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Neonatal mortality risk of vulnerable newborns: A descriptive 
analysis of subnational, population- based birth cohorts for 238 203 
live births in low-  and middle- income settings from 2000 to 2017
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Abstract
Objective: We aimed to understand the mortality risks of vulnerable newborns (de-
fined as preterm and/or born weighing smaller or larger compared to a standard 
population), in low-  and middle- income countries (LMICs).
Design: Descriptive multi- country, secondary analysis of individual- level study data 
of babies born since 2000.
Setting: Sixteen subnational, population- based studies from nine LMICs in sub- 
Saharan Africa, Southern and Eastern Asia, and Latin America.
Population: Live birth neonates.
Methods: We categorically defined five vulnerable newborn types based on size 
(large-  or appropriate-  or small- for- gestational age [LGA, AGA, SGA]), and term 
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1 |  I N TRODUC TION

In 2020, 2.4 million babies died during the first month 
after birth, and over three- quarters of these deaths oc-
curred in two regions –  sub- Saharan Africa (1.1 million 
deaths) and Southern Asia (0.9 million deaths).1 Neonatal 
deaths (deaths that occur within 28 days after birth) have 
decreased in the past decades, from an estimated 45.6 
deaths in 1990 to 27.1 deaths per 1000 livebirths in sub- 
Saharan Africa and 57.1 to 23.2 deaths per 1000 livebirths 
in Southern Asia.1 Despite this progress, the mortality 
risk for neonates is unacceptably high and inequally dis-
tributed. The 2014 Every Newborn Action Plan set a mor-
tality rate target of 12 or fewer neonatal deaths per 1000 
livebirths and this target is now also a part of the 2030 
Sustainable Development Goal (SDG).2,3

There is elevated mortality risk associated with babies 
‘born too early’ (preterm) or ‘born too small’ (small- for- 
gestational age [SGA]) or both. In prior analysis, we found 
babies born SGA are twice as likely to die in the neonatal 
period, preterm babies have seven times the mortality risk, 
and babies born both preterm and SGA have up to 15 times 
the risk.4 Sub- Saharan Africa and Southern Asia combined 
include 81% of preterm and 72% of low birthweight (LBW) 
babies born globally.3,5,6

Historically, LBW (<2500 g) has been used to identify vul-
nerable newborns. LBW is caused by being preterm, having 
fetal growth restriction (FGR) or a combination of the two. 
As the underlaying aetiology of preterm and SGA is differ-
ent, it is important to consider these separately because the 
outcomes and preventive interventions will differ as well. 
Additionally, babies born large- for- gestational age (LGA) 
(>90th centile compared with a standard population) have 
excess health risks.7 A more granular classification system 
is needed to identify and understand the different risks for 

vulnerable babies to effectively target interventions, policies 
and programmes.8

In countries with complete and high- quality vital regis-
tration data systems, it is possible to estimate national- level 
birth outcomes and associated neonatal mortality risks. In 
LMICs without these systems, we cannot empirically gen-
erate national estimates, but we can use population- based 
subnational studies that collected high- quality data on birth 
outcomes and neonatal mortality to estimate the associated 
neonatal mortality risks.

In this paper, we describe the neonatal mortality risks as-
sociated with four, six and ten vulnerable newborn type clas-
sifications based on combinations of size- for- gestational age, 
delivery at term or preterm, and low or not- low birthweight 
(Table 1).8 The estimates presented in this analysis are intended 
only to describe the data available by study and should not be 
interpreted as global, regional or country- level estimates.

2 |  M ETHODS

This is a secondary analysis of individual participant data 
from multiple studies; women and newborns did not have 
direct participation in this study (Table  S1). We identified 
population- based studies in LMICs that collected data on 
birthweight and gestational age at delivery for newborns born 
since 2000. Studies were identified through systematic review 
of peer- reviewed literature databases, clinical trial registries 
and open data repositories and through professional net-
works. Further details of the study identification methods 
have been presented elsewhere.9 Principal investigators could 
send their de- identified data for central processing or perform 
the analysis themselves with standard statistical code to as-
sess the quality of the data, construct standardised study out-
comes, and generate study- specific estimates.

(T) and preterm (PT): T + LGA, T + SGA, PT + LGA, PT + AGA, and PT + SGA, with 
T + AGA (reference). A 10- type definition included low birthweight (LBW) and non- 
LBW, and a four- type definition collapsed AGA/LGA into one category. We per-
formed imputation for missing birthweights in 13 of the studies.
Main Outcome Measures: Median and interquartile ranges by study for the prevalence, 
mortality rates and relative mortality risks for the four, six and ten type classification.
Results: There were 238 203 live births with known neonatal status. Four of the six 
types had higher mortality risk: T + SGA (median relative risk [RR] 2.6, interquartile 
range [IQR] 2.0– 2.9), PT + LGA (median RR 7.3, IQR 2.3– 10.4), PT + AGA (median RR 
6.0, IQR 4.4– 13.2) and PT + SGA (median RR 10.4, IQR 8.6– 13.9). T + SGA, PT + LGA 
and PT + AGA babies who were LBW, had higher risk compared with non- LBW babies.
Conclusions: Small and/or preterm babies in LIMCs have a considerably increased 
mortality risk compared with babies born at term and larger. This classification sys-
tem may advance the understanding of the social determinants and biomedical risk 
factors along with improved treatment that is critical for newborn health.

K E Y W O R D S
low- and middle- income countries, obstetrics and gynaecology, paediatrics: neonatal, preterm, small- 
for- gestational age
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2.1 | Inclusion and exclusion criteria

We defined study-  and individual- level exclusion criteria. To 
be included, studies must have sampled more than 300 live 
births, assessed gestational age at delivery through early ul-
trasound or timing of last menstrual period (LMP), collected 
data after the year 2000, and be population- based including 
both home and facility births. Studies that sampled facility- 
level births were included if 80% or more of the population 
delivered in a health facility. Studies that sampled from ante-
natal care (ANC) clinics were considered population- based 
if 90% or more pregnant women received at least one ANC 
visit in the areas sampled.

Studies compiled for the prevalence paper that followed 
survival for at least 28 days after delivery were assessed for 

inclusion in the mortality analysis. Studies were excluded 
if (1) they had fewer than 20 neonatal deaths (the reduced 
sample size impeded investigation of  mortality risk by 
type categorisation) or (2) data missingness was greater 
than 70% among neonatal deaths (combined gestational 
age at delivery, birthweight and infant sex). As missing 
type was primarily driven by missing birthweight, we im-
puted birthweight for studies with missing birthweight 
ranging from 10% to 70%.

Data quality of the included studies was assessed 
using proportion of missing or improbable birthweights, 
gestational age and missing sex. We excluded missing 
measured (or unable to impute birthweight due to miss-
ing covariates), gestational age, sex or a gestational age 
<22+0 weeks or >44+6 weeks for which it was not possi-
ble to assess size- for- gestational age. Birth records with 
implausible measured or imputed birthweights (<250 
or ≥6500 g) or implausible combinations of measured 
or imputed birthweight and gestational age (defined as 
birthweight >5 standard deviations above the mean birth-
weight for gestational age and sex) were excluded. We also 
investigated heaping of birthweight (measured only) as 
a measure of the data collection quality. We calculated a 
heaping index by study defined as the number of births 
reported at exactly 2500 g divided by the number with 
249 g below and above 2500 g. Lower values of this heap-
ing index indicate higher quality data collection and doc-
umentation practices.

2.2 | Description of recalibration and 
imputation methods

We imputed birthweight at the study level to calculate size- 
for- gestational age in 13 studies (Table S2). Eight of the 13 
studies included infants with ‘birthweight’ measured in 
the early neonatal period. For these studies, we first recali-
brated all infant weights to weight at the time of delivery 
based on a longitudinal model of daily weight measure-
ments on newborns in the first 10 days. The longitudinal 
dataset was collected on a subset of infants enrolled in a 
clinical trial of chlorhexidine newborn cleansing from 2002 
to 2005 in rural Nepal.10,11 We then used these recalibrated 
birthweights multiply to impute missing birthweight based 
on maternal education, age and parity, single or multiple 
pregnancy, infant sex, gestational age and neonatal sur-
vival status. Additional details on the recalibration and 
imputation methods have been previously published by the 
authors.12

2.3 | Exposure and outcome definitions

We categorised every included newborn based on gestational 
age at delivery (preterm birth <37 completed weeks [PT] or 
term ≥37 weeks [T]) and size- for- gestational age defined as 
SGA <10th centile; or LGA >90th centile or AGA between 

T A B L E  1  Key findings.

1. What was known?

Babies born preterm and/or small are at higher risk of dying during 
the neonatal period. Previously neonatal mortality was estimated 
for these conditions separately. However, these conditions can 
overlap and may have compounding mortality risks.

Disease and mortality burden for preterm and/or small babies is 
higher in low- and- middle income countries (LMICs), also where 
data availability is the lowest.

2. What was done that is new?

We systematically searched and identified 16 studies from nine 
LMICs that collected high- quality, population- based data on 
birth outcomes with follow- up through the neonatal period from 
2000- 2017. Our pooled dataset of 238,143 livebirths provides the 
first multi- country mortality estimates of these newborn types in 
LMICs.

We defined and described the neonatal mortality risks for vulnerable 
newborn types categorized by preterm (PT) and term (T), size- for- 
gestational age (small (SGA), appropriate (AGA) and large (LGA)) 
and low birthweight (LBW) and non- LBW (nLBW).

3. What was found?

Preterm risks: All preterm types had high neonatal mortality risk 
with PT + SGA as the highest risk (median relative risk (RR) 10.4, 
interquartile range (IQR): 8.6– 13.9 by study).

Risks for babies born at term: T + SGA had additional risk (median RR: 
2.8, IQR: 2.0– 3.2) and also the greatest prevalence (median: 25.0%, 
IQR: 18.8%– 41.5%) of the vulnerable types, indicating the highest 
population mortality burden. T + LGA babies had no additional 
detected risk compared to T + AGA babies.

Usefulness of LBW categorization: T + SGA babies who were also 
LBW had greater mortality risk (median RR 4.9, IQR: 3.1– 6.4) 
compared to T + SGA babies who were nLBW (median RR 1.7, 
IQR: 1.4, 2.2). In settings with high T- SGA prevalence, it may be 
programmatically important to track LBW as well.

4. What next?

Action in preventive programmes: This categorization of vulnerable 
newborn types provides more granular detail on mortality risks, 
useful for improving measurement, understanding the disease 
aetiology and epidemiology, and improving clinical care and 
population- based interventions.

Research gaps: High quality routine data systems that include 
gestational age, birthweight, and sex for every live- and stillbirth 
with linked neonatal mortality data are needed to adequately track 
vulnerable newborn population level health.
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10th and 90th centile using a modified version (extended to 
include GA from 22+0 to 44+6 weeks) of the INTERGROWTH- 
21st international newborn size for gestational age and 
sex standards.13 Different combinations of these outcomes 
generate six mutually exclusive newborn types: T + AGA 
(reference), T + SGA, T + LGA, PT + SGA, PT + AGA and 
PT + LGA. We examined a four- type classification that 
collapsed LGA/AGA: T + nonSGA (reference), T + SGA, 
PT + nonSGA and PT + SGA. Finally, we also generated a 
more complex classification (including LBW) for ten types 
including T + AGA + nonLBW (reference), T + LGA + non-
LBW, T + AGA + LBW, T + SGA + nonLBW, T + SGA + LBW, 
PT + LGA + nonLBW, PT + LGA + LBW, PT + AGA + non-
LBW, PT + AGA + LBW and PT + SGA + LBW. To esti-
mate neonatal mortality risk, infant survival status was 
documented in each included study for the first 28 days  
(0– 27 days) after delivery. Infants who were lost to follow- up 
were censored.

2.4 | Analysis

We calculated the proportion of births excluded from the 
analysis and reason for exclusion (i.e. missing or improb-
able data) by neonatal survival status in each study and 
described the demographic and obstetric characteristics. 
We calculated type prevalence, neonatal mortality rate 
(NMR), defined as the number of neonatal deaths per 1000 
livebirths, crude relative risk ratios (RR) and 95% confi-
dence intervals (95% CI). We reported these statistics for 
each study and then the overall median and interquartile 
range (IQR) by type. As these study level estimates were 
included in a global model of type prevalence and mortal-
ity risks and the analytical aim is descriptive, we did not 
perform meta- analyses.14

3 |  R E SU LTS

We identified 29 studies: five were excluded due to fewer 
than 20 neonatal deaths in the study, and five were excluded 
for other reasons, resulting in 19 studies (Figure 1).15– 22 In six 
studies from Burkina Faso, Malawi and one of the Tanzania 
studies, we pooled the data (two studies per country) that 
were carried out in the same site and by the same study 
teams, giving us 16 studies. We assigned study ID based on 
country and timing of the data collection (Table S2).

This analysis includes data from 16 subnational datasets 
from nine countries with data collected from 2000 to 2017 
(Table S3).23– 41 Seven studies were based in sub- Saharan 
Africa, seven in Southern Asia, one in Eastern Asia and one 
in Latin America. Gestational age of the pregnancy was cal-
culated from LMP collected during pregnancy for 11 studies, 
one study collected LMP during pregnancy and at delivery, 
two studies used ultrasound estimation, and two studies 
used a combination of ultrasound/LMP (Table S2). Neonatal 
mortality rates measured in the studies ranged from 8.7 

deaths in Brazil to 45.1 deaths in Bangladesh per 1000 live-
births. Loss to follow- up was minimal. In most studies, <5% 
were lost to follow- up during the neonatal period, and in one 
study (Tanzania 2) 7.2% (Table S2). This subset of studies 
had a similar heaping index to the full set used in the prev-
alence analysis.9 The median heaping index was 6.6% (IQR 
1.6%– 32.3%) and over a third (42%) had a heaping index 
>10% (data not shown).

Most of the mothers enrolled in the studies had primary 
and lower secondary educations (median by study: 68.5%, 
IQR 47.6%– 78.7%), a third were between 20 and 24 years 
of age (median: 33.0%, IQR 29.1%– 39.8%) and a third had 
no previous births (median: 29.0%, IQR 21.2%– 40.6%) 
(Table 2). Most deliveries took place at a health facility, but 
this varied by study (median: 70.0%, IQR 43.3%– 88.0%). 
Almost all babies were delivered vaginally (median: 94.2%, 
IQR 92.5%– 97.1%) and were singletons (98.0%, IQR 97.2%– 
98.5%) (Table  2, Table S4 by study). Median female sex of 
the infants was 48.9% (IQR 48.2%– 49.9%) and no intersex 
babies were reported in the studies.

The missingness of newborn type was primarily driven by 
missing birthweight, especially among the neonatal deaths 
(Table S5). In Tanzania study 2, Tanzania study 3 and India 
study 1, we were unable to perform the imputation due to 
data access/availability, but more than 90% of birthweights 
were measured in the first 24 hours after delivery and birth-
weight missingness was very low. China, Brazil, Burkina 
Faso, Tanzania study 1 and Zambia study 2 had higher miss-
ingness (ranging from 37.8% to 12.2% among the neonatal 
deaths) and more than 90% of birthweights were measured 
in the first 24 hours. Our recalibration protocol does not im-
prove on weights measured in the first 24 hours after deliv-
ery, so we did not perform the recalibration for these studies 
and instead used the measured weights to conduct the mul-
tiple imputation for the missing weights.

For the other studies, we recalibrated the birthweights to 
time of delivery and used those for the multiple imputation. 
In our recalibration model, twin/triplets, first- born infants 
and babies that later died during the neonatal period had a 
lower estimated birthweight. Higher gestational age at de-
livery, higher maternal age and educational status, and male 
sex were associated with increased estimated birthweight 
(Table S6). We imputed a birthweight for 11 301/246 336 sur-
viving neonates (4.6%) and 2815/6636 (42.4%) of the neona-
tal deaths. After birthweight imputation, 5.2% of the deaths 
and 5.9% of the surviving infants were excluded due to miss-
ing or improbable data, resulting in 238 203 live births of a 
known type.

In these studies, T + AGA babies were the most prevalent 
(median: 52.1%, IQR 40.5%– 61.6%), followed by T + SGA 
(median: 24.7%, IQR 18.8%– 41.5%) and then PT + AGA (me-
dian: 9.3%, IQR 7.8%– 11.6%) (Figure 2, Table S7 by study). 
PT + LGA, T + LGA and PT + SGA had median prevalences 
of <5%. T + AGA and T + LGA had similar neonatal mortal-
ity rates (median 7.8 deaths per 1000 livebirths, IQR 6.5– 13.0 
and median 5.7, IQR 0– 9.4, respectively). T + SGA had the 
next highest mortality rate (median 28.8, IQR 16.7– 30.5), 
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followed by PT + AGA and PT + LGA (median 70.2, IQR 
37.3– 90.1 and median 76.2, IQR 22.1– 105.6, respectively). 
PT + SGA had the highest median mortality rate (median: 
116.4, IQR 66.5– 147.8). The collapsed T + AGA/LGA cat-
egory (T + nonSGA) had a median of 57.2% by study (IQR 
41.8%– 65.3%) and neonatal mortality rate of 7.8 (IQR 6.4– 
13.1). The PT + nonSGA median prevalence was 14.2% (IQR 
13.2%– 17.6%) and the median mortality rate was 76.3 (IQR 
37.9– 92.9).

Compared with T + AGA babies, T + LGA had similar 
risk of death (median RR 0.9, IQR 0– 1.0) (Table 3, Table S7 
by study). All other types had a higher risk of deaths: the 
risk of T + SGA babies dying in the neonatal period was 
2.6 times higher (IQR 2.0– 2.9), the risk of PT + LGA and 
PT + AGA babies dying was approximately seven times 
higher (median RR 7.3, IQR 2.3– 10.4 and median RR 6.0, 
IQR 4.4– 13.2, respectively) and the risk of PT + SGA ba-
bies dying was over 10 times higher (median RR 10.4, IQR 

8.6– 13.9). Compared with T + nonSGA babies, the me-
dian RR for PT + nonSGA babies was 6.0 (IQR 4.1– 14.5) 
(Table 3, Table S8 by study).

Among the T + SGA, the median RR for babies who were 
also LBW was 4.3 (IQR 2.8– 5.7) and the median RR was 1.7 
(IQR 1.4– 2.2) for babies who were not LBW. PT + LGA + LBW 
had a much higher median RR (23.1, IQR 16.2– 40.6) com-
pared with PT + LGA + nonLBW (RR 1.1, IQR 0.8– 2.1). 
Finally, PT + AGA babies who were LBW also had a higher 
median RR (13.0, IQR 8.9– 26.4) compared with babies born 
non- LBW (RR 1.6, IQR 1.4– 1.9) (Table 3, Table S9 by study).

4 |  DISCUSSION

We identified 16 subnational datasets from nine low-  and 
middle- income countries with data collection from 2000 to 
2017 to estimate the neonatal mortality risk of vulnerable 

F I G U R E  1  Flowchart of studies and live births included in the mortality analysis by type.

29 studies collected 
mortality data 

10 studies excluded: 
5:  <20 deaths
1: type missingness among NN deaths was >70%
3: Data quality issues
1: High missingness, variables needed for imputation 
not collected  

19 studies 
(16 studies after 

combining)
256,995 livebirths 

4,023 lost-to-follow 
up 

252,972 known 
neonatal status 

246,336 alive/ 6,636 
deceased 

14,769 excluded: (14,425 alive/344 deceased)
665 gender missing  (643 alive/22 deceased)
8837 gestational age missing  (8615 alive/222 deceased)
2800 gestational age/birthweight  improbable  

(2749 alive/51 deceased)
9615 birthweight missing after imputation  

(9333 alive/282 deceased) 

238,203 known neonatal 
status and type 

14,116 missing birthweight 
imputed 

11,301 alive / 2,815 deceased
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newborn types. This analysis provides information on new-
born health in geographical settings where neonatal mortal-
ity is the highest globally but data availability is the lowest.

Newborns born at term or later and SGA, and preterm 
babies born either LGA or AGA had elevated mortality risk. 
Preterm newborns born SGA had the highest risk; they were 
10 times more likely to die in the first month but had the 
lowest prevalence (1%). Of all the vulnerable newborns with 
increased mortality, the highest prevalence was for T + SGA 
(25%), with 2.5 times the risk of mortality compared with 

T + AGA babies. We found no additional risk of LGA in 
this sample. For preterm babies, AGA and LGA mortality 
rates and relative risks were similar and T + LGA babies had 
equivalent mortality risks to T + AGA babies. Generally, the 
RR for each type is lower than the national data from higher 
income countries.9 This is due to the higher mortality risk of 
babies in the reference group (T + AGA, 7.8 deaths per 1000 
livebirths) compared with the national datasets in high in-
come countries (T + AGA, 0.6 deaths per 1000 live births); 
this difference has been documented in other studies on 
preterm and SGA mortality.4

There is considerable variation in our estimates by study, 
related to the heterogeneity of the underlying populations. 
These studies represent geographical variation in LMICs, 
but temporal variation as well. For instance, we have three 
studies in different regions of Tanzania; the 2001– 2004 study 
in urban Dar es Salaam had a neonatal mortality rate of 28.5 
deaths per 1000 livebirths and the 2012– 2013 study in Dar 
es Salaam and Morogoro regions had 9.5 deaths per 1000 
livebirths.

This sub- sample of studies that collected mortality data 
was similar to the set of studies used for birth type preva-
lence estimates, but there is a slightly higher proportion of 
vulnerable newborns.9 In the studies for the prevalence es-
timates, 58.5% were T + AGA versus 52.1% in the mortality 
sub- sample and 21.9% T + SGA versus 24.7% in the mortality 
sample. The other vulnerable type prevalences were similar: 
7.4% versus 9.3% for PT- AGA, 3.3% versus 2.4% for T + LGA, 
1.7% versus 3.7% for PT + LGA, and PT + SGA was the same 
as the mortality sample. The higher proportion of SGA is 
likely due to the study site locations; in this analysis almost 
half of the studies were in Southern Asia, which has the 
highest regional prevalence of SGA.42

We chose commonly used categorical definitions for 
preterm, SGA and LGA to define vulnerable newborns. 
The 10th centile definition for SGA has been used since the 
1960s but further studies are needed to determine whether 
these definitions should be revised.43 Additionally, there is 
evidence that revising the definition of LGA as >97th cen-
tile would better discriminate the vulnerable babies.44 We 
also recognise the importance of capturing the risk of babies 
born extremely early or post- term, but for simplicity in this 
initial examination of vulnerable newborn type risk, we re-
stricted ourselves to term and preterm. Finally, we used the 
INTERGROWTH- 21st international standard allowing for 
direct comparison across many studies.

The four-  or six- type definitions are less complex and 
easier to interpret for programme and policy improvements 
compared with the ten- type definition; however, there is ev-
idence that the lower birthweights within preterm and SGA 
types confer higher mortality risk. T + SGA, PT + LGA and 
PT + AGA babies who were also LBW had higher relative 
risk compared with their non- LBW counterparts, a find-
ing reported in other analyses (reference: T + AGA + non-
LBW). In an analysis from the CHERG study, babies born 
T + SGA + nonLBW had a RR of 1.89 of neonatal mortal-
ity, compared with 4.77 for T + SGA babies born LBW.45 

T A B L E  2  Demographic characteristics of the included studies, 
median and interquartile range (IQR) of the included studies.

Median, % (Interquartile 
range, %)

Years of education of mother

No formal education (0 years) 25.7 (8.0– 40.8)

Primary and lower secondary 
(≤11 years)

68.5 (47.6– 78.7)

Upper secondary and above 
(≥12 years)

4.5 (2.7– 11.7)

Missing 0.2 (0– 0.4)

Age of mother

<15 years 0.1 (0– 0.5)

15– 19 years 16.5 (11.3– 24.7)

20– 24 years 33.0 (29.1– 39.8)

25– 29 years 24.9 (21.6– 27)

30– 39 years 20 (11.7– 25.4)

≥40 years 1.4 (0.5– 2.2)

Missing 0.3 (0– 0.5)

Place of delivery

Outside of facility 27.9 (11.8– 53.1)

At facility 70.0 (43.3– 88.0)

Missing 0.5 (0– 1.8.0)

Type of delivery

Vaginal 94.2 (92.5– 97.1)

Caesarean 5.7 (1.7– 7.5)

Missing 0.8 (0– 1.2)

Parity

0 29.0 (21.2– 40.6)

1 26.6 (23.1– 30.5)

2 17.7 (15.4– 19.1)

3 11.6 (7.3– 13.1)

≥4 11.5 (4.5– 20.4)

Missing 0.1 (0– 0.6)

Number born

Singleton 98.0 (97.2– 98.5)

Multiples 2.1 (1.6– 2.8)

Infant gender

Male 51.1 (50.1– 51.8)

Female 48.9 (48.2– 49.9)
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Birthweights provide additional information on mortality 
risk for each of the vulnerable types, even if just indicating 
babies born at the lower centile of SGA. PT + LGA + LBW ba-
bies also had additional mortality risk compared with their 
nonLBW counterparts, but this is likely a measurement ar-
tefact. To be considered PT, LGA and LBW, boys must be 
born <33 weeks and girls born <33+4 weeks gestational age, 
so the mortality risk is likely associated with being born 
early, rather than LGA.

In addition to the limitations presented in the subna-
tional prevalence paper in this series, the main limitation of 
this mortality analysis is the missing birthweights, especially 
among neonatal deaths.9 We imputed almost half of the neo-
natal deaths used in this analysis (42%, Figure 1). Many of 

our studies were community- based (n = 11 studies) and, for 
the home deliveries, early neonatal deaths occurred before 
the study team could arrive at the home to weigh the baby 
(Table S3). Additionally, newborns typically lose weight in 
the first 2– 3 days of life due to fluid losses until the estab-
lishment of breastfeeding. Weight measured in the 2– 3 days 
after delivery, at the nadir of early neonatal weight loss, in-
flates estimates of SGA and underestimates LGA.12,46 Using 
only the measured birthweight to calculate mortality risk by 
type would have underestimated the overall mortality rates 
and the mortality risk of certain vulnerable newborn types.

We aimed to address this bias using the recalibrated birth-
weights to generate imputed birthweight. The recalibrated 
weights were based on a longitudinal sample of singleton 

F I G U R E  2  Median prevalence and neonatal mortality risk by study, four-  and six- type categorisation. AGA, appropriate for gestational age; LGA, 
large for gestational age; PT, preterm; SGA, small for gestational age; T, term.
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newborns in rural Nepal born between 2002 and 2005 who 
survived at least 10 days. There is evidence that babies may 
have different early neonatal growth patterns in different re-
gions due to underlying population health or newborn feeding 
practices. A study in Tanzania of early neonatal weight change 
found an earlier nadir (27 hours for boys and 28 hours for girls) 
than that measured in the Nepal study (2.1 days), although the 
mean weight loss at the nadir was similar (4.7% in Tanzania 
and 4.3% in Nepal).12,47 A study cohort of infants from Nepal, 
Pakistan, Guinea- Bissau and Uganda found a similar median 
nadir of two days, with an average mean weight loss of 5.9%, 
and babies born LBW had a slower growth trajectory over 
30 days.48 Also, to be included in the rural Nepal longitudinal 
sample of weights measured in the first 10 days, the baby must 
have survived the early neonatal period. We included a covari-
ate adjusting for neonatal death for the multiple imputations 
(Table S6) but we do not have any information on how well 
our recalibration model estimates weight at time of delivery 
for early neonatal deaths.

For a subset of the studies, we compared the median 
birthweight, and four-  and six- type neonatal mortality rates 
and relative risks using (1) birthweights measured <72 hours 
after delivery with missing birthweight excluded, and (2) 
birthweights using the recalibration and/or imputation 
method (Tables S10– S12).

In the studies where only imputation (not recalibration) 
was used, the median birthweight using the imputation did 
not change or was <5 g different (China, Brazil and Zambia 
study 2) or increased (Burkina Faso). In studies where the 
recalibration with imputation was used, the median birth-
weight increased for the Bangladesh study 3 (+50 g), India 
study 1 (+40 g), Nepal study 1 (+40 g), Nepal study 2 (+21 g) 
and Zambia study 1 (78 g) studies, with the exception of 
Malawi, where it essentially stayed the same.

The recalibration protocol estimates a weight closer to the 
time of birth, and many of these studies had a significant 
portion of babies measured at the nadir of early neonatal 
weight loss (estimated 1– 2 days after delivery). Therefore, 
for these five studies, the median birthweight was increased 
slightly because an estimated birthweight (at time of deliv-
ery) was higher than that measured, as many of the infants 
were measured at the nadir.

As expected, the mortality risks of all types increased 
when using the recalibration and/or imputation method, 
as a birthweight is now imputed for early neonatal deaths, 
where previously they were excluded (Tables S11 and S12). 
In the four- type categorisation, the median RR of T + SGA 
did not change and the median RR of nonSGA + PT in-
creased from 4.5 to 5.9 (Table S11). The median RR of 
SGA + PT decreased from 13.4 to 10.4. For the six- type 
categorisation, the median RR for T + LGA, T + SGA and 
PT + AGA were similar using the measured and imputed 
birthweights (1.0 versus 0.9; 2.1 versus 2.0 and 5.7 versus 
5.9, respectively). The median RR of PT + LGA increased 
from 2.2 to 7.6 and the median RR of PT + SGA decreased 
from 12.1 to 10.0 (Table S12).

Our method estimated more neonatal deaths with a 
missing birthweight as PT + LGA using the six- type cat-
egorisation (PT + nonSGA for the four- type) and fewer 
for PT + SGA. This could be due to an actual biological 
construct, measurement error with gestational age or our 
model overestimating birthweights for preterm babies. 
However, we consider this model an improvement on the 
measured birthweight data given we can include the neo-
natal deaths with missing birthweight, critical for this 
analysis on neonatal mortality risk. Most studies used 
LMP collected during pregnancy (n = 12) to calculate ges-
tational age. There could be measurement error that im-
pacted the size- for- gestational age estimates. Although 
ultrasound measurement in the <24- week period is rec-
ommended by WHO for ascertainment of gestational age, 
LMP is adequate in areas where access to ultrasound is 
limited.49– 51 We also used birthweight standard curves, in-
stead of fetal weight standard curves, which underestimate 
FGR for preterm babies, as the pathology that leads to FGR 
may also induce preterm births.52 However, there are also 

T A B L E  3  Relative risk of neonatal mortality for the six types 
(reference: Term + AGA), four types (reference: Term + nonSGA) and 10 
types (reference: Term + AGA + nonLBW), median and interquartile range 
(IQR) of the studies.

Relative risk of neonatal mortality

Median (Interquartile range); number 
of studies with sufficient data on type

Six newborn types

T + AGA Reference

T + LGA 0.9 (0– 1.0); n = 16

T + SGA 2.6 (2.0– 2.9); n = 16

PT + LGA 7.3 (2.3– 10.4); n = 15

PT + AGA 6.0 (4.4– 13.2); n = 16

PT + SGA 10.4 (8.6– 13.9); n = 14

Four newborn types

T + nonSGA Reference

T + SGA 2.7 (2.0– 3.2); n = 16

PT + nonSGA 6.0 (4.1– 14.5); n = 16

PT + SGA 10.4 (8.5– 14.5); n = 14

Ten newborn types

T + AGA + nonLBW Reference

T + AGA + LBW 1.8 (0.2– 3.0); n = 10

T + LGA + nonLBW 0.8 (0– 0.9); n = 16

T + SGA + nonLBW 1.7 (1.4– 2.2); n = 16

T + SGA + LBW 4.3 (2.8–5.7); n = 16

PT + LGA + nonLBW 1.1 (0.8– 2.1); n = 15

PT + LGA + LBW 23.1 (16.2– 40.6); n = 14

PT + AGA + nonLBW 1.6 (1.4– 1.9); n = 15

PT + AGA + LBW 13.0 (8.9–26.4); n = 16

PT + SGA + LBW 10.6 (8.8– 14.7); n = 14

Abbreviations: AGA, appropriate for gestational age; LGA, large for gestational 
age; nonSGA, non- SGA (AGA and LGA combined); PT, preterm; SGA, small for 
gestational age; T, term.
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limitations with use of a universal fetal growth standard 
in international settings. A study applying three differ-
ent fetal growth standards found important differences 
in classification of SGA and LGA babies, indicating more 
work is needed on universal standards of fetal growth.53

A final limitation was that we presented crude mea-
sures of mortality risk for newborn types. Potential con-
founders of neonatal mortality risk and newborn type 
range by socio- economic factors, underlying health of 
the maternal population, health system factors and many 
more exposures. There was limited information on spon-
taneous versus vacuum-  or forceps- assisted vaginal de-
livery, emergency versus planned caesarean section, and 
presentation of the newborn (i.e. breech). We were limited 
by data collected in the studies and hope to address this in 
future research.

This analysis is possible due to the generous collabora-
tion of our co- authors and represents what is achievable 
with increased data availability and sharing. As health 
data systems improve in completeness and quality, coun-
tries will be able directly to track the health of vulnerable 
newborns but, until then, the global health community 
relies on research data. The authors support continued 
openness and availability of de- identified, individual- level 
study data.

Babies in low-  and middle- income settings who are 
preterm or growth- restricted have considerable mortality 
risk compared with full term and not growth- restricted ba-
bies born in the same location. All preterm types had higher 
neonatal mortality risks compared with the term types and 
there was compounding risk of preterm with SGA. Term 
SGA babies have lower risk compared with preterm babies 
but are the most prevalent vulnerable newborn type. Four-  
or six- type definitions were less complex to calculate and in-
terpret, especially the four- type definition, as we did not find 
evidence of differential risk between AGA and LGA babies in 
this sample. The ten- type definition shows that babies with 
LBW have higher risks but, as an population- level indicator 
of neonatal health, this is difficult to calculate and interpret, 
and some categories are measurement artefacts such as the 
PT + LGA + LBW, which only captures early preterm babies 
(<33 weeks for boys and <33+4 weeks for girls), likely indicat-
ing the risk of early preterm rather than LGA or LBW status.

This study provides critical information on vulnerable 
newborn health in areas where the burden is the highest but 
data availability is the lowest. The classification of births as 
preterm and/or SGA may assist in the understanding of the 
social determinants and biomedical risk factors that are im-
portant to design and implement preventive interventions, 
as well as improved management of vulnerable newborns.
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