

mechanisms, and security properties. Through these relationships, TEE effectively pro-

tect sensitive data and computations, fortifying the security stance of applications that

employ them.
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2.3 TEE Architecture

TEE implementations utilize a range of technologies to establish hardware-based isola-

tion and ensure secure execution environments. Mohamed Sabt, Mohammed Achemlal

and Abdelmadjid Bouabdallah [122] have identified and described the essential building

blocks of TEE which are presented in the Figure 2.3. This section offers a concise sum-

mary of the functioning and operation of each of the aforementioned blocks.

2.3.1 Secure Boot

A secure bootstrap process is essential for the trusted OS kernel [12]. By breaking down

the bootstrap process into discrete steps, it becomes evident that if an adversary gains

control over any step, subsequent steps cannot be trusted [69].

Secure Boot plays its role during the boot-time process that ensures only trusted soft-

ware components are loaded and executed on a device. The process begins when the

device is powered on and involves verifying the authenticity of each component in the
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Figure 2.3. Fundamental Components of TEE Architecture

boot chain, starting with the boot loader. It then proceeds to validate the authenticity of

the operating system and any other loaded software components. If any unauthorized

or altered component is detected in the boot chain, the Secure Boot process halts the

booting procedure, preventing the execution of malicious software.

By preventing the execution of unauthorized software, such as malware, viruses, and

other malicious code, Secure Boot safeguards the security and integrity of the TEE envi-

ronment. This protective measure ensures the confidentiality and protection of sensitive

data and applications against potential malicious attacks and unauthorized access [122].

The effectiveness of Secure Boot is mostly contingent upon the root of trust, which often

encompasses a secure element that is seamlessly integrated inside the hardware of the

TEE. The root of trust plays a crucial role by verifying the authenticity of each component

in the boot chain, thereby allowing only trusted components to be loaded and executed

[30].

As a key component of TEE security, Secure Boot plays a pivotal role in ensuring that

only trusted software components are executed within the TEE environment. It verifies

the authenticity of each component in the boot chain, effectively preventing the execution

of unauthorized software.
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2.3.2 Secure Scheduling

Secure Scheduling is integral to the separation kernel, ensuring isolated and secure task

execution in a TEE. It plays a crucial role in coordinating the TEE and the system, main-

taining the responsiveness of the main OS while protecting the TEE tasks by preemptively

designing the scheduler and considering real-time constraints [124]. Secure Scheduling

guarantees the secure execution of critical tasks, such as cryptographic operations and

sensitive data processing. It prevents interference from other tasks or the underlying OS,

ensuring accurate and trustworthy task results even in the presence of malicious or faulty

software.

To implement Secure Scheduling, dedicated hardware resources and memory partitions

are allocated to the TEE. This hardware-based isolation protects the TEE’s resources

from interference and contributes to its robust security. Secure Scheduling’s crucial role

in resource allocation and task scheduling ensures that the TEE meets its security re-

quirements, even in the presence of potentially malicious or unreliable software compo-

nents. This mechanism is indispensable in maintaining the integrity and confidentiality of

sensitive operations within the TEE [122].

2.3.3 Inter-Environment Communication

Inter-environment communication is one of the fundamental blocks of the security of TEE

as it facilitates secure and regulated data interchange among various TEE environments.

This guarantees the protection of sensitive data and adherence to TEE security prerequi-

sites.

Inter-environment communication employs secure channels such as secure pipes or mes-

saging to enable secure interaction with the rest of the system. These channels ensure

data remains protected against interception and tampering during transmission and re-

strict access to authorized entities exclusively.

All Inter-environment communication methods must fulfil three vital characteristics: de-

pendability (ensuring memory/time isolation), minimal overhead (avoiding unnecessary

data duplication and context changes), and preservation of communication structures

[122].

Despite offering advantages, Inter-environment communication introduces new threats,

including message overload attacks [116], user and control data corruption attacks [29],

memory faults caused by shared page removal, and unbound waits due to noncoopera-

tion of the untrusted part of the system.

In the paper [122], three communication models have been identified: GlobalPlatform

TEE Client API [58], secure RPC (Remote Procedure Call) of Trusted Language Runtime
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[126], and real-time RPC of SafeG [125]. Additionally, secure inter-environment commu-

nication is proposed in [74].

Inter-environment communication establishes a secure interface for TEE to interact with

the system, enabling collaboration and data exchange between different TEE environ-

ments while ensuring the security and protection of sensitive data. Nevertheless, careful

implementation and adherence to key attributes like reliability, minimal overhead, and

preservation of communication structures are imperative to mitigate potential threats.

2.3.4 Secure Storage

Secure Storage guarantees the confidentiality, integrity, and freshness of stored data

while restricting access to authorized entities only [88]. It is typically implemented in

hardware with dedicated resources and memory partitions, isolating sensitive data from

the underlying OS and other software components.

Sealed storage is a common approach for implementing secure storage [104], relying on

three components: an integrity-protected secret key accessible only by the TEE, crypto-

graphic mechanisms like authenticated encryption algorithms, and a data rollback protec-

tion mechanism like replay-protected memory blocks (RPMB) [145].

The utilization of secure storage ensures that sensitive data remains secure and isolated,

shielding it from potential risks like malware or data breaches. The secure environment

ensures the data confidentiality and security of sensitive data and applications, even in the

presence of malicious or faulty software. Moreover, Secure Storage serves beyond data

protection, offering a secure repository for configuration data such as security policies

and access control rules, contributing to the controlled operation of the TEE.

Secure Storage plays a crucial role in TEE security, providing an encrypted and segre-

gated area for data storage and ensuring the integrity and confidentiality of applications.

Its implementation through sealed storage with integrity-protected secret keys, crypto-

graphic methods, and data rollback protection enhances the overall security of the system

[122].

2.3.5 Trusted I/O Path

The Trusted I/O Path protects the authenticity of communication between TEE and pe-

ripherals, ensuring that both input and output data remain safeguarded against eaves-

dropping and manipulation by malicious applications [2]. It also offers an optional level

of confidentiality for such communication, adding further protection for sensitive data like

keyboard inputs and sensor data. The Trusted I/O Path serves as a defence against

four categories of attacks: screen capture, key logging, overlaying, and phishing attacks.
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By protecting against these threats, it ensures the integrity of data being communicated

between TEE and peripherals.

Furthermore, the Trusted I/O Path expands TEEs capabilities by providing a trusted path

to user-interface devices. This feature enables direct interaction between human users

and applications running inside the TEE, allowing for broader functionality and improved

user experience within the secure environment [83, 84, 55]. Nevertheless, Trusted I/O

Path is a crucial component of TEE security, ensuring the authenticity and confidentiality

of communication with peripherals. Its protection against various attack vectors strength-

ens the overall security of the system, while its integration with user-interface devices

enhances the user’s ability to interact directly with secure applications [122].

2.4 TEE Containers

To ensure the compatibility of an application with various TEE technologies, it is impor-

tant to conform to design solutions that are particular to the framework. However, the

widespread adoption of TEE technologies can face challenges due to their limited sup-

port for unmodified programs. Specifically, users often encounter the need to integrate the

corresponding hardware SDK (Software Development Kit) into their original programs to

execute them inside a TEE instance, a process that demands considerable effort. More-

over, developers must implement attestation to establish trust in the application.

Application

Ecall/Ocall Handler

Enclave

Application-Middleware Interface

Tcon

Trusted shim lib/Trusted syscall wrapper

Middleware-Host Interface

Host OS

Enclave Loader

Figure 2.4. Common TCons Interface Design

To address this usability challenge, a solution has emerged in the form of container-

style TEE middleware called TCons. These middleware options offer two approaches:
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one involves the direct running of unaltered binary code inside a TEE or automatically

modifying source code prior to its incorporation into a TEE executable. This innovation

aims to streamline the process and enhance the usability of TEE technologies. Figure

Figure 2.4 depicts the most typical TCons interface designed based on the paper [86].

It’s worth noting that while there are various TCons available, many of them are no longer

active. In the following, we will briefly go through the TCons that remain active in the

year 2022 according to our publication. This overview will shed light on the available

options for developers seeking to implement trustworthy and efficient applications within

TEE environments.

2.4.1 Apache Teaclave

Apache Software Foundation introduced Apache Teaclave, an open-source project that

focuses on secure and privacy-preserving computing using TEE. The primary aspect

of Teaclave’s architectural design is the use of TEE technologies, namely Intel SGX and

ARM TrustZone. These technologies provide isolated enclaves that possess the capability

to safely execute code [136]. This prevents unauthorized access to the data and code

being processed, ensuring the utmost confidentiality and integrity of sensitive information

throughout the computation process.

The primary objective of Apache Teaclave is to enable developers to perform data pro-

cessing tasks in a secure environment. This security of data ensures that sensitive in-

formation remains protected at all times. Furthermore, Teaclave supports programming

languages, including C/C++ and Python to cater to a broader community.

Teaclave also provides a secure method for executing and scheduling duties within the

enclave, ensuring that data is properly isolated and protected [11]. This feature signifi-

cantly reduces the possibility of data loss or unauthorised access, enhancing the overall

security of the project. Moreover, Teaclave incorporates attestation mechanisms that

verify the integrity of the enclaves. This process helps establish trust between different

parties, ensuring that the enclaves are genuine and have not been tampered with. The

maintenance of the security and dependability of the whole system is contingent upon the

significance of this particular feature.

While Teaclave’s native support for TEEs offers a secure execution environment, it also in-

troduces challenges concerning application deployment and portability. To address these

challenges, TEE Containers encapsulate Teaclave applications along with their runtime

environment, libraries, and dependencies. This approach ensures seamless deployment

and execution across different platforms, making the project more versatile and user-

friendly [142].

By packaging the entire Teaclave application and its dependencies, developers can de-
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ploy their applications on various systems without worrying about compatibility issues or

potential security breaches. This advancement enhances the usability and efficiency of

secure computing within Teaclave’s TEE-enabled environment, opening up new possibil-

ities for secure and privacy-preserving data processing.

2.4.2 EGo SDK

The EGo SDK is an open-source framework designed for the construction of secure ap-

plications using the Go programming language. These apps run in secure execution envi-

ronments called enclaves, which are TEE instances strongly isolated, runtime encrypted,

and attestable on Intel processors with SGX feature [43]. EGo builds on top of the Open

Enclave (OE) SDK, providing an in-enclave Go library for attestation and sealing [91]. The

compiler ensures your code runs inside an enclave, and the library offers access to key

enclave features like Remote attestation and Sealing.

The entire application runs inside the enclave, with hidden transitions between trusted and

untrusted code through the EGo runtime. The programming model eliminates the need to

learn new concepts, simplifying confidential app development without partitioning efforts

[138]. Many existing Go applications run on EGo without modification, making it easier to

create server applications dealing with sensitive data like cryptographic keys or payment

data, similar to HashiCorp Vault. However, there are limitations such as single-process

restriction, experimental Cgo support 1, and unsupported stripped executables.

2.4.3 Fortanix EDP

Fortanix Enclave Development Platform (EDP) is a developer platform designed to sim-

plify the development and deployment of applications using TEEs [51]. It is built around

Intel SGX, a specific implementation of TEE technology available on certain Intel pro-

cessors [72]. Leveraging SGX, Fortanix EDP enables applications to create isolated en-

claves, securing sensitive operations from exposure to the outside world and the under-

lying operating system. The platform is designed for SGX, security, services, portability,

and ease of use, and it has been battle-tested.

Fortanix EDP provides a comprehensive SDK that allows developers to build and inte-

grate secure enclaves into their applications. It is completely open source and fully in-

tegrated with the Rust language compiler, allowing native Rust code to be compiled for

enclaves without modifications [50]. The combination of Rust and Intel SGX enhances ap-

plication security, safeguarding against development vulnerabilities and outsider attacks.

Fortanix EDP has gained rapid adoption among researchers and Independent software

1https://pkg.go.dev/
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vendors(ISVs) in the runtime encryption community, empowering the creation of new

products and services for confidential computing. Fortanix EDP offers a range of key

features that facilitate secure enclave development and execution. The SDK and runtime

provide a comprehensive set of tools and libraries to create and run enclaves securely.

The platform ensures the integrity of enclaves through remote attestation, which verifies

their authenticity to remote parties, establishing trust in the code running within the en-

clave [21].

Addressing the critical need for safeguarding sensitive data, Fortanix EDP includes secret

management facilities. These tools allow for the secure generation, storage, and man-

agement of cryptographic keys and other confidential information within enclaves. One

of the core functionalities of Fortanix EDP is protected execution, enabling vital sections

of applications to be executed within secure enclaves. This protective measure ensures

that sensitive data and code are shielded from potential threats and unauthorized access.

Moreover, the platform caters to the need for secure communication and data exchange

between multiple enclaves with its Inter-enclave communication support. This feature en-

sures that sensitive information can be shared among enclaves securely, reinforcing the

overall security posture of applications leveraging Fortanix EDP [49].

2.4.4 Mystikos

Mystikos, an advanced runtime and suite of tools, has been purposefully developed to

facilitate the seamless execution of Linux applications within TEE. Currently, the primary

focus of the existing release centres around providing support for Intel SGX, while future

versions are envisaged to extend this support to other TEEs.

The overarching objectives of Mystikos focus on efficient key management, attestation,

hardware roots of trust, and data encryption for data at rest and in transit. By providing

robust protection against various threats, Mystikos aims to streamline the migration of

native or containerized applications into TEEs with minimal adjustments, making it easier

to implement secure environments for a wide range of applications.

At the heart of Mystikos lies the empowerment of users and application developers, of-

fering them authority over the Trusted Computing Base (TCB) composition. To achieve

this, the project ensures that all execution environment components within the TEE are

open-sourced with permissive licenses, promoting transparency and enabling easy cus-

tomization for enhanced control [102].

Additionally, the project strives to expedite the re-targeting of other TEE architectures

through an adaptable plugin architecture, simplifying the adaptation and deployment of

applications to varying hardware environments. Mystikos has a sophisticated architec-
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ture, with essential components such as a C-runtime based on musl libc 2 and designed

to be compatible with glibc 3. A lib-os like kernel is also integrated, alongside the kernel-

target interface (TCALL) and a command-line interface, complemented by various related

utilities.

Presently, Mystikos offers two target implementations: the SGX target, which relies on the

Open Enclave SDK, and the Linux target, intended for verification on non-SGX platforms.

Within the TEE, the minimalist kernel of Mystikos expertly manages essential comput-

ing resources, encompassing CPU/threads, memory, files, networks, and more. While it

adeptly handles most syscalls akin to a regular operating system, certain limitations exist.

Some syscalls are directly managed by the kernel, while others are appropriately dele-

gated to the specified target during the launch of Mystikos, ensuring precise execution

and compatibility [5].

2.4.5 Gramine

Gramine, formerly known as Graphene, serves as a library OS framework designed to

ensure the secure execution of diverse Linux applications within an enclave powered by

SGX [144]. Leveraging the capabilities of SGX technology, Gramine facilitates the oper-

ation of applications within an isolated environment, offering advantages akin to running

a complete OS in a virtual machine. These benefits encompass guest customization,

seamless portability to different host OS, and process migration [63].

A distinguishing feature of Gramine lies in its ability to enable applications to operate with-

out necessitating any modification or rebuilding. To leverage the synergy of Gramine and

SGX, developers are required to create a manifest file detailing the application’s configu-

ration, authorized interactions with the untrusted environment, permitted file access, and

other pertinent information. When an application runs, Gramine verifies the authenticity

and integrity of the manifest file and then uses it to load the application and its dependen-

cies. Moreover, at runtime, Gramine efficiently resolves application requests to the host

OS (system calls).

As of now, Gramine exclusively supports CPU-based interactions with the untrusted en-

vironment. Consequently, applications within a Gramine SGX enclave can proficiently

execute CPU and memory-intensive tasks, read and write files, send and receive network

packets, and communicate with other SGX enclaves. However, the framework does not

currently support offloading computations to the GPU [81].

2https://musl.libc.org/
3https://www.gnu.org/software/libc/
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2.4.6 Occlum

Occlum represents an innovative and cutting-edge open-source TEE that places a strong

emphasis on ensuring high-assurance data and compute security. Leveraging the inher-

ent hardware-level security features of modern CPUs, Occlum adopts a diverse range of

software security approaches to guarantee the secure execution of applications. One of

the primary advantages of Occlum lies in its ability to establish a safe computing envi-

ronment entirely segregated from the underlying operating system and hardware. This

means that even in the event of an attacker compromising the OS or hardware, access to

sensitive data or execution of code within the TEE is thwarted. This feat is accomplished

through the utilization of hardware-level security technologies like Intel SGX, which facili-

tates the creation of isolated and secure memory enclaves [134].

Occlum’s ability to seamlessly adapt to a wide variety of applications is its most notable

quality, making it a crucial and versatile solution. The TEE has been thoughtfully designed

to be compatible with multiple programming languages, including C, C++, and Python,

enabling both user-space and kernel-space application execution. This remarkable ver-

satility empowers the development of various secure applications, encompassing secure

email clients, web browsers, encrypted storage solutions, and privacy-preserving data

analytics tools. To provide robust protection against internal and external threats, Occlum

relies on a range of software-based security measures. These include the implementation

of Address Space Layout Randomization (ASLR) and Data Execution Prevention (DEP)

to counteract attackers attempting to exploit different vulnerabilities [158]. Additionally,

the device incorporates secure boot methods, guaranteeing the execution of only trusted

software.

Occlum encompasses key features that make it a powerful solution for running security-

critical applications within SGX enclaves. One of its most notable features is Efficient

Multitasking, achieved through lightweight LibOS processes that share the enclave’s sin-

gle address space. Additionally, Occlum offers support for Multiple File Systems, catering

to different security requirements. These include read-only hashed FS, providing integrity

protection, writable encrypted FS for confidentiality protection, and untrusted host FS, fa-

cilitating seamless data exchange between the LibOS and the host OS. Memory Safety

is a top priority for Occlum, which has been developed from scratch using the Rust pro-

gramming language. By doing so, it effectively minimizes low-level memory-safety bugs,

ensuring heightened reliability and trustworthiness when hosting critical applications.

Furthermore, Occlum prioritizes user-friendliness with its Ease of Use features. The plat-

form offers intuitive build and utility command-line tools, simplifying the process of exe-

cuting applications on Occlum within SGX enclaves. By making the execution process

straightforward and accessible through several shell commands, Occlum empowers de-

velopers to harness the benefits of secure enclaves without unnecessary complexity [99].
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Occlum stands as a robust and adaptable tool tailored to the requirements of both enter-

prises and individuals seeking heightened levels of data and processing security. Whether

the objective is to design a secure email client, an encrypted storage solution, or a

privacy-preserving data analytics tool, Occlum provides the means to create the most

secure and reliable applications possible.

2.4.7 SCONE

SCONE is an advanced platform that leverages Intel SGX technology to create and exe-

cute secure applications. The major objective of the system is to guarantee the continu-

ous encryption of all data, including data at rest, data in transit, data in primary memory,

and the program code. This comprehensive encryption approach effectively protects data,

computations, and code from potential attacks, even when adversaries have root access.

Specifically tailored as a secure container environment for Docker, SCONE empowers

the execution of Linux applications within secure containers, harnessing the capabilities

of SGX. This integration reinforces security measures and protects sensitive data from

unauthorised access and modification. SCONE’s versatility extends to supporting a wide

range of popular programming languages, including Python, Javascript, Java, C, C++,

Rust, and Go, as well as some older languages like Fortran [129].

One of the primary advantages of SCONE is its inherent capability to accommodate a

Small TCB via its architecture. To achieve this, SCONE presents a C standard library

interface to container processes, ensuring implementation through static linking against

a libc library. This approach significantly reduces the TCB’s size, thereby minimizing

potential attack surfaces and elevating the overall system’s security.

Another critical aspect of SCONE is its unwavering commitment to maintaining low over-

head for secure containers. To achieve this, SCONE employs a user-level threading im-

plementation that strategically reduces costly enclave transitions of threads. SCONE

effectively addresses possible performance limitations and promotes efficient processing

inside the secure environment by optimising the duration of time threads spend within the

enclave. Additionally, SCONE effectively maps OS threads to logical application threads

within the enclave, optimizing the scheduling of OS threads when blocked due to thread

synchronization, further enhancing the system’s overall performance [14].

Furthermore, SCONE is thoughtfully designed to retain compatibility with Docker, ensur-

ing secure containers operate seamlessly within the Docker engine. This means that

developers can continue working within familiar Docker environments while benefiting

from the added security of SCONE. The deployment of secure containers with SCONE

requires only an SGX-capable Intel CPU, an SGX kernel driver, and, optionally, a kernel

module for asynchronous system call support, streamlining the setup process for devel-
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opers.

2.4.8 vSGX

SGX, once the dominant standard for TEE-based applications, has fostered a robust

ecosystem with numerous open-source and commercial projects built upon it. However,

a noteworthy constraint of SGX lies in its Instruction Set Architecture (ISA) extension,

which imposes a rigorous demarcation between software applications, classifying them

into trusted and untrusted components. The trusted software modules find their abode

within secure enclave regions, accessible exclusively through the execution of code in

enclave mode—a novel CPU operation mode. This paradigm compels developers to un-

dertake the arduous task of either refactoring existing applications or constructing new

ones, conforming rigorously to Intel’s SGX software specifications. This predicament

leads to a situation where SGX-developed applications find themselves tethered to SGX

processors, resulting in a condition colloquially referred to as vendor lock-in [160].

In response to this conundrum, vSGX emerged as a pioneering system, promising binary

code compatibility for SGX enclave software partitioned to enable direct execution on

AMD processors. In conceptual terms, vSGX can be envisioned as an SGX hardware

module seamlessly integrated into a SEV environment. The underlying notion revolves

around harnessing the VM protection furnished by SEV while facilitating the execution of

the trusted enclave of legacy SGX applications within a distinct VM. Despite the inherent

disparities in design philosophy between SGX and SEV, vSGX effectively attains security

assurances akin to SGX, ensuring the secure execution of SGX enclaves while preserving

the protective advantages inherent to SEV [160].

At the core of vSGX’s architecture lies the concept of transparently interposing the execu-

tion of enclave instructions to accommodate the SGX ISA extensions. This involves the

consolidation of encrypted virtual memory segments originating from separate SEV vir-

tual machines, resulting in the creation of a unified virtualized address space, reminiscent

of the SGX environment. Additionally, vSGX offers a mechanism for attesting to the au-

thenticity of the TEE and the integrity of enclave software through a trust chain anchored

in the SEV hardware. Consequently, vSGX achieves a level of security assurance within

the SEV framework that aligns with the robust security guarantees offered by Intel SGX

[160].

2.4.9 Enarx

Enarx serves as an application deployment framework that empowers programs to run

inside TEE without necessitating modifications for specific platforms or SDKs. The frame-

work manages attestation and facilitates delivery into a run-time Keep based on We-
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Containers API Language(s) Open
Source

Hardware

Intel
SGX

AMD
SEV

Apache Teaclave WASI C/C++, Python ✓ ✓

EGo SDK libcwrapper Go ✓

Fortanix EDP LibOS Rust ✓ ✓

Mystikos
(µkernel)

LibOS C/C++ ✓ ✓

Gramine LibOS C/C++ ✓ ✓

Occlum LibOS C/C++, Python ✓ ✓

SCONE libcwrapper Rust, C/C++,
Python,
Javascript,
Java, Go,
Fortran

✓ ✓

vSGX LibOS Rust, C/C++ ✓ ✓

Enarx WASI Rust, C/C++,
Python,
Haskell

✓ ✓ ✓

Table 2.1. Trusted Containers Comparison

bAssembly (Wasm), granting developers an extensive array of language options for imple-

menting their systems. A notable advantage of Enarx as compared to other Trusted Con-

tainers is its independence from CPU architecture, allowing the same application code to

be effortlessly deployed on various platforms. As a result, the need for cross-compilation

and distinct attestation procedures across hardware manufacturers is eliminated.

In Table 2.1, we undertook a comparison between Enarx and a compilation of eight

notable Trusted Containers that remained operational throughout the entirety of 2022.

Enarx stands out due to its extensive selection of programming languages, its ability to

seamlessly interface with a variety of hardware configurations, and its designation as an

open-source solution. These combined factors position Enarx as an especially beneficial

choice for the development of our privacy and anonymity solution, PESE. Moreover, its

notable advantages in enhancing software development and fortifying security paradigms

in contemporary computing contexts amplify the persuasiveness of this selection. Enarx

is further explored and analysed in Chapter 3.
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2.5 Privacy and Anonymity

Privacy and anonymity are two fundamental concepts that have become increasingly im-

portant in the digital age. As our lives become more intertwined with technology, we are

constantly generating data that can be used to identify and track us. Privacy is the right

to control one’s personal information. This includes the right to decide who has access to

this information, how it is used, and for what purposes. Anonymity is the state of being un-

known or unidentifiable. The internet serves as an expansive repository of data, offering

information on a wide range of topics. Individuals across different categories, classes, and

countries rely on search engines to access the information they seek. WSEs play a vital

role in this process by maintaining a query log, which records all submitted queries [146].

These logs contain various details, including the user’s query content, machine IP ad-

dress, operating system information, browser type, query timestamp, browser language,

preferences, and potentially used cookies that uniquely identify the user’s browser. Web

search is unquestionably the most widely utilized online service, with Google alone han-

dling over 3.5 billion queries daily [95]. Query logs hold significant value as they provide

insights into individuals interests and activities, contributing to the vast pool of personal

information amassed under the private sector’s less stringent data collection and usage

policies [28].

WSEs retrieve information from the vast expanse of data based on user-generated queries

and utilize query logs to build user profiles and deliver personalized search results [33,

65]. To generate revenue, WSEs often sell these query logs to marketing companies

[146]. However, the release of pseudonymized datasets of search queries, which inad-

vertently revealed certain users’ identities based on personal information contained in

their queries, sparked the AOL scandal [146]. Unfortunately, query logs are vulnerable to

malicious attacks, with hackers seeking to sell the acquired personal information to other

organizations. This poses a significant risk, as the information stored in query logs can

expose sensitive details such as users’ interests in future products, employment informa-

tion, health concerns, and political or religious beliefs [133].

To address these privacy concerns, two methods are commonly employed: unlinkability

and indistinguishability [41, 34, 94]. Unlinkability focuses on anonymizing users’ identities

through anonymous communication protocols like Tor [41], Dissent [34, 156], or RAC [94].

However, it has been demonstrated that even with anonymity protection, the content of

search queries can still be used to re-identify users [106]. To overcome this limitation, the

second approach aims to enforce indistinguishability between user profiles and queries.

This approach aims to make it challenging for search engines to differentiate between

real and fake queries generated on behalf of users. Examples of such solutions include

TrackMeNot [6] and GooPIR [42]. However, research has shown that search engines

can still distinguish between real and fake queries, thereby undermining the effectiveness
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of these methods [110]. The following sections delves into the traditional privacy and

anonymity solutions that serve as the foundation for the development of our privacy and

anonymity solution, PESE.

2.6 Brief History of Privacy and Anonymity

The notion of privacy has remained a contentious and evolving topic throughout the

course of human history. Its definition has continuously evolved, influenced by a vari-

ety of cultures and historical circumstances. In actuality, privacy has its origins in ancient

societies, where it constituted an integral facet of human existence. There is a common

argument that the very comprehension of ethics and moral judgment is closely intertwined

with the concept of privacy, as individuals reflect upon their thoughts, actions, and ethical

considerations in solitude.

Early legal documents acknowledged the significance of privacy. The Code of Ham-

murabi, one of the most ancient known legal codes dating back to ancient Mesopotamia,

featured provisions against the intrusion into an individual’s home, underscoring the sanc-

tity of personal space [135]. Similarly, Roman law addressed matters of privacy by defin-

ing the boundaries of personal space and behaviour.

The perception of what constitutes private has always been shaped by the era, society,

and individual perspectives. In ancient Greece, privacy was a matter of philosophical con-

templation. The writings of Socrates and other Greek philosophers introduced the con-

cept of distinguishing between the outer and inner spheres, emphasizing the importance

of preserving one’s inner thoughts and experiences [77]. Aristotle further contributed to

this concept by differentiating between the public and private spheres of existence, ac-

knowledging that the private sphere held a special significance [100].

In the exploration of the historical trajectory of privacy, an integral facet is the examina-

tion of perspectives embedded in religious scriptures, including the Torah, Bible, and the

Quran. The evolution of privacy concepts has been profoundly influenced by the interplay

of religious doctrines, which provide guidance for individuals in understanding the sanctity

of personal space and boundaries.

Leviticus, the third book of the Torah, specifically Chapter 19, verse 16, underscores the

importance of refraining from spreading harmful information about others. This precept

promotes a sense of privacy and instills respect for the reputation and well-being of one’s

neighbors. The verse explicitly states, "You shall not go about as a talebearer among your

people; neither shalt you stand up against the blood of your neighbor: I am the LORD." 4

In the Gospel of Mark, the second book of the New Testament in the Bible, Chapter 1,

verse 35 recounts a significant moment: "Very early in the morning, while it was still dark,

4https://www.jewishvirtuallibrary.org/vayikra-leviticus-chapter-19
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Jesus got up, left the house, and went off to a solitary place, where he prayed." 5 This

early rising of Jesus and the deliberate choice to find a solitary place underscores the

importance of personal, private moments dedicated to spiritual reflection and communi-

cation. In the second book of Exodus in the Old Testament, there are verses that allude to

the significance of personal space and the inviolability of one’s dwelling, notably Chapter

20, verse 15 states: "Thou shalt not steal" 6 indirectly emphasizes the privacy of one’s

possessions.

Islamic perspectives on privacy are elucidated in the Quran through various verses and

are further expounded in the Hadiths 7 of Prophet Muhammad (PBUH). In Surah-Noor,

verse 27, Allah instructs believers not to enter any house other than their own without

permission and a greeting, promoting mindfulness and respect for others’ privacy: "O

believers! Do not enter any house other than your own until you have asked for permission

and greeted its occupants. This is best for you, so perhaps you will be mindful." 8 Similarly,

Surah-Al-Hujurat, verse 12 underscores the importance of avoiding unwarranted intrusion

into the lives of others, promoting a culture of trust and respect for personal boundaries.

"O believers! Avoid many suspicions, (for) indeed, some suspicions are sinful. And do not

spy, nor backbite one another. Would any of you like to eat the flesh of their dead brother?

You would despise that! And fear Allah. Surely Allah is (the) Accepter of Repentance,

Most Merciful." 9

Prophet Muhammad (PBUH) explicitly forbade spying and prying into the confidential

and personal affairs of others. He advises against suspicion, stating that it is the most

dishonest form of communication. The guidance extends to discouraging inquisitiveness

about one another and the act of spying. Hadith In Sunan Abi Dawud states, "Avoid

suspicion for suspicion is the most lying form of talk. Do not be inquisitive about one

another or spy on one another." 10

These religious teachings have played a role in shaping societal norms surrounding pri-

vacy and emphasizing the ethical considerations associated with respecting the confiden-

tiality and personal space of individuals. As the evolution of privacy continues, the influ-

ence of religious principles remains a significant aspect of the broader historical tapestry

of privacy and anonymity.

In more recent history, privacy concepts have found their way into legislative instruments.

The Finnish Constitution, for instance, does not explicitly define privacy, but it underscores

the absolute nature of the privacy of letters, audio calls, and other confidential messages

[3]. Similarly, The Fourth Amendment to the United States Constitution offers protections

5https://biblehub.com/mark/1-35.htm
6https://biblehub.com/exodus/20-15.htm
7Hadith or Ahadith (plural) are sayings and traditions of the Prophet of Islam Muhammed (PBUH).
8https://quran.com/en/an-nur/27
9https://quran.com/en/an-nur/27

10https://sunnah.com/abudawud:4917
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against unreasonable searches and seizures, thereby imposing limitations on the right to

privacy while emphasizing the importance of safeguarding individual liberties [4].

The essence of privacy as the right to be left alone was articulated by a Michigan Supreme

Court Judge, highlighting the fundamental need for individuals to control their personal in-

formation and spaces [119]. This concept of privacy has been reinforced by modern legal

frameworks, such as the General Data Protection Regulation (GDPR) of the European

Union, which introduces the right to be forgotten, allowing individuals to request the re-

moval of their personal data under certain circumstances [46].

On a global scale, the United Nations Universal Declaration of Human Rights in Article 12,

and Article 17 of the International Covenant on Civil and Political Rights have enshrined

privacy as a fundamental human right [149], underscoring the importance of protecting

individuals from unwarranted intrusions into their personal lives and information.

Similar to Privacy, anonymity has a long and intricate history, dating back to ancient times.

The term itself was borrowed into English from Greek in the late sixteenth century, often

flaunting its scholarly origin through its spelling as anonymos [48]. One of the earliest

instances of anonymity in antiquity is seen in the Greek playwright Aeschylus, who wrote

under the pseudonym of his brother Euphorion, possibly to protect himself from repercus-

sions for his critical works regarding the Athenian government [113]. Another example is

found in the Roman satirist Juvenal, who employed pseudonyms to criticize the powerful

and corrupt, thus shielding himself from censorship and punishment [152].

Anonymity has played a crucial role in historical political movements and revolutions.

Anonymous pamphlets and letters were disseminated during the American Revolution,

enabling individuals to voice their grievances and ideas without fear of reprisals from

British authorities [132]. Similarly, the Federalist Papers, authored by Alexander Hamil-

ton, James Madison, and John Jay under the pseudonym Publius, were instrumental in

shaping the U.S. Constitution and the early American political landscape [64].

In the modern world, anonymity has gained increasing importance as a means of protect-

ing privacy and freedom of expression. The advent of the internet has made it easier than

ever for individuals to communicate and share information while remaining anonymous. It

is also utilized by activists and dissidents to challenge governments and powerful institu-

tions. For instance, the Anonymous hacker group has harnessed anonymity to carry out

cyberattacks against governments and corporations [32].

Anonymity systems enable users to retain their anonymity and guarantee that their iden-

tity stays concealed from opponents who desire to find it. In today’s society, where per-

sonal data is gathered and retained on a massive scale, the demand for privacy and

anonymity has intensified. Different technologies have been developed to protect privacy

and anonymity. These technologies are essential for protecting privacy and anonymity in
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an era of mass surveillance and data collection.

2.7 Evolution of Privacy and Anonymity System

The first anonymity technologies were developed in the early 1990s. These technologies

were designed to allow users to communicate with each other without revealing their IP

addresses or other identifying information.

2.7.1 Type 0: Remailing System

The anon.penet.fi remailer was one of the first and popular anonymous remailing service

[98]. Operated by Johan Helsingius under the pseudonym Julf, this system was active

in Finland from 1993 to 1996 [38]. Its primary function was to provide users with anony-

mous email accounts by relaying messages between their genuine email addresses and

assigned pseudonyms. Additionally, it removed identifying headers from remailed mes-

sages. The aforementioned system is often known as a type 0 anonymity service [59].

The impact of the anon.penet.fi remailer on the field of anonymity research was profound

[108]. It represented one of the earliest instances of a functional online anonymity system,

and its eventual closure sparked significant discussions about the privacy rights of anony-

mous users. The legal proceedings that led to the shutdown of the remailer also played a

role in defining the legal framework surrounding systems for anonymous communication.

However, the anon.penet.fi remailer had its limitations. Firstly, it offered only rudimen-

tary anonymity, as a passive observer with the capability to monitor internet traffic could

effortlessly uncover the genuine email addresses associated with pseudonyms [59]. Fur-

thermore, the remailer itself had the potential to compromise the identities of its users.

This risk arose from the remailer maintaining a concealed identity table, linking real email

addresses with pseudonyms. In the event of a security breach or a legal subpoena com-

pelling the operator to reveal user identities, the shield of anonymity was at risk [38].

In 1996, Helsingius was summoned to testify in a legal case, which necessitated the

disclosure of certain user identities. Initially, Helsingius declined to cooperate, driven by

his commitment to protect user privacy. However, the court compelled his cooperation,

resulting in the disclosure of the anon.penet.fi remailer, as it could no longer ensure user

anonymity [38].

The anon.penet.fi remailer stands as a pioneering example of an anonymity system that

had a substantial impact on online anonymity research. It effectively raised awareness

about the importance of online anonymity and the intricacies involved in designing and

implementing anonymous communication systems. Additionally, the disclosure of the

remailer initiated a crucial dialogue concerning the legal rights and protections for anony-
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mous users.

2.7.2 Type I: the Cypherpunk remailer

In the previous iteration of the Type 0 remailing system, two critical issues posed substan-

tial challenges [98]. The first major concern centred around the system’s susceptibility to

traffic analysis, which enabled adversaries capable of monitoring traffic to effectively link

messages. This vulnerability arose from the fact that both outgoing and incoming mes-

sages exhibited similar sizes and travelled within a short timeframe [98]. The second no-

table problem revolved around the retention of the connection between pseudonyms and

real addresses on the remailing server. In the event of a compromise or legal mandate,

the operator of the system’s most sensitive component could unveil the pseudonymous

identities of all recipients [98].

In response to these challenges, a more sophisticated version emerged, known as Type

I remailers or Cypherphunk remailers, which was initially pioneered by notables Eric

Hughes and Hal Finney [38]. These advanced remailers adopted a comprehensive ap-

proach to anonymity. These remailers employed a robust methodology to obfuscate all

traceable information, employing private keys for decryption. The inaugural code-base

was disseminated via the cypherpunks mailing list, a development that bestowed upon

them their enduring moniker.

Encryption was executed through the application of Pretty Good Privacy (PGP) public key

encryption functions, and the encoding process was designed to be manually executed,

leveraging conventional text and email editing tools [38, 87]. Users were afforded the

flexibility to create chains of multiple remailers, a strategic approach designed to mitigate

reliance on any single remailer to preserve anonymity. The introduction of reply blocks

offered a feature-rich experience, enabling users to communicate anonymously. In this

setup, a user’s email address was encrypted using the remailer’s public key and em-

bedded within a specialized header. Should a user desire to respond to an anonymous

email, the remailer would decrypt it and facilitate the transmission of the response. No-

tably, Type I remailers outperformed their predecessors by providing enhanced protection

against attacks. They did not maintain a database associating real user identities with

pseudonyms, and crucial addressing information necessary for responding to messages

was encapsulated within the messages themselves in an encrypted format [98].

The encryption protocols employed during the network traversal of messages effectively

thwarted basic passive attacks rooted in the observation of bit patterns in incoming mes-

sages and their correlation with outgoing ones. However, there remained a minimal leak-

age of information, primarily related to message size. PGP, despite its role in message

compression, did not actively conceal message size, making it feasible for observant ac-

tors to trace messages in the network by simply noting their length [98]. Furthermore, the
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reply blocks introduced an element of vulnerability, as they could be reused. Malicious ac-

tors could encode numerous messages, facilitating a statistical attack to determine their

ultimate destination. This attack vector could be employed for multiple hops. Despite

these acknowledged limitations, Type I remailers gained widespread acceptance due to

their reply capabilities, which enabled the utilization of Nym Servers 11.

The persistent existence of Type I remailers has raised concerns within the anonymity re-

search community, as they are challenging to phase out. The inherent security drawback

of the reply block feature, which is absent in later Type II Mixmaster software, is twofold:

it is essential for the construction of Nym Servers but remains vulnerable even to passive

adversaries [38]. These concerns have led to the subsequent development of Type III re-

mailers, as detailed in the subsequent section. These remailers are designed to provide

an elevated level of resistance to traffic analysis and offer secure single-use reply blocks,

presenting a promising path forward in enhancing privacy and security within the realm of

remailing systems.

2.7.3 Type II and III: Mixmaster remailer

In the mid-1990s, a significant advancement occurred in the field of remailer technology,

resulting in the creation of Type II and Type III Mixmaster remailers. These were designed

to enhance protection against traffic analysis, a critical concern for maintaining online

communication anonymity [20]. These new versions of remailers brought about several

improvements to the existing Type I remailer technology [38].

Type II remailers implemented four primary strategies to improve user protection [59]. It in-

troduces the concept of connecting multiple remailers in a chain with encryption between

them. This effectively concealed the origins and destinations of messages, making it diffi-

cult for adversaries to trace the communication path. To counter passive traffic monitoring,

Type II remailers kept a consistent message length, preventing attackers from identifying

messages based on their size and thus protecting user privacy. These remailers oper-

ated in a stateful manner, refraining from resending messages to prevent replay attacks.

This strategic choice ensured that adversaries couldn’t intercept and resend messages

repeatedly to determine their intended recipients. Additionally, Type II remailers utilized

message reordering to enhance security against eavesdropping, adding complexity for

potential attackers [98].

The evolution of remailer technology continued with the introduction of Type III Mixmin-

ion anonymous remailers, which offered substantial enhancements to user privacy and

security [59]. They provided anonymous reply addresses, allowing users to respond to

messages while maintaining their privacy. Type III Mixminion remailers adopted TLS-

11https://www.whonix.org/wiki/Nymservers
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encrypted Simple Mail Transfer Protocol (SMTP) with unique encryption keys for each

message, ensuring the confidentiality and integrity of email communications [20]. They

introduced exit policies, allowing Mixminion node operators to establish rules for filtering

out abusive email messages, thus promoting the responsible operation of the remailer

network. To further mitigate vulnerabilities related to traffic analysis, Type III Mixminion

remailers included dummy noise traffic to confuse attackers trying to discern communica-

tion patterns [37].

It’s important to emphasize that while email remailers, including Mixmaster and Mixmin-

ion, provide a high degree of privacy and anonymity, they cannot fully address the inherent

privacy limitations in the underlying TCP/IP stack. Nevertheless, the protective methods

and principles introduced in these remailer systems have influenced more comprehensive

anonymity solutions, such as the Tor and I2P networks, which offer more robust support

for anonymous TCP/IP communication.

2.8 Modern Privacy and Anonymity System

While numerous contemporary privacy and anonymity solutions have been proposed and

are currently accessible, this thesis delves into the discussion of the most prevalent ser-

vices described below, which effectively ensure anonymity within the modern era.

2.8.1 Tor

In 1996, the concept of Onion Routing was introduced as an evolution of mix remailing

systems [60], and it later evolved into a practical low-latency communication system [61].

It took several years to fully implement the routing network. In 2004, Syverson, Dingle-

dine, and Mathewson presented "Tor: The Second-Generation Onion Router" along with

the source code of The Onion Routing (Tor) [41]. This marked the beginning of Tor’s

provision of anonymous TCP/IP connections for users.

Tor is a widely-used low-latency anonymity network that conceals the user’s original IP

address [26]. It serves a wide range of purposes, both legal and illegal, attracting users

from various backgrounds, including regular citizens concerned about their privacy, cor-

porations seeking to protect sensitive information, law enforcement agencies conducting

covert operations, human rights activists, and journalists needing secure communication.

To ensure online privacy and anonymity, Tor employs several key techniques. Figure 2.5

illustrates a simplified representation of the Tor Network. First and foremost, users do not

establish direct connections to their intended destinations. Instead, they connect to the

Tor network, which acts as an intermediary and forwards their connection to the ultimate

destination. Secondly, the destination itself remains oblivious to the user’s original IP ad-

dress. Rather, it only perceives the IP address of a Tor relay, ensuring that the user’s
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Figure 2.5. Simplified Tor Network

identity remains concealed. The third key principle involves the establishment of a three-

relay circuit within Tor. Each relay within this circuit possesses distinct knowledge, thereby

contributing to the overall anonymity of the user. The first relay possesses knowledge of

the user’s IP address but remains unaware of the final destination. The second relay,

positioned between the first and third relays, exclusively observes incoming traffic from

the first relay and relays it to the third relay. Meanwhile, the third relay holds knowledge

of the destination but remains uninformed about the user’s original IP address. This relay

architecture is designed to compartmentalize information and enhance user anonymity.

Fourthly, Tor implements a multilayered encryption approach, akin to the layers of an

onion. As user traffic traverses each of the three relays, it is successively encrypted and

encapsulated in additional layers. This encryption strategy is instrumental in safeguarding

the confidentiality of user data and is, in fact, the origin of the term onion routing. Further-

more, it is pertinent to note that Tor operates as an open and freely accessible network.

This characteristic attracts a significant user base and numerous volunteer-operated re-

lays. While this openness fosters diversity and inclusivity, it also presents challenges in

terms of conducting global traffic and timing analysis against the network. The sheer

volume of users and relays within the Tor network renders such analysis intricate and

demanding, contributing to the network’s robustness in preserving user privacy [98].

The Tor circuit ensures end-to-end encryption using the 128-bit Advanced Encryption

Standard (AES) cipher in counter mode, along with checksums for integrity verification

[98]. The network comprises a distributed system of volunteer-operated relays, including

entry nodes (guards), middle nodes, and exit nodes. These relays randomize the route of
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user traffic, adding an extra layer of anonymity and thwarting attempts to trace user paths.

To counter traffic analysis, Tor employs a padding technique, which involves adding dummy

data to transmitted packets, making it difficult to distinguish real traffic from encrypted

Tor traffic. Nevertheless, despite its effectiveness, Tor is not entirely invulnerable. As

a low-latency anonymity network, it remains susceptible to traffic correlation attacks by

adversaries eavesdropping on both ends, a limitation inherent to such a network [131].

2.8.2 I2P

In 2002, the Invisible Internet Project (I2P) emerged as a pioneering and robust privacy-

centric network, dedicated to facilitating anonymous communication and ensuring secure

data transfer [71]. I2P inception can be traced back to the pressing need for a decentral-

ized, self-sustaining network that prioritizes user privacy and security.

The project was conceived by a dedicated group of developers who were fueled by the

vision of a darknet, where users could communicate and exchange data without the loom-

ing spectre of surveillance or interference. This ambitious initiative carved out a niche for

itself by providing a secure and private platform that caters to a diverse user base, encom-

passing individuals with privacy concerns, as well as activists and journalists operating in

regions where the freedom of expression hangs in the balance.

I2P shares a fundamental objective with its predecessor Tor, but it sets itself apart through

a distinctive approach to safeguarding online privacy. At the core of it’s design lies a

network of interconnected peers, with each user participating by running an I2P router.

These routers collaborate to form a mesh network, wherein data is meticulously encrypted

and then routed through multiple nodes, effectively obscuring both the source and desti-

nation of the traffic.

Outbound
Participant Inbound

Endpoint

Outbound
Gateway Outbound

Endpoint

Outbound Tunnel

Inbound
Gateway

Inbound
Participant

Inbound Tunnel

Figure 2.6. Simplified I2P Network
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Figure 2.6 illustrates a simplified representation of the I2P Network. Central to I2P lies

the concept of tunnelling, which introduces two crucial components: outbound tunnels

and inbound tunnels.

Outbound tunnels are responsible for guiding messages away from the tunnel creator,

while inbound tunnels bring them back to the source. In this system, the sender or client

initiates an outbound tunnel, adding directives to her encrypted messages. The endpoint

of the outbound tunnel decrypts the message and contains instructions to forward it to

the correct inbound gateway server. To facilitate end-to-end communications between

clients and servers, I2P utilizes garlic encryption, which bundles multiple messages into

a single garlic message on the client router [7]. This process, although similar to onion

routing, has its distinct characteristics. By encrypting messages with a specific public

key, intermediary peers remain unaware of the client/server relationship and the ultimate

message destination. It’s crucial to note that I2P’s mechanism operates on a message-

based system, where data loss can potentially occur during transmission [7].

Despite its commendable strengths in ensuring anonymity and privacy, I2P faces sev-

eral challenges and limitations. One notable issue is its comparatively small user base

and network size when compared to the open and widely accessible Tor network. The

limited number of users and relays in I2P may render it more vulnerable to determined

adversaries who could engage in traffic analysis. Additionally, accessing regular inter-

net resources through I2P can be hindered by increased latency introduced by routing

through multiple peers.

2.8.3 Tor vs I2P Comparison

Comparing Tor and I2P is essential for understanding two prominent anonymity networks

that play a crucial role in online privacy and security. Both Tor and I2P serve as powerful

tools for anonymizing internet traffic and protecting users from surveillance, censorship,

and potential threats to their digital identities.

Tor, with its onion-routing mechanism, creates a multi-layered encryption process that

bounces data through a series of volunteer-operated servers, making it effective for achiev-

ing anonymity but potentially slower due to the increased routing. On the other hand, I2P

utilizes a distributed peer-to-peer network, focusing on hidden services within the network

itself. This approach can result in faster connections but may require users to adapt to its

unique ecosystem.

While these networks share a common goal of enhancing online anonymity, they employ

different architectures, protocols, and methods to achieve this objective as we discussed

in above Subsection 2.8.1 and Subsection 2.8.2. In the following Table 2.2, we explore

and compare the features of Tor and I2P according to the research conducted by Ali et.al
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[7], offering valuable insights into their respective capabilities.

Features Tor I2P

User Base Much Bigger Small

Visibility in Security Community More visible Less visible

Documentation Well documented Less documented

Number of exit nodes Significant Insignificant

Memory usage More efficient Inefficient

Bandwidth overhead Very low Very high

Centralized/Distributed control Centralized Distributed

Latency Low High

Language C Java

Nodes selection criteria Trusting claimed capac-
ity

Continuously profiling
and ranking perfor-
mance

Packet/Circuit switched Circuit switched Packet switched

Uni/Bi Directional Circuit Bi directional Uni directional

Protecting client activity Less protected Much protected

Life of tunnels/circuits Long lives Short lives

TCP/UDP Transport TCP Both TCP/UDP

Table 2.2. Comparison of Tor and I2P

2.8.4 Bitcoin Mixers

Following the emergence of cryptocurrency in 2009, a new era of digital finance was ush-

ered in by the enigmatic figure known as Satoshi Nakamoto [111]. Nakamoto’s brainchild,

Bitcoin, disrupted the traditional banking system by establishing a decentralized, peer-to-

peer network for financial transactions. While this innovation empowered individuals with

unprecedented control over their finances, it also raised concerns about transaction pri-

vacy. The inherent anonymity of cryptocurrency transactions, designed to protect users’

identities, led to worries about potential misuse, such as money laundering and criminal

financing. As a result, this paved the way for the development of innovative tools called

Bitcoin mixers, which were designed to enhance the privacy of cryptocurrency transac-

tions.

The concept of Bitcoin mixers originated in the early days of cryptocurrency, driven by the
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Mixer
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5DaF9G...

1QbW6Z...
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6mcE7R...

Figure 2.7. High level illustration of Bitcoin mixer with three participants and a central
operator. Participants send Bitcoin, and the mixer redistributes it to new addresses, pre-
venting tracking of their initial deposit [103].

necessity to safeguard user privacy and anonymity in light of blockchain’s inherent trans-

parency. Figure 2.7 illustrates the overall operational characteristics of a mixer with three

users [103]. A mixer’s primary function involves sending users’ Bitcoins to the mixer’s

wallet, along with designated destination addresses for the mixed Bitcoins. The mixer

then combines these funds with those of other users and distributes them to the specified

destination addresses, effectively breaking the connection between the sender and re-

ceiver. Although the high-level process may seem traceable, mixers employ obfuscation

techniques that make it challenging to trace transactions and identify the use of mixers on

the blockchain.

One of the earliest documented Bitcoin mixers, known as TumbleBit, emerged in 2013 and

used a centralized server to aggregate Bitcoin deposits from multiple users and distribute

them to their intended destinations [103]. Over time, various Bitcoin mixers with different

privacy-enhancing techniques have appeared. Some rely on centralized servers, while

others use decentralized protocols to ensure trust. This evolution in Bitcoin mixers reflects

the growing demand for privacy solutions in the cryptocurrency space. A study conducted

by Pakki et al. [103] evaluated various features of Bitcoin mixing services as shown

in Table 2.3. The research categorizing them as Trusted or Untrusted based on their

activities and standing on the Bitcointalk forum [103]. A ✓ (checkmark) indicates that the

service offers a specific feature, while a ✗ (cross) indicates the absence of that feature.

Fields marked with a - (dash) were either not found or not applicable to the service.

Trusted mixers maintained consistent communication with an active user base on the

forum and had no record of scam accusations at the time of the study, whereas Untrusted

mixers had poor communication with their users and had one or more scam accusations
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[103].
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Samurai Whirlpool 2015 ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ - - - ✓

Crypto Mixer 2016 ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ 1 356 ✗ ✓

Mixer.money 2016 ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ - 151 ✗ ✓

BitCloak 2016 ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ 1 174 ✗ ✓

ChipMixer 2017 ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ 1 1887 ✗ ✓

BitMix.biz 2017 ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ 1 147 ✗ ✓

FoxMixer 2017 ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ 6 39 ✗ ✓

Wasabi Wallet 2018 ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ - - - ✓

MixTum 2018 ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ 1 99 ✗ ✓

Bitcoin Mixer 2019 ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ 1 108 ✗ ✓

Sudoku Wallet 2019 ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ 3 68 ✗ ✓

Bitcoin Fog 2011 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ 6 647 ✓ ✗

PenguinMixer 2017 ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ 2 - - ✗

Blender.io 2017 ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ 3 103 ✓ ✗

BMC Mixer 2017 ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ 2 2 ✗ ✗

SmartMix 2019 ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ 3 170 ✓ ✗

Mixer Tumbler 2019 ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗ 3 17 ✗ ✗

AtoB Mixer 2019 ✓ ✗ ✗ - ✓ ✗ ✓ ✓ ✓ ✗ - 102 ✓ ✗

Anonymix 2020 ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ 1 - - ✗

BlockMixer 2020 ✓ ✗ - - ✗ ✗ ✓ ✓ ✓ ✗ 3 1 ✗ ✗

DarkWeb Mixer - ✓ ✗ ✗ - ✓ ✗ ✓ ✗ ✗ ✗ - - - ✗

Table 2.3. Illustration of different Bitcoin Mixer Functions within Existing popular Bitcoin
Mixing Services by the year 2020 [103]

The analysis revealed that 11 mixers were classified as Trusted, while 10 fell into the

Untrusted category [103]. The inclusion of the table in the present thesis serves the pur-

pose of providing the reader with an understanding of the popularity and development

of anonymity services throughout various years. Despite the presence of current bitcoin

mixing services, the emergence of several bitcoin mixing services indicates a shared de-

sire among developers and consumers to enhance their levels of privacy and anonymity.

The Bitcoin mixing ecosystem attracts a diverse range of users, many of whom simply

want to maintain their anonymity. The association of scams and sub-optimal implementa-

tion by some mixing services has led to the introduction of secure protocols in academic

literature. These proposed solutions aim to ensure accountability among mixing services
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and establish secure communication between participants while preventing the leakage

of input and output permutations. A discussion of Bitcoin mixers is crucial, as it serves as

one of the foundational pillars for the development of our Privacy and Anonymity Solution

PESE.
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3. THE ENARX FRAMEWORK

Enarx, a term originating from Latin, can be interpreted as "within the citadel" or "inside

the stronghold," and it was coined by its founders, Nathaniel McCallum and Mike Bursell

[45]. It is a project under the Linux Foundation’s Confidential Computing Consortium, has

been an integral part since its inception on 31st October 2019 [45]. A significant benefit

of Enarx lies in its CPU-architecture independence, which enables the deployment of the

same application code across multiple targets while abstracting complexities like cross-

compilation and varying attestation methods among hardware vendors. In the subsequent

sections, we will explore its technical features in detail.

3.1 Design Principles

When executing a workload on a host or system, whether situated in the cloud or on-

premises, a complex hierarchical structure is evident, as illustrated in Figure 3.1. This

structure, characteristic of both traditional cloud virtualization and container architecture,

consists of diverse layers distinguished by various colours, symbolizing entities claiming

ownership over specific layers or sets of layers. These entities encompass a wide range,

from hardware vendors, Original Equipment Manufacturer (OEMs), and Cloud Service

Providers (CSPs) to middleware vendors, Operating System vendors, application ven-

dors, and the workload owner. The composition of layers may vary for each workload

instance, and even when identical, differences may arise in version specifics, such as

BIOS version, bootloader, kernel version, and other elements.

While the intricacies of layer composition and version specifics may be inconsequential

in many cases, especially when CSPs shield users from such details. From a security

standpoint, the concern extends beyond recognizing diversity in layer versions; it encom-

passes the multitude of elements and entities requiring trust for the secure execution of

sensitive workloads on these platforms. Each layer and its respective owner must not

only gain trust in fulfilling their functions but also in remaining uncompromised. Entrust-

ing such a diverse array of entities poses a significant challenge when addressing the

security implications of running sensitive workloads.

Enarx is founded on a set of fundamental design principles that are integral to its success

[45]. These principles encompass various critical factors, each of which contributes to the
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Figure 3.1. Illustration of Virtualization and Container Stack

overall security and functionality of the system.

When evaluating system security, the first step is to identify the TCB, which comprises

components necessary to achieve the desired security level [52]. Enarx places significant

emphasis on minimizing the TCB’s size and subjecting trusted code to code-owner val-

idation to mitigate potential attack vectors that could compromise the tenant’s code and

data. Furthermore, Enarx addresses vulnerabilities by keeping the network stack outside

the TCB [45], as network stacks tend to be large, complex, and susceptible to privilege

escalation and compromise [153].

Another key principle in Enarx is the notion of Minimum trust relationships. This principle

is thoroughly discussed in Subsection 3.1.1, and it highlights the importance of establish-

ing minimal trust dependencies to enhance overall security.

Deployment-time portability is yet another essential consideration for Enarx. By support-

ing multiple hardware architectures, Enarx enables its programs to be redeployed on var-

ious CPU architectures without the need for recompilation [45]. This flexibility enhances

adaptability and ease of use.

Enarx’s design also places a strong focus on auditability. By structuring the code into

small, independent components that are easily comprehensible, the project fosters an

environment conducive to thorough auditing. Avoiding run-time modularity of the basic

platform further simplifies the auditing process [45]. The project is released under the

Apache 2.0 open-source license [141], granting users the freedom to modify the program

according to their needs and ensuring that auditability is accessible to all, not just a select
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few.

Memory safety is another important design consideration for Enarx, which is accom-

plished predominantly through the use of the Rust programming language [45]. Rust’s

focus on memory safety reduces the dangers associated with memory corruption, thereby

improving the system’s overall stability and security [101].

Enarx’s design principles encompass trust reduction, portability, data security, auditability,

openness, and memory safety, all of which collectively contribute to the project’s strong

foundation and success.

3.1.1 Trust Architecture

Enarx is focused on addressing a crucial concern surrounding the trust relationships be-

tween different layers in the stack. The Enarx runtime stack is structured with four layers,

ordered from the lowest to the highest level [45]:

1. VMM (Virtual Memory Manager): The virtual memory manager serves as an in-

termediary between the processor and the memory system. Its purpose is to trans-

late the virtual addresses of program instructions into corresponding physical ad-

dresses. In lieu of explicitly utilising physical memory addresses, the programme

relies on this translation procedure. The VMM has the ability to map a particular

virtual address to various physical memory addresses as needed. This flexibility

enables it to rearrange data in the memory system without requiring application

programme modifications [123].

2. (µkernel) Microkernel: The microkernel is a minimal operating system architec-

ture that focuses on keeping the kernel’s core functions basic, enhancing security,

reliability, and maintainability. It achieves this by moving services into user-space

processes, that communicate with the µkernel through controlled mechanisms. The

design’s advantage lies in isolating services, reducing the impact of failures, and

enabling easy extensibility, making it suitable for embedded systems, real-time sys-

tems, and safety-critical applications [140].

3. Wasm (WebAssembly) runtime: The WebAssembly runtime serves as the frame-

work to execute Wasm within a self-contained environment, enabling efficient and

secure execution of Wasm modules [Wasmtime]. The Wasm runtime parses the

Wasm bytecode and converts it into machine code compatible with the host plat-

form for execution [151].

4. WASI (WebAssembly System Interface) implementation: WASI is a system in-

terface created by the Wasmtime project specifically for Wasm. It aims to standard-

ize the way Wasm interacts with OS-like functions such as files, sockets, clocks,

and random numbers. Additionally, it incorporates capability-based security mea-
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sures to ensure enhanced sandboxing and secure I/O operations. The primary goal

of WASI is to provide a consistent and standardized interface for Wasm, enabling

code portability and compatibility across different platforms and environments, thus

allowing for secure execution in various contexts beyond web browsers [143].

At runtime, each of these layers undergoes cryptographic measurement and verification

before being deployed. However, it is essential to understand that these four layers do not

represent the entire stack. Additional components, including the CPU (and its firmware),

the host kernel, and the application itself, also play crucial roles. Additionally, it is note-

worthy that Enarx does not employ a TPM (Trusted Platform Module) as part of its trust

architecture [45].

Figure 3.2 from the Enarx documentation [45], presents a concise representation of the

layers and their roles in the VM case (AMD SEV).

Application

WASI

WASM (JIT)

μKernel

Hypervisor

Kernel

CPU

Enarx

Root of Trust

Distrusted

Trusted via
Measurement

Responsibility:
Protect Guest from Host

Responsibility:
Protect Host from Guest

Figure 3.2. Illustration of the Basic Layer Diagram for AMD SEV

In the discussion, the trustor, which is the client or tenant intending to execute a workload,

is depicted. In the Enarx architecture, this entity is referred to as the application. A

foundational principle of Enarx is that the application should not place trust in the host,

its owner, or its operator. While the host’s owner or operator may have their own trust

requirements, this discussion does not address those concerns [45].

Table 3.1 demonstrates the trust status of various components. For standard computa-

tion, the CPU must be trusted for executing operations. Enarx adopts a robust trust model,

cryptographically verifying the CPU and firmware at runtime, acting as the hardware root

of trust for the system’s architecture. If any of these components are found invalid, Enarx
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Components Status

Trusted Not Trusted

Central Processing Unit (CPU) ✓

Kernel ✓

Virtualization Memory Manager (VMM) ✓

Microkernel (µkernel) ✓

WebAssembly (Wasm) ✓

WebAssembly Interface (WASI) ✓

Application ✓

Table 3.1. Components and Enarx Trust Status

prevents application scheduling on the host. The host’s kernel is provided by the host,

and the client deems it untrusted. Enarx supplies an untrusted VMM for memory man-

agement but limits access to encrypted memory pages. In contrast, Enarx’s µkernel is

trusted for standard kernel operations. The Wasm runtime, another trusted element, pro-

vides the runtime environment for applications within Enarx Keep, optimizing performance

through silicon architecture-specific JIT compilation. Similarly, the WASI layer serves as

a trusted interface for secure and portable Wasm applications on server-type systems.

Lastly, the client-provided application layer, being trusted, represents the workload to run

within Enarx Keep [45].

3.1.2 Threat Model

Enarx’s threat model is built upon core principles of trust, outlined in the previous sec-

tion in Table 3.1. These principles aim to create a secure environment for exchanging

computing resources between two parties who lack mutual trust.

1. Host Perspective: The Host aims to offer its computing resources to the Guest

in exchange for the value from the Guest’s service. However, due to a lack of

trust, the Host needs to ensure that the Guest cannot modify or tamper with the

hardware, firmware, OS, or other software. The Guest must also be prevented from

inspecting the execution context to avoid privilege escalation attacks [92]. Despite

the mistrust, the Host still needs to maintain full control over resource allocation,

allowing measurement, restriction, or termination of the Guest’s resource usage at

any time [45].

2. Guest Perspective: The Guest desires access to the Host’s computing resources,

but trust issues prevent this. To comply with data privacy policies and regulations,

the Guest must protect the confidentiality and integrity of its data and code. It must
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also prevent the Host from launching statistical analysis attacks [27, 120]. There-

fore, the Guest requires robust protection from the Host for both its code and data.

In addition, the Guest requires assurance that the Host will provide these protec-

tions irrevocably due to concerns regarding the Host’s possible malice or compro-

mise. Only relying on trust or legal mechanisms is insufficient and expensive [45].

In order to effectively address these concerns, it is imperative to implement an advanced

resolution that encompasses hardware endowed with the capability to enforce the desired

protections. Additionally, the incorporation of cryptographic attestation is indispensable to

ascertain that the hardware appropriately governs the execution context [45]. This ap-

proach establishes a higher level of security and trustworthiness, forming a solid founda-

tion for securely exchanging computing resources between the Host and the Guest within

the Enarx environment.

3.2 Requirements

Enarx’s primary objective is to offer a cross-platform runtime environment that ensures the

secure execution of sensitive workloads. It achieves this by employing a platform-agnostic

approach, making it adaptable to a wide range of systems, be it servers, desktops, or

even embedded devices. In contrast to other SDKs, Enarx functions not solely as a

development framework but also as a deployment framework.

One of Enarx’s key components is its Wasm runtime 3, built upon Wasmtime. Rust is

the primary language of Enarx, however, any language that can compile code into a

Wasm binary is compatible with Enarx. This choice allows developers to use multiple

programming languages, such as Rust, C, C++, C#, Go, Java, Python, and Haskell, for

their implementations [45].

Enarx has minimal system library dependencies, including glibc 1, OpenSSL 2, and its own

runtime. These libraries and utilities enable Enarx to effectively run and manage Keeps,

handling essential tasks such as cryptographic operations, secure communication, and

resource allocation.

Enarx is designed to be independent of CPU architectures, ensuring that the same ap-

plication code can be deployed across various targets. This abstraction minimizes con-

cerns related to cross-compilation and varying attestation mechanisms among different

hardware vendors. Consequently, Enarx offers seamless execution on different silicon

architectures. However, to run Keeps (secure enclaves) within a TEE instance, Enarx

requires specific hardware equipped with TEE support. This hardware capability enables

Enarx to create secure enclaves to protect sensitive data and code from the underlying

1https://www.gnu.org/software/libc/
2https://www.openssl.org/

https://www.gnu.org/software/libc/
https://www.openssl.org/
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system. Enarx currently supports Intel platforms like SGX [72] or TDX [9], AMD platforms

like SEV [8], and upcoming platforms like Arms Realms and IBM’s PEF without requiring

recompilation of application code [45].

For development purposes, Enarx provides the nil backend, which does not rely on spe-

cial hardware. This backend supports any of the architectures compatible with the Wasm-

time crate. Additionally, for situations where accessing hardware with Intel SGX [72] or

AMD SEV-SNP [8] support is not feasible, Enarx accommodates KVM as an alternative.

KVM, a full virtualization solution for Linux on x86 hardware with virtualization extensions,

facilitates testing on more commonly available hardware with virtualization support [45].

Enarx’s security foundation lies in leveraging trusted hardware, hardware-based virtual-

ization, and modern Linux features. This strategic combination enables Enarx to establish

a secure platform, ensuring the execution of trusted applications in diverse environments.

3.3 Core Components

KEEP

CPU + Firmware

Enarx Host
Agent

Application

Enarx runtime

CLI
Enarx
Client
Agent

Orchestrator
(e.g. Openshift/k8s,

Openstack)

Host Client

Figure 3.3. Simplified representation of Enarx Architectural Components and Integration

Enarx modules have been intentionally designed to exhibit modularity and interoperability,

enabling their integration with a range of TEEs and hardware platforms. This adaptability

extends not only to the TEEs themselves but also encompasses diverse programming

languages, provided they can be compiled into Wasm. The Enarx schematic, as depicted

in Figure 3.3 [24], visually elucidates the constituents of Enarx and their interconnections.

The hardware foundation consists of the CPU, kernel, and VMM. Stacked atop these lay-

ers are the Enarx components. The Enarx API and the central component engage with



47

the attestation element to validate the TEE’s identity and integrity. Subsequently, the ap-

plication is loaded into the TEE and launched. Execution within the TEE is facilitated by

the Enarx runtime, leveraging the Wasm runtime environment. The management com-

ponent supplies tools to oversee Enarx Keeps. A more intricate illustration of the Enarx

components and their intricate interactions can be found in Figure 3.4 from the official

Enarx documentation [45].
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Figure 3.4. Representation of Enarx Components and Integration

3.3.1 Attestation:

Verification assumes a critical role within Enarx’s framework, with Attestation serving as

an essential core element. Its role encompasses confirming the host system’s identity

and integrity before deploying an application within a TEE. An application designated for

execution within an Enarx Keep must undergo two assertions [45]:

1. Confirming the hardware TEE responsible for Keeps.

2. Evaluating the measurement of the Enarx runtime (detailed in Subsection 3.3.3).

From the client’s viewpoint, Enarx’s attestation protocols culminate in two cryptographi-

cally validated affirmations:

1. Verifying the specification and version of the TEE.

2. Confirming the integrity and version of the Enarx system.

It’s crucial to underscore that the attestation procedures differ significantly across various

hardware architectures such as in the SEV architecture and in SGX architecture.
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3.3.2 Enarx API and Core:

The Enarx API and Core project establishes the WASI APIs and oversees attestation

across various TEEs. This initiative presents a unified platform for developers to engage

with Enarx Keeps, guaranteeing the integrity of the TEE and safeguarding against any

tampering of the Enarx runtime. Executed in Rust, the Enarx API and Core assume

responsibility for the upper-level functionalities of Enarx [45].

3.3.3 Enarx Runtime:

The Enarx runtime depends on WASI as a call-out API and Wasm as a JIT (Just-in-Time)

compiler [45].

WASI acts as a standardized interface, facilitating smooth communication between We-

bAssembly modules and the host system. This ensures that the Enarx runtime can

provide a consistent and secure environment for applications to function within diverse

TEEs. WASI’s comprehensive capabilities, covering crucial functionalities like file I/O,

network sockets, and timers, prove highly advantageous for running applications within

TEEs [143].

Furthermore, the Enarx runtime utilizes Wasm as its JIT compiler. JIT compilation, a

method of converting code into machine code during runtime, is well-suited for Enarx

runtime due to Wasm’s portability across various TEEs. This approach enables the de-

ployment of Enarx applications on a wide array of platforms. Since Wasm is a compiled

language, it delivers more efficient execution compared to interpreted languages, a crucial

factor for TEE-based applications where performance is paramount [Wasmtime].

3.3.4 Management:

The Management component in the Enarx framework plays a crucial role by orchestrating

and managing workloads in Enarx Keeps [45]. It offers carefully designed APIs to simplify

application deployment, supervision, and monitoring within Enarx’s environment.

The Management component operates within a Kubernetes cluster as an amalgamation

of microservices. It achieves seamless interaction with the Enarx API and Core through

a well-defined gRPC interface 3. Moreover, it employs the Enarx Attestation component

to affirm the authenticity of devices executing Enarx Keeps, thereby enhancing overall

security. Additionally, it engages in collaborative endeavours with the Enarx runtime com-

ponent to proficiently oversee application execution within Enarx Keeps.

Notwithstanding its intricate architecture, the Management component places paramount

3https://grpc.io/
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emphasis on user-friendliness. It provides APIs similar to those of Kubernetes, tailored to

developers familiar with Kubernetes practises and facilitating rapid mastery of its features.

Furthermore, the Management component meticulously aligns itself with the exigencies of

enterprises and organizations, underscoring its strategic commitment to advancing Enarx

adoption [45].

3.4 Working Method

When considering the developer’s perspective, the process for deploying an application

on Enarx includes selecting a language, developing the application, compiling the pro-

gram into a Wasm binary, and finally deploying the application onto the designated Host.

The uncomplicated deployment procedure of an application using Enarx is depicted in

Figure 3.5.

Choose Language/Tools Develop Application Compile to
WebAssembly

Choose Host

Instance Configuration

Figure 3.5. Streamlined Flowchart Illustrating Application Deployment on Enarx

Enarx facilitates the intricate procedures required to guarantee the secure deployment of

applications within authentic TEE instances. Figure 3.6 presents an alternative perspec-

tive of Figure 3.4, elucidating the operational methodology of Enarx’s attestation process.

Initiating from the initial phase, users or administrators commence a request for workload

placement via the CLI of the Enarx Client Agent. The Enarx client agent engages with the

host agent, a server that collaborates with the CPU and firmware to establish a founda-

tional enclave. This is the attestation step, where Enarx verifies that the host is genuine

and can be trusted to run the workload in a secure environment. The interaction between

the client agent and the host agent takes place through a secure HTTPS connection,
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Figure 3.6. Illustration of Enarx Attestation Process

instilling users with the confidence that their requests are securely transmitted.

Once the Keep is created, the host agent sends a measurement of the Keep back to the

client agent. The client agent checks this measurement to make sure that the Keep is

genuine and has not been tampered with. Following successful verification, the Client

Agent proceeds to encrypt the Wasm file using a session key exclusively tied to that

specific enclave. This is the packaging step, where the workload is encrypted so that it

cannot be tampered with by the host or by other software on the system.

With the encryption of the Wasm file concluded the client agent sends it to the Host

Agent for execution within the keep. This is the provisioning step, where the workload is

deployed to the keep and executed in a secure environment. It is essential to emphasise

that every keep is associated with a unique session key. This indicates that the Wasm

file encryption requires a unique key for each keep. Therefore, even the generation of

another kept on the same system necessitates a completely distinct key for the Wasm

file’s encryption. This mechanism ensures the isolation of each keep, preventing any

mutual visibility or data accessibility among concurrently running applications. With the

encryption of the Wasm file concluded the client agent sends it to the Host Agent for

execution within the keep.

These consecutive stages encompass the process through which Enarx establishes a

secure computational environment
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3.5 Vulnerabilities

Enarx relies upon TEE hardware to ensure confidentiality. The security of Enarx is closely

intertwined with the vulnerabilities associated with TEE hardware such as Intel SGX or

AMD SEV. The security posture of Enarx is adversely impacted by these vulnerabilities.

On the 16th of May, 2022, the Enarx community launched the Cryptle Hack Challenge,

an initiative aimed at identifying vulnerabilities within the Enarx system [35]. During the

course of this challenge, a flaw was uncovered in the implementation of Enarx.

To accommodate various CPU architectures, Enarx has employed distinct shims tailored

for specific platforms. These shims incorporate small-scale µkernel, which in turn load

executable components that are agnostic to CPU architectures. The communication be-

tween the Intel SGX shim and the host occurs through a designated block of host memory

referred to as the sallyport block 4. When the host accesses the SGX enclave, it provides

a pointer to the sallyport block using the rdi register. Subsequently, when the shim neces-

sitates executing syscalls or other Enarx-specific commands, it encodes the parameters

into the sallyport block before returning control to the host.

Notably, on the 23rd of May, 2022, a vulnerability was reported within the Intel SGX shim

[53]. The identified bug pertains to an absence of validation within the shim, concerning

whether the pointer to the sallyport block, as furnished by the host, genuinely points to

host memory rather than enclave memory. Exploiting this situation, the host can manip-

ulate the shim into inadvertently corrupting its own memory by passing a pointer to the

enclave’s memory.

3.6 Practicalities

In the context of this thesis, while Enarx’s documentation presents the deployment of

diverse programs on varying hardware as a straightforward task, the practical implemen-

tation of this approach encounters significant challenges.

During our engagement with Enarx, we encountered unexpected obstacles, the first of

which was the selection of hardware capable of fully harnessing TEE capabilities. Enarx

is designed specifically for AMD SEV and Intel SGX, with Intel SGX II presenting specific

hardware requirements. The crucial task of identifying suitable hardware for Enarx proved

pivotal in utilizing the TEE features. Although Enarx offers development support for var-

ious hardware configurations, neglecting the security aspects of TEE would undermine

the core objective of privacy and anonymity solution development.

Another critical consideration was the choice of programming language. While Enarx

does support multiple programming languages, the primary criterion for language selec-

4https://docs.rs/sallyport/latest/sallyport/
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tion revolved around the final compilation into Wasm binaries. Our attempts with lan-

guages such as C++ and Python revealed challenges in achieving a feasible compilation

into Wasm binaries, particularly when working with various libraries. These challenges

restricted our use of Enarx’s preferred language, Rust.

Furthermore, due to Enarx’s developmental phase, comprehensive documentation was

lacking, necessitating direct communication with the development team to address any

encountered errors.
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4. DESIGNING PRIVACY EXTENSION FOR SEARCH

ENGINES

This chapter delves into the intricacies of implementing a PESE to enhance privacy and

anonymity in web search queries while mitigating the limitations. To begin with, we

present an overview of the existing literature in this field, elucidating the challenges and

opportunities associated with implementing privacy extensions in search engines. Fol-

lowing this, we outline the security considerations and the threat model that form the

foundation of our design, along with our specific project goals and objectives. Subse-

quently, we delve into the project’s design and methodology, providing an explanation of

the technical features’ implementation. Lastly, we delineate the limitations and biases

encountered during our simulation.

4.1 Literature Review

Before developing the implementation of PESE, we conducted an evaluation of existing

solutions for PESE. Our design is inspired by analogous works that have already been

implemented. To identify relevant works, we conducted a thorough search of the scientific

literature, focusing on peer-reviewed studies that were publicly accessible. We excluded

any private industry solutions whose implementation details were not available to the

public. Our search was conducted using the following search engines:

• Andor 1

• ACM Digital Library2

• arXiv open-access archive3

• dblp computer science bibliography4

• IEEE Xplore5

• Google Scholar 6

1https://andor.tuni.fi/
2https://dl.acm.org/
3https://arxiv.org/
4https://dblp.org/
5https://ieeexplore.ieee.org/
6https://scholar.google.com/

https://andor.tuni.fi/
https://dl.acm.org/
https://arxiv.org/
https://dblp.org/
https://ieeexplore.ieee.org/
https://scholar.google.com/
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The acronym PESE is not typically associated with the privacy extension for search en-

gines and is created by ourselves. In the Finnish language, PESE translates to "Wash,"

signifying the act of eliminating traces. PESE serves as a representation of erasing digital

footprints to protect users from online surveillance and data breaches, thereby strength-

ening the concept of privacy and anonymity.

To assure a thorough search, we employed the following search terms and their combina-

tions: "Privacy", "Extension", "for", "Search", "Engine", or "Privacy", "Web", "Search." By

employing these criteria, our goal was to obtain relevant literature and research related

to privacy extensions for search engines that align with our design approach for PESE.

It is crucial to acknowledge that numerous methods and efforts have been dedicated to

protect user web privacy, such as CoFeed [47], OSLo [147], and homomorphic encryp-

tion methods [157, 73]. However, our focus is specifically on solutions and research

endeavors that align with our interest and approach, and have served as motivation for

our design.

We identified a total of six research works that were closely aligned with our research

objectives. These works provide perceptive data and serve as fundamental references

for our research Table 4.1.

Title of the paper (abbreviated) Authors Year Reference

TrackMeNot: Enhancing the privacy of Web Search Al-Rfou’, Jannen, and Patwardhan 2012 [6]

DisPA: An Intelligent Agent for Private Web Search Juarez and Torra 2015 [78]

PEAS: Private, Efficient and Accurate Web Search Petit et al. 2015 [109]

PaOSLo: Profile Aware ObScure Logging Ullah et al. 2022 [148]

X-search: Revisiting private web search using Intel SGX Mokhtar et al. 2018 [95]

CYCLOSA: Decentralizing Private Web Search Through SGX-Based Browser Extensions Pires et al. 2018 [112]

Table 4.1. Relevant PESE developments

The first relevant contribution in this domain is TrackMeNot (TMN) [6], a Firefox extension

specifically developed to preserve privacy during web searches. TMN achieves this ob-

jective by generating decoy queries to obfuscate users’ genuine search terms [97]. To ef-

fectively emulate users’ search behavior, TMN incorporates several mechanisms. These

include the utilization of dynamic query lists and real-time search awareness (RTSA).

Additionally, TMN maintains live header maps, which consist of dynamically updated vari-

ables representing the headers and URLs of the most recent search conducted by the

browser. The design also employs the Burst-mode queries technique, which triggers a

batch of queries in close proximity to actual user searches. Lastly, TMN intercepts and

restricts cookies transmitted from the browser to the search engine if they are associated

with a user’s search request or subsequent response.

DisPA [78], is a browser extension that acts as a proxy between the user and the search

engine. It semantically dissociates queries in real time, thereby increasing user privacy

and making it more difficult for search engines to track user activity. It works by first
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identifying and classifying the user’s search query. Once the query has been classified,

DisPA then generates a set of semantically related queries that can be used to search for

the same information without revealing the original query. These queries are then sent to

the search engine, and the results are returned to the user.

PEAS [109], a protocol designed to ensure privacy in Web searches, is the second perti-

nent research endeavor. The protocol implements indistinguishability by using the logical

OR operator to combine each user query with k counterfeit queries. The design’s distinc-

tive trait is the generation of forged queries. It is based on a group profile, which is an

aggregate of prior queries from a community of users. The group profile is published in a

privacy-preserving manner by the privacy proxy. Subsequently, these requests are trans-

mitted to the search engine via a privacy-preserving proxy, which guarantees unlinkability.

PaOSLo [148] a web search privacy-preserving protocol that mitigates the digital traces

a user leaves in Web searching. PaOSLo systematically groups users based on profile

similarity and assigns them to dynamic groups. This grouping ensures that the user’s

search history is mixed with the search histories of other users in the group, making it

difficult for search engines to identify the user’s individual interests.

X-Search [95], an Intel-SGX based private Web search mechanism, represents the fifth

relevant work. The X-Search proxy receives the queries and executes them on behalf of

the user, prior to forwarding them to the search engine. Within a trusted SGX enclave,

the proxy executes verified code. The queries are encrypted outside the enclave and

can only be accessed in plain text from within. To obscure the original query, the proxy

combines the original query with k-random prior queries using the logical OR operator.

This combination makes it difficult for the search engine to differentiate the original query.

The obfuscated scheme modifies the returned search results by incorporating the results

of both the initial query and the aggregated past queries. The designed proxy filters the

results appropriately to ensure that only relevant results are delivered to the user.

CYCLOSA [112], a pertinent work comparable to the X-Search design, prioritizes security

by leveraging Intel SGX’s trusted execution environments. It generates fabricated queries

to the search engine and modifies their frequency dynamically based on the sensitivity of

the user’s query. CYCLOSA operates in a decentralized fashion, delegating the task of

transmitting fake queries to multiple nodes. To ensure unlinkability, each node functions

act as both a client and as a proxy, initiating and forwarding queries on behalf of other

nodes. Since these nodes are controlled by distinct users, they are deemed untrusted,

effectively preventing any query information leakage. The design implements secured

connections to increase the security of inter-enclave communications and interactions

with the search engine.

Evaluating the relevant scholastic literature (also summarized in Table 4.2) reveals an

inadequate amount of research on the privacy of web users with TEE. The majority of
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Mechanism Unlinkability Obfuscation Accuracy TEE

Intel SGX AMD SEV

TMN [6] ✗ ✓ ✓ ✗ ✗

DisPA [78] ✓ ✓ ✗ ✗ ✗

PEAS [109] ✓ ✓ ✗ ✗ ✗

PaOSLo [148] ✓ ✓ ✗ ✗ ✗

X-Search [95] ✓ ✓ ✗ ✓ ✗

CYCLOSA [112] ✓ ✓ ✓ ✓ ✗

PESE [79] ✓ ✓ ✓ ✓ ✓

Table 4.2. Private web search mechanisms comparison

TEE-based research focuses on specific hardware, such as Intel SGX. Nevertheless, PET

(Privacy Enhancing Technologies) has emerged as an active research area, yielding nu-

merous search results on topics including "web privacy," "query obfuscation," "anonymity,"

"digital traces," "privacy-preserving," and "privacy protection." This raises the subject of

whether it is adding value to develop privacy-focused solutions using TEE or whether ex-

isting solutions suffice. User search queries often contain personally identifiable informa-

tion and the accumulation and use of search queries reveal confidential information about

individuals, such as their age, gender, religious or political preferences, and sexual orien-

tation [133]. Numerous users advocate for search engines to refrain from retaining query

logs [75]. EU data protection laws emphasize the right to privacy (Article 7 of the Charter)

and the protection of personal data (Article 8 of the Charter) [40]. Consequently, address-

ing privacy concerns in web searches is crucial for users from diverse backgrounds, and

search engines must comply with these regulations to avoid legal repercussions. In our

view, PESE implementations utilizing TEE has substantial real-world value in protecting

the privacy and anonymity of web users, necessitating further academic research.

4.2 System and Adversary Model

Before introducing the design principles of PESE in the upcoming section, we will outline

our assumptions and the adversary model against which our protocol has been devel-

oped.

PESE performs computations based on two premises for each user query: (i) The Search

Query Mixer, and (ii) the search engine. Different levels of trust are ascribed to each of

these elements.

We presume that the user’s device, which initiates search requests, is secure and trust-

worthy. This includes any local computations performed outside of Keeper as well as any
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duties involving user data, such as determining the sensitivity of a query. In addition, we

presume that the communication between the web user, query aggregator, and search

engine, is secure and trustworthy. This means that the adversary cannot alter the inquiry

input by the human user, nor communication channels be compromised.

The second assumption is that the hosting server supports Intel SGX II or AMD SEV.

TEEs are utilized to secure the implementation from adversarial server root access. In

addition, we presume that SGX or SEV behave correctly, implying that there are no flaws

or backdoors present. We do not consider side-channel attacks [31] against Intel SGX

[154] or AMD SEV [82] to be within the scope of our research because the research

community offers solutions to counter such attacks. Furthermore, we have faith in the

system’s cryptographic primitives and libraries, presuming they cannot be tampered with.

Enarx’s keeps execute all the code and data associated with PESE. This ensures that

even with unrestricted access to the server, adversaries or administrators cannot access

or manipulate the data, thereby enhancing the integrity and confidentiality of the system.

Web users are not dependent on the server operator’s trustworthiness or benevolence.

They rely instead on the effective operation of TEE technology to prevent data observation

or modification on the server. During our testing, we have full command over both the

server and the web clients.

Thirdly, we presume that the search engine is both trustworthy and inquisitive. This in-

dicates that the search engine faithfully responds to queries generated by the Search

Query Mixer while attempting to assemble information from incoming queries. PESE was

implemented and tested in this particular system and adversary model.

4.3 Objectives

The goals of our simulation can be categorized into three main objectives:

1. To establish a fully functional PESE system that incorporates elements to improve

the privacy and confidentiality of web users.

2. To assess the practicality of PESE as a viable solution to address privacy and

anonymization challenges.

3. To ascertain the feasibility of utilizing TEEs to enhance the security of the PESE

system in real-world scenarios.

Consequently, our simulation aims to provide answers to specific research inquiries,

namely RQ3 and RQ4. In Chapter 5 of our study, we will evaluate the extent to which

our simulation achieves these objectives.
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4.4 Design Approach and Methodology

PESE is an extension designed to enhance the level of anonymity and privacy of web

search queries. Its main elements are the Keeper, the Search Engine, and web users.

PESE aims to improve privacy and anonymity by combining the concepts of unlinkability

and indistinguishability. Unlinkability and Indistinguishability are accomplished by mixing

the queries from web users within the Keeper, making them virtually indistinguishable

from one another. From the user’s perspective, the interaction with the search engine

remains unchanged, while the rest of the operations are performed within a black box.

However, from the server’s perspective, the architecture becomes more complicated as

it must communicate with web users requesting queries, conduct operations within the

Keeper for obfuscation purposes, and return search results to web users.

PESE employs a multi-step approach. When web users submit a query to the search

engine, they send an HTTP GET request. In our experiment, we utilized Ahmia.fi 7 as

the search engine. The number of users can vary, and let’s denote the total number of

users as n. The queries sent by these users are represented as q1, q2, q3, ..., qn, where

Q denotes the total number of queries. The communication between the user, Keeper,

and search engine is established via a secure connection TLS. These queries are then

forwarded to the server, where operations are performed within the Keeper.

Any resources outside of the Keeper cannot be trusted upon. Within the Keeper, the in-

tegrity of the search engine is first verified through the use of checksums. The Keeper

decouples users’ IP addresses from their search phrases, ensuring search activities are

not directly linked. It receives incoming queries over a specified duration of time, de-

noted as t, and creates a thread to handle these requests. The degree of anonymity is

determined by the number of users making search queries. The queries are aggregated

in a random order fashion within the Keeper. By aggregating queries in an arbitrary se-

quence, the Keeper precludes the identification of individual users based on the order of

their search queries.

After the time delay ∆t, the query pulses are directed to the search endpoint, and the

search engine results (r1, r2, r3, ..., rn) corresponding to the queries (q1, q2, q3, ..., qn)

are returned to the Keeper. Within the Keeper, an identification hash of the search result

is generated using the SHA512 [66] cryptographic hash. This approach ensures that

result pages contain padding to prevent naive size correlation, thereby ensuring that all

result pages have the same byte size. Finally, the web browser makes another HTTP

GET request to fetch the results, maintaining no connection between the incoming and

outgoing traffic during these calls.

Figure 4.1 illustrates the design of PESE, describing the systematic implementation of its

7https://ahmia.fi/

https://ahmia.fi/
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components, Keeper, the Search Engine, and web users. Furthermore, the PESE source

code is included as an appendix for developers’ reference in order to better comprehend

the technical aspects.

Search

Web User 1

Web User 2

Web User 3

Web User n

q1= Bitcoin

q2= Health

q3= Politics

qn= Parenting

r1
r2
r3
rn

q3
q1
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• Receive incoming queries for Δt
• Decouples user's IP addresses
• Aggregate queries in random order
• Padding to the search results

Keeper

Search End Point

TLS

TLS

Figure 4.1. Design of Privacy Extension for Search Engines

PESE’s design is meticulously crafted to ensure a higher level of anonymity. By aggre-

gating search queries within the Keeper and executing them in a randomized sequence,

PESE effectively obscures the identification of individual users. To illustrate, if we consider

a scenario where the solution utilizes the Google search engine, handling over 3.5 billion

queries daily [95]. Even with a minimal time delay, such as 100 milliseconds, PESE can

create a substantial anonymity set comprising more than 1,000 individuals seamlessly

mixed together. Consequently, the search engine becomes incapable of associating spe-

cific users with particular search terms, as the search requests are intentionally delayed

and blended into a collective stream. The assumption that 1,000 people are concurrently

doing searches using various queries is derived from statistical data collected from multi-

ple search engines [89].

We conducted simulations in an environment using an AMD SEV server, which acts as a

proxy between web users and the search engine. To ensure utmost security, we employed

Enarx to execute the simulation within a TEE. The utilization of a TEE guarantees the

integrity and confidentiality of processed data, securing it against any compromise of the

underlying server. Even with root access, the high-level operating system remains unable

to access or modify the data, ensuring robust protection.



60

4.5 Limitations and Potential Bias

While PESE prioritizes user privacy however sacrifices personalized search, as its ob-

fuscation process prevents tailored results from user profiles, interests, or locations. Fur-

thermore, the effectiveness of the search query mixer within PESE relies on the presence

of other users’ real queries received within the Keeper during a specific timeframe. In

the event that no other user submits a query, a single query alone is forwarded to the

endpoint, rendering it susceptible to correlation attacks [137]. Additionally, if one of the

search queries happens to be in a different language, it introduces the potential for re-

identification attacks [62].

To address these issues, the introduction of fake queries in the PESE system would be a

beneficial feature. Furthermore, these fake queries should be generated in various lan-

guages to enhance the diversity of the query set and mitigate the risk of re-identification

attacks. Furthermore, to counter the potential threat of a malicious process reproducing

previous user queries, a precautionary measure involves integrating a random identifier

into each message. This implementation serves the purpose of detecting and preventing

replay attacks, enhancing the overall security of the system.

During the course of our simulation, we make an assumption that the server is trustworthy

and the operations are executing securely within the Keeper. However, Enarx does not

yet have a mechanism that allows users to validate the attestation of the TEE, which is

essential for assuring that users are communicating with genuine TEE instances. In the

event of a compromised TEE, users may unknowingly continue sending queries under

the assumption of a legitimate TEE environment, while administrators or adversaries gain

insight into these processes.

It is important to note that while TEEs provide significant advantages in terms of data

confidentiality, integrity, and authenticity, they may still be susceptible to SCAs. Manu-

facturers often exclude SCAs from their TEE threat models [76], and TEEs may not ad-

equately protect against SCAs in real-world scenarios. Protecting against specific SCAs

requires extensive research to address vulnerabilities. Nevertheless, ensuring compre-

hensive safeguarding against all conceivable SCAs proves unattainable, TEEs do not

genuinely deliver the level of design-based security assurances they seemingly promise

[159, 128]. Despite this, the use of TEEs helps reduce the system’s attack surface, acting

as a deterrent against most attackers except highly skilled and resource-rich adversaries.

Although SCAs pose a theoretical risk, their real-world exploitation against TEE-enabled

systems is uncommon, making the use of TEEs a valuable strategy to enhance system

security.

To achieve a genuinely secure implementation, it is essential to recognise and address the

biases and limitations outlined above. Maximising the effectiveness of TEEs and ensur-
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ing robust system security requires ongoing research, software modifications, and careful

consideration of potential vulnerabilities. For a truly secure implementation, a compre-

hensive approach that addresses each of these biases and limitations is essential.
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5. RESULTS OF PESE DEVELOPMENT AND TESTING

This section provides a description of the methods used to test our PESE implementa-

tion, the degree of anonymity as well and an overview of the issues and considerations

encountered throughout the testing process.

5.1 Performance Evaluation

We evaluated the PESE implementation by deploying it on AMD server hardware equipped

with 128-core CPUs and 250 GB of RAM. In this scenario, the search engine of choice

was Ahmia.fi 1. The testing procedure involved executing search queries comprising 50

words, simulating requests from multiple users generated from the same system. This

process was iterated 50 times in a loop to monitor its impact on the server and to detect

any anomalies in the outcome of the results. This procedure was carried out under three

distinct conditions:

1. Enarx with SEV as background utilizing TEE

2. Enarx with NIL background not utilizing TEE

3. Cargo Environment without utilizing TEE

Furthermore, within the same environment, we conducted stress testing to ascertain the

system’s stability when subjected to increased workload.

The performance metrics, as outlined in Table 5.1, encompassed measurements of CPU

cycles, elapsed time, user time, system time, and RAM consumption for each individual

test. Each test query encompassed a set of 50 unique terms, and the entire testing

process was repeated 50 times, with results recorded on each occasion. In order to

assess the effectiveness of the privacy extension, we derived the mean values from the

collected results.

Furthermore, we plot the graph bar and line plot as shown in Figure 5.1 and Figure 5.2,

against the observed values of performance metrics for each environment in order to

make easy visual comparison.

In the context where Enarx is employed with SEV as the backend, the script exhibits an ex-

1https://ahmia.fi/
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Environment/
Performance
Metrics

CPU Cycles Time
Elapsed
(sec)

User Time
(sec)

System
Time (sec)

RAM
(MB)

SEV BG 677215821 53.36827648 0.29410246 0.07721462 3.93

NIL BG 677713078 51.19152534 0.32286962 0.09149396 3.96

Cargo 690029232 56.11155829 0.29282962 0.07125856 3.91

Stress SEV BG 968461379 54.74515538 0.39104184 0.08693166 3.92

Stress NIL BG 949583166 53.83668458 0.36363614 0.10100244 3.95

Stress Cargo 955451884 63.28933305 0.38091528 0.0843392 3.91

Table 5.1. PESE Environment Performance Metrics
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Figure 5.1. CPU Cycles and Time Elapsed plot for each testing environment

tended execution duration, encompassing 677,215,821 CPU cycles that span over 53.37

seconds. This elongated execution timeframe can be attributed to the incorporation of en-

hanced security measures afforded by the TEE. In direct contrast, the scenario devoid of

TEE technology with NIL as the backend showcases a marginal enhancement in perfor-

mance, culminating in a completion time of 51.19 seconds while consuming 677,713,078

CPU cycles. In this context, the absence of TEE-related overhead contributes to the ob-

served acceleration; however, the trade-off lies in compromised security. It is essential

to acknowledge that the elapsed time refers to the whole period of the script’s execution,

including both the process of making queries and the subsequent observation of results.

It does not indicate the response time of the corresponding search result.

A comparative analysis is also undertaken against a conventional Rust Cargo environ-

ment running Wasm binary, which serves as a benchmark. Within this benchmark, the

script reaches its conclusion in 56.11 seconds, propelled by 690,029,232 CPU cycles.

This comparative evaluation serves to contextualize the discernible influence of Enarx

and TEE on overall performance.
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Figure 5.2. User Time, System Time and RAM consumption plot for each testing envi-
ronment

The application of stress testing yields further insights. In scenarios where Enarx is en-

gaged in tandem with SEV backend, the script’s execution time extends to 54.75 seconds

under stress, accompanied by a consumption of 968,461,379 CPU cycles. Conversely,

stress tests conducted without TEE through the NIL backend yield a completion time of

53.84 seconds, entailing 949,583,166 CPU cycles.

An intriguing observation arose from the significantly extended elapsed time recorded

within the Rust Cargo environment running Wasm binary. This outcome diverged from our

initial anticipation of lower values, prompting a notable discrepancy. This behaviour can

be rationalized due to the runtime environment, as substantiated by our prior investigation

detailed in our Sok-TEE research paper attached in Appendix. However, on the whole,

the findings deduced from the outcomes signify that Enarx with SEV slightly influences

the performance of the system running PESE. Nevertheless, the observable effect on

performance does not reach a level of importance that undermines the essential security

and privacy benefits provided by Enarx.

5.1.1 Degree of Anonymity

The degree of anonymity serves as a metric gauging the complexity of identifying a user

or actor within a system or network. PESE’s design is meticulously tailored to elevate the

overall level of anonymity. As depicted in Figure 4.1, the search query mixer aggregates

search queries and executes them in a randomized sequence, effectively concealing the

identification of individual users. The degree of anonymity factors in the likelihood asso-

ciated with each user’s query activity during specific time intervals.

The testing methodology employed in our research comprised the execution of search
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queries, each consisting of 50 words. These queries were simulated to emulate requests

from multiple users originating from the same system. The target of these search queries

was Ahmia.fi search engine. However, in the context of the substantial search query

volumes handled by popular platforms such as Google, which manages over 3.5 billion

queries daily [95] and processes 3.8 million search queries per minute, alongside Yahoo

processing 63.65 thousand search queries per minute and Bing processing 121 thousand

search queries per minute [89], PESE’s significance becomes apparent.

Even with a brief temporal lag of 100 milliseconds, a considerable level of confidential-

ity can be attained by seamlessly combining over 1,000 individuals. Consequently, the

search engine’s ability to correlate specific users with particular search terms is compro-

mised, given that PESE intentionally introduces delays and blends queries into a collec-

tive stream.

PESE demonstrates independence from the generation of spurious queries from a pre-

defined list, avoiding the maintenance of user profiles or scrutiny of similarities among

diverse user search queries that might inadvertently result in the creation of shadow pro-

files during processing. This distinctive approach provides PESE with a significant ad-

vantage over alternative solutions shown in Table 4.1. Even solutions relying on TEE for

data protection during processing are often limited to specific hardware like Intel SGX.

PESE leverages the Enarx framework. This adaptability facilitates seamless redeploy-

ment on AMD SEV as well. A comprehensive comparison of PESE with other solutions,

highlighting its advantageous features, is detailed in Table 4.2 as well.

PESE employs a multifaceted approach to thwart re-identification attacks and enhance

user privacy. The system aggregates and randomizes search queries within the Keeper,

introducing deliberate randomness that makes it challenging for external entities, includ-

ing search engines, to associate specific users with their search terms. A time delay

(∆t) further disrupts the correlation between incoming queries and outgoing search re-

sults, creating a substantial anonymity set. Result pages undergo cryptographic hashing,

incorporating padding to prevent size-based correlation. Additionally, the Keeper decou-

ples users’ IP addresses from their search phrases, hindering direct links between user

identities and search activities. Simulations within a TEE ensure data integrity and confi-

dentiality, guarding against server compromises. Together, these measures form a strong

defence mechanism, rendering re-identification attacks difficult and reinforcing PESE’s

commitment to user anonymity and privacy.

5.2 Practical Consideration and Potential Issues

Enarx and PESE both currently exist in their nascent stages. However, upon introduc-

tion to the testing environment, several challenges were encountered. As elucidated in

Section 3.1, Enarx strategically keep networking outside the TCB to enhance the security
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architecture. Nevertheless, this approach has presented difficulties during the develop-

ment of networking-centric applications. During the implementation of a fundamental TCP

client using sockets, for instance, we encountered numerous complications.

The core of Enarx’s efficacy lies in its data-plane isolation feature, mandating that appli-

cations be purposefully crafted to communicate through Enarx’s secure channels. This

requirement can prove to be intricate for applications not initially designed with Enarx in-

tegration in mind. While Enarx offers advantages such as versatile hardware deployment

and multi-language support, it is important that Rust constitutes its primary programming

language. An advantageous aspect of this is that Rust code can be conveniently com-

piled into Wasm binaries, which is the execution environment for Enarx. However, for lan-

guages other than Rust, the process of compiling to Wasm binaries is difficult, prompting

developers to gravitate towards Rust over time. Furthermore, the absence of comprehen-

sive and up-to-date documentation for Enarx creates challenges in troubleshooting and

often necessitates direct engagement with Enarx’s development team for issue resolu-

tion.
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6. CONCLUSION

In this thesis, the exploration commenced with an extensive examination of TEE and

diverse solutions addressing privacy and anonymity. Subsequently, a thorough investi-

gation into the Enarx framework unfolded, encompassing intricate details of its imple-

mentation and technical specifications. A notable contribution to this thesis lies in the

development of the PESE using the Enarx framework. The primary objective of this de-

velopment was to elevate user privacy and anonymity by concealing online web queries

within a TEE and overarching goal throughout the thesis remained consistent.

In this concluding chapter, comprehensive responses are provided to the research ques-

tions outlined in Section 1.3. Furthermore, a discussion on potential future research

avenues unfolds, presenting open questions that emanate from the insights gained dur-

ing the development and scrutiny of PESE within the Enarx framework. This collective

exploration contributes to the broader objective of advancing the realm of privacy and

anonymity solutions.

6.1 Answers to Research Questions

We presented the following research questions in Section 1.3

RQ1. What is the importance of TEE in augmenting the security of data and op-

erational processes?

RQ2. How do conventional solutions address privacy and anonymity concerns for

web users?

RQ3. How effective is the Enarx framework for developing privacy-enhanced ap-

plication PESE?

RQ4. What are the results and conclusions regarding the impact of PESE on the

privacy and anonymity of web users?

For RQ1, a comprehensive analysis in Chapter 2 unfolds from Section 2.1 to Section 2.4,

shedding light on the paramount importance of TEEs in fortifying the security of sensi-

tive data and operational processes. The examination begins in Section 2.1, elucidating

the pivotal role of TEEs in mitigating potential risks. TEEs, by design, establish isolated

and secure enclaves, serving as strong fortresses protecting critical data and processes
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against unauthorized access and manipulation. This intrinsic capability positions TEEs as

formidable defenses, even in scenarios where adversaries gain root access to the system.

Furthermore, the discourse in Section 2.2 provides nuanced insights into diverse appli-

cation categories that stand to benefit significantly from the integration of TEEs. Delving

deeper, Section 2.3 explores the fundamental components underpinning the secure func-

tionality of TEEs. Emphasis is placed on the necessity of tailoring solutions to align with

the unique architectural features of the underlying hardware. Addressing the challenges

associated with hardware-agnostic TA deployment, Section 2.4 presents an examination

of TCons up to the year 2022. This examination underscores the limitations linked to en-

abling seamless TA deployment across varied hardware architectures without substantial

modifications.

When considering RQ2, Section 2.5 to Section 2.8 in Chapter 2 provides a thorough ex-

amination of privacy and anonymity concerns for web users, delving into conventional

solutions and their efficacy. The central challenges revolve around the vast amount of

personal data generated particularly through WSEs and the potential risks associated

it. Conventional solutions predominantly adopt two key strategies: unlinkability and in-

distinguishability. Unlinkability, exemplified by anonymous communication protocols like

Tor and I2P, which aims to cloak user identities. The indistinguishability approach, rep-

resented by solutions like TrackMeNot and GooPIR, seeks to obfuscate the distinction

between authentic and fabricated queries. The historical exploration within the chapter

underlines the evolution of privacy and anonymity concepts, emphasizing their roots in

ancient societies and their incorporation into modern legal frameworks. The chapter fur-

ther investigates the evolution of privacy and anonymity systems, beginning with remailing

systems in the 1990s and progressing to contemporary technologies such as Tor and I2P.

The development of Bitcoin mixers in response to privacy concerns in cryptocurrency

transactions showcases the ongoing efforts to adapt privacy solutions to the dynamic

digital landscape. In essence, the findings emphasize the intricacies and challenges as-

sociated with preserving web user privacy and anonymity. Conventional solutions, while

contributing valuable insights and methods, face persistent hurdles. The chapter’s explo-

ration underscores the need for ongoing research and innovation to navigate the evolving

nature of digital interactions and effectively address privacy concerns in the contemporary

online environment.

In addressing RQ3, Chapter 3 undertakes a thorough examination of the Enarx frame-

work, encompassing its design principles, requirements, core components, operational

approach, and vulnerabilities. The study delves into how Enarx facilitates the advance-

ment of TAs through the integration of TEEs. Enarx architectural foundation rests on the

principles of trust, security, and isolation, adopting a layered approach to provide unique

sets of security features based on a minimal trusting base. The scope of Enarx’s op-

erations spans attestation, secure boot, and runtime isolation processes. The primary
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achievement of this thesis lies in a heightened understanding of the fundamental prin-

ciples of the Enarx architecture and its pivotal role in TA development using TEEs, as

evidenced in the selection of Enarx for the PESE project (discussed in Chapter 4). How-

ever, challenges arose during the development of PESE, revealing practical difficulties

not initially apparent in Enarx’s documentation. Critical tasks, such as identifying suitable

hardware and choosing a programming language for compilation into Wasm binaries, and

lack of documentation demanded careful consideration. The realization emerged that, de-

spite its apparent ease of use, Enarx’s current early development stage poses underlying

challenges, a crucial insight for developers aiming to utilize Enarx for secure application

creation.

In the context of addressing RQ4, Chapter 4 meticulously explores the implementation

of PESE, providing an in-depth examination of the system model and design method-

ology. The foundation of PESE’s design decisions is rooted in a thorough analysis of

existing solutions and their limitations, as elucidated in Section 4.1. Notably, this analy-

sis scrutinizes aspects of unlinkability, obfuscation, accuracy, and TEE hardware support.

Each of the existing solutions under review is found to lack one or more crucial features,

thereby impacting user privacy, anonymity, or the feasibility of deployment. Moving for-

ward, Chapter 5 presents the outcomes derived from simulations conducted within a con-

trolled operational environment, showcasing PESE’s performance under representative

conditions. It is crucial to note that the testing environment deliberately omits consider-

ations such as SCA and user verification of TEE authenticity. PESE employs a compre-

hensive strategy for improving user privacy by leveraging the Keeper to aggregate and

randomize search queries, introducing intentional randomness to thwart association be-

tween users and their search terms. A time delay parameter enhances anonymity by dis-

rupting correlations between incoming queries and outgoing search results. To enhance

security, result pages undergo cryptographic hashing with padding, preventing size-based

correlation. The Keeper further severs the direct link between users’ IP addresses and

search phrases. Simulations within a TEE ensure data integrity and confidentiality, form-

ing a strong defense mechanism that significantly enhances user privacy and anonymity

through the PESE. While the test outcomes align with our expectations, there remains

room for enhancements to facilitate PESE’s deployment in real-world scenarios.

6.2 Future Research and Open Questions

Based on the limitations outlined in Section 4.5 and the conclusions drawn in the preced-

ing Section 6.1, further research and development are imperative for PESE to enhance

its functionality and security.

• In our existing system, a specific time is designated for accepting user queries.

However, this can be refined by dynamically adjusting the time based on the number
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of queries received. This entails that if a certain threshold of queries is reached

before the predetermined time elapses, the query mixer will proceed without delay,

thus augmenting system performance.

• As stipulated in the previous subsection, the absence of a mechanism for users to

authenticate the TEE instance remains a significant concern in the context of TEE

utilization. The absence of authentic TEE verification renders the system ineffective

in safeguarding the privacy and confidentiality of web users.

• The protection of PESE against SCAs is another critical aspect. Notably, CPU

manufacturers often exclude SCAs from their TEE threat models, and numerous

real-world TEE vulnerabilities corroborate this vulnerability. Given our lack of sup-

plementary SCA defenses, it is prudent to acknowledge the susceptibility of our

system to SCA attacks.

• Our current system relies on Rust synchronous operations, but transitioning to

asynchronous operations will yield performance improvements for PESE while con-

currently mitigating system overhead.

Nonetheless, our PESE implementation introduces a distinctive approach to enhance

user privacy and anonymity through TEE utilization, a method that can be further refined

by diligently adhering to the aforementioned steps.
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ABSTRACT
Trusted Execution Environments (TEEs) are a feature of modern
central processing units (CPUs) that aim to provide a high assur-
ance, isolated environment in which to run workloads that demand
both confidentiality and integrity. Hardware and software com-
ponents in the CPU isolate workloads, commonly referred to as
Trusted Applications (TAs), from the main operating system (OS).
This article aims to analyse the TEE ecosystem, determine its usabil-
ity, and suggest improvements where necessary to make adoption
easier.
To better understand TEE usage, we gathered academic and prac-
tical examples from a total of 223 references. We summarise the
literature and provide a publication timeline, along with insights
into the evolution of TEE research and deployment. We categorise
TAs into major groups and analyse the tools available to developers.
Lastly, we evaluate trusted container projects, test performance,
and identify the requirements for migrating applications inside
them.
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1 INTRODUCTION
Often, sensitive data is processed on general-purpose operating
systems (OSs) which are prone to compromise due to the large
number of complex features and services they support. Typically,
when an OS is compromised, the applications and their data are also
compromised [61]. For instance, if an adversary takes control of an
Internet of Things (IoT) device or a cloud instance, the adversary
can also access the processes running there [61, 174].

To help mitigate these risks, modern central processing units
(CPUs) support a mode of operation that isolates the applications
which manage sensitive data from the rest of the system. These
isolated environments generally only support enough functionality
to enable the processing of this sensitive data. This reduced func-
tionality leads to less code, hence, a smaller Trusted Computing
Base (TCB), which in turn enables us to derive trust in those com-
ponents. Thus, these modes are generally referred to as Trusted
Execution Environments (TEEs).

A TEE is a component of the CPU that comprises both hardware
and software features with the aim of ensuring the confidentiality
and integrity of the code and data loaded inside. The code that runs
inside the TEE is often referred to as a Trusted Application (TA),
although it does not have to be a full application in the traditional
sense; it may comprise only the parts of a larger application that
process sensitive data.

The end user of an application or a system is becoming increas-
ingly aware of the need for security, however, they lack the technical
knowledge to make informed decisions. As such, the onus is on the
developers and maintainers of software to make the correct choices
for the user in the most transparent manner possible. For this rea-
son, we take the software developer’s perspective and review TEE
software development kits (SDKs) and trusted containers (tcons) in
order to determine their usability and, consequently, the likelihood
of their adoption by applications. Our research questions (RQs) are:
RQ1.Which use case classification describes TAs?
RQ2.Which SDKs are available for TA development?
RQ3.What types of tcons are available?
RQ4. What are the usability implications of porting existing
applications to tcons?
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Figure 1: TEE literature falls under the categories of review,
framework, container, and application.

TEE implementations are available from a variety of hardware
vendors, including AMD Secure Encrypted Virtualization (SEV),
Intel Software Guard Extensions (SGX), Intel Trusted Domain Ex-
tensions (TDX), ARM TrustZone, and RISC-V Keystone [153]. In
addition to TEEs, there are a number of solutions that utilise trusted
co-processors: AMD Platform Security Processor (PSP), Google Ti-
tan M, and Apple Secure Enclave Processor (SEP) provide many of
the same benefits, however, they are discrete from the main CPU.

Cryptographic primitives are utilised extensively to ensure the
confidentiality and integrity of the TEE/TA throughout its lifecycle.
Attestation of the TEE assures that it is in a known good state before
code is loaded; signed binaries ensure that only approved code is
loaded; encrypted and integrity-checked data protects it from being
read or modified by untrusted parties. All of this is bound to the
CPU which protects it from the main OS, potential attackers, and
also from the user. As surprising as it may sound, the legitimate
user of a system may be considered a potential adversary in certain
cases, for example in the case of Digital Rights Management (DRM)
or selected banking operations where there is the potential for
financial gain by subverting the system’s normal operation.

This separation of TEE and Rich Execution Environment (REE)
allows for more rigorous verification to be applied to the security-
critical parts of a system [8].

The scope of this review is to understand practical TEE deployments.
Figure 1 illustrates our references, categorised and ordered by year.
In cases of multiple references for the same topic, we list the most
peer-reviewed one.

Based on our methodology, we systematically collected 208 of
223 references for this article from 11 March 2022 to 7 June 2022,
and only added 15 references after this date. On 13 February 2023,
we updated preprint papers with published versions for references
that were officially published after our systematic collection of ref-
erences, but we did not search for additional articles published after
that date. Therefore, it is probable that we are missing references
published after May 2022.

Our TEE reference search methodology encompasses both aca-
demic and applied activity. We discover that the publications fit well
under the categories of review, framework, container, and applica-
tion. The selection of these categories is based on the references’
natural fit within them.

We notice that publication velocity increased after 2015. Between
2013 and 2015, there were few publications, but the rate of pub-
lication began rising in 2016. We believe this is likely due to the
introduction of Intel SGX in 2015, which sparked a surge in interest
in TEE-related research. Most ARM TrustZone deployments, which
are the most common commercially available TEEs, are proprietary
and designed for embedded use cases which renders them inacces-
sible to most researchers. 19 of the 20 containers listed in Table 6
support Intel SGX hardware. Moreover, 70 of the 103 applications
listed in Table 4 support SGX. These facts support the argument
that SGX technology is the cause of an increase in publications
after 2015.

The number of publications in 2018 remained almost unchanged
from the previous year. In 2019, the number of publications nearly
doubled and continued to rise in 2020 and 2021. There are more
publications in 2021 than ever before, and we speculate this trend
will continue in the foreseeable future.

In Figure 1, 103 of the 154 academic publications demonstrate
applications. 43 articles cover frameworks and containers. 8 pub-
lications are reviews, including surveys and systematisation of
knowledge.

This provides the motivation for our article: systematisation of
knowledge is required because there are numerous articles but few
reviews. These reviews have a limited perspective, typically cover
only one piece of hardware, and do not seek real-world usage exam-
ples. Our knowledge systematisation assists software developers
and encompasses heterogeneous hardware.

This preliminary categorisation of TEE papers shows how aca-
demic literature focuses on application demonstrations and helps
form a basis for our research questions. It is the initial beginning
of our extensive systematisation of knowledge.

Since our survey comprises of 223 references, we wish to high-
light some of the most essential ones. In Table 1 and Table 2, we
recommend 11 TEE-related articles and 10 repositories, respectively.
We base our suggestions on the number of citations for publica-
tions and the number of stars for repositories, which we collected
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Table 1: Most cited TEE-related articles.

Name Citations Stars Reference

VC3: Trustworthy Data Analytics in the Cloud Using SGX 313 - [170]
Town Crier: An Authenticated Data Feed for Smart Contracts 281 125 [216, 217]
Hypervision Across Worlds: Real-time Kernel Protection
from the ARM TrustZone Secure World

160 - [15]

SCONE: Secure Linux Containers With Intel SGX 123 - [10, 172]
Keystone: An Open Framework for Architecting Trusted
Execution Environments

101 347 [90, 100]

Graphene-SGX: A Practical Library OS for Unmodified Ap-
plications on SGX

72 327 [193, 202]

SGX-Log: Securing System Logs With SGX 68 15 [88, 204]
Komodo: Using Verification to Disentangle Secure-Enclave
Hardware from Software

67 92 [59, 120]

AdAttester: Secure Online Mobile Advertisement Attestation
Using TrustZone

58 - [105]

Sanctum: Minimal Hardware Extensions for Strong Software
Isolation

52 49 + 22 [33, 34, 99]

Teechain: A Secure Payment Network with Asynchronous
Blockchain Access

52 47 [108, 112]

Table 2: Most starred TEE-related repositories.

Name Stars Reference

WebAssembly Micro Runtime 3,425 [22]
MobileCoin 1,102 [129]
Intel Software Guard Extensions for Linux* OS 1,090 [78]
Occlum 1,067 [137, 180]
Teaclave SGX SDK 1,065 [190]
Enarx: Confidential Computing with WebAssembly 1,048 [54]
Asylo 925 [71]
Open Enclave SDK 866 [141]
Teaclave: A Universal Secure Computing Platform 646 [191]
The Confidential Consortium Framework 640 [121]

between 23 January 2023 and 25 January 2023. We collected the
number of citations from the IEEE Xplore1, Springer Link2, and ACM
Digital Library3 databases. This methodology has limitations when
it comes to technical and research papers published elsewhere: the
collection method does not take these publications into account.
Similarly, GitHub4 alone is utilised to determine the number of stars
for each repository.

The chosen articles and repositories give a great overview of
some of the most important real-world TEE use cases.

1.1 Related work
As there is prior work on systematising TEE knowledge, we began
studying publications and resources that organise TEE utilisation.
These data sources cover the following topics.

Software development kits (SDKs). Each CPU vendor has its own
TEE. To assist TA development, there are numerous SDKs to aid
the software developer [110]. Intel SGX SDK [78], OP-TEE [199],
etc. intend to make the development easier.

Trusted containers (tcons). To execute an application within a TEE,
a developer must apply framework-specific modifications to the
original application, which can be a time-consuming operation.

1https://ieeexplore.ieee.org/
2https://link.springer.com/
3https://dl.acm.org/
4https://github.com/

Trusted containers solve this usability issue by allowing direct exe-
cution of unmodified binary code within a TEE, or by performing
automated transformations on source code prior to loading it into
a TEE executable [10]. Certain tcons support multiple hardware
backends, eliminating the need for a software developer to make
hardware design selections at the code level [110]. We utilise the
existing work on tcons by Liu et al. [110] in our categorisations in
Table 5 and Table 6. Their work provides a comprehensive analysis
of 15 existing tcon solutions’ designs and implementations, high-
lighting the most common security pitfalls. We are not evaluating
containers in terms of security, but rather analysing the software
wrapper stack and hardware support of 20 containers. Additionally,
we check which containers are open source and active as of 2022.
We conclude by comparing the active tcons, benchmarking the
performance of various tcons, and discussing the usability of the
tcons from our perspective.

Applications of TEEs. Tamrakar [189] covers several applications of
TEEs, including attestation mechanisms and access control. Our cat-
egorisation of TEE utilisation in Table 4 is not based on said work,
yet we included the applications presented therein. We also used
the study of attestation mechanisms for TEEs by Ménétrey et al.
[117] for systemising knowledge of TEE attestation applications.
Dangwal et al. [39] explore how TEEs can be used in conjunction
with security technologies such as homomorphic encryption and
differential privacy for efficient software-hardware-security code-
sign. They propose that security techniques must be combined in
order to overcome the inherent limitations of existing technologies.

Curated lists of TEE publications. Schiavoni [168] maintains a cu-
rated list of SGX papers while Novella [135] maintains a similar
list for TrustZone publications. Whereas the former aims to list
all peer-reviewed publications regarding SGX, the latter focuses
on attacks against TrustZone-based TEEs and is primarily com-
posed of technical reports, blog postings, and hacking conference
presentations.

TEE hardware security. Zhao et al. [219] systemise knowledge of
hardware security support for TEEs. Schneider et al. [169] present a
systematisation of knowledge pertaining to how various hardware-
based TEE solutions meet the security goals of verifiable launch,
run-time isolation, trusted I/O, and secure storage. This survey
is valuable for understanding how present TEE solution designs
achieve their security goals and how existing knowledge can be
applied to the development of future TEE solutions.

Attacks against TEEs. There are also other surveys on TEEs not
directly relevant to our work. For example, presenting how TEEs
reduce the attack surface but do not eliminate it. Numerous attacks
have been launched against TEE protection mechanisms and TA
implementations [57]. Researchers and practitioners target security
flaws and propose solutions for real-world applications, for example,
Cerdeira et al. [24] and Koutroumpouchos et al. [95] present a se-
curity analysis of popular TrustZone-assisted TEE systems. Akram
et al. [3] present a systematisation of knowledge pertaining existing
TEEs, highlighting common mechanisms of security guarantees,
and offering comparative analyses of different TEE proposals. They
also bring up the current limitations of TEEs for high-performance
computing systems.
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1.2 TEE use cases
A TEE technology provides extra protection for various sensitive
applications. The following are the most prevalent usage scenarios
[189]:

Digital rights management. Copyright holders frequently use TEEs
to prevent consumers from copying video or audio [147]. TEEs
protect digitally encoded media on connected devices, including
smartphones, tablets, and high-definition televisions [11, 53]. Along
with the fact that the TEE and the device’s display are connected
via a protected hardware channel, this prevents the device’s owner
from reading stored secrets.

Online payments. Mobile wallets, peer-to-peer payments, cryptocur-
rency wallets, and the use of a mobile device as a point-of-sale
terminal – all have well-defined security requirements. Blockchain
systems use lightweight clients, which outsource the computational
and storage load over full blockchain nodes [114]. It is possible to
use TEEs to protect the privacy of the light clients without compro-
mising the performance of the assisting full nodes [114]. TEEs can
be used as trusted backend systems to provide the required security
to facilitate financial transactions. This may necessitate the entry
of a PIN, password, or biometric identifier by the user.

Authentication. TEEs are commonly used to implement biometric
identity methods (facial recognition, fingerprint sensor, and voice
authorisation). For instance, Android OS can save fingerprint bio-
metrics in the TEE because it is inaccessible and encrypted from
the ordinary OS environment [84]. Often, biometric identifications
are convenient to use and more difficult to steal than PINs and
passwords. TEEs can be utilised to protect the biometric identi-
fication method. However, increasingly, biometric data is being
stored and verified directly on the sensors and only an attestation
is shared with the TEE. Similarly to biometric identification infor-
mation, cryptographic private keys can also be stored in the TEE.
Combining the biometric identification information and the private
keys allows passwordless authentication standards such as Apple’s
passkeys [7].

Trusted cloud. Typically, when a cloud (the server or the backend)
is compromised, the adversary gains access to the cloud’s processes
and data. TEEs provide protection against compromised infrastruc-
ture: the adversary is unable to access selective parts of the TA,
which safeguards sensitive code and data.

Privacy-preserving data analysis. Machine learning has become an
essential part of data processing in several application domains,
such as healthcare, stock prediction, and artificial intelligence. Some-
times these applications process sensitive data, and to protect said
data, a TEE-based solution can be used to maintain the integrity of
the machine learning process and prevent attacks [32].

Runtime integrity. TEEs can be used for runtime integrity, such as
real-time kernel protection. If an attacker targets kernel binaries,
the security monitoring service can shut down if it is isolated in a
secure environment [15].

Secure modular programming. As it decouples functionalities into
small, self-contained modules, modular programming is an efficient

way to build software architectures for software assets that en-
courages reuse. In this instance, each module contains everything
necessary to perform its intended function, and the TEE permits the
execution of the module while protecting it from the vulnerabilities
of other modules.

2 METHODOLOGY
2.1 Collecting references for the review
We began our search for scientific literature with Google Scholar5,
arXiv open-access archive6, the DBLP computer science bibliography7,
Andor8, ACM Digital Library, and IEEE Xplore using TEE-related
search terms, such as “TEE”, “Trusted Execution Environment”,
“OP-TEE”, “TrustZone”, “(Intel) SGX”, “AMD SEV”, “confidential
computing”, etc. While this paints an overall picture of TEE-related
scholarly work, it does not cover more applied aspects, such as
toolkits and deployments.

To address this gap, we then mined real source code using the
Sourcegraph9 search engine, to find examples of practical TEE
utilisation. Sourcegraph covers GitLab10, GitHub, and BitBucket11,
as well as other public software source repositories. Table 3 details
our search terms regarding Sourcegraph, with examples12. Themost
difficult aspect of the mining process was locating appropriate TEE
applications, development frameworks, and container repositories.
Typically, a keyword search yields thousands of repositories. These
repositories contain OSs and kernels, as well as forks and projects
with work-in-progress status. Furthermore, we specified “code” as
the search type, then sorted and filtered the results to identify the
most relevant ones, then finally, manually examined the results.

We based our selection of important phrases on the constants,
variables, and functions utilised in the source code of each TEE-
based application. The alternativemethod for picking specific search
phrases was to consult the documentation of various TEE-based
frameworks and containers, such as the GlobalPlatform API [68]. It
reveals applications and other frameworks, containers, and repos-
itories. However, this required combing through each repository
manually to obtain the desired results.

2.2 Dimensions for knowledge systematisation
Based on related work and our observations while gathering and
reviewing the publications, we organise the TEE literature and
practical work.

In Section 3 we address RQ1. Our goal is to assist the reader in
comprehending TEEs, how they are utilised, and when, how, and
why they could be used. To accomplish this, we tag the applica-
tions with 92 distinct keywords, which we merge into 21 primary
categories and seven distinct security properties and mechanisms
based on initial similarities. We discover that the primary 21 use
cases for TEEs in application development are data analytics, cloud

5https://scholar.google.com/
6https://arxiv.org/
7https://dblp.org/
8https://andor.tuni.fi/
9https://sourcegraph.com/
10https://gitlab.com/
11https://bitbucket.org/
12https://sourcegraph.com/search?q=context:global+Op-TEE&patternType=literal
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Table 3: Using the Sourcegraph search engine, we compile
real-world applications of TEEs with the provided search
terms.

Search terms Applications Containers Frameworks

SGX_CREATE_ENCLAVE_-
EX_PCL_BIT_IDX

1[182] 1[116] 2[141, 190]

TEEC_InvokeCommand 5[106, 127, 163, 177, 206] 0 1[164]
SGX_CREATE_ENCLAVE_EX_-
SWITCHLESS

3[28, 93, 176] 0 2[136, 142]

TEEC_MEMREF_TEMP_-
OUTPUT

3[36, 128, 157] 0 0

sgx_enclave_id_t 2[22, 129] 1[137] 1[71]
TEEC_RegisterSharedMemory 0 0 1[140, 200]
enarx 2[55, 56] 0 0
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Figure 2: We define which classification aggregates the usage
examples after reviewing the TEE example applications. Only
themost significant relationships between the categories and
the security properties and mechanisms are depicted.

computing, access control, data protection, online payments, memory
protection, attestation tools, secure storage, network security, secure
channels, content sharing, secure code offloading, smart contracts,
computer games, hardware accelerators, formal methods, medical
data, secure system logging, web search, data trading, and digital
contracts. Additionally, we discover that the main security proper-
ties and mechanisms related to the use cases are privacy, integrity,
confidentiality, cryptography, attestation, blockchain, and decentrali-
sation. This is the classification we utilise while reviewing existing
TA demonstrations and practical implementations. Figure 2 illus-
trates our categorisation of the key use cases and the related security
properties and mechanisms. Only the strongest relationships are
shown in the figure. The size of a category, security property, or
mechanism approximately corresponds to its prevalence in existing
implementations. Table 4 shows which applications are related to
each primary category.

In Section 4 we address RQ2. We compare the software frameworks
targeting developers. It is difficult to compare TEE software devel-
opment tools due to a lack of similar work and public information
about their features. Hence, we compile Table 5 detailing the avail-
able tools, their supported programming languages, their software
licences, the hardware architecture they support, and whether or
not they are actively developed as of 2022.

In Section 5 we address RQ3. We organise the tcons for the devel-
opers. Again, it is difficult to directly compare tcon tools due to
the absence of shared and unique characteristics. In addition, some
containers are not actively developed, while others, such as the
Enarx container [54], are updated every month with new features.
In response, we compile Table 6, which details the available tools,
interfaces, software licences, activity of the container project as of
2022, and hardware supported by each tcon.

In Section 6 we address RQ4. We compare the actively developed
containers. Additionally, we present Figure 3, which exemplifies a
required tcon-specific modification to existing code, demonstrating
how challenging it can be to use tcons. Finally, we benchmark the
performance of an existing test application using various tcons and
present the findings in Table 7.

2.3 Limitations and bias
Lack of documentation of closed-source systems. Companies that
own proprietary solutions utilising TEEs typically withhold infor-
mation about their systems from the public. Therefore, it is diffi-
cult to find detailed information regarding closed-source solutions
that employ TEEs. Because of this, the data we gathered might
be biased towards open-source software and might not show the
whole picture of reality. For example, there may be several more
closed-source applications and development frameworks for ARM
TrustZone than we present in this paper.

Lack of citation data. Certain venues or sources do not disclose the
number of citations. This imposes restrictions on which technical
and research papers can be listed in Table 1.

Date of initial release. It is often difficult to discover when a specific
application, framework, or container was first released. Due to this,
the publication year information in Figure 1 may not be entirely
accurate.

Manual keyword search. The likelihood of omitting relevant reposi-
tories is the most significant shortcoming of a manual search. Al-
though using Sourcegraph as a repository search engine simplifies
the search process, it also generates a large number of irrelevant
results. There is a chance of missing other applications, develop-
ment frameworks, and containers that employ different keywords
not on our list.

3 APPLICATION SCENARIOS FOR TEE
RQ1: Which use case classification describes TAs?

The TEE isolates and protects the TA code and data in terms of
confidentiality and integrity. While we may be unaware, there are
a large number of gadgets around us, most notably smartphones,
set-top boxes, videogame consoles, and Smart TVs, that utilise a
TEE. The number of gadgets utilising a TEE that are designed
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for many different purposes results in a wide range of use cases.
These use cases vary from everyday user applications to backend
services, such as mobile financial services and cloud services [189].
To address RQ1, Table 4 combines TEE application scenarios based
on our categorisation.

We gathered a total of 103 application use cases. The categories
and the number of references corresponding to each category are
the following: Data analytics (18), Cloud computing (14), Access
control (14), Data protection (10), Online payments (8), Memory pro-
tection (8), Attestation tools (7), Secure storage (7), Network security
(7), Secure channels (7), Content sharing (7), Secure code offloading
(7), Smart contracts (5), Computer games (4), Hardware accelerators
(4), Formal methods (3), Medical data (3), Secure system logging (2),
Web search (2), Data trading (1), and Digital contracts (1).

According to Table 4, the vast majority of TEE applications op-
erate on Intel SGX, ARM TrustZone, or both. Only a minority of
applications operate on other platforms such as AMD SEV, RISC-V,
or GPU TEEs. While most of the references we collected fit within
the 21 categories outlined in Section 2, five applications did not fit
into any of these categories.

On this basis, the majority of TEE applications aim to provide
privacy-preserving data analysis (including machine learning ap-
plications). Cloud computing is frequently associated with machine
learning applications and is the second-largest TEE usage category
in our listing. Application domains surrounding access control,
data protection, online payments, and memory protection are also
among the most common use cases for TEEs. Albeit noticeably less
prevalent than the use cases previously stated, attestation tools,
secure storage, network security, secure channels, content sharing,
and secure code offloading are all prominent use cases as well with
seven references each. Smart contracts, computer games, hardware
accelerators, formal methods, and medical data are also fairly preva-
lent use cases, with three to five references each. The remaining
categories represent highly specific TEE use cases with few existing
applications. Examples include web search data protection, digital
contract signing, and secure system logging.

The number of applications utilising TEEs has steadily increased
since 2015. 52 of the 103 references we collected are from 2020
or after, and 48 applications have been deployed to actual users,
according to our study. 40 of these 48 applications deployed to actual
users are licenced under an open-source licence. Notably, despite
this, a large number of proprietary applications with closed-source
licences comparable to the Widevine DRM component [147] utilise
TEEs. Typically, these proprietary applications are not accompanied
by any public documentation or scholarly studies, hence they are
largely absent from our work.

4 TOOLS FOR DEVELOPING TEE SOFTWARE
RQ2: Which SDKs are available for TA development?

Numerous middleware frameworks are available to assist devel-
opers with TEE development, deployment, and maintenance. To
address RQ2, Table 5 combines tools for developing TEE software.
In Table 5, we highlight open-source SDKs that are currently be-
ing actively developed. Four of the open-source frameworks, such
as Webinos [212], are deprecated and no longer under active de-
velopment. Although there are minor updates, Open-TEE [115] is

no longer undergoing substantial development. For our purposes,
we consider a project active if there are software updates in 2022,
which we assessed on 6 November 2022.

There is a wide selection of frameworks available to software
developers for a variety of hardware architectures. The frame-
works mentioned are available as open-source software or as brand-
focused commercial solutions from various manufacturers, such as
the Samsung Knox SDK for Samsung Android devices [162]. 11 of
the 23 referred frameworks support Intel SGX, while 13 frameworks
support ARM TrustZone, as Table 5 shows. Notably, 21 of the 23
referred frameworks support either Intel SGX or ARM TrustZone,
or both.

We researched and compiled a list of supported software lan-
guages for active SDK projects. We obtained this information from
the SDKs’ documentation and examples. This is a limitation, as
we can only include supported language information from doc-
umented open-source SDKs; thus, these SDKs might have wider
non-documented language support. We found that the main lan-
guages supported by active SDKs are C and C++. 12 SDKs support
at least one of these two languages. Four of them also work with
Rust, four work with Java, one supports Go (Edgeless RT), and one
supports JavaScript (Confidential Consortium).

The frameworks serve a variety of practical purposes in order to
facilitate development efforts. Several frameworks focus on mobile
devices and wearables, where the intent is to provide ready-made
APIs to support application development [161, 162, 165]. The frame-
work references are also focused on IoT devices or web applications,
but due to the wide range of programming language support, the
frameworks cover also many other areas [121, 133, 201, 212]. Some
of the frameworks are focused on or support very niche areas,
like Trustonic’s Kinibi-520a SDK [73], where Symmetric-Multi-
Processing enables the development of biometric functions like
fingerprint scanning and face recognition.

The choice of development framework by the developer is usually
severely constrained by the hardware architecture. For example,
developers of mobile applications can only use options that are
compatible with ARM TrustZone. We find that open-source devel-
opment frameworks, such as OP-TEE [199], Open Enclave SDK
[141], Teaclave TrustZone SDK [192], and Trusty TEE [5] support
TrustZone at least in some capacity and are still actively maintained.
These frameworks may provide open-source alternatives for mo-
bile application developers, who have traditionally been limited to
proprietary closed-source frameworks, such as the Samsung Knox
SDK [162] or Trustonic’s TEE SDKs [73, 200, 201]. Nevertheless,
many open-source frameworks only support specific platforms, so
proprietary SDKs may remain the only option for developers on
unsupported platforms.

5 TRUSTED CONTAINERS (TCONS)
RQ3: What types of tcons are available?

For an application to function on any TEE technology, the devel-
opment process must follow framework-specific design solutions.
This makes the procedure difficult and time-intensive for applica-
tion developers. In addition, a developer must implement attestation
to trust the application. To address the usability issue with different
TEE technologies, a set of tcons enables either the direct execution
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Table 4: We classified TEE application scenarios into 21 groups.
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2015

AdAttester: Secure Online Mobile Advertisement Attestation Using TrustZone [105] ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
SeCReT: Secure Channel between Rich Execution Environment and TEE [81] ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
TrustOTP: Transforming Smartphones into Secure One-Time Password Tokens [186] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •
Using TEEs in Two-factor Authentication: comparing approaches [207] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
VC3: Trustworthy Data Analytics in the Cloud Using SGX [170] • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦

2016

A Case for Protecting Computer Games With SGX [17] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
Oblivious Multi-Party Machine Learning on Trusted Processors [139] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
Screen after Previous Screens: Spatial-Temporal Recreation of Android App Displays from Memory Images [36, 159] ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • •
Secure Content-Based Routing Using Intel Software Guard Extensions [148, 150] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
Town Crier: An Authenticated Data Feed for Smart Contracts [216, 217] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •

2017

A Formal Foundation for Secure Remote Execution of Enclaves [185] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦
Enhancing Security and Privacy of Tor’s Ecosystem by Using TEEs [86, 92] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
Establishing Mutually Trusted Channels for Remote Sensing Devices with TEEs [181] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
IRON: Functional Encryption using Intel SGX [60] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
Komodo: Using verification to disentangle secure-enclave hardware from software [59, 120] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • •
MIPE: a practical memory integrity protection method in a TEE [27] ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
Private Contact Discovery Service [182] ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
Securing Data Analytics on SGX with Randomization [25, 26] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
SGX-BigMatrix: A Practical Encrypted Data Analytic Framework With Trusted Processors [179] • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
SGX-Log: Securing System Logs With SGX [88, 204] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • •
TrustJS: Trusted Client-side Execution of JavaScript [70] ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦

2018

CYCLOSA: Decentralizing Private Web Search through SGX-Based Browser Extensions [149] ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦
DelegaTEE: Brokered Delegation Using TEEs [113] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
Graviton: TEEs on GPUs [208] ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦
LibSEAL: revealing service integrity violations using trusted execution [14, 97] ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
Obscuro: A Bitcoin Mixer using TEEs [18, 197] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
PubSub-SGX: Exploiting TEEs for Privacy-Preserving Publish/Subscribe Systems [9, 175] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
SafeBricks: Shielding Network Functions in the Cloud [151, 222] ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
SafeKeeper: Protecting Web Passwords using TEEs [96, 158] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
TizenFX [163] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • •

2019

BITE: Bitcoin Lightweight Client Privacy using Trusted Execution [114] ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
Clemmys: towards secure remote execution in FaaS [194] ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
Forward and Backward Private Searchable Encryption with SGX [4] ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
Fuzzing OP-TEE with AFL [19, 157] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • •
Heterogeneous Isolated Execution for Commodity GPUs [80] ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ •
LightBox: Full-stack Protected Stateful Middlebox at Lightning Speed [49, 210] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
NeXUS: Practical and Secure Access Control on Untrusted Storage Platforms using Client-Side SGX [44, 45] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
OPERA: Open Remote Attestation for Intel’s Secure Enclaves [30] ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
OP-TEE based keymaster and gatekeeper HIDL HAL [106] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • •
PrivaTube: Privacy-Preserving Edge-Assisted Video Streaming [183] ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
SDK for the Valve Steam Link [206] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • •
SecTEE: A Software-based Approach to Secure Enclave Architecture Using TEE [221] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
ShieldStore: Shielded In-memory Key-value Storage with SGX [93, 94] ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware [195, 196] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
StreamBox-TZ: Secure Stream Analytics at the Edge with TrustZone [145] • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
Teechain: a secure payment network with asynchronous blockchain access [107, 108, 112] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
TIMBER-V: Tag-Isolated Memory Bringing Fine-grained Enclaves to RISC-V [160, 213] ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
Trust more, serverless [21] ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
Using TEEs for Secure Stream Processing of Medical Data [174] ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
WebAssembly Micro Runtime (WAMR) [22] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
ZLiTE: Lightweight Clients for Shielded Zcash Transactions Using Trusted Execution [214] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦

2020
BDTF: A Blockchain-Based Data Trading Framework with TEE [184] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦
BlackMirror: Preventing Wallhacks in 3D Online FPS Games [146] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
Custos: Practical Tamper-Evident Auditing of Operating Systems Using Trusted Execution [144] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
CVShield: Guarding Sensor Data in Connected Vehicle with TEE [74] ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
DarkneTZ: towards model privacy at the edge using TEEs [126, 127] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
Design and Implementation of Hardware-Based Remote Attestation for a Secure Internet of Things [2] ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
Enabling Rack-scale Confidential Computing using Heterogeneous TEE [223] ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ •
Fine-Grained Access Control-Enabled Logging Method on ARM TrustZone [101] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
GOAT: GPU Outsourcing of Deep Learning Training With Async. Probabilistic Integrity Verification [12] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
Keybuster [177, 178] ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • •
MobileCoin: Private payments for mobile devices [129, 134] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
Privacy-preserving Payment Channel Networks using TEE [104] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
ProximiTEE: Hardened SGX Attestation by Proximity Verification [42] ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
Reboot-Oriented IoT: Life Cycle Management in TEE for Disposable IoT devices [188] ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
SafeTrace: COVID-19 Self-reporting with Privacy [173] • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
Secure Cloud Storage with Client-side Encryption using a TEE [37] ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
secureTF: A Secure TensorFlow Framework [155] • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
SeGShare: Secure Group File Sharing in the Cloud using Enclaves [63] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
SENG, the SGX-Enforcing Network Gateway: Authorizing Communication from Shielded Clients [171, 176] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
Tabellion: secure legal contracts on mobile devices [124] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ •
Telekine: Secure Computing with Cloud GPUs [76] • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦
Towards Formalization of Enhanced Privacy ID (EPID)-based Remote Attestation in Intel SGX [167] ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
TZ4Fabric: Executing Smart Contracts with ARM TrustZone [131, 132] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • •
TZ-MRAS: A Remote Attestation Scheme for the Mobile Terminal Based on ARM TrustZone [211] ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
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Atlas: Automated Scale-out of Trust-Oblivious Systems to TEEs [13, 66] ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
Bringing Decentralized Search to Decentralized Services [103] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • •
Building Enclave-Native Storage Engines for Practical Encrypted Databases [187] ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
CURE: A Security Architecture with CUstomizable and Resilient Enclaves [16] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ •
Distributed Learning in TEE: A Case Study of Federated Learning in SGX [215] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
Enarx Shim SGX [55] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
Formal Verification of a TEE-Based Architecture for IoT Applications [205] ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
IceClave: A TEE for In-Storage Computing [87] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
IvyCross: A Trustworthy and Privacy-preserving Framework for Blockchain Interoperability [102] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
MeetGo: A TEE for Remote Applications on FPGA [138] • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
Memory-Efficient Deep Learning Inference in TEEs [198] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
Poster: FLATEE: Federated Learning Across TEEs [130] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
PPFL: privacy-preserving federated learning with TEEs [125, 128] • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
Privacy-preserving genotype imputation in a TEE [46, 47] ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ •
S2Dedup: SGX-enabled secure deduplication [122, 123] ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
Scalable Memory Protection in the PENGLAI Enclave [58, 79] ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
ShuffleFL: gradient-preserving federated learning using TEE [218] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
TEEKAP: Self-Expiring Data Capsule using TEE [64, 65] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
Tora: A Trusted Blockchain Oracle Based on a Decentralized TEE Network [31, 85] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
TrustZone-based secure lightweight wallet for hyperledger fabric [38] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
TZ-Container: protecting container from untrusted OS with ARM TrustZone [75] ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
TZMon: Improving mobile game security with ARM TrustZone [82, 83] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • •
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Exploring Widevine for Fun and Profit [147] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •
MAGE: Mutual Attestation for a Group of Enclaves without Trusted Third Parties [28, 29] ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •
MMLedger: A ledger for confidential computing shims for tracking memory management system calls [56] ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • •
OLIVE: Oblivious and Differentially Private Federated Learning on TEE [89] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
Supporting Passkeys [7] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
Toward a Secure, Rich, and Fair Query Service for Light Clients on Public Blockchains [23] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
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Table 5: TEE software development tools and language sup-
port (•=Yes, ◦=No, •=Not mentioned).

Framework C C
++

Java
G
o

R
ust

JavaScript
IntelSG

X
A
M
D
SEV

A
R
M

TrustZone
R
ISC

-V
A
ctive

(2022)
O
pen

source

Asylo [71] • • • • • • • • ◦ ◦ • •
Confidential Consortium [121] • • • • • • • ◦ ◦ ◦ • •
Edgeless RT [50] • • • • • • • ◦ ◦ ◦ • •
Intel SGX SDK [78] • • • • • • • ◦ ◦ ◦ • •
Keystone [90, 100] • • • • • • ◦ ◦ ◦ • • •
Occlum’s fork of Intel SGX SDK [136] • • • • • • • ◦ ◦ ◦ • •
Open-TEE [115] • • • • • • • • • ◦ • •
OP-TEE [140, 199] • • • • • • ◦ ◦ • ◦ • •
Open Enclave SDK [141] • • • • • • • ◦ • ◦ • •
QSEE SDK [48, 72, 91] • • • • • • ◦ ◦ • ◦ ◦ ◦
Samsung Knox SDK [162] • • • • • • ◦ ◦ • ◦ • ◦
Samsung Knox Tizen SDK [165] • • • • • • ◦ ◦ • ◦ • ◦
Samsung mTower [164] • • • • • • ◦ ◦ • ◦ • •
Samsung TEEGRIS SDK [161] • • • • • • ◦ ◦ • ◦ • ◦
Sanctuary [20, 166] • • • • • • ◦ ◦ • ◦ • ◦
Sanctum [33, 34, 99] • • • • • • ◦ ◦ ◦ • ◦ •
SecGear [142] • • • • • • • ◦ ◦ ◦ • •
Teaclave SGX SDK [190] • • • • • • • ◦ ◦ ◦ • •
Teaclave TrustZone SDK [192] • • • • • • ◦ ◦ • ◦ • •
TEEKAP [64] • • • • • • • ◦ ◦ ◦ ◦ •
Trustonic TEE SDKs [73, 200, 201] • • • • • • ◦ ◦ • ◦ ◦ ◦
Trusty TEE [5] • • • • • • • ◦ • ◦ • •
Webinos [133, 212] • • • • • • ◦ ◦ • ◦ ◦ •

of unmodified binary code inside a TEE or automatic transforma-
tion of source code prior to loading it into a TEE executable [110].
In order to address RQ3, Table 6 enumerates tcons.

We collected 20 distinct containers, identified the supported
hardware and application middleware interfaces, and determined
whether or not the project is open source and active.

17 of the 20 referred tcons are open-source software. If there
are software updates in 2022, we consider the tcon project to be
active. We evaluated this on 13 October 2022. The open-source
tcons saw development activity in the following years: MesaPy
(2018); AccTEE (2020); Deflection, GoTEE, Ratel, Ryoan, SGX-LKL,
Twine (2021); vSGX, Enarx, Apache Teaclave, EGo SDK, Fortanix
EDP, Gramine, Mystikos, and Occlum (2022). Accordingly, there
are eight active tcon projects.

We discover that 19 of the 20 tcons support Intel SGX and only
three support AMD SEV. In addition, we find no tcons that support
TrustZone TEE technology, confiningmobile application developers
to SDKs. A recent trend seems to be containers that support multiple
hardware architectures. The objective is to allow developers to
adapt the same program to many platforms without having to
alter the source code. Enarx [54] is a good example of such a tcon.
Recently published vSGX [220] supports directly running SGX-
enabled applications inside AMD SEV.

A system call is an interface between software and the OS
through which applications can request services from the OS. Since
Intel SGX restricts applications from making system calls, unmodi-
fied applications cannot be executed within an enclave.

Table 6: Trusted containers.

Container libc
w
rapper

LibO
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IntelSG
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ctive

(2022)
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AccTEE [43, 69] ◦ ◦ • • ◦ ◦ •
Anjuna [6] ◦ • ◦ • • ◦ ◦
Apache Teaclave [191] ◦ ◦ • • ◦ • •
Chancel [1] • ◦ ◦ • ◦ ◦ ◦
Decentriq [40] ◦ • ◦ • ◦ ◦ ◦
Deflection [109, 111] • ◦ ◦ • ◦ ◦ •
EGo SDK [51] • ◦ ◦ • ◦ • •
Enarx [54] ◦ ◦ • • • • •
Fortanix EDP [62] ◦ • ◦ • ◦ • •
GOTEE [67, 203] ◦ ◦ ◦ • ◦ ◦ •
Gramine [193, 202] ◦ • ◦ • ◦ • •
MesaPy [119, 209] ◦ ◦ ◦ • ◦ ◦ •
Mystikos [41] ◦ • ◦ • ◦ • •
Occlum [137, 180] ◦ • ◦ • ◦ • •
Ratel [35, 156] • ◦ ◦ • ◦ ◦ •
Ryoan [77, 143] • ◦ ◦ • ◦ ◦ •
SCONE [10, 172] • ◦ ◦ • ◦ • •
SGX-LKL [98, 154] ◦ • ◦ • ◦ ◦ •
Twine [116, 118] ◦ ◦ • • ◦ ◦ •
vSGX [220] ◦ ◦ ◦ ◦ • • •

Seven tcons utilise library OS (LibOS): the missing OS interface
that either natively or transparently relays in-enclave system calls
to the OS outside the enclave. The LibOS concept predates TEE
technologies by at least a decade, motivated by applications in the
embedded space due to severe resource constraints [152]. LibOS is
an approach to operating system design and implementation where
the traditional functionality of an OS is provided by a set of libraries.
These libraries are linked directly into the application to create a
single address space executable. By encapsulating the operating
system functionality within libraries, it becomes easier to define and
enforce boundaries between different components, while reducing
the TCB. This enables developers to implement security policies at
the application level, restricting access to sensitive resources, and
preventing unauthorised access to data or interference with other
processes. In addition, because the OS primitives are included in
the application, this removes the need to invoke system calls and
hence, reduces the context switches between user space and kernel
space, thus improving performance.

All of this makes LibOS an ideal candidate for use in a TEE, either
as a set of standalone applications or as a wrapper around existing
applications to reduce the porting effort, e.g., by intercepting system
calls from the application and replacing them with LibOS-specific
ones.

Six of the 20 tcons utilise wrappers around the C standard library
(libc) as an application middleware interface. Executing a system
call with libc wrappers, such as EGo SDK, is equivalent to requesting
the untrusted OS to perform the corresponding operations outside
of the enclave.
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The WebAssembly System Interface (WASI) works in a similar
fashion and restricts system calls. It provides a runtime for We-
bAssembly (WASM) binary execution within a TEE [110]. Of the
referred 20 tcons, four utilise WASI: AccTEE, Apache Teaclave,
Enarx, and Twine execute WASM binaries within a TEE.

From 13 October 2022 to 22 November 2022, we collected and
compared the number of Linux system calls against the number of
implemented system calls in Gramine, Occlum, Mystikos, Enarx,
and Fortanix EDP. For reference, the Linux kernel has a total of 451
system calls, including outdated system calls13.

Gramine implements 166 system calls14. Occlum has 159 imple-
mented system calls15. Mystikos implements 102 system calls16.
Enarx implements the sallyport17 proxying service for service calls
and executes WASM binary within a TEE Keep. The sallyport proto-
col implements 31 system calls from a Keep to the host18. Fortanix
EDP – specifically, its user-call API – implements 16 system calls19,
purposefully kept simple to facilitate security audits.

From a security point of view, these tcons increase the TCB.
However, if we examine a realistic TA application like machine
learning with Python, it has very few system interactions. The
developer chooses between implementing the whole software stack
from scratch with some SDK or using a tcon; both options have
pros and cons.

6 TESTING TCONS
RQ4: What are the usability implications of porting existing applica-
tions to tcons?

We compare tcons that are actively in development. A project is
deemed active if software updates are released in 2022. Based on
the comparison, we deploy and run a benchmark application within
the suitable tcons. Realistically, a software developer would choose
between the eight active tcon projects based on the functionality
they provide.

6.1 Are tcons easy to use?
The trusted containers that use WASM (and Wasmtime) promote
the phrase “put your app in a container”. When we tested this,
we discovered restrictions imposed by WASM that contradict this
statement.

While testingWASM containers such as Enarx, we discovered the
following obstacles: (1) The selected programming language needs
to have native support for WASM development – for instance, Rust.
(2) Even with a properly chosen programming language, routine
standard library operations like threading and networking may
require a redesign of the application. (3) As a result, the majority of
Rust’s libraries are inoperable by default because they depend on
standard libraries. For example, a programmer cannot use existing
HTTP libraries to execute an HTTP GET request. (4) Instead, low-
level code may be a requirement for even a simple task where you

13https://github.com/torvalds/linux/blob/master/include/uapi/asm-generic/unistd.h
14https://github.com/gramineproject/gramine/blob/master/libos/include/libos_table.
h
15https://github.com/occlum/occlum/blob/master/src/libos/src/syscall/mod.rs
16https://github.com/deislabs/mystikos/blob/main/kernel/syscall.c
17https://github.com/enarx-archive/sallyport
18https://github.com/enarx/enarx/blob/main/crates/sallyport/src/host/syscall.rs
19https://edp.fortanix.com/docs/api/fortanix_sgx_abi/struct.Usercalls.html

21 #[tokio::main(flavor = "current_thread")]

22 async fn main() -> io::Result<()> {

23 let listener = {

24 cfg_if::cfg_if! {

25 if #[cfg(not(target_os = "wasi"))] { // Non-WASI

26 // Create the listening socket

27 TcpListener::bind("127.0.0.1:12345").await?

28 } else { // WASI-specific workaround

29 // Enarx.toml defines pre-established socket

30 let stdlistener = unsafe {

31 std::net::TcpListener::from_raw_fd(3)

32 };

33 stdlistener.set_nonblocking(true).unwrap();

34 TcpListener::from_std(stdlistener)?

35 }

36 }

37 };

Figure 3: This snippet of a TCP proxy application demon-
stratesWASMand tcon-specificmodifications regarding sock-
ets and threading. Line 31 catches the pre-opened socket.

would normally just use one line to call a library. (5) A programmer
eventually needs to add .cargo/config configurations, macros, and
dependencies that are unique to WASM. (6) Development requires
mappings between software code and the tcon, for example, pre-
opened sockets need to be defined in the Enarx.toml configuration
file.

In certain situations, standard libraries need to be replaced with
alternatives that support WASM. For instance, Tokio20 is an event-
driven, non-blocking I/O platform for developing asynchronous
Rust applications, with unstable support for some extra WASM
features. However, not all methods are available. For example, new
sockets cannot be created from within WASM. Instead, the code
must catch the sockets that the tcon creates, as demonstrated by
Figure 3.

As a test, we rewrote a TCP proxy application using Tokio with
unstable WASM support. In the code, we define WASM build sec-
tions with macros and use them to catch the pre-opened sockets.
We utilise the “current_thread” macro for threads instead of using a
thread pool. Until Wasmtime supports a large number of standard
library requirements, it is difficult to simply “put your app in a
container”.

Using LibOS-based tcons, such as Gramine, Mystikos, and Oc-
clum, we were able to launch diverse applications without modi-
fications. Therefore, it is easier to utilise LibOS-based tcons than
those that require WASM.

6.2 Performance of tcons
We test the general-purpose containers Enarx, Gramine, Mystikos,
and Occlum to benchmark and execute a Rust application. We select
these tcons because they are actively developed, can execute Rust
applications, and support Intel SGX. As a comparison, we execute
the WASM binary without a secure enclave using Wasmtime. As
a second comparison, we test Enarx using AMD SEV hardware
instead of Intel SGX hardware.

We forked a paper-based backup scheme application21 that gen-
erates encrypted backups and splits the secret key into multiple key
20https://tokio.rs/
21https://github.com/cyphar/paperback
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shards that can be held independently by different users (Shamir’s
Secret Sharing). We select this application because it is utilised in
the real world, is built in Rust, and Rust supports WASM builds.
Due to the file interface constraints of tcons, we hard-coded the
values in order to test the application.

Table 7: Average application runtimes using Enarx, Gramine,
Mystikos, and Occlum. In addition, runtime without TEE as
a comparison.

TEE hardware Software CPU cycles App. Runtime (s)

Without TEE Wasmtime 729,059,936 0.81

AMD SEV Enarx 1,772,958,278 0.42

Enarx 8,599,566,984 0.39
Intel SGX Gramine 1,003,098,599 0.55

Mystikos 1,380,584,095 0.37
Occlum 11,702,240,620 2.34

The time to load a container varies greatly, however, we did not
compare this metric because it depends on whether the container
performs the attestation process. In order to enable attestation,
we set up an entire Intel Software Guard Extensions Data Center
Attestation Primitives (Intel SGX DCAP)22.

We measured the real execution time of the application: the main
function prints out the duration of the entire code execution. The
variance was very low, so the average of 100 samples accurately
reflects the execution time and the number of CPU cycles. Notice
that CPU cycles take into account the full launch of the tcon and
execution of the application, but for the time we measured only
the execution time of the application inside the tcon. This means
that the number of runtime seconds does not necessarily correlate
with the number of CPU cycles. We repeated the Intel SGX tests
and Wasmtime tests in the same environment. Unexpectedly, code
execution on Occlum takes 2.34 seconds, whereas on Enarx it takes
0.39 seconds while utilising the same WASM binary. There is no
obvious reason why Occlum execution is significantly slower. In
comparison, without the enclave, the execution time is 0.81 seconds,
which is noticeably longer than the Enarx execution time. We used
the same build, wasm32-wasi target file, for both execution with
Enarx and Wasmtime, yet Enarx is faster, so we suspect that its
WASM runtime is lightweight. With Enarx, the application runtime
is similar to that on AMD SEV and Intel SGX hardware, but the
number of CPU cycles greatly differs. The number of CPU cycles
is not comparable in this case because these are different pieces of
hardware. As a result, as expected, using a tcon adds overhead to
the execution and, when compared to Wasmtime, requires more
CPU cycles.

7 CONCLUSION
This article organises TEE applications, frameworks, containers,
and reviews in order to determine historic use and usability factors.
Our key conclusions are as follows:
22https://www.intel.com/content/www/us/en/developer/articles/guide/intel-
software-guard-extensions-data-center-attestation-primitives-quick-install-
guide.html

Open-source TEE SDKs help TA creation. Typically, a developer must
make laborious framework-specific modifications to the original
application in order for it to run within a TEE. We listed 23 SDKs
available to aid developers with TEE deployment, out of which 17
are open-source software.

Open-source tcons are gaining popularity. A trusted container (tcon)
solves the usability issue raised in the previous paragraph by en-
abling either the direct execution of unmodified binary code within
a TEE or the automatic transformation of source code prior to
loading a TEE executable. We provided a list of 20 tcons that elimi-
nate the need for software developers to use specific SDKs to write
TEE-related code, out of which 17 are open-source software.

Current tcons are not as easy to use as advertised. Our experiments
indicate that tcons are not as simple to utilise as advertised. Partic-
ularly WASM-based tcons impose strict limitations, necessitating a
rewrite of the software’s source code and the creation of separate
configuration files. In addition, the application must be written in
a language that supports WASM natively.

We benchmarked tcons. We benchmarked Enarx, Gramine, Mys-
tikos, and Occlum tcons with the Intel SGX backend. As a compari-
son, we also ran a WASM binary without a TEE using Wasmtime
and Enarx with an AMD SEV backend. Using the identical WASM
binary, code execution varied from 2.34 seconds with Occlum to
0.39 seconds with Enarx. According to the measurements, tcons
add overhead to the execution and need 1.4 to 16 times more CPU
cycles than Wasmtime.

Intel SGX and ARM TrustZone are the most researched. Most of the
publications demonstrate application use cases, and Intel SGX is
the most popular hardware for applications. In fact, 93 out of 103
TEE applications utilise either Intel SGX, ARM TrustZone, or both.
Only a small number of applications can run on other platforms
such as AMD SEV, RISC-V, or GPU TEEs.

Current tcons support primarily Intel SGX or AMD SEV. The choice
of SDK and tcon by the developer is severely constrained by the
hardware architecture. For instance, mobile application developers
are restricted to options that are compatible with ARM TrustZone,
which means there are no tcons available and a limited number
of SDKs to choose from, the majority of which are closed-source
frameworks. Some recent tcons, such as Enarx [54] and vSGX [220],
enable the execution of the same application within TEEs based
on multiple hardware architectures without requiring source code
modifications (in theory). Typically, though, tcons only support
Intel SGX, AMD SEV, or both.

Data analytics is the most common application category for open-
source TAs. Additionally, we examined the primary elements of
the execution and the data people attempt to secure with their
TAs. We gathered a total of 103 application use cases in Table 4.
Data analytics (18 references), Cloud computing (14 references),
and Access control (14 references) are the most common of the 21
primary drivers to use TEE.

RISC-V, Sanctum, and Keystone. According to academic references,
RISC-V TEE technologies are interesting, but few publications are
available about them. The scientific community is ideally suited



SoK: A Systematic Review of TEE Usage ARES 2023, August 29–September 01, 2023, Benevento, Italy

to pursue the objective of open-source hardware, which is unde-
niably a concrete development step. The objective is to create a
secure and trustworthy hardware-backed enclave for RISC-V. Sanc-
tum [34] and Keystone [100] are seminal steps in this direction,
yet we are unaware of any deployments. This lack of mainstream
hardware inhibits the growth of the surrounding software ecosys-
tem, somewhat analogous to TrustZone-based TEE technologies,
such as On-board Credentials (ObC) [52] in the 2000s: it is clear
that ObC predates unified TEE software architectures, such as the
GlobalPlatform API [68], yet such standardisation and unification
efforts arguably emerged too late to prevent fragmentation of the
software ecosystem. In summary, as a community, we should steer
TA software development in a consistent and narrow fashion, and
to achieve this, we need mainstream hardware available with TEE-
relevant hardware-assisted security features that are open source
and accessible to developers.

8 FUTUREWORK
RISC-V and applying lessons learned. Several factors have nega-
tively influenced the adoption of TEEs in the past. Moreover, we
identified a key research topic based on the analysis of real-world
threats and effective mitigation techniques that are most relevant
for TEE implementations. With RISC-V as an emerging technology,
the standardisation of TEE mechanisms for RISC-V is an excellent
opportunity to not only apply valuable lessons learned but to drive
the development toward a secure and useable TEE.
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A.1 PESE CODE

1 //**** Libraries Declaration ****//

2 use rand::Rng;

3 use sha2 ::{ Digest , Sha512 };

4 use std::io::{Write , BufReader , BufRead };

5 use std::net:: TcpStream;

6 use std::time ::{ SystemTime , UNIX_EPOCH };

7

8 // Lightweigh http client for basic http client features

9 use mini_http;

10 use mini_http ::{ Request , Server };

11

12 //For Lazy Evaluation Statics: create Static in runtime

13 use lazy_static :: lazy_static;

14

15 //For Providing Hashing Algorithm

16 use std:: collections :: HashMap;

17

18 //For Protecting Shared Data: Helpful in blocking threads

19 //and wait for the mutex locks to become available

20 use std::sync:: Mutex;

21

22 // Application keeps many large HTML pages in RAM memory.

23 // Reduce the memory usage by compressing the text HTML pages.

24 use compressed_string :: ComprString;

25

26 //*****************************//

27

28

29 // Search point address and port for non -wasm ’cargo run ’

30 const ADDRESS: &str = "46.19.38.63"; // IP Address declaration

Ahmia.fi

31 const DELAY: u64 = 10; // Delay time in seconds

32

33 // Alternative port for Ahmia search , 31000

34 lazy_static! {

35 static ref PORT: Mutex <i32 > = {

36 Mutex ::new (31000)

37 };

38 }

39

40 // Struct to hold TCPStream value in connection
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41 struct Stream { connection: TcpStream }

42

43 impl Stream {

44 fn new(connection: TcpStream) -> Self { //new connection

establishment

45 Stream { connection: connection }

46 }

47 fn restart (&mut self) { // restarting connection

48 self.connection = get_tcpstream ().unwrap ();

49 }

50 }

51

52 lazy_static! {

53 static ref STREAM: Mutex <Stream > = {

54 Mutex ::new(Stream ::new(get_tcpstream ().unwrap ()))

55 };

56 }

57

58 // Struct for Webitem account to hold fields like timestamp and

data

59 struct Webitem { timestamp: u64 , data: ComprString }

60

61 impl Webitem { // Save the compressed version of the string

62 fn new(timestamp: u64 , data: String) -> Self {

63 Webitem { timestamp: timestamp , data: ComprString ::new(&

data) }

64 }

65 pub fn get_timestamp (&self) -> u64 { //For getting timestamp

66 self.timestamp

67 }

68 pub fn get_data (&self) -> String { //For getting data

69 self.data.to_string ()

70 }

71 pub fn get_size (&self) -> usize { //for getting size of

data

72 self.data.compressed_len ()

73 }

74 }

75

76 lazy_static! {

77 static ref QUERYMAP: Mutex <HashMap <String , Webitem >> = {

78 Mutex ::new(HashMap ::new())
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79 };

80 }

81

82 lazy_static! {

83 static ref RESULTMAP: Mutex <HashMap <String , Webitem >> = {

84 Mutex ::new(HashMap ::new())

85 };

86 }

87

88 //For getting Randomnumber range in between -2147483648 to

2147483647

89 fn randomnumber(min: i32 , max: i32) -> i32 {

90 assert !(min < max);

91 let number: i32 = rand:: thread_rng ().gen_range(min..max);

92 assert !(min <= number && number < max);

93 return number;

94 }

95

96 // A random number from -2147483648 to 2147483647 - 1, around

2^32 possibilities

97 lazy_static! {

98 static ref RANDOMNUMBER: Mutex <i32 > = {

99 Mutex ::new(randomnumber(i32::MIN , i32::MAX))

100 };

101 }

102

103 fn timenow () -> u64 {

104 // Current time: return the total number of seconds

105 let seconds: u64 = SystemTime ::now()

106 .duration_since(UNIX_EPOCH) //Unix timestamp elapsed

from 1 Jan 1970

107 .unwrap ()

108 .as_secs ();

109 return seconds;

110 }

111

112 fn random_choice () -> (String , String) {

113 // Selection of Random choice from the hashmap and return

item.

114 let size: i32 = QUERYMAP.lock().unwrap ().len().try_into ().

unwrap ();

115 assert !(size > 0); // Size is always larger than 0
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116

117 // Random selection from the hashmap

118 let selection: i32 = randomnumber (0, size); // 0 to size -1

119 assert !( selection < size);

120

121 let mut counter: i32 = 0;

122 loop { // Return the selected item

123 for (key , value) in QUERYMAP.lock().unwrap ().iter() {

124 if selection == counter {

125 let copy_key = format !("{}" , key);

126 let copy_value = format !("{}" , value.get_data

());

127 return (copy_key , copy_value); // Return

values

128 }

129 counter += 1;

130 assert !( counter < size);

131 }

132 }

133 }

134

135 fn suffle_select () -> Result <(String , String), (String , String

)> {

136 // Select of random item and remove it from the hashmap

137 let size = QUERYMAP.lock().unwrap ().len();

138

139 if size == 0 { // No items so nothing to return

140 return Err (("". to_string (), "". to_string ())); // None

141 }

142

143 let (copy_key , copy_value) = random_choice ();

144 QUERYMAP.lock().unwrap ().remove (& copy_key);

145 return Ok((copy_key , copy_value));

146 }

147

148 //For generating SHA512 hash of 64-bytes

149 fn hash512(data: &[u8]) -> String {

150 let mut hasher = Sha512 ::new();

151 hasher.update(data);

152 format !("{:x}", hasher.finalize ())

153 }

154
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155 //For generating id from the SHA512 hash (initial 20 bytes)

156 fn id_hash(input: String) -> String {

157 let number = RANDOMNUMBER.lock().unwrap ();

158 let str_hash = format !("/ result /{}", hash512(format !("{} -

{:?}" , input , number).as_bytes ()));

159 return str_hash [0..20]. to_string ();

160 }

161

162 // Function for Redirecting HTML page to the hash URL

163 fn redirect_html(hash: String) -> String {

164 // Return the redirect HTML page for the hash URL

165 let html_string = format

!("{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}" ,

166 "<!DOCTYPE html >",

167 "<html >",

168 "<head >",

169 "<meta http -equiv=’refresh ’ content=’",

170 DELAY ,

171 "; URL=",

172 hash ,

173 "’ />",

174 "</head >",

175 "<body >",

176 "<p> Wait seconds: ",

177 DELAY ,

178 "</p> <p>You ’ll be sent directly to the results page.</p

>",

179 "</body >",

180 "</html >",

181 );

182 return html_string.to_string ();

183 }

184

185 #[cfg(target_os = "wasi")]

186 fn get_server () -> Server {

187 mini_http :: Server :: preopened ().unwrap ()

188 }

189

190 #[cfg(not(target_os = "wasi"))]

191 fn get_server () -> Server {

192 mini_http :: Server ::new ("127.0.0.1:34455").unwrap ()

193 }



107

194

195 // When the target of the build is wasi

196 // Making TCP connection with the address

197 #[cfg(target_os = "wasi")]

198 fn get_tcpstream () -> std:: result ::Result <TcpStream , Box <dyn

std:: error ::Error >> {

199 // Use existing TCP connections

200 // Enarx has already established it (ahmif.fi

:31000...31009)

201 println !(" Connect to {}:{}" , ADDRESS , PORT.lock().unwrap ()

);

202 // NOTE: This is for wasm: if the original connection to

the port 31000 is lost

203 let desc = *PORT.lock().unwrap () - 31000 + 4; // The first

call returns 4

204 use std::os::wasi::io:: FromRawFd;

205 let stdstream = unsafe { std::net:: TcpStream :: from_raw_fd(

desc) };

206 *PORT.lock().unwrap () += 1; // NOTE: Increase the port for

the next call

207 Ok(stdstream)

208 }

209

210 // When the target of the build is not wasi

211 // Making TCP connection with the Address

212 #[cfg(not(target_os = "wasi"))]

213 fn get_tcpstream () -> std:: result ::Result <TcpStream , std::io::

Error > {

214 println !(" Connect to {}:{}" , ADDRESS , PORT.lock().unwrap ()

);

215 let searchaddress = format !("{}:{}" , ADDRESS , PORT.lock().

unwrap ());

216 std::net:: TcpStream :: connect(searchaddress)

217 }

218

219 // Function to read content length of http packet

220 fn read_content_length(http: &String) -> i32 {

221 let str_lines: Vec <&str > = http.lines ().collect ();

222 for line in str_lines{

223 if line.contains ("Content -Length: ") {

224 let str_parts: Vec <&str > = line.split_whitespace ()

.collect ();
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225 return str_parts [1]. parse::<i32 >().unwrap ();

226 }

227 }

228 return 0;

229 }

230

231 fn htmlpage(page: String) -> String {

232 // Remove redirect search result links to point directly

to the result pages

233 let part1 = "<a\n href =\"/ search/search/

redirect?search_term =";

234 let replacement1 = format !("{}{}" , "<!--", part1);

235 let part2 = "& redirect_url =";

236 let replacement2 = format !("{}{}" , part2 , "-->\n

<a href =\"");

237 let mut htmlpage = page.replace(part1 , &replacement1).

replace(part2 , &replacement2);

238 // Add padding: Each HTML page is around 2 000 000 bytes =

2MB.

239 let mut hasher = Sha512 ::new();

240 hasher.update(randomnumber (0, 1000000000).to_string ()); //

Hash a random number

241 let hash_str = format !("{:x}", hasher.finalize ()); //

Format the hash to string

242 // 128 multiplied 1000..2000 times

243 let pad = hash_str.repeat(randomnumber (1000 , 2000).

try_into ().unwrap ());

244 // Size is 1 700 000 + variance

245 while htmlpage.len() < 1700000 { // Add random nonsense

and noise to the final size

246 let padding = format !("{}{}{}" , "\n <!-- ", pad , "

--> \n</html >");

247 htmlpage = htmlpage.replace ("</html >", &padding); //

Add at least 128 000 bytes

248 }

249 return htmlpage;

250 }

251

252 fn request(key: &String , value: &String) -> std:: result ::

Result <String , String > {

253 println !(" Try to forward: {}", value);

254 let mut stream = &STREAM.lock().unwrap ().connection;
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255 let result_write = stream.write_all(value.as_bytes ());

256 match result_write {

257 Ok(_)=> { println !(" Forwarded: {}", value); },

258 Err(_)=> { return Err(" Failed request ". to_string ()); }

259 }

260 stream.flush ().unwrap (); // Flush or server never

responses

261 // Receive data from TCP

262 let mut reader = BufReader ::new(stream);

263 let mut result = String ::new();

264 let mut readbytes: i32 = 0;

265 loop { // Read bytes until no data from the server

266 let bytes = reader.read_line (&mut result).unwrap ();

267 if bytes == 0 { break; }

268 if readbytes == 0 && result.contains ("\r\n\r\n") {

269 readbytes = read_content_length (& result);

270 result = String ::new();

271 }

272 if readbytes > 0 && result.len() >= readbytes.try_into

().unwrap () { break };

273 }

274 if result.len() > 0 {

275 println !(" Received {:?} bytes", result.len());

276 let page = htmlpage(result.to_string ());

277 println !(" With added padding {:?} bytes.", page.len())

;

278 RESULTMAP.lock().unwrap ().insert(key.to_string (),

Webitem ::new(timenow (), page));

279 let size = RESULTMAP.lock().unwrap ().get(&key.

to_string ()).unwrap ().get_size ();

280 println !(" Compressed version consumes {} bytes RAM.",

size);

281 return Ok(" Results OK". to_string ()); // Done , ready ,

return

282 }

283 else { return Err(format !(" Failed: {}", value).to_string ()

); }

284 }

285

286 // Function for Fetching Results

287 fn get_results(url: String) -> std:: result ::Result <Vec <u8 >,

String > {
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288 if !QUERYMAP.lock().unwrap ().contains_key (&url) && !

RESULTMAP.lock().unwrap ().contains_key (&url) {

289 return Err(" Invalid URL". to_string ());

290 }

291 // If results already available return the result

292 if RESULTMAP.lock().unwrap ().contains_key (&url) {

293 return Ok(RESULTMAP.lock().unwrap ().get(&url).unwrap ()

.get_data ().as_bytes ().to_vec ());

294 }

295 // Check that the user waited the delay

296 if QUERYMAP.lock().unwrap ().contains_key (&url) {

297 let seconds = QUERYMAP.lock().unwrap ().get(&url).

unwrap ().get_timestamp ();

298 if timenow () < (seconds + DELAY) {

299 return Ok(redirect_html(url).as_bytes ().to_vec ());

// Wait till delay time is full

300 }

301 }

302 // Else execute all queries

303 while QUERYMAP.lock().unwrap ().len() > 0 { // Process all

the items in random order

304 match suffle_select () { // Random selection which

removes the item from the hashmap

305 Ok((key , value)) => {

306 for _i in 0..3 {

307 match request (&key , &value) {

308 Ok(_) => { break; },

309 Err(msg) => { println !("{}" , msg); }

310 }

311 STREAM.lock().unwrap ().restart (); // Try

with a new connection

312 }

313 },

314 Err(_) => { println !(" Error: failed to select

random item"); }

315 }

316 }

317 if RESULTMAP.lock().unwrap ().contains_key (&url){

318 return Ok(RESULTMAP.lock().unwrap ().get(&url).unwrap ()

.get_data ().as_bytes ().to_vec ());

319 }

320 return Err(" ERROR: no result ". to_string ());
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321 }

322

323 // Function for the exection of user search query

324 fn execute_query(req: &Request) -> Vec <u8 > {

325 if !req.uri().to_string ().contains ("/ result /") {

326 return "Not Found ". as_bytes ().to_vec ();

327 }

328 let mut bytes_list : Vec <u8 > = Vec::new();

329 let result = get_results(req.uri().to_string ());

330 match result {

331 Ok(bytes)=>{

332 bytes_list.extend(bytes);

333 },

334 Err(msg)=>{

335 println !(" Error: {}", msg);

336 }

337 }

338 return bytes_list;

339 }

340

341 // Function for receiving user search query

342 fn collect_query(req: &Request) -> Vec <u8 > {

343 println !(" Received: {}", req.uri());

344 let httpget = format !("{}{}{}{}{}{}" ,

345 "GET ",

346 req.uri().to_string (),

347 " HTTP /1.1\r\n",

348 "Host: ",

349 ADDRESS ,

350 "\r\n\r\n",

351 );

352 let hash = id_hash(req.uri().to_string ());

353 if !QUERYMAP.lock().unwrap ().contains_key (&hash) {

354 if !RESULTMAP.lock().unwrap ().contains_key (&hash) {

355 QUERYMAP.lock().unwrap ().insert(hash , Webitem ::new

(timenow (), httpget.to_string ()));

356 }

357 }

358 let hash = id_hash(req.uri().to_string ());

359 let html_string = redirect_html(hash);

360 return html_string.as_bytes ().to_vec ();

361 }
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362

363 fn checksum(hash: &str , bytes: &[u8]) -> bool {

364 // Check that hash matches to the hashed bytes

365 hash == &hash512(bytes)[0.. hash.len()] // Match the

begining

366 }

367

368 // We do not trust resources outside of the enclave.

369 // When opening files we check it is not changed.

370 fn style_css () -> &’static [u8] {

371 // We do not trust the unsafe world!

372 let bytes = include_bytes !("../ css/styles.css");

373 // Check and verify it is the resource we think it is.

374 assert !( checksum (" f2421cb5603eb88797c55d92e979", bytes));

375 return bytes;

376 }

377

378 //***** For verifying Correct Ahmia.fi CSS files are loaded

*****//

379

380 fn style_arrow () -> &’static [u8] {

381 let bytes = include_bytes !("../ css/ddarrow.png");

382 assert !( checksum ("3 b3f21d6b5644d05e47d1904f39", bytes));

383 return bytes;

384 }

385

386 fn style_ahmiafi () -> &’static [u8] {

387 let bytes = include_bytes !("../ css/ahmiafi_black.png");

388 assert !( checksum ("308 ea08e8e75", bytes));

389 return bytes;

390 }

391

392 fn style_metro () -> &’static [u8] {

393 let bytes = include_bytes !("../ css/metro.jpg");

394 assert !( checksum ("7653 f69165835bde229b0f9c536b2", bytes));

395 return bytes;

396 }

397

398 //*************************************************************//

399

400
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401 //For verifying correct ahmia.fi index page is loaded

402 fn index_page () -> &’static [u8] {

403 let bytes = include_bytes !("../ html/index.html");

404 assert !( checksum (" a21ff31225bb419b49ec9f792f3d93ef", bytes

));

405 return bytes;

406 }

407

408 // Function to run server , load ahmia.fi and return the user

search results

409 fn run() -> Result <(), Box <dyn std:: error ::Error >> {

410 // Run server and return query results

411 get_server ()

412 .tcp_nodelay(true)

413 .start(move |req| match req.uri().path() {

414 "/ search /" => mini_http :: Response :: builder ()

415 .status (200)

416 .header ("Content -Type", "text/html")

417 .body(collect_query (&req))

418 .unwrap (),

419 "/ static/images/ddarrow.png" => mini_http ::

Response :: builder ()

420 .status (200)

421 .header ("Content -Type", "image/png")

422 .body(style_arrow ().to_vec ())

423 .unwrap (),

424 "/ static/images/metro.jpg" => mini_http :: Response

:: builder ()

425 .status (200)

426 .header ("Content -Type", "image/png")

427 .body(style_metro ().to_vec ())

428 .unwrap (),

429 "/ static/images/ahmiafi_black.png" => mini_http ::

Response :: builder ()

430 .status (200)

431 .header ("Content -Type", "image/png")

432 .body(style_ahmiafi ().to_vec ())

433 .unwrap (),

434 "/ static/css/normalize.css" => mini_http :: Response

:: builder ()

435 .status (200)

436 .header ("Content -Type", "text/css")
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437 .body(style_css ().to_vec ())

438 .unwrap (),

439 "/" => mini_http :: Response :: builder ()

440 .status (200)

441 .header ("Content -Type", "text/html")

442 .body(index_page ().to_vec ())

443 .unwrap (),

444 _ => mini_http :: Response :: builder ()

445 .status (200)

446 .header ("Content -Type", "text/html")

447 .body(execute_query (&req))

448 .unwrap (),

449 })?;

450 Ok(())

451 }

452

453 //**** Main Function ****//

454

455 pub fn main() {

456 println !(" Privacy Extension for Search Engines (PESE)");

457 println !(" Searches results from Ahmia.fi: {}:{}" , ADDRESS ,

PORT.lock().unwrap ());

458 println !("\ nSearch Query Mixer :");

459 println !(" Open on WebBrowser: http ://127.0.0.1:34455/");

460 if let Err(e) = run() {

461 eprintln !(" Error: {:?}" , e);

462 }

463 }

464

465 //*********************//

Listing A.1. PESE Code
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