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The most frequently used experimental techniques for measuring the spatial coherence properties of
classical light fields in space-frequency and space-time domains are reviewed and compared, with some
attention to polarization effects. In addition to Young’s classical two-pinhole experiment and several of its
variations, we discuss methods that allow the determination of spatial coherence at higher data acquisition
rates and also permit the characterization of lower-intensity light fields. These advantages are offered, in
particular, by interferometric schemes that employ only beam splitters and reflective elements, and thereby
also facilitate spatial coherence measurements of broadband fields. © 2022 Optica Publishing Group

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION1

In their classic textbook Principles of Optics [1] Born and Wolf2

introduce the concept of spatial coherence of light with the aid3

of Young’s two-pinhole interference experiment, and a similar4

introductory approach is used also by Mandel and Wolf in the5

book Optical Coherence and Quantum Optics [2]. Indeed, Young’s6

experiment may be viewed as a definitive way to measure spatial7

coherence. Despite of its conceptual simplicity, Young’s interfer-8

ometer has certain inherent limitations, which have motivated9

the development of a wide range of alternative spatial coherence10

measurement techniques.11

Perhaps the most obvious limitation of Young’s two-pinhole12

setup is its low light efficiency, which makes the characteriza-13

tion of weak light fields difficult. Even though the selection of14

pinhole positions at the measurement plane is straightforward15

with modern spatial light modulators, the data acquisition time16

depends strongly on the required resolution and dimensionality17

of the problem. Another, more fundamental issue is related to18

coherence measurement of broadband light. In the standard19

textbooks [1, 2] spatial coherence is introduced by considering20

thermal light, which is converted to quasimonochromatic light21

by, e.g., a narrow-band spectral filter. If this is not done, and if22

the scale of the degree of spatial coherence depends on tempo-23

ral frequency ω (as it usually does; see, e.g., Ref. [3]), Young’s24

interference fringes become colored, which distorts the results25

of direct spatial coherence measurements.26

In the present review, we revisit the motivation behind27

Young’s interferometer and expand the discussion to more mod-28

ern schemes. To limit the scope, we restrict the discussion to29

classical optical fields and second-order spatial coherence. Fur-30

ther, we discuss mainly coherence measurements in the paraxial31

domain (beam-like fields), where the coherence and polarization32

properties of light can be described in a unified way using 2 × 233

matrices [4]. We also concentrate on stationary fields, noting34

however that all of the techniques also apply to pulsed fields if35

the measurements are done, as usual, with ‘slow’ detectors that36

integrate over a single pulse or a section of a pulse train.37

We begin with a qualitative discussion of Young’s classic two-38

pinhole experiment in Sect. 2, providing intuitive arguments on39

the relationship between the fringe visibility and spatial coher-40

ence. In Sect. 3 we cover, again in qualitative terms, a selection41

of natural and man-made sources and fields with different states42

of coherence to motivate the need for development of diverse43

spatial coherence measurement techniques. Some experimental44

considerations, which are independent of the chosen technique,45

are also presented.46

The sections to follow cover different techniques for coher-47

ence measurements, starting with a mathematical formulation48

of Young’s interferometer in Sect. 4, along with its practical im-49

plementations and limitations. Most of the limitations can be50

alleviated by using wavefront folding or shearing interferome-51

ters, which form the subject of Sect. 5. In Sect. 6 we cover, though52

in less detail, a selection of other techniques for spatial coherence53

measurement. Certain subjects outside the main scope of the54

review are discussed in Sect. 7, before conclusions are drawn in55

Sect. 8.56

2. INTERFERENCE IN YOUNG’S EXPERIMENT57

Young’s interferometer is of great historical value, and its orig-58

inal purpose was not the measurement of coherence at all; see59

Ref. [5] for a review of Young’s experiment from all relevant60

perspectives. Instead of considering coherence, Thomas Young61
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introduced the device to investigate the very nature of light. Al-62

ready well before Young’s time, this had been debated in length:63

did light consist of waves or corpuscles? In his landmark work64

Opticks [6], Newton laid out powerful arguments in favor of65

the corpuscular theory of light, overturning the wave theory66

described by Descartes [7]. This led to a long-standing consen-67

sus among scientists that light was indeed composed of minute68

particles.69

It needs to be noted that in this era, natural sciences were70

almost entirely experimental, and the mathematical formalism71

did not exist as we know it today. The mathematical arguments72

were mainly geometrical in nature, while any relations to natural73

phenomena were philosophically motivated. In his now famous74

Bakerian Lecture published in 1802 [8], Young very carefully75

constructed arguments supporting the wave theory. After 3276

pages of motivation, he finally brought forth the proposition:77

“Radiant Light consists in Undulations of the luminiferous Ether.”78

In modern terms, he suspected light to consist of waves.79

This was a radical proposition, contradicting the greatest nat-80

ural philosopher ever. As is the case today, extraordinary claims81

require extraordinary proof. The first Bakerian Lecture gave a82

good motivation for this proposition, but it was by no means83

enough to convince the scientific community. Thus, Young de-84

signed, conducted, and analyzed several experiments in his85

second Bakerian Lecture published in 1804 [9], from which the86

first experiment later became known simply as the Young’s ex-87

periment. He employed a thin card “about one-thirtieth of an88

inch in breadth,” and placed it in the middle of a small hole89

pierced in thick paper, with light incident from the other side.90

Doing so, he observed interference fringes. Moreover, he noted91

that the presence of the card was required for the fringes to ap-92

pear: “Now these fringes were the joint effects of the portions93

of light passing on each side of the slip of card, and inflected,94

or rather diffracted, into the shadow.” This was interpreted as95

clear signature of wave behaviour, which Young illustrated in96

terms of spherical waves emerging from two pinholes (Fig. 1).97

He further constructed an analog model with water waves.98

Fig. 1. Young’s two-source interference diagram. Here sources
A and B produce spherical waves, which yield minima at
points C, D, E, and F in the observation plane. Reproduced
from Ref. [10], page 777, Fig. 267.

Young’s experiment formed the basis for further investiga-99

tions on the wave nature of light, of which most notable stud-100

ies were carried out by François Arago, Augustin-Jean Fresnel,101

Michael Faraday, and James Maxwell. These seminal investi-102

gations greatly advanced the mathematical explanation of the103

wave-optical point of view, and finally ascertained light as an104

electromagnetic phenomenon. However, the notion of coher-105

ence of light had not seriously entered the scientific discussion106

at this point yet, although some scattered ideas on the subject107

may already have existed.108

The first significant investigations of spatial coherence were109

carried out in the mid 19th century by Émile Verdet [11], well110

after Young had passed away. But this did not ignite much inter-111

est, and research on coherence of light remained quite moderate.112

In the beginning of the 20th century, Max von Laue published113

the first measure of coherence of light [12], which was formu-114

lated largely in line with thermodynamics and employed the115

notion of entropy. Later, in 1934, Pieter van Cittert published116

an investigation on the joint probability distribution of light vi-117

brations on a screen illuminated by an extended primary source118

[13]. Soon after, Fritz Zernike formulated the so called ‘degree119

of coherence’ [14], which is still one of the main theoretical tools120

used to quantify correlations today. With renewed interest, more121

researchers began to consider the coherence of light.122

Soon after the second World War, there was great demand for123

an updated English textbook on optics. Until then, the textbook124

of choice was Optik by Max Born [15], but it was in German, and125

therefore many scientists showed interest towards an English126

translation of the book. As the field of optics had advanced127

greatly since the publication of Optik, Born determined that an128

entirely new book was required. In 1951, he hired Emil Wolf to129

work as his private assistant on preparation of the new book.130

The project was extremely ambitious, with the idea of produc-131

ing a textbook containing most of the relevant results in optics132

up to that time. In effect, the book would start from Maxwell’s133

equations and move on to cover the areas of geometric optics, im-134

age formation, aberrations, interferometry, diffraction, acousto-135

optics, as well as optical properties of metals and crystals. This136

would truly form the Principles of Optics, as the name of the book137

suggests (although some subjects had to be excluded). Accord-138

ing to accounts given by Wolf’s students later on, compiling139

all of the relevant results into a single book took longer than140

expected, and Born got impatient. Born would have left the dis-141

cussion on coherence out as he deemed it to be of minor interest,142

but Wolf insisted on including it. After additional publishing143

delays, the first edition finally came out in 1959.144

Just a year later, in 1960, Theodore Maiman built the first145

functioning optical laser [16], which was largely based on the146

theoretical work of Charles Townes and Arthur Schawlow [17].147

The theory relied heavily on the concepts of coherence of sta-148

tionary sources, and thus, Principles of Optics became an instant149

landmark in optics research. To this day, it remains the all-time150

most-cited scientific work across all disciplines in physics.151

During the time Wolf worked on the book, he was also pub-152

lishing several of his findings. For example, he took the first153

steps in formulating a theory of interference and diffraction pro-154

duced by realistic sources [18]. Moreover, he introduced the155

idea of partial coherence in concrete terms [19] and analyzed156

the intensity correlations found in the (then recent) experiments157

of Hanbury Brown and Twiss [20]. Further, Wolf showed for158

the first time that correlations in light also propagate as waves159

through free space [21], and derived the corresponding wave160

equations.161

Notably, already at this stage Wolf had mathematically de-162

fined coherence as the ability of light to produce fringes in an163

interference experiment, although he did not explicitly state164

so. To illustrate this idea, Wolf drafted a “simple interference165

experiment” in Ref. [19], which was in fact a Young’s interferom-166

eter. Wolf maintained this definition of coherence throughout167

the different editions of Principles of Optics, and explicitly stated168

in Optical Coherence and Quantum Optics that “The appearance169

of the fringes is said to be a manifestation of spatial coherence170
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between the two light beams reaching [the point] P from the two171

pinholes P1 and P2...” (Ref. [2], page 151). It is largely thanks to172

Emil Wolf that Young’s interferometer became one of the corner-173

stones of modern coherence research, although Thomas Young174

could not have foreseen such developments.175

What Wolf considered in the context of Young’s experiment176

was that the amplitude and phase may change at either pinhole.177

What we see in an experiment is then the time-averaged inter-178

ference pattern, which is essentially an incoherent sum over the179

instantaneous patterns. This is qualitatively illustrated in Fig. 2;180

see also Visualization 1 for animations. To be more precise, when181

the amplitude of the field is decreased at one pinhole while re-182

maining constant at the other, we see a decrease in visibility as183

shown in Fig. 2(a). On the other hand, if the amplitudes at the184

pinholes are equal (and constant) but one instead varies the rela-185

tive phase between the pinholes, the interference pattern at the186

observation plane shifts as indicated in Fig. 2(b). Finally, if a field187

is partially coherent, the amplitudes at the two pinholes as well188

as the relative phase between them have random components.189

Thus, the instantaneous intensity at the observation plane has190

features from both Fig. 2(a) and Fig. 2(b), but it changes rapidly191

in time. Therefore, the time-averaged interference pattern looks192

like in Fig. 2(c), where the fringe visibility is reduced.193

Since the difference in field amplitudes emerging from the194

two pinholes can be detected from the instantaneous visibility,195

and the phase difference from the position of the fringes, we can196

apply the same rationale to the time averaged interference pat-197

tern. However, due to the averaging, the interpretation changes198

slightly; instead of amplitude and phase differences we consider199

correlations between field fluctuations at the pinholes. The am-200

plitude of the correlation function can then be determined from201

the visibility and its phase from lateral positions of the fringes,202

as we will describe in mathematical terms in Sect. 4.203

3. PARTIALLY SPATIALLY COHERENT SOURCES AND204

FIELDS205

We begin this section with a description of the basic concepts206

of coherence and propagation effects, including relationships207

between coherence at the source plane and the directionality of208

the radiated field, as well as the evolution of spatial coherence in209

free-space propagation. We then continue in Sect. 3B with a brief210

coverage of the spatial coherence and directionality properties211

of a selection of real sources, which may be either natural or212

man-made. These examples illustrate the wide range of spatial213

coherence states that may need to be measured. General mea-214

surement issues, which do not depend on the chosen method,215

are described in Sect. 3C. These considerations include the di-216

mensionality of coherence functions that need to be measured.217

This depends on the type of the source. The amount of data to218

be measured depends, of course, on both the dimensionality of219

the problem and the required resolution.220

Figure 3 illustrates the basic concepts related to spatial co-221

herence, along with the notation to be used. For simplicity,222

we model the source as a field generated by a (generally three-223

dimensional) primary source across a plane O in front of the real224

source, and define a position at this plane by a transverse coordi-225

nate ρ. The field across O is generally random, exhibiting phase,226

amplitude, and generally also polarization fluctuations at a time227

scale far too rapid to be followed without special techniques.228

The observable quantities are therefore statistical averages over229

the instantaneous properties of the field, described by means of230

correlation functions. These correlation functions evolve as the231
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Fig. 2. Schematic illustration of interference in Young’s two-
pinhole experiment. The incident wave field is diffracted by
pinholes P1 and P2 on screen A, and produces interference
fringes on screen B. (a) Lowering the amplitude of P1 with
respect to P2 causes the visibility to decrease. (b) Varying the
phase at either pinhole causes the interference fringes to move
laterally across screen B. (c) Partial coherence at screen A re-
duces the visibility of time-averaged interference fringes.

field propagates to a plane A at a distance D behind O, where232

the transverse coordinate is denoted by r.233

{

D

Fig. 3. Illustration of the effective size A0 and spatial coher-
ence area C0 of the field in the source plane O, C0 being de-
fined as the region where correlations between field fluctu-
ations at positions ρ1 and ρ2 are significant. Corresponding
areas at plane A are denoted by A and C, respectively.

In particular, spatial coherence is described by considering234
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correlations between fields at two spatial points, ρ1, and ρ2 at235

plane O, or r1, and r2 at A. With some reservations to be dis-236

cussed later on, spatial coherence can be measured by observing237

the visibility of the interference fringes as outlined in Fig. 2. The238

coherence area C0 of the field at plane O is defined as the effec-239

tive area over which fringes of appreciable contrast are observed240

on screen A. The radius of a circle that contains C0 can be used241

as a measure of coherence width.242

In some scenarios the coherence area C0 is far smaller than the243

source area A0, in which case the field is called quasihomoge-244

neous. This is the case, e.g., if we consider blackbody radiation245

emerging from an aperture at O. In fact, for such radiation C0246

is in the wavelength scale, thus allowing us to treat the source247

as a nearly incoherent one. As the field propagates, C then248

grows linearly with the propagation distance D, as given by the249

van Cittert–Zernike theorem [13, 14]; see Sect. 4.4.4 of Ref. [2].250

Nevertheless, due to its high divergence, the field remains quasi-251

homogeneous at all propagation distances D.252

Depending on the source in question, the sizes A and C can253

be of the same order of magnitude, or we may have C ≫ A,254

in which case the field is nearly spatially coherent. Generally,255

for a field radiated by a non-quasihomogeneous source, both C256

and A become nonlinear functions of distance D. In some cases,257

both may even decrease initially. However, at sufficiently large258

propagation distances D, they grow linearly. This is because the259

field in the far-zone (where D → ∞) approximates a spherical260

wave emerging from an axial point ρ0, with a radius of curvature261

R = D. The field fluctuates on the surface of this sphere, and262

the fluctuations determine the correlation characteristic of the263

field on this sphere (see Sect. 5.3 of [2]. If we extract the spherical264

phase, we effectively obtain the field size A and the coherence265

area C across a far-zone observation plane A tangential to the266

sphere.267

Examination of the relations between the source-plane co-268

herence characteristics and those of propagated fields at any269

distance D (including the far-field) generally requires evalua-270

tion of propagation integrals of correlation functions. This can271

be done analytically only in a limited number of cases even in272

the far zone. Such analytical results can be obtained for any D273

if we consider so-called Gaussian Schell-model (GSM) fields,274

discussed in Sect. 4D. In the GSM the source-plane spatial co-275

herence may vary continuously between incoherence and full276

coherence, and the model will help to quantify several features277

that we discuss here only in qualitative terms.278

In certain circumstances it is possible to draw qualitative279

conclusions on the relations between source-plane and far-field280

characteristic in simple terms. This is true particularly if the281

field is quasihomogeneous at plane O. In this case the coher-282

ence width at O determines the beam divergence, which be-283

comes inversely proportional to the source-plane coherence284

width. Conversely, the far-field coherence width becomes in-285

versely proportional to the size of the source. The relations286

between source-plane coherence and beam divergence were287

studied rather extensively already in the 1970s. In particular,288

Wolf and Collett [22–24] showed, by considering GSM fields,289

that partially coherent sources of any state of coherence can290

have the same directionality as a fully coherent planar Gaussian291

source of certain well-defined spatial width. The field emitted292

by such an ‘equivalent coherent source’ can be considered as293

an effective (or ‘elementary’) field associated with the source.294

This spawned a lot of immediate interest [25–27]. In particu-295

lar, Gori and Palma [28] showed that such an elementary-field296

description applies to GSM fields with any state of coherence,297

allowing one to represent the entire partially coherent field as a298

suitably weighted incoherent superposition of laterally shifted299

replicas of the elementary fields. They also introduced an al-300

ternative formulation, in which the effective coherent field has301

the same size as that of the entire partially coherent field at the302

source plane. In this model, the total partially coherent field can303

be represented as an incoherent angular superposition of the304

elementary fields.305

The spatial coherence properties of light generally depend on306

the (angular) frequency of light, ω. This dependence is typically307

substantial and it cannot be ignored for broadband fields, such308

as blackbody radiation. To illustrate this point, we consider a309

particular example. In one of his seminal papers [3], Wolf inves-310

tigated the coherence properties of planar quasihomogeneous311

sources that radiate light with the same (normalized) far-zone312

spectrum in every direction. He concluded that this is possible313

only if the degree of spatial coherence at plane O is a function of314

the form h [ω (ρ1 − ρ2) /c], where c is the speed of light in vac-315

uum. When this condition is satisfied, the normalized far-field316

spectrum is the same as the normalized source-plane spectrum317

(which is assumed to be the same at every point ρ). If it is not318

satisfied, correlation-induced spectral changes take place upon319

propagation, which can lead, e.g., to red (or blue) shifts in the320

spectrum [29, 30]. Examples of sources that satisfy the condition321

for spectral invariance include Lambertian sources, for which h322

is a sinc function.323

Finally, the coherence and polarization properties of optical324

fields are in general coupled, and the full description requires325

an electromagnetic analysis. In the paraxial domain these prop-326

erties can be described in a unified way by means of the 2 × 2327

coherence-polarization matrices advocated by Wolf [4]; see also328

the related works of Gori in Refs. [31, 32]. These phenomena329

manifest also in the fringe visibility in Young’s experiment. In330

particular, if the fields at pinholes P1 and P2 at plane A are or-331

thogonally polarized, the contrast of the interference pattern332

vanishes even for fully spatially coherent illumination.333

A. Examples of partially coherent fields334

At this stage it seems useful to briefly discuss the spatial coher-335

ence properties of both natural and man-made light sources and336

fields they radiate, using simple heuristic arguments, to appreci-337

ate the requirements and challenges associated with measuring338

their spatial coherence properties. We proceed to qualitatively339

describe the main properties of several sources of practical inter-340

est.341

Thermal sources emit broadband radiation with a spectrum342

that can be closely approximated by the blackbody spectrum.343

If, as is usual in microscopy, the field at plane O is generated344

with a Köhler condenser, the field inside an aperture A0 in O is345

effectively unpolarized and has a uniform intensity distribution346

at all frequencies. The spatial coherence is low and the spectral347

degree of spatial coherence satisfies Wolf’s scaling law [3] with348

h(u) = 2J1(u)/u, where J1 is the Bessel function of order one,349

the argument is u = (ω/c) |ρ1 − ρ2|NA, and NA represents the350

numerical aperture of the condenser (see Sec. 10.5.3 in Ref. [1]).351

Gas and solid-state lasers come in many forms with different352

spatial coherence properties. Lasers operating in a single trans-353

verse mode have high spatial coherence and low divergence.354

In multimode operation the spatial coherence is reduced, and355

can be low if the number of transverse modes is large (as is356

the case for, e.g., excimer lasers). Depending on the cavity, the357

radiation can be highly polarized or unpolarized. These lasers358

can produce either continuous-wave beams or trains of short359
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pulses with a duration down to the sub-cycle regime.360

Edge-emitting semiconductor lasers operating in a single spatial361

mode produce highly coherent and highly linearly polarized362

radiation, which however is anisotropic: the divergence dif-363

fers in the two orthogonal directions since the source itself is364

anisotropic. In multimode operation the coherence is reduced365

according to the number of excited modes, which depends on366

the size of the emitting area [33, 34]. Usually the height of the367

emitting stripe is chosen to support only a single mode in a368

direction (say, y) perpendicular to the junction, in which case the369

coherence of the radiation is reduced only in the x direction.370

Free-electron lasers (FELs) are large-scale facilities producing371

trains of intense pulses, with the time-averaged coherence prop-372

erties varying rather widely according to the particular imple-373

mentation [35]. Both spatial and temporal coherence of FEL374

radiation have been well-characterized experimentally [36–38].375

Typically the beams generated by FELs are anisotropic, but their376

spatial coherence properties can often be described, at least ap-377

proximately, by the Gaussian Schell model [39].378

Light-emitting diodes (LEDs) are polychromatic sources that379

produce highly divergent and nearly unpolarized radiation.380

Thanks to the technological developments over the past two381

decades [40, 41], the brightness of LEDs has improved dramati-382

cally to the level that LEDs have rapidly replaced other sources383

in lighting applications. The spectra of ‘monochromatic’ LEDs384

is in the 10 nm region for visible light. However, the spectra can385

be made substantially wider (mimicking white light) if a part of386

the radiation from a blue LED is down-converted to the yellow387

region using phosphorous materials. The spatial coherence area388

of LEDs at the source plane is of the same order of magnitude389

as for thermal light, thus allowing them to be considered as390

quasihomogeneous sources. The exact form of the spectral de-391

gree of coherence can be retrieved from the radiation pattern. It392

satisfies Wolf’s scaling law well for ‘monochromatic’ LEDs, and393

approximately also for ‘white’ LEDs [42].394

Supercontinuum (SC) light can be generated in most bulk me-395

dia using trains of intense pulses [43–45], or in optical fibers396

at substantially lower pump-pulse intensity [46]. SC is broad-397

band, featuring spectra that can be multiple optical octaves wide398

[45, 47]. In bulk SC the divergence of the radiation depends on399

how tightly the pump field is focused, while in fiber SC it is400

defined by the output numerical aperture of the fiber. A recent401

simulation study [48] indicates, perhaps somewhat surprisingly,402

that the spatial coherence of bulk SC is high. Considering SC403

generation in single-spatial-mode fibers, spatial coherence is404

complete at each frequency. However, because the effective405

mode area depends on ω, the time-domain spatial coherence is406

not perfect [49], but it is nevertheless relatively high. In multi-407

mode fibers the spatial coherence depends on the number modes408

and their weights, but this subject remains to be studied in detail.409

Fields with tailored coherence and polarization properties410

can be generated virtually from any field discussed above. The411

variety of techniques to accomplish this is too wide to be cov-412

ered here, but the options include optical systems containing413

non-rotationally-symmetric elements, anisotropic or birefringent414

media, interferometers, and diffractive elements.415

Many of the sources described above are nonstationary and416

produce trains of pulses, while ‘slow’ square-law detectors are417

almost exclusively used to measure spatial coherence. Such slow418

detectors typically average over many pulses in the train, in419

which case the measurements provide results analogous to those420

of stationary fields. We will justify this point more precisely in421

Sect. 7.422

B. General measurement issues423

In the geometry of Fig. 3 we measure coherence across a plane424

at a given distance D from the source plane. This distance is,425

of course, variable, but the size of the field increases with D426

until it may no longer fit within the aperture of the system.427

This can happen especially when we are in the far-zone region.428

However, as is well known from standard Fourier optics, the429

scaled version of the far-zone field can be observed at a chosen430

distance by placing the observation plane in the back focal plane431

of a Fourier transforming optical system [see Ref. [50], chapter432

5]. In the case of polychromatic fields, such a system needs to be433

well color-corrected (preferably apochromatic).434

In practice, the observation plane A cannot usually be the435

source plane O itself. In such a case, one can employ standard436

imaging systems to produce a secondary source at the image437

plane O’ of O. If the field is not substantially truncated by the438

aperture stop of the imaging system and the system is essentially439

aberration-free, the field dimensions and coherence properties440

at O’ are similar to those at O, except for a transverse scale given441

by the magnification m of the system. The use of imaging sys-442

tems becomes particularly important when the degree of spatial443

coherence at O varies in wavelength-scale and therefore cannot444

be resolved with standard array detectors. Several practically445

relevant sources with such properties were already identified in446

the previous subsection. In terms of the Abbe theory of image447

formation, high-NA microscope objectives are needed to trans-448

mit at least most of the relevant spatial frequencies contained in449

the (highly divergent) field. Another related advantage of high450

transverse magnification is that it increases the effective depth451

of field, thus making it easier to place the input plane A of the452

measurement system at the plane O’. Further, the divergence453

of the magnified field decreases with m, with the output field454

becoming essentially paraxial at large values of m. In fact, it is455

sometimes convenient to construct the entire system (including456

both the coherence measurement instrument and the imaging457

setup) onto a single platform that can be moved as a whole in458

the z direction to study the properties of propagated fields.459

If the spectrum of the field to be measured is narrow, a sin-460

gle spatial coherence measurement can be sufficient. In the461

case of broadband fields the spatial coherence typically becomes462

frequency-dependent and at least some spectral resolution is463

needed. On the other hand, especially if the polarization state464

of the field depends on position, with two-point spatial coher-465

ence and polarization phenomena becoming coupled, one needs466

polarization-sensitive measurement schemes. For beam-like467

fields, this implies that (at least) four coherence measurements468

using polarization-controlling systems are required, in analogy469

with analyzing the polarization state of partially polarized plane470

waves; see Sect. 6.2 of Ref. [2].471

To obtain spectral resolution one may in principle use band-472

pass filters with different central frequencies (or wavelenghts)473

and select sufficiently narrow spectral samples from the incident474

field and to measure spatial coherence for each frequency band475

separately. A tunable Fabry–Perot filter is also an option, as is476

the use of dispersive elements (such as a prism or a grating).477

The latter approach, however, requires one dimension on the478

array detector for spectral resolution, therefore being applica-479

ble only if measurement of spatial coherence in the orthogonal480

direction is sufficient. Yet another option, which avoids sacri-481

ficing one spatial dimension, is to measure the full space-time482

correlation function, including an arbitrary time delay, which483

is in fact possible using some of the methods to be discussed.484
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In this scenario the space-frequency correlation properties can485

be obtained by means of the Wiener–Khintchine theorem (see486

Sect. 2.4.4 of Ref. [2]).487

Considering practical issues, the data acquisition time re-488

quired to perform coherence measurements depends critically489

on the type of instrument used, as does the light intensity level490

required to get the data at a sufficient signal-to-noise ratio (SNR),491

i.e. signal power divided by noise power. We therefore leave the492

discussion of these issues to later sections. Instead, we address493

here the dimensionality of the data that needs to be measured.494

This is independent of the method used, but rather depends on495

the properties of the source and whether we require spectral496

resolution or not.497

In spectrally resolved spatial coherence measurements the498

required number Q of spectral samples depends on the width499

of the incident spectrum, but also on how rapidly it varies. For500

smooth spectra, such as the blackbody spectrum, Q ∼ 10 − 20501

may already be sufficient. If a dispersive element is used and the502

measurement setup is designed to fit the incident spectrum es-503

sentially over the detector area, Q can be as large as the number504

of pixels in the y direction (∼ 1000).505

From now on we assume that the spatial intensity of the in-506

cident field (or the spectral density at any desired frequency)507

can be measured, which is typically done by keeping only one508

channel of the measurement instrument open. Hence, it re-509

mains to consider the dimensionality of the spatial degree of510

coherence (DOC). If we only need to measure spatial coher-511

ence in one dimension (1D), the DOC data matrix is generally512

two-dimensional (2D). However, if the incident field obeys the513

Schell-model, i.e., if the DOC depends only on coordinate dif-514

ferences [51], the matrix becomes 1D in each direction and thus515

2D if we need the DOC in both x and y directions. If the field516

is not of the Schell-model form, the dimensionality grows sub-517

stantially and the spatial data matrix becomes four-dimensional518

(4D). Let us assume that we measure the DOC at M × N spatial519

points for (x1, y1) and P × R points for (x2, y2). In this general520

case we obtain a 4D matrix with MNPR elements. Consider-521

ing a normal laboratory computer with 16 GB of rapid-access522

memory and store the data in 8-bit form, the upper limit for523

the product MNPR is approximately 1.3 × 1010. Hence, if we524

set M = N = P = R, we get an upper bound M ≈ 336. This525

applies to scalar field, but the data storage space required for526

electromagnetic measurements grows only by a factor of 4. If527

spectral resolution of Q samples is required, the matrix becomes528

five-dimensional (5D). Fortunately, depending on the source and529

also on the intended purpose of the spatial coherence measure-530

ments, we do not necessarily need the same number of samples531

in all four spatial directions. Sometimes it may, e.g., be sufficient532

to have only a few samples of (x1, y1), or to use high resolution533

only in one direction, which leads to three-dimensional (3D)534

spatial data matrices. One example of the former situation is de-535

termination of the mode structure of optical beams from spatial536

coherence measurements [52]. In conclusion, fast-access storage537

space is not usually a critical limiting issue.538

4. YOUNG’S INTERFEROMETER539

Let us return to the coherence measurement with Young’s inter-540

ferometer and describe the results in quantitative terms, starting541

with scalar analysis. Figure 4 illustrates the geometry and no-542

tation in detail. The pinholes at points r1 and r2 on screen A543

produce an interference pattern on screen B, located at a distance544

L behind screen A. As already mentioned above, this pattern545

is generally colored, and its local contrast around an arbitrary546

observation point R depends on the bandwidth of the incident547

field. An optional spectral filter F selects a certain spectral band548

around a reference frequency ω0. Reducing the passband ωF of549

F increases the local fringe contrast; in the quasimonochromatic550

limit ωF ≪ ω0 the fringe contrast depends only on field corre-551

lations between the pinholes, this being the initial assumption552

in standard textbooks [1, 2]. However, here we formulate the553

theory of Young’s interferometer for incident fields with an ar-554

bitrary spectrum. To this end, it is convenient to start with the555

space-frequency field representation using the scalar theory.556

Fig. 4. Young’s interferometer: geometry and notation. The
red and blue curves represent the phase of an arbitrary field
realization and the mean over all realizations, respectively, of
the field approaching screen A.

A. Scalar formulation in the space-frequency domain557

We denote an arbitrary spectral field realization (in the complex
analytic signal representation) at point r = (x, y) on screen A,
and at frequency ω, by E(r; ω). The amplitudes and phases of
these realizations are random. The phases fluctuate around a
mean value ϕ(r; ω), illustrated in Fig. 4 with a blue curve. The
mean wavefront may generally be aspherical, but for clarity a
spherical wavefront is shown in Fig. 4. It is, however, determin-
istic by definition, allowing us to extract it by writing the field
realizations in the form

E(r; ω) = E0(r; ω) exp [iϕ(r; ω)] . (1)

We note that this representation is analogous to introducing a558

best-fitting reference sphere in the wave theory of aberrations559

[53]; in well-corrected optical systems the phase difference be-560

tween the true aberrated wavefront and the reference sphere561

is in the sub-2π scale, while the phase difference between the562

reference sphere and the entrance pupil of the system may be563

orders of magnitude larger. We will see later on that represent-564

ing the realizations as in Eq. (1) can be of substantial practical565

value in measurement of the phases of the associated correlation566

functions.567

By introducing also a reference frequency ω0, which can be,
e.g., the peak or mean frequency of the spectrum of the field
at A, the spectral dependence of the deterministic part of the
wavefront has the form

ϕ(r; ω) =
ω

ω0
ϕ(r; ω0). (2)

For quasimonochromatic fields centered at ω0, this spectral de-568

pendence can essentially be ignored, but it is significant for569

broadband fields.570

Spatial coherence properties of the field between two arbi-
trary points r1 and r2 at frequency ω are described by the cross-
spectral density function (CSD)

W(r1, r2; ω) = ⟨E∗(r1; ω)E(r2; ω)⟩ (3)
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where the brackets and the asterisk denote ensemble averaging
and complex conjugation, respectively. The spectral density of
the field is defined as the equal-point CSD, S(r; ω) = W(r, r; ω).
It is customary to introduce a normalized quantity, known as
the complex degree of coherence (DOC) in the space-frequency
domain, by writing

µ(r1, r2; ω) =
W(r1, r2; ω)√

S(r1; ω)S(r2; ω)

= |µ(r1, r2; ω)| exp [iα(r1, r2; ω)] , (4)

where α(r1, r2; ω) denotes the phase of µ(r1, r2; ω). By applying
Eqs. (1) and (2), we readily find that

W(r1, r2; ω) = W0(r1, r2; ω)

× exp {i(ω/ω0) [ϕ(r2; ω0)− ϕ(r1; ω0)]} , (5)

where W(r1, r2; ω) = ⟨E∗
0 (r1; ω)E0(r2; ω)⟩.571

Let us take the two pinholes in Young’s setup to lie at trans-
verse positions r1 = (x1, y1) and r2 = (x2, y2) on screen A as
illustrated in Fig. 4. We assume that the pinholes are small
enough for the phase of the mean wavefront (or of any individ-
ual realization) to be essentially constant across each pinhole,
yet large enough for Kirchhoff’s boundary conditions to hold.
In these circumstances the diffracted fields at an arbitrary ob-
servation point R = (X, Y) on screen B are spherical waves
expressible as

E(R; ω) = (ω/ω0)KjE(rj; ω) exp(iωRj/c), (6)

where Kj = −iω0 Aj/2πcRj with Aj being the area of the aper-
ture at rj. In the paraxial region we may approximate R1 ≈ R2 in
the amplitude terms Kj, which gives K1 = K2 = K0 (we assume
A1 = A2), while in the phase factor in Eq. (6) the second-order
Taylor approximation

Rj ≈ L +
(X − xj)

2

2L
+

(Y − yj)
2

2L
(7)

is needed.572

With these notations and assumptions, the two-beam super-
position field at point R can be expressed as

E(R; ω) = (ω/ω0)K0E(r1; ω) exp (iωR1/c)
+ (ω/ω0)K0E(r2; ω) exp (iωR2/c) . (8)

We are interested in measuring the spectral interference pattern
at point R on screen B, which is given by the spectral density

S(R; ω) = ⟨E∗(R; ω)E(R; ω)⟩ = ⟨|E(R; ω)|2⟩. (9)

Inserting from Eq. (8) and using Eq. (5) we obtain

S(R; ω) = (ω/ω0)
2 |K0|2 {S(r1; ω) + S(r2; ω)

+ 2ℜ [W0(r1, r2; ω) exp[i(ω/ω0)ϕ(r1, r2; ω0)]} . (10)

where ℜ denotes the real part and

ϕ(r1, r2; ω0) = ϕ(r2; ω0)− ϕ(r1; ω0) + (R2 − R1)ω0/c. (11)

Using Eq. (7) we have

R2 − R1 =
(x1 − x2) X

L
+

(y1 − y2)Y
L

, (12)

where only the terms linear in X and Y have been retained as
this is sufficient for our purposes. We may readily express the
spectral interference law in Eq. (10) in the alternative form

S(R; ω) = (ω/ω0)
2 |K0|2 {S(r1; ω) + S(r2; ω)

+2
√

S(r1; ω)S(r2; ω) |µ0(r1, r2; ω)|

× cos [α0(r1, r2; ω) + (ω/ω0)ϕ(r1, r2; ω0)]} , (13)

where |µ0(r1, r2; ω)| and α0(r1, r2; ω) are the absolute value and573

phase of the spectral DOC associated with the random part of574

the incident field.575

To see how the amplitude and phase of the spectral DOC can
be determined from the interference pattern we assume (without
truly sacrificing generality) that the pinholes are located on the
x axis in screen A and the observation point is on the X axis in
plane B. The oscillating part of the interference term in Eq. (13)
is proportional to

M(X; ω) = |µ0(x1, x2; ω)| cos {α0(x1, x2; ω) + (ω/ω0)

× [ϕ(x2; ω0)− ϕ(x1; ω0) + (ω0/c) (x2 − x1) X/L]} , (14)

which is also referred to as the normalized interference pattern
later on. The function M(X; ω) varies periodically, with period
Λ(x1, x2; ω) given by

2π

Λ(x1, x2; ω)
=

ω0
c

|x1 − x2|
L

, (15)

between maxima |µ0(x1, x2; ω)| and minima − |µ0(x1, x2; ω)| as
the observation point moves along the X axis. The entire inter-
ference pattern given by Eq. (13) therefore has maxima Smax(ω)
and minima Smin(ω), which have the same values across the
interference pattern. Defining the visibility of the spectral inter-
ference fringes as

V(R; ω) =
Smax(ω)− Smin(ω)

Smax(ω) + Smin(ω)
, (16)

we get a relation

V(X; ω) =
2
√

S(x1; ω)S(x2; ω)

S(x1; ω) + S(x2; ω)
|µ0(x1, x2; ω)| (17)

between the observed fringe visibility and absolute value of the576

spectral DOC. Therefore we can determine |µ0(x1, x2; ω)| at any577

single frequency ω directly from the visibility measurements.578

If the random part α0(x1, x2; ω) of the phase is zero, the ex-
pression (14) becomes symmetric about the equal-phase point

X0 =
L

(ω0/c) (x2 − x1)
[ϕ(x1; ω0)− ϕ(x2; ω0)] , (18)

which is the same at all frequencies. If α0(x1, x2; ω) ̸= 0, the579

fringes shift laterally by a corresponding distance, as illustrated580

in Fig. 5. The shift generally depends on ω, but the phase581

α0(x1, x2; ω) can always be determined from it: at any ω a fringe582

shift of one period corresponds to a 2π phase change. The fre-583

quency dependence of the period Λ(x1, x2; ω), given by Eq. (15)584

and illustrated by the blue line in Fig. 5, can be ignored only585

for narrow-band fields. This turns out to be at the root of the586

fundamental problems on determining the time-domain spatial587

coherence properties of broadband fields.588
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Fig. 5. Illustration of the oscillating term M(X; ω) in Young’s
interference experiment as a function of (X − X0)/L, where X0
is the equal-phase point. The black line represents the result at
ω = ω0 when µ0(x1, x2; ω) = 1 and α0(x1, x2; ω) = 0, while
the red line corresponds to the value of the pinhole separation
x2 − x1 that gives µ0(x1, x2; ω) = 0.75 and α0(x1, x2; ω) =
π/2. The blue line is the same as the red one, but plotted at
frequency ω = 0.9ω0.

B. Scalar formulation in the space-time domain589

We proceed to analyze Young’s interference experiment in the
space-time domain, which is indeed a more usual starting point
[1, 2]. The spatio-temporal coherence properties of a random
field can be analyzed by first Fourier-transforming the spectral
field representation to obtain the corresponding space-time field
according to

E(r; t) =
∫ ∞

0
E(r; ω) exp (−iωt)dω, (19)

where the lower bound of zero arises because we employ the
complex analytic-signal representation. In the space-time do-
main we are interested in measuring the second-order field cor-
relations that are described by the mutual coherence function
(MCF), defined as an ensemble average over the temporal field
realizations given by Eq. (19):

Γ(r1, r2; ∆t) = ⟨E∗(r1; t)E(r2; t + ∆t)⟩, (20)

where ∆t = t2 − t1 represents the difference between two ar-590

bitrary instants of time. Note that since we consider mainly591

statistically stationary fields that are ergodic, the ensemble aver-592

age is equal to time average. That is, performing the ensemble593

average produces a correlation function that is invariant in the594

t = (t1 + t2)/2 direction, and any slice along the ∆t coordi-595

nate completely characterizes the temporal correlations. This596

is no longer true for statistically nonstationary (pulsed) fields,597

although the time-averaged spatial coherence measurements are598

applicable in that case as well, as we will demonstrate in Sect. 7.599

Spatial correlations are characterized by the equal-time MCF,
Γ(r1, r2; 0), while the intensity of the field, given by I(r) =
Γ(r, r; 0), is constant at every point. The time-domain DOC
is defined, in analogy with Eq. (4), as

γ(r1, r2; ∆t) =
Γ(r1, r2; ∆t)√

I(r1)I(r2)

= |γ(r1, r2; ∆t)| exp [iδ(r1, r2; ∆t)] , (21)

where δ(r1, r2; ∆t) denotes the phase. Generally, the MCF and
the CSD are related by the Wiener–Khintchine theorem (Ref. [2],

Sect. 2.4.4)

Γ(r1, r2; ∆t) =
∫ ∞

0
W(r1, r2; ω) exp (−iω∆t)dω. (22)

This theorem implies that if we are concerned with spatial co-
herence in the time domain, we only need to integrate the CSD
over all frequencies to obtain the zero-delay MCF

Γ(r1, r2; 0) =
∫ ∞

0
W(r1, r2; ω)dω. (23)

Further, the temporal intensity and the spectral density are re-
lated by

I(r) =
∫ ∞

0
S(r; ω)dω, (24)

i.e., the temporal intensity at any point is equal to the frequency-600

integrated spectral density.601

We can determine the time-domain interference pattern start-
ing from the spectral interference pattern in Eq. (10) and apply-
ing Eq. (24). Doing so, we obtain the result

I(R) = |K0|2
∫ ∞

0
(ω/ω0)

2 [S(r1; ω) + S(r2; ω)]dω

+ 2 |K0|2 ℜ
∫ ∞

0
(ω/ω0)

2 [W0(r1, r2; ω)

× exp [i(ω/ω0)ϕ(r1, r2; ω0)]dω. (25)

Although the factor ω/ω0 inside the integrals varies relatively
slowly, it cannot be ignored if we consider broadband fields
with, e.g., Planck, supercontinuum, or white-LED spectra. If
the spectrum is sufficiently narrow for us to ignore this factor,
the first line of Eq. (25) becomes proportional to the sum of
intensities generated when only one pinhole is open. The time-
domain interference pattern in Eq. (25) can then be cast into the
form

I(R) = |K0|2 [I(r1) + I(r2)]

+ 2 |K0|2
∫ ∞

0

√
S(r1; ω)S(r2; ω) |µ0(r1, r2; ω)|

× cos[α0(r1, r2; ω) + (ω/ω0)ϕ(r1, r2; ω0)]dω. (26)

However, we cannot ignore the ω dependence inside the argu-602

ment of the exponential term in Eq. (25). As already seen, the603

presence of this factor makes the period of the spectral interfer-604

ence pattern strongly frequency-dependent.605

As already pointed out, the time-domain interference fringes
produced by Young’s interferometer become colored and lose
contrast when polychromatic light is considered, even though
at least some fringes can still be seen even for white light. It
follows directly from Eq. (26) that

I(R) = |K0|2
{

I(r1) + I(r2) + 2
√

I(r1)I(r2)

× |γ0(r1, r2; ∆tR)| cos [δ0(r1, r2; ∆tR)]
}

, (27)

where ∆tR = ϕ(r1, r2; ω0)/ω0 is a position-dependent time de-606

lay. Measurements around the equal-time point R at a position607

where ∆tR = 0 would then, in a formal sense, give precisely608

the time-domain degree of spatial coherence γ0(r1, r2; 0) of the609

random part of the field, which is the quantity we are looking for.610

However, as we will demonstrate by simulations in Sect. 4E, un-611

ambiguous experimental measurements of this quantity requires612

that the spectrum has a sufficiently narrow effective bandwidth,613

i.e., that the incident field is essentially quasimonochromatic.614
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C. Electromagnetic formulation615

The scalar analysis of Young’s interferometer presented in the616

previous section is satisfactory for paraxial (or beam-like) inci-617

dent fields, for which the vectorial nature can be largely ignored618

as long as the state of polarization across screen A is uniform. In619

such circumstances the x and y components of the vector field620

E(r; ω) decouple on propagation and can therefore be analysed621

within scalar theory, while the z component is negligible. In622

general, however, the polarization state of E(r; ω) may depend623

on both r and ω, which necessitates a vectorial analysis of the624

results of Young’s interferometer, as well as any other coherence625

measurement method.626

The (transverse) electric vector of the beam incident on
Young’s interferometer may be defined by a column vector
E(r; ω) = [Ex(r; ω), Ey(r; ω)]T where Ex(r; ω) and Ey(r; ω) are
the Cartesian field components and T denotes the transpose. In
analogy to Eq. (1) in the scalar case, we extract the deterministic
part of the phase front as

E(r; ω) = E0(r; ω) exp [iϕ(r; ω)] , (28)

with ϕ(r; ω) given in Eq. (2). The interference field on the obser-
vation screen thus takes the form

E(R; ω) = (ω/ω0)K0E(r1; ω) exp (iωR1/c)
+ (ω/ω0)K0E(r2; ω) exp (iωR2/c) . (29)

The polarimetric characteristics are traditionally described in
terms of the (polarization or one-point) Stokes parameters de-
fined as [2]

S0(r; ω) = Φxx(r; ω) + Φyy(r; ω), (30)

S1(r; ω) = Φxx(r; ω)− Φyy(r; ω), (31)

S2(r; ω) = Φxy(r; ω) + Φyx(r; ω), (32)

S3(r; ω) = i
[
Φyx(r; ω)− Φxy(r; ω)

]
, (33)

where Φij(r; ω) = ⟨E∗
i (r; ω)Ej(r; ω)⟩, with (i, j) ∈ (x, y), are the

elements of the polarization matrix. The first parameter S0(r; ω)
is the spectral density, while S1(r; ω), S2(r; ω), S3(r; ω) express
the polarization state. With straightforward steps, the Stokes
parameters related to field E(R; ω) above, are found to be

Sn(R; ω) = |K0|2 (ω/ω0)
2 {Sn(r1; ω) + Sn(r2; ω)

+ 2ℜ [S0,n(r1, r2; ω) exp[i(ω/ω0)ϕ(r1, r2; ω0)]} . (34)

with n ∈ (0, . . . , 3) and ϕ(r1, r2; ω0) given in Eq. (11). Further,
S0,n(r1, r2; ω) are the (two-point) coherence Stokes parameters
at the pinholes, explicitly given by [54–57]

S0,0(r1, r2; ω) = W0,xx(r1, r2; ω) + W0,yy(r1, r2; ω), (35)

S0,1(r1, r2; ω) = W0,xx(r1, r2; ω)− W0,yy(r1, r2; ω), (36)

S0,2(r1, r2; ω) = W0,xy(r1, r2; ω) + W0,yx(r1, r2; ω), (37)

S0,3(r1, r2; ω) = i
[
W0,yx(r1, r2; ω)− W0,xy(r1, r2; ω)

]
. (38)

Above, W0,ij = ⟨E∗
0,i(r1; ω)E0,j(r2; ω)⟩, with (i, j) ∈ (x, y), are627

the elements of the cross-spectral density matrix associated with628

the field E0(r; ω).629

We introduce the normalized coherence Stokes parameters
via

µ0,n(r1, r2; ω) =
S0,n(r1, r2; ω)√

S0(r1; ω)S0(r2; ω)
, n ∈ (0, . . . , 3), (39)

which may be viewed as the electromagnetic analogs of
the complex degree of coherence of scalar fields defined
in Eq. (4). Invoking the representation µ0,n(r1, r2; ω) =
|µ0,n(r1, r2; ω)| exp[iα0,n(r1, r2; ω)], enables us to write Eq. (34)
as

Sn(R; ω) = |K0|2 (ω/ω0)
2 {Sn(r1; ω) + Sn(r2; ω)

+ 2
√

S0(r1; ω)S0(r2; ω)|µ0,n(r1, r2; ω)|

× cos [α0,n(r1, r2; ω) + (ω/ω0)ϕ(r1, r2; ω0)]} . (40)

Due to the cosine term, the Stokes parameters exhibit (quasi)
periodic oscillations with the local maxima and minima around
R denoted by Sn,max(ω) and Sn,min(ω), respectively. The related
visibilities are found to be

Vn(R; ω) =
2
√

S0(r1; ω)S0(r2; ω)

S0(r1; ω) + S0(r2; ω)
|µ0,n(r1, r2; ω)| . (41)

This indicates that the magnitudes |µ0,n(r1, r2; ω)| of the normal-630

ized coherence Stokes parameters can be obtained from the visi-631

bility measurements, while the phases α0,n(r1, r2; ω) are found632

from the locations of the Stokes-parameter patterns.633

We may define the degree of coherence of an electromagnetic
beam by considering the visibility of the intensity fringes as in
the scalar case or assessing the contrasts of both the intensity
and polarization Stokes-parameter fringes. Assuming the same
intensity in the pinholes, the degree of coherence related to the
former case is µ0,n(r1, r2; ω) [4], whereas in the latter situation
the degree (in squared form) is defined as [58, 59]

µ2(r1, r2; ω) =
1
2

3

∑
n=0

|µ0,n(r1, r2; ω)|2 , (42)

where the factor 1/2 ensures that 0 ≤ µ(r1, r2; ω) ≤ 1. Unlike634

the mere intensity-based measure of µ0,n(r1, r2; ω), the quantity635

µ(r1, r2; ω) is purely real.636

The electromagnetic formulation in the time domain is a637

straightforward extension of that in the scalar case. The limita-638

tions of Young’s interferometer remain the same.639

D. Example: polychromatic Gaussian Schell-model fields640

Let us depart briefly from the discussion of Young’s interferom-641

eter by introducing a specific model for partially coherent light,642

namely the Gaussian Schell model (GSM); see, e.g., Ref. [60].643

Largely due to its mathematical simplicity, this is by far the most644

widely used model for partially coherent light, though it covers645

only one class of fields. In particular, the GSM allows us to quan-646

tify the concepts already introduced qualitatively in Sect. 3. This647

model can be used to illustrate measurement results with any of648

the techniques described below, not just Young’s interferometer.649

Specifically, we assume that the CSD of the field at the en-
trance plane of the measurement setup is of the separable form

W(x1, y1, x2, y2; ω) = W(x1, x2; ω)W(y1, y2; ω), (43)

where the x-dependent factor is

W(x1, x2; ω) = W0(x1, x2; ω) exp [iϕ(x1, x2; ω)] (44)

and a similar expression applies to the y-dependent factor. The
random part of the CSD in Eq. (44) is given by

W0(x1, x2; ω) =
√

S0(ω)

× exp

[
−

x2
1 + x2

2
w2(ω)

]
exp

[
− (x1 − x2)

2

2σ2(ω)

]
, (45)
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where S0(ω) represents the axial spectral density of the field.
The (deterministic) phase factor in Eq. (44), which arises from
the phase term in Eq. (1), has the form

ϕ(x1, x2; ω) = − ω

2cR(ω)
(x2

1 − x2
2). (46)

It can be readily established that w(ω) is the 1/e2 half-width of650

the (Gaussian) transverse profile S(x; ω) = W(x, x; ω), σ(ω) is651

the rms half-width of the (Gaussian and real-valued) distribu-652

tion µ0(x1, x2; ω), and R(ω) is the (paraxial-domain) radius of653

curvature of the incident wavefront. The random part of the654

CSD is clearly of the Schell-model form, as its spectral DOC655

depends only on the coordinate difference x2 − x1.656

Even though strictly analogous expressions can be written657

for W(y1, y2; ω), it is worth considering a slight extension of the658

model. Generally both the beam width and the coherence width659

may be different in the two directions, i.e., wx(ω) ̸= wy(ω) and660

σx(ω) ̸= σy(ω), in which case the field is called anisotropic [61].661

In general we also have Rx(ω) ̸= Ry(ω). In this case the field662

can be called astigmatic.663

Gaussian Schell-model fields can be generated in various664

ways. A fairly standard laboratory technique is to start from665

a spatially coherent field, such as an isotropic or anisotropic666

Gaussian laser beam or pulse train, and then reduce the spatial667

coherence by passing the beam through a rotating diffuser [62].668

One can (optionally) use a Gaussian apodizing filter to control669

the beam width at the measurement plane as, e.g., in Ref. [63].670

The axial spectrum S0(ω) can be of any form, but often it can
be modelled by a Gaussian function

S0(ω) = S0 exp

[
−2 (ω − ω0)

2

Ω2
0

]
, (47)

where the parameter Ω0 is a measure of the spectral bandwidth.671

This form is appropriate for, e.g., short optical pulses generated672

in spherical-mirror laser resonators. The field becomes quasi-673

monochromatic when Ω0 ≪ ω0.674

The parameters w(ω), σ(ω), and R(ω) generally depend on
frequency and evolve on propagation according to simple laws,
thus being often called the propagation parameters of the GSM
beam [64]. Denoting by z the propagation distance from the
‘waist’ of the beam, where w(ω) and σ(ω) reach their minimum
values w0(ω) and σ0(ω), respectively, and R(ω) = ∞ (planar
wavefront), these laws can be written as

w(ω) = w0(ω)

[
1 +

z2

z2
R(ω)

]1/2

, (48)

σ(ω) = σ0(ω)

[
1 +

z2

z2
R(ω)

]1/2

, (49)

R(ω) = z +
z2

R(ω)

z
. (50)

Here we have denoted the so-called Rayleigh range of the beam
by

zR(ω) =
1
2

ω

c
w2

0(ω)β(ω) (51)

where

β(ω) =

[
1 +

w2
0(ω)

σ2
0 (ω)

]−1/2

. (52)

In the limit of complete spatial coherence σ0(ω) → ∞, β(ω) → 1,675

and zR(ω) reduces to the usual Rayleigh range of a Gaussian676

beam. In the case of a quasihomogeneous field with σ0(ω) ≪677

w0(ω) we can approximate β(ω) ≈ σ0(ω)/w0(ω). We finally678

note that the propagation parameters defined above can also679

be used to characterize GSM beams at the output plane of any680

paraxial optical system [65–67].681

The formulas for the propagation parameters allow us to
estimate the distance D from the beam waist (assumed to be
at the plane O in Fig. 3) to the plane A such that the far-field
conditions are fulfilled. The criterion z ≫ zR(ω) leads to asymp-
totic results w(ω) → w0(ω)z/zR(ω), σ(ω) → σ0(ω)z/zR(ω),
and R(ω) → z. The directionality of the radiation can now be
characterized by the far-field diffraction angle

Θ(ω) = lim
z→∞

w(ω)

z
=

2c
ωw0(ω)β(ω)

≈ 2c
ωσ0(ω)

. (53)

Correspondingly, the angular coherence width is characterized
by

Σ(ω) = lim
z→∞

σ(ω)

z
=

σ0(ω)2c
ωw2

0(ω)β(ω)
≈ 2c

ωw0(ω)
. (54)

In both cases the approximate forms apply to the quasihomoge-682

neous case, in which the directionality of the field is inversely683

proportional to the source-plane coherence width, while the684

angular coherence width is inversely proportional to the beam685

width at the source plane.686

It is clear from Eq. (53) that all sources with an equal value
of the product w0(ω)β(ω) radiate beams with the same di-
rectionality. If we compare an arbitrary GSM source with a
fully coherent Gaussian source (an elementary source) of width
w0(ω) = wE(ω), this condition leads to an equivalence relation
[22, 68]

1
w2

E(ω)
=

1
w2

0(ω)
+

1
σ2

0 (ω)
. (55)

As shown in [28], an incoherent superposition of laterally shifted
replicas of the ‘elementary’ source fields leads to a GSM source
if the replicas are weighted by a suitable Gaussian function. On
the other hand, if we consider anisotropic GSM sources, the
condition

w2
0x(ω)βx(ω) = w2

0y(ω)βy(ω) (56)

ensures that the ratio wx(ω)/wy(ω) remains constant at all prop-687

agation distances including the far zone [69]. Hence fields that688

satisfy this condition may be called shape-invariant (at frequency689

ω).690

To complete this subsection, we illustrate the spectral depen-
dence of the propagation parameters of GSM beams by means of
a particular example. In multimode operation, usual spherical-
mirror laser resonators generate Hermite–Gaussian (HG) modes,
which all have the same frequency-independent Rayleigh range
zR(ω) = zR(ω0); see Chapt. 8 in Ref [70]. It then follows that
the spatial width wHG(ω) of any HG mode, and any incoherent
superposition of such modes, scales in frequency as

wHG(ω) =

√
ω0
ω

wHG(ω0). (57)
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If the weights of the HG modes follow a certain exponential
distribution [26, 71], the incoherent superposition of modes is
a GSM beam, where the parameter β(ω) = β is independent of
frequency. Explicitly, the CSD can in this case be written as [72]

W(x1, x2; ω) =
∞

∑
m=0

cmψ∗
m(x1; ω)ψm(x2; ω), (58)

where

cm = wHG(ω0)

√
2π

β

1
1 + 1/β

(
1 − β

1 + β

)m
(59)

and ψm(x; ω) denotes a HG mode of order m. The resulting GSM
beam has a width w(ω) = wHG(ω)/

√
β, which scales spectrally

as in Eq. (57), and also the coherence width given by

σ(ω) =
σ(ω0)

w(ω0)
w(ω) =

ω0
ω

σ(ω0) (60)

scales similarly. Finally, since the Rayleigh range is frequency-691

independent, so is the radius of wavefront curvature, i.e.692

R(ω) = R(ω0). In fact, when the spectral dependence of the693

transverse scale is of the form of Eq. (57), the multimode field be-694

comes shape-invariant at all frequencies [73]. The same applies695

to anisotropic fields that satisfy Eq. (56).696

E. Experimental considerations and limitations697

To illustrate the problems in measuring the time-domain coher-
ence of polychromatic fields with Young’s interferometer more
quantitatively, we consider some simple but representative simu-
lations. We assume a polychromatic incident field with a planar
wavefront and a CSD of the Gaussian form

W0(x1, x2; ω) = S0(ω) exp

[
− (x1 − x2)

2

2σ2

]
(61)

where σ is assumed to be frequency independent for simplicity,
although this is an unlikely scenario in practise. Using Eq. (24),
normalizing according to Eq. (21), and assuming that the pin-
holes are located at xj = ±a/2, the true time-domain spatial
DOC is found to be

γ0(−a/2, a/2; 0) = exp
(
− a2

2σ2

)
. (62)

On the other hand, the spectral interference pattern takes the
form

S(X; ω) = 2 |K0|2 S0(ω)

(
ω

ω0

)2

×
[

1 + exp
(
− a2

2σ2

)
cos

(
a

ω

c
X
L

)]
. (63)

In our illustrations we assume a blackbody spectrum

S0(ω) = S0
(ω/ω0)

3

exp (bω/ω0)− 1
. (64)

Here S0 is a constant, b = h̄ω0/kBT, where h̄ and kB are the698

reduced Planck constant and the Boltzmann constant, respec-699

tively, and T denotes temperature. We set T = 5780 K, which is700

the effective temperature of the Sun [74]. According to Wien’s701

displacement law, this gives the maximum of Planck’s law in702

wavelength scale at λmax ≈ 500 nm, which corresponds to a703

reference frequency ω0 = 2πc/λmax = 3.77 × 1015 Hz.704

Figure 6 shows a set of simulation results obtained with705

the present model. In 6(a) we show the dependence of the706

spectral interference pattern on X/L in wavelength scale when707

a = σ = 500λ0, in which case the fringe contrast is reason-708

ably high across the spectrum. Here the lower limit of the709

shown wavelength range corresponds roughly to the transmis-710

sion of typical optical glasses, while the upper limit represents711

the bandgap wavelength λ = 1.1 µm of silicon based photode-712

tectors.713

The frequency-integrated interference pattern, obtained from
Eq. (25), is shown as a function of X/L by the blue curve in
Fig. 6(b), whereas the red and green curves represent the top
and bottom envelopes of the pattern. Obviously, the standard
definition of the visibility of the time-domain interference pat-
tern,

V(R) =
Imax − Imin
Imax + Imin

, (65)

becomes meaningless for the broadband field considered here714

since the maxima and minima depend strongly on X near the715

equal-path position X = 0. The problem persist even if we716

assume fully coherent illumination (σ → ∞), but it decreases717

when the bandwidth is reduced towards the quasimonochro-718

matic case. This is illustrated in Fig. 6(c). Here we assume719

that a bandpass filter with flat transmission over a wavelength720

range λmax − ∆λ0/2 < λ < λmax + ∆λ0/2 is placed in front721

of the pinholes and show the top envelopes of the interference722

pattern when ∆λ0 = 100 nm (red), ∆λ0 = 20 nm (green), and723

∆λ0 = 4 nm (blue). With the 4 nm bandwidth the definition in724

Eq. (65) is applicable for determination of visibility (and there-725

fore the time-domain degree of spatial coherence, which has a726

true value e−1/2 ≈ 0.6065 in this case) by using several central727

fringes between the vertical dashed lines. At 20 nm bandwidth728

the time-domain DOC can still be determined quite well in729

this way. Roughly speaking, we may conclude that Young’s730

interferometer can be used for time-domain spatial coherence731

measurement for bandwidths up to a few tens of nanometers.732

It is possible to reduce the above-discussed problems of the733

traditional Young’s interferometer by making the setup achro-734

matic. This can be accomplished by means of achromatic Fourier735

(or Fresnel) transform (AFT) systems between the two screens736

in Young’s interferometer. Such systems can be constructed737

using purely refractive components [75–77] or hybrid systems738

involving both diffractive and refractive components [78, 79].739

Ideally, AFT systems eliminate the linear frequency dependence740

in the exponential term in Eq. (25), thus allowing accurate mea-741

surement of time-domain spatial coherence at least if we can742

approximate (ω/ω0)
2 ≈ 1 in the frequency integrals. In fact,743

the effect of this factor can be simulated and the true coherence744

function can then be retrieved by calibration of the experimental745

results.746

Real AFT systems always have some residual chromatic aber-747

rations, which causes the interference fringes to be only approx-748

imately independent of ω. This is because AFTs equalize the749

transverse scale at only two wavelengths. The use of apochro-750

matic Fourier transform systems would reduce these residual751

effects significantly, at the expense of having a more complicated752

system, but we are not aware of any such designs. There seem753

to be no detailed studies on the performance of AFTs in spatial754

coherence measurements, but according to experimental evi-755

dence [79] such systems perform adequately at least for spectra756

consisting of red, green, and blue components.757
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Fig. 6. (a) The spectral interference pattern in Young’s exper-
iment for a pair of pinholes at xj = ±a/2 separated by a dis-
tance a = σ. (b) The blue line is the frequency-integrated inter-
ference pattern measured by Young’s interferometer when the
entire wavelength range in (a) is considered, while the red and
green lines represent its envelope. (c) The top envelope when
a finite wavelength band is extracted by a band pass filter with
flat response over a wavelength band of 4 nm (blue), 20 nm
(green), and 100 nm (red).

Considering practical measurement issues, before spatial758

light modulators (SLMs) became readily available, controlling759

the positions of the pinholes required mechanical movement of,760

e.g., two cross-shaped binary-amplitude transparency masks rel-761

ative to each other [52]. This used to be a slow process, limiting762

the measurements primarily to some fixed (x1, y1) and scanning763

(x2, y2) in one or two dimensions. However, SLMs with binary-764

amplitude transmission or reflectance allow free choice of the765

positions of both pinholes and substantially faster data acquisi-766

tion. The devices operate at refreshment rates on the order of767

50–60 Hz. It is possible to drive SLMs faster, but this comes at the768

expense of reduced resolution. Let us assume that the source is769

bright enough, and three frames are taken (with 75 ms exposure770

time) at each position to measure patterns with either only one771

or both pinholes open. The time required to capture and store772

the data at a fixed pair of points, and finally refresh the pinhole773

positions to the next pair of points, is on the order of ∼ 250 ms.774

Hence the measurement of, say, 128 × 128 point-position combi-775

nations takes ∼1 hour at refresh rate of 60 Hz. This rate applies776

to typical digital micromirror devices (DMDs), which we favor777

for implementing Young’s interferometer mainly because they778

offer high pinhole/background contrast [80]. However, the ac-779

quisition times are of the same order of magnitude for other780

SLMs as well. We may conclude at this point that measurements781

for a limited number of samples of r1 at a reasonable resolution782

along r2 is feasible, but the measurement of full 4D data with783

M = N = P = R at even decent resolution is out of the question.784

Obviously, since the incident field at the input plane A of the785

setup is sampled by small pinholes (formed with M × N SLM786

pixels), the light efficiency of Young’s interferometer cannot be787

very high. To obtain an order-of-magnitude estimate we assume788

that the average power of the field on the illuminated area in789

plane A is P̄A. Then the average power level at the detector plane790

Fig. 7. Illustration of (a) the absolute value and (b) the phase
of the complex degree of coherence γ(x1, x2; 0) of a typical
multimode HeNe laser beam, measured by DMD, in the
(x1, x2) coordinate system. The red line in (a) shows the trans-
verse intensity profile at the beam center. Subfigure (c) shows
the best-fitting spherical phase front and (d) represents the
phase δ0(x1, x2; 0) obtained after extraction of the spherical
part. Here we have 161 × 161 data points.

is P̄B ∼ 2P̄A Am MN/L2, where Am is the area of a single SLM791

pixel (or DMD mirror), and L is the distance between planes792

A and B. Therefore, the light efficiency of the device is roughly793

P̄B/P̄A ∼ 2Am MN/L2
794

In our experience, a sufficient SNR for coherence measure-795

ments is ∼ 100. With standard CCD/CMOS detectors op-796

erating at room temperature (with a quantum efficiency of797

∼ 70%), this translates to incident power on the detection area798

greater than P̄B ∼ 1 nW/cm2. Thus, with M × N ∼ 100 × 100,799

the power at plane A should be at least on the level P̄A =800

L2/Am × 10 µW/cm2. The factor L2/Am depends on the em-801

ployed system and it is often on the order of ∼ 100. Moreover, if802

we add spectral resolution, the power incident on plane A has803

to be ∼ Q times larger to resolve Q spectral samples.804

F. Measurement examples805

In the first example we consider a beam emitted from a typical806

HeNe laser cavity that supports several HG modes in both x807

and y directions. Since the beam is quasimonochromatic, the808

time-domain coherence properties can be retrieved directly from809

the measurements, performed here with a DMD device. The810

measurements were done by illuminating the DMD directly by811

a beam with an intensity distribution that essentially fits within812

an area 1.728 × 1.728 mm2 considered in Fig. 7. Figures 7(a)813

and 7(b) show the measured distributions of |γ(x1, x2; 0)| and814

δ(x1, x2; 0), wrapped in the interval [−π, π], respectively. The815

wavefront of the beam incident on the DMD is not perfectly816

planar but contains a deterministic spherical phase of the form817

of Eq. (46), introduced by propagation. This phase, shown in818

7(c), is determined by a numerical best-fitting procedure. Once819

extracted from the phase shown in 7(b), we obtain the random820

part δ0(x1, x2; 0) of the phase, which is illustrated in 7(d).821

The second example demonstrates the measurement of the822
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spectral coherence Stokes parameters of a light beam with a spec-823

trally resolved Young’s interferometer based on a DMD device,824

a grating spectrometer, and a set of circular polarizers [81]. The825

source is a superluminescent diode emitting linearly polarized,826

spatially partially coherent light at a center wavelength of 670827

nm with spectral full width at half-maximum of 7.5 nm. The828

spectral and spatial polarization structure of the beam is modu-829

lated using a quartz-wedge depolarizer. Figures 8(a)–(d) show830

the spatial distributions of the normalized coherence Stokes pa-831

rameters µn(x1, x2, ω), n ∈ (0, . . . , 3), at a wavelength of 659.4832

nm. The figures illustrate a complex polarization-coherence833

structure that may exists at a single wavelength. Although not834

shown here, it was found in [81] that the polarization and electro-835

magnetic coherence properties may vary with wavelength on a836

scale of less than one nanometer. Despite the rich spatio-spectral837

structure of the coherence Stokes parameters, the degree of coher-838

ence shown in Fig. 8(e) is rather smooth and coincides with that839

of the source since the degree is unaffected by the point-wise uni-840

tary transformations (corresponding to waveplates) produced841

by the wedge depolarizer.842

Fig. 8. Illustration of the measured normalized coherence
Stokes parameters (a) µ0(x1, x2, ω), (b) µ1(x1, x2, ω), (c)
µ2(x1, x2, ω), (d) µ3(x1, x2, ω), and (e) the degree of coherence
µ(x1, x2, ω). The plots are for λ = 659.4 nm and the number of
data points is 56 × 56. The colors contain information on both
the amplitude and phase of the complex-valued quantities as
shown in the two-axis colormap in (f). Adapted from Ref. [81].

5. WAVEFRONT FOLDING AND SHEARING INTERFER-843

OMETERS844

The practical shortcomings of Young’s two-beam experiment, re-845

garding measurement speed in particular, can be largely avoided846

by techniques that measure spatial coherence for a (large) set847

of points in parallel. In this section we consider a class of tech-848

niques that do this by interfering the wavefront to be measured849

with its laterally folded or sheared replica. Since these tech-850

niques are based on reflections of the original beam rather than851

diffraction by pinholes, they are also highly light-efficient.852

A. Operation principles and implementations853

Figure 9 illustrates the operating principles of wavefront folding854

interferometer (WFI) and wavefront shearing interferometer855

(WSI), for coherence measurements of a beam-like incident field856

along one spatial dimension (here the x direction). The detector857

D is an array sensor (such as CCD or CMOS) if we wish to858

measure white-light interference, or a spectrometer (providing859

spectral resolution in the y direction) if we wish to measure860

spectral interference. In both cases the losses are mainly due861

to the beam splitters if the field fits within the aperture of the862

device.863

Wavefront folding interferometers have been used for co-864

herence measurements for over half a century [63, 82–84]. The865

original implementation employed 2D folding WFIs, with the866

plane mirror in Fig. 9(a) replaced by a retroreflecor that folds867

the incident field also in the y direction. However, these devices868

were aligned such that the corners of both retroreflectors were869

placed on the optical axis (s = 0 in Fig. 9), thus providing coher-870

ence information only between two axially symmetric points as871

we will shortly see. In Fig. 9(a) we consider a 1D folding version872

with an arbitrary shear s, which allows the determination of873

spatial coherence between any two points x1 and x2.874

Figure 9(a) also illustrates ray propagation through the two875

arms of the WFI (horizontal arm 1 with the retroreflector R and876

vertical arm 2 with the plane mirror M). The (solid red) ray that877

originates from an arbitrary point x1 ends up at point X = x1878

when traveling through arm 2. On the other hand, we see that879

the (solid green) ray originating from point x2 = −x1 + 2s also880

ends up at the point X = x1 in the output plane when traveling881

through arm 1 (the alternating green-red line indicates ray paths882

in the region where they overlap). This leads to interference883

between the fields located at positions x1 and x2 in the input884

plane. An array detector D therefore measures interference885

between any x1 and the corresponding x2 in parallel. Setting, in886

particular, s = 0 gives x2 = −x1. When the shift s is tuned, we887

can measure interference between arbitrary points x1 and x2.888

A longitudinal shift ∆z is used in practical devices to enable
control of the optical path length difference between arms 1 and
2; we can take ∆z = 0 to represent the equal-path configuration.
Considering the spectral representation of the incident field and
denoting this by E0(x; ω), the interference in the X direction at
the detector plane can now be expressed as

E(X; ω) =
1
2
{E0(x; ω) + E0(2s − x; ω) exp [i∆ϕ(ω)]} . (66)

Here the factor 1/2 arises from beam splitter loss and we have
written ∆ϕ(ω) = 2(ω/c)∆z for brevity. Proceeding in analogy
with Sect. 4A, the spectral interference pattern at the output
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plane takes the form

S(X; ω) =
1
4
[S0(x; ω) + S0(2s − x; ω)]

+
1
2

{√
S0(x; ω)S0(2s − x; ω) |µ0(x, 2s − x; ω)|

× cos [α0(x, 2s − x; ω) + ∆ϕ(ω)]
}

. (67)

Interference fringes are seen when ∆ϕ(ω) is varied over a small
region (a few wavelengths) from the equal-path position. Al-
ternatively, we can see fringes in the lateral direction by tilting
M in either x or y direction, or by tilting R in the y direction.
We obtain the absolute value of the complex degree of spatial
coherence at point X by measuring the fringe visibility, which
now reads as

V(X; ω) =
2
√

S0(x; ω)S0(2s − x; ω)

S0(x; ω) + S0(2s − x; ω)
|µ0(x, 2s − x; ω)| . (68)

On the other hand, the phase α0(x, 2s − x; ω) can be determined889

from fringe positions.890

Lateral shearing interferometry has long been one of the stan-891

dard methods for optical testing (see Chapt. 4 in Ref. [85]), where892

its performance is limited by coherence of the wavefront to be893

characterized. From the point of view of spatial coherence mea-894

surements, this limitation becomes an advantage if we employ895

reflection-type setups as illustrated in Fig. 9(b). An essentially896

similar arrangement was used by Efimov [86, 87] specifically897

to characterize spatial coherence of light emerging from multi-898

mode fibers. However, the technique is generally applicable and899

shares the advantages of the WFI.900

The only difference between the WFI and the WSI implemen-
tation shown in Fig. 9 is that the plane mirror in the former is
replaced with a retroreflector also in the vertical arm. As seen by
following the red ray, this retroreflector maps any point x1 in the
input plane to point X = −x1 at the output plane. The green ray
originating from point x2 = x1 + 2s is also seen to hit the output
plane at X = −x1 when traveling though arm 1. As a result, we
obtain interference of the folded replica of the input field with
its folded and sheared (by an amount 2s) replica. Mathematically,
the field at point X in the output plane of the WSI takes the form

E(X; ω) =
1
2
{E0(−x; ω) + E0(2s − x; ω) exp [i∆ϕ(ω)]} . (69)

If the shift s = 0, the WSI thus produces just a reversed replica
of the input field. The spectral interference pattern produced by
the WSI is given by

S(X; ω) =
1
4
[S0(−x; ω) + S0(2s − x; ω)]

+
1
2

{√
S0(−x; ω)S0(2s − x; ω) |µ0(−x, 2s − x; ω)|

× cos [α0(−x, 2s − x; ω) + ∆ϕ(ω)]
}

. (70)

Interference fringes can again be observed by scanning ∆z over901

a small range. Spatial fringes can be seen, but only in the y902

direction, by tilting either retroreflector in this direction.903

One practical problem with the retroreflector-based imple-904

mentations of both the WFI and the WSI shown in Fig. 9 is905

caused by the corners of the retroreflectors. These corners pro-906

duce substantial (far larger than one might expect) diffraction907

effects at the output plane even if the device is compact (our908

laboratory implementations measure around 10 × 10 × 10 cm).909

Fig. 9. Schematic cross-sectional views of (a) a 1D folding WFI
and (b) a 1D shearing WSI. BS: non-polarizing beam splitter.
R: L-shaped mirror or a 90◦ prism (retroreflector). M: plane
mirror. D: detector. Here s represents a lateral shift in positive
x direction and ∆z a shift from the equal-path position.

These effects essentially forbid coherence measurements when910

one of the input points is close to the corner. One can reduce911

(but not completely eliminate) these problems by imaging the912

input plane first onto the plane of the corners, and then the913

latter plane onto the output plane. However, this leads to a914

substantial increase in the physical size of the entire setup, yet915

still the corners remain visible at the output plane. If the conju-916

gate distances of the imaging system are chosen such that the917

field at this plane is spatially large compared to the width of the918

disturbance caused by the corners, the effect is rather negligible919

for coherence measurements purposes.920

The corner effects can be eliminated completely by using921

implementations based on planar mirrors only, as illustrated922

in Fig. 10. The system in Fig. 10(a) was introduced rather re-923

cently [88, 89], while that in Fig. 10(b) is new. It may be worth924

noting at this point that especially the WFI has applications925

other than spatial coherence measurements. For instance, it can926

be used to generate novel special types of fields that do not927

obey the Schell model. It was shown already in 1988 [90] that a928

WFI is capable of generating so-called specular CSDs, while the929

method was demonstrated much more recently [91]. However,930

in Ref. [91] corner diffraction prevented studies of propagation931

of specular beams, a problem that was solved only after the932
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Fig. 10. Same as Fig. 9, but for mirror-based implementa-
tions of (a) the WFI and (b) the WSI. M1–M4 are plane mirrors,
while BS1 and BS2 are beam splitters.

mirror-based WFI became available [92]. Another advantage,933

relevant for the WSI, is that we may introduce tilt also in the x934

direction, which is necessary if the y direction is reserved for935

resolving the spectrum. Apart from eliminating the corner ef-936

fects, the mirror based WFI and WSI setups have other, perhaps937

more relevant advantages over retroreflector-based implemen-938

tations. The latter may modulate the polarization state of the939

incident field rather strongly. For instance, if we use retrore-940

flecting prisms with a refractive index of ∼ 1.5 and the incident941

light is circularly polarized, the visibility of the resulting interfer-942

ence fringes is low even if the light is completely coherent and943

polarized [88]. Such effects are reduced dramatically in the mir-944

ror based approach, making them negligible for most purposes.945

Thus, both the WFI and WSI setups are suitable for measuring946

fields with nontrivial polarization states. When combined with947

suitable polarization modulation devices, they also allow for948

the measurement of the coherence Stokes parameters in a way949

analogous to Young’s DMD setup discussed in Sect. 4F [81].950

The difference between the WFI and the WSI is the place-951

ment of the prisms and the number of required mirrors. Here952

it needs to be noted that the WFI implementation in Fig. 10(a)953

is a special case, where one beam meets a beam splitter two954

times, while the other beam meets a beam splitter three times.955

This increases losses, and needs to be taken into account in the956

theoretical formulation (see Ref. [88]). In the WFI three mirrors957

are needed, corresponding to one retroreflector and one plane958

mirror in Fig. 9(a), whereas four mirrors are required for the959

WSI, corresponding to two retroreflectors in Fig. 9(b). In both960

WFI and WSI systems, the lateral shift, s, is realized by moving961

mirrors M1 and M2 together. As also indicated in Fig. 10, the ∆z962

scan is accomplished by moving M3 in the WFI, while mirrors963

M3 and M4 are moved to achieve the same purpose in the WSI.964

By following the red and greens rays one can readily see that965

Eq. (66) holds for the mirror-based WFI and Eq. (69) holds for966

the mirror-based WSI.967

In general we need configurations that fold or shift the in-
cident field in two orthogonal directions (x and y). Mirror-
based configurations of these devices, essentially as we have
constructed them, are illustrated in three dimensions in Fig. 11.
Before explaining these in more detail, we note that the math-
ematical formulation for both the WFI and the WSI are simple
extensions of the 1D formulations presented above, assuming
shifts sx and sy, and writing the expressions in terms of detector
coordinates X and Y. Doing this, we have

E(X, Y; ω) =
1
2
{E0(x, y; ω)

+E0(2sx − x, 2sy − y; ω) exp [i∆ϕ(ω)]
}

, (71)

for the WFI and

E(X, Y; ω) =
1
2
{E0(−x,−y; ω)

+E0(2sx − x, 2sy − y; ω) exp [i∆ϕ(ω)]
}

, (72)

for the WSI. The spectral interference patterns are corresponding968

generalizations of Eqs. (67) and (70).969

Figures 11(a) and 11(b) also illustrate rays propagating970

through perfectly aligned (no lateral shifts) mirror-based 2D971

WFI and WSI systems, respectively. In both cases, the incident972

beam arrives at the first beam splitter, BS1, and splits into two973

identical copies. One of the replicas travels through arm 1, which974

has four mirrors M1–M4, while the other one goes through arm975

2 with mirrors M5 and M6. At the second beam splitter, BS2,976

the two replicas are superimposed and produce outputs 1 and977

2. Here (x, y) represents the ray coordinates at the input plane,978

whereas (X, Y) are associated with the detector plane coordi-979

nates at output 2.980

The two systems presented in Figs. 11(a) and 11(b) have some981

basic operational differences analogous to their 1D counterparts.982

In the case of WFI the incident beam travels through arm 1 and983

flips along the X-direction, whereas a beam that passes through984

arm 2 flips along the Y-direction. If the mirrors M2 and M3 are985

jointly shifted by an amount sx, the principal ray shifts towards986

positive X-direction as shown in 10(a). Correspondingly, if M5987

and M6 are shifted together by an amount sy, the principal ray988

shifts the same amount in the positive Y-direction. In the case of989

the WSI neither of the wavefronts is flipped at output 2, whereas990

they are both flipped at output 1. Jointly shearing M2 and M3991

by an amount sx, or M5 and M6 by sy, shifts the principal ray992

towards negative X and Y, respectively, in analogy with the 1D993

WSI setup in 10(b). Moreover, for WFI, the shifts (sx, sy) can also994

be introduced by scanning the whole setup with respect to the995

input beam, see, e.g., the description in Ref. [89].996

In the space-time domain the output-plane fields of the WFI
and WSI are obtained by applying Eq. (19). Using also Eqs. (1)
and (11) we obtain (up to a common phase factor) the result

E(X; t) =
1
2
[E0(x; t − τ1) + E0(2s − x; t − τ2)] (73)

for the WFI and

E(X; t) =
1
2
[E0(−x; t − τ2) + E0(2s − x; t − τ2)] (74)
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output 1
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Fig. 11. 3D views of (a) a mirror-based 2D folding WFI and (b) WSI. M1–M6 are plane mirrors, while BS1 and BS2 are beam splitters.
Coordinates (x, y) belong to the source-plane and (X, Y) represents the detector-plane coordinates at output port 2. The delay ∆z
between the two arms can be controlled over an arbitrary range using a mechanical translation stage, which can be fine-tuned at
sub-wavelength precision by a piezoelectric device.

for the WSI. In these expressions we have defined τ1 =
ϕ(x1; ω0)/ω0 and τ2 = ϕ(x2; ω0)/ω0 + 2∆z/c. Hence, writing
∆τ = τ2 − τ1, the time-domain interference patterns are

I(X; ∆τ) =
1
4
[I0(x) + I0(2s − x)]

+
1
2

{√
I0(x)I0(2s − x) |γ0(x, 2s − x; ∆τ)|

× cos [δ0(x, 2s − x; ∆τ) + ∆τ)]
}

(75)

and

I(X; ∆τ) =
1
4
[I0(−x) + I0(2s − x)]

+
1
2

{√
I0(−x)I0(2s − x) |γ0(−x, 2s − x; ∆τ)|

× cos [δ0(−x, 2s − x; ∆τ) + ∆τ)]
}

, (76)

respectively. Corresponding expressions can be written for the997

2D configurations as well. Obviously both devices also facilitate998

spatio-temporal coherence measurements if we vary the delay999

∆τ over a region larger than the coherence time of the incident1000

field. This is analogous to measuring (only) temporal coherence1001

with Michelson’s interferometer.1002

B. Experimental aspects and performance1003

As emphasized in Sect. 3B, the dimensionality of the data affects1004

the required storage space, though this is not usually a criti-1005

cal issue. More importantly, it affects data acquisition speed in1006

Young-type setups. The WFI and WSI offer dramatic improve-1007

ments in acquisition speed since measurements can be done in1008

parallel over the area where the beams overlap. That is, each1009

measurement in both WFI and WSI yields a slice of the spatial1010

correlation function, albeit in different directions. The WFI mea-1011

sures the correlations along the anti-diagonal of the correlation1012

function, while the WSI does the same along the diagonal. If1013

we are measuring along one transverse coordinate and each1014

measurement comprises of a range of points, we only need to1015

scan the beams across each other once to obtain the 2D coher-1016

ence function. In other words, the total measurement time of1017

2D coherence functions with these methods scales linearly with1018

the number of scanned points, whereas the measurement time1019

for a DMD-based Young’s interferometer scales quadratically.1020

As a rule of thumb, the acquisition time for a 2m-dimensional1021

correlation function scales to the power of 2m with a Young’s1022

experiment, while it scales to the power of m for the WFI and1023

WSI.1024

The main limiting factor for acquisition time is the mechanical1025

movement of shutters and stages. The total time of acquiring one1026

2D slice of a 4D correlation function takes ∼ 1 s, which makes1027

it feasible to measure correlation functions with a resolution of1028

M = N ≈ 1000 in the transverse direction, and P = R ≈ 100 in1029

the scanning direction within hours. This is usually sufficient for1030

further analysis. The setups in Fig. 11 are robust, thus allowing1031

measurement times up to several days. Further, since they have1032

two alternative outputs, one of them is available for monitoring1033

of possible instabilities.1034

Regarding the required power level P̄A, we note that if the1035

field to be measured fits within the aperture of the instrument,1036

then P̄B ≈ 0.25P̄A. Hence, we have P̄A ≈ 4QP̄B, where Q is1037

again the number of spectral samples. Effectively, therefore, if1038

the intensity profile across the beam can be measured by the1039

detector, the spatial coherence is measurable as well. The ability1040

of the WFI to characterize weak fields has recently been demon-1041

strated by coherence measurements for plasmonic lattice lasers1042
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Fig. 12. Illustration of the interference fringes and extraction
of µ(∆x, ∆y) of typical beam from a multi-mode HeNe laser,
measured with WFI. (a) the captured interference fringes, (b)
the normalized interference pattern, (c) absolute value and (d)
phase of the complex degree of spatial coherence in (∆x, ∆y)
coordinate system, at ∆τ = 0. See Visualization 2 for anima-
tion of the full scan. The figure is produced using the data
from Ref. [89].

operating even below the lasing threshold [93].1043

C. Measurement examples1044

The cross-spectral density function W(x1, y1, x2, y2; ∆z) as well1045

as the complex degree of spatial coherence µ(x1, y1, x2, y2; ∆z)1046

can both be represented in the average and difference coor-1047

dinate system as W(x̄, ∆x, ȳ, ∆y; ∆z) and µ(x̄, ∆x, ȳ, ∆y; ∆z), re-1048

spectively. This corresponds to a rotation of 45 degree rotation,1049

with the average coordinates defined as x̄ = (x2 + x1)/2 and1050

ȳ = (y2 + y1)/2, and the difference coordinates as ∆x = x2 − x11051

and ∆y = y2 − y1. This is actually the native coordinate system1052

for the WFI.1053

Two measurement examples are presented. In Fig. 12 the1054

source is a multimode HeNe laser (Lasos LGK 7621 MM), while1055

in Fig. 13 we consider a multimode broad area laser diode1056

(BALD, Opnext HL6388MG) operating at 280 mA. In both cases1057

we measured the full 4D correlation function correlation func-1058

tion by 2D WI, of which only cross sections can be visualized in1059

two dimensions.1060

Starting from the HeNe case, an interference pattern recorded1061

directly by a CMOS camera, with the WFI set at axial average1062

coordinates (x̄, ȳ) = (0, 0), is shown in Fig. 12(a). In Fig. 12(b)1063

we show the interference pattern normalized with the use of1064

single-beam images (i.e., beams passing through only one arm)1065

[88, 89]. The absolute value and phase of the complex degree1066

of coherence is then extracted using standard Fourier signal1067

processing techniques [88, 89]. The results are presented in1068

Figs. 12(c) and (d), respectively. In this example coherence is1069

modulated along both (∆x and ∆y) axis, which is due to several1070

HG modes being excited during the lasing operation. Thus the1071

field is not of the Schell-model form and 4D measurements are1072

needed for its accurate characterization. Visualization 2 shows1073

the full measurement with scan over both transverse axes.1074

Results of corresponding measurement for BALD are pre-1075

sented in Fig. 13. The BALD is highly spatially coherent along1076

Fig. 13. Same as Fig. 12 except the source is BALD. This figure
is produced from the data in Ref. [89].

the horizontal axis, whereas it is spatially partially coherent1077

along the vertical direction. This is due to the anisotropic cavity1078

dimensions (narrow horizontally and wide vertically) which1079

allows for multimode action along the vertical axis but not along1080

the horizontal axis. This leads to the absolute value of the DOC1081

concentrating near the vertical axis, but again the field is not of1082

the Schell-model form.1083

In both the cases (Figs. 12 and 13) we get 1024 × 1280 data1084

points (limited by the total number of camera pixels) in (∆x, ∆y)1085

coordinates, and a single measurement takes ≈ 2-3 seconds.1086

Similar measurement with a DMD-based Young’s interferometer1087

would take ∼ 12 hours.1088

6. OTHER TECHNIQUES1089

The measurement of spatial coherence can be done with a di-1090

verse set of techniques, each with their unique advantages and1091

limitations. Below is a non-exhaustive list of measurement1092

schemes introduced over the years, with a short discussion on1093

their properties.1094

A. Reversed-wavefront interferometer1095

The traditional Young’s interferometer can be modified in sev-1096

eral ways to improve its applicability. For example, the reversed-1097

wavefront method is an extension which modifies the input of1098

Young’s interferometer [94]. To be more specific, the incident1099

beam is split into two in such a manner that one of the copies1100

is flipped (or reversed). Afterwards, the two copies are fed into1101

two different pinholes and the resulting interference pattern is1102

recorded at the observation plane. A possible implementation1103

of this scheme is shown in Fig. 14 below.1104

The field that is incident on the two pinholes is of the same
form as in the WFI, that is

E(X; ω) =
1
2
{E0(x; ω) + E0(d − x; ω) exp [i∆ϕ(ω)]} , (77)

where d is the distance between the copies. The reversed-1105

wavefront interferometer therefore measures a similar interfer-1106

ence pattern as the WFI, although the pattern is sampled at the1107
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Fig. 14. The original reversal scheme in Ref. [94]. The light
is incident on a beam splitter BS, which produces two copies
of the input beam. The lower beam is reversed due to the re-
flection inside the beam splitter cube as illustrated with the
letter R, while the dashed line shows an alternative route for
the beam. The measured interference pattern depends on the
distance d between the copies, the shear s, and the distance ∆X
between the pinholes.

positions of the pinholes instead of overlapping all possible co-1108

ordinate pairs along the measurement direction. The sampling1109

positions depend on d, as well as the relative position of the pin-1110

holes. The distance d can be varied by moving the input position1111

at the beam splitter (see the dashed line in Fig. 14), while the1112

pinholes can be sheared by an amount s over the two copies.1113

The advantage in the reversed-wavefront method is that it is1114

able to measure all combinations of spatial points with the use of1115

a single (static) mask. This removes the need for SLMs or DMDs1116

that are able to produce all possible coordinate combinations.1117

Instead, the scanning is performed simply by scanning the beam1118

across the device input. However, this comes at the price of low1119

light efficiency, which is already a notable problem in the usual1120

Young’s interferometer.1121

B. Multiple apertures1122

Another method that can be thought of as an extension of the tra-
ditional Young’s interferometer is the multiple apertures method.
Just as the name implies, it is a scheme where several pinholes
are employed instead of just two [95, 96]. One can choose the
number and position of the apertures such that the resultant
interference pattern contains coherence information for multi-
ple pairs of points along the wavefront, as depicted in Fig 15. If
there are N pinholes in the mask, this corresponds up to (N − 1)!
pairs of measurement points [95]. In particular, the relative am-
plitudes of the Fourier spectrum is directly proportional to the
correlations between the chosen points as in

Ĩ(r) = Λ(r)⊗

∑
i=j

Ijδ(r) + ∑
i ̸=j

√
Ii IjR{µ(ri, rj)δ(r − dij)}

 ,

(78)

where Ĩ is the Fourier transform of the observation plane inter-
ference pattern, ⊗ denotes a convolution, Λ(r) is the autocorrela-
tion function of a single pinhole (assuming all pinholes are iden-
tical), and subscripts i, j correspond to the pinholes positioned at
ri and rj. Therefore, Ii and Ij correspond to the intensities arising
from pinholes i and j, dij = ri − rj is a separation vector, and
µ(ri, rj) is the complex degree of coherence between ri and rj of
the input field. The modulus of µ(ri, rj) can be retrieved with

|µ(ri, rj)| =
Cij√
Ii Ij

S0
|C0|

, (79)

where S0 = ∑i=j Ij is the total intensity through the mask, C0 is1123

the amplitude of the zeroth peak, and Cij is the amplitude of the1124

peak corresponding to dij.1125

Fig. 15. Multiple aperture experiment with a high harmonic
pulse. (a) Depiction of the experimental setup, (b) scanning
electron microscope image of a multiple-aperture mask, (c)
measured single-shot diffraction pattern, (d) Fourier transform
of (c), (e) the retrieved degree of spatial coherence, and (f) the
computed autocorrelation of the mask. The color scale of (c) is
in arbitrary units and is common for (c), (d), and (f). Reprinted
with permission from Ref. [97] © The Optical Society.

This method is particularly useful for the measurement of ex-1126

otic light sources, such as X-ray FEL and synchrotron radiation.1127

In fact, this technique was recently demonstrated for characteriz-1128

ing X-rays from high harmonic generation [97]. The main reason1129

why the multiple-aperture method is suitable for these sources1130

is high energy of the emitted pulses, which tends to destroy1131

any measurement device, including two-pinhole masks. That1132

is, each time a single pulse has been measured, the mask needs1133

to be moved to a ‘fresh’ set of pinholes, because the original1134

pinholes have been destroyed [38]. This introduces additional1135

uncertainty to the measurement, since each pinhole pair needs1136

to be measured multiple times and the positioning is not abso-1137

lute. Moreover, there are hardly any optical elements available1138

at X-ray wavelengths, and performing WFI or WSI type mea-1139

surements at those frequencies is challenging.1140

C. Non-parallel slits1141

Like the multiple aperture approach demonstrates, one is not
forced to use only two pinholes in a Young-type interferometer.
In fact, it is also possible to employ different geometries for the
apertures themselves to obtain more coherence information in
a single measurement. One such approach is the non-parallel
slit geometry [98], where the separation of the slits varies as a
function of position. Let us consider a mask such as the one in
Fig. 16(a), where the slit separation gradually decreases along
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the positive y-axis, in which case one measures

S(X, Y; ω) = |K0|2 (ω/ω0)
2 {S(x − d(y); ω) + S(x + d(y); ω)

+ 2
√

S(x − d(y); ω)S(x + d(y); ω)

× |µ0(x − d(y), x + d(y); ω)| cos [Φ(x, y)]} , (80)

where

Φ(x, y) = α0(x − d(y), x + d(y); ω)

+ (ω/ω0)ϕ(x − d(y), x + d(y); ω0) (81)

is the phase of the correlation function. Simply put, the inter-1142

ference pattern varies along the y-axis. Taking a single slice of1143

the interference pattern at some value of y results in the usual1144

interference pattern from a Young’s interferometer.1145

(a)

(b)

(c)

x

y d(y)

Fig. 16. (a) Non-parallel slit geometry. (b) A simulated interfer-
ence pattern with completely coherent quasi-monochromatic
light. (c) A corresponding pattern with partially coherent
quasi-monochromatic light. The interference pattern loses
visibility along the x-axis due to path length difference, like in
the usual double pinhole setup.

The non-parallel geometry has the obvious advantage that it1146

measures the coherence function with a continuously variable1147

slit separation in a single measurement. The disadvantage of1148

this type of measurements is that the input field needs to be1149

homogeneous and separable to x- and y-dependent components1150

to produce reliable results with just one measurement. These1151

problems can probably be alleviated by performing more mea-1152

surements, where the beam is laterally displaced at the input1153

side, and by measuring along both transverse axes.1154

Finally, since this method is able to measure coherence over1155

a continuously variable slit separation in a single measurement1156

(although, with some limitations as discussed above), it is well-1157

suited for measuring high-energy sources like femtosecond X-1158

ray FEL pulses.1159

D. Scattering particles1160

It has recently been demonstrated that the two-point spatial co-1161

herence properties of light beams can be measured in terms of1162

nanoscattering [99]. Such an arrangement consists of two (dipo-1163

lar) nanoparticle probes that replace the pinholes of Young’s1164

interferometer and the degree of coherence at the particle sites is1165

deduced from the visibility of the intensity fringes generated by1166

the interfering scattered far fields. The nanoprobe and pinhole1167

methods have certain fundamental differences. The particles1168

are of subwavelength size whereas the hole dimensions are sev-1169

eral wavelengths, indicating that the probe method implies a1170

superior spatial resolution. In addition, the far fields generated1171

in the two methods are due to aperture diffraction and dipole1172

scattering where in the latter the far-field fringe pattern includes1173

a specific geometric factor.1174

In the experiments gold-cube nanoparticles with the side1175

length of 130 nm and deposited on a silicon substrate was used.1176

The light source was a multi-mode (low spatial coherence, unpo-1177

larized) HeNe laser of wavelength 632.8 nm. The geometry of the1178

experiment is depicted in Fig. 17(a), while (b) shows a scanning1179

electron microscope (SEM) image of a pair of nanoprobes with1180

3 µm separation. In addition, Fig. 17(c) exemplifies the measured1181

far-field intensity fringes whose visibility specifies the degree1182

of coherence. In analyzing the visibility the dipolar scattering1183

patterns and particle-substrate interactions must be carefully1184

considered [99]. In Fig. 17(d) the colored symbols correspond1185

to the degrees of coherence measured by pairs of nanoparti-1186

cles with different separations. The solid line shows the degree1187

of coherence obtained by a DMD. The agreement between the1188

nanoprobe and DMD methods is excellent. The nanoscattering1189

method has been extended to the electromagnetic domain where1190

the coherence Stokes parameters are of interest [100, 101].1191

Fig. 17. Two-nanoprobe measurement setup. (a) Illumination,
particles, and far-field detection. (b) A SEM image of cubic
gold nanoparticles separated by a distance of 3 µm. (c) An
example of measured far-field intensity fringes for the particle
separation 3 µm. (d) The measured degree of coherence for
various particle separations (symbols). The solid blue curve
shows the degree obtained by a DMD. Adapted from [99].

E. Sagnac-type interferometers1192

The well-known Sagnac interferometer can also be modified1193

for use in spatial coherence measurements [102, 103]. Since the1194

wavefront is not folded, this constitutes a type of WSI. Moreover,1195
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there are multiple ways to introduce the shear. For example,1196

in Ref. [102], the shear was introduced with a glass slab placed1197

on a rotating stage, such as in Fig. 18(a). By rotating the glass1198

slab, the counter-propagating beams are laterally displaced in1199

opposite directions, and the resulting interference pattern can1200

be recorded for any shear.1201

The only downside of this technique is that the glass slab1202

causes dispersion, which may separate the different frequency1203

components such that the visibility of interference fringes is1204

degraded when measuring large-bandwidth sources. Another1205

possibility is to simply tilt one (or both) of the mirrors, as indi-1206

cated in Fig. 18(b). However, the tilt will introduce a spatially1207

varying path length difference, which may be a problem with1208

sources featuring a large bandwidth.1209

M1

M2

D

(b)

(a)

BS

Fig. 18. Sagnac interferometer, where a beam is split into two
by a beam splitter BS, and the copies are directed on a com-
mon path via mirrors M1 and M2. Shear is introduced with
either (a) a rotating glass slab, or (b) by tilting one (or both) of
the mirrors.

The field that arrives at the detector in a Sagnac-type interfer-
ometer is of the form

E(X; ω) =
1
2
{E0(x; ω) + E0(x − s; ω) exp [i∆ϕ(ω)]} , (82)

where the shear s depends on the orientation of the mirrors1210

and/or the tilt of the glass slab. In either case, the functional1211

form of the field at the detector is of the same form as in a WSI,1212

and thus these devices measure the same interference pattern.1213

F. Grating interferometers1214

In principle, one could produce an interferometer which mea-1215

sures spatial coherence with just a single grating. That is, if one1216

can employ a grating with a sinusoidal profile, which will split1217

the beam into two copies that are automatically sheared since1218

they propagate towards different directions. However, a grating1219

with a sinusoidal profile is difficult to fabricate and even small1220

errors in the profile or possible impurities will cause light to1221

diffract and/or scatter, hindering the operation of such a system.1222

Therefore, it is often simpler to make a setup with a binary grat-1223

ing, block the undesired orders, and guide the remaining ones1224

to the detection plane.1225

Such a setup was first considered in Ref. [104], where a 4 f1226

imaging system was used to guide the diffraction orders, and1227

a suitable aperture was inserted at the Fourier plane in 2 f as1228

depicted in Fig. 19(a). In the original setup, the orders 0 and 11229

were then guided to the detection plane. This had the disadvan-1230

tage that the two orders propagated on different paths, and thus1231

spatial and temporal coherence were mixed. In Ref. [105], the1232

setup was further refined by allowing symmetric orders (±1)1233

through the setup and introducing shear with an SLM as shown1234

in Fig. 19(b). A further simplification to the grating interferom-1235

eter can be made by employing two binary gratings, G1 and1236

G2, where the first splits and the second recombines the beams1237

[106]. Since the gratings are binary, the zeroth order has a non-1238

vanishing amplitude, but it is blocked at the back surface of G2.1239

The shear can be introduced by shifting the gratings in tandem.1240

One could instead shift the detector to achieve a similar shear,1241

but this would change the distance to the observation plane and1242

possibly alter the observed coherence function due to the extra1243

propagation length. Additionally, from a mechanical perspec-1244

tive, it is simpler to move the gratings since it does not affect the1245

alignment or introduce unwanted vibrations at the detector.1246

(a)

f f f f

G L A L D

(b)

f f f f

G L A LSLM D

(c)

G1 G2 D

{Δz
Fig. 19. Possible implementations of the grating interferometer.
(a) Grating G and a 4 f imaging system with lenses L, aperture
A and detector D. The aperture allows only two diffraction
orders (here 0 and 1). (b) A similar system, where orders ±1
are allowed through, and the shear is accomplished with an
SLM. (c) A double grating geometry, where the beam block
is on the surface of the second grating G2. Here, the shear is
introduced by translating the gratings together.

The grating interferometers form a large family of techniques,1247

which have been used for spatial coherence measurements of1248

exotic sources [107], as well as for other tasks. Their flexibility1249

is attractive, although they require some micro- or nanofabrica-1250

tion. For example, the double grating interferometer in Fig. 19(c)1251

is exceedingly simple, and it is able to correct small misalign-1252

ments due to the employed geometry. Moreover, the beams1253
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arrive at the detection plane with practically zero path-length1254

difference at all shears. But it too has a downside; different1255

wavelength components produce differently scaled interference1256

patterns (since the propagation angle depends on the wave-1257

length). Hence, for broadband light, an imaging spectrometer1258

needs to be used as a detector.1259

G. Obstacles1260

As a last example we consider the use of obstacles for measuring
spatial correlations [108–111]. Out of all of the methods consid-
ered here, it is the only one that does not rely on interferometry.
The method is intriguingly simple: first, one measures the in-
tensity distribution of the beam, I0, in the far-zone. Then, an
obstacle is inserted at the source plane, and the new far-zone
intensity distribution Im is recorded. Note that the obstacle must
be chosen such that the light remains paraxial. By investigating
the difference between the two intensities, δI = Im − I0, it is
possible to estimate the coherence at the source plane as in

W1(r0, ∆r) ≈ 1
Λ(r0, ∆r)

∫∫
δI(r0, r′) exp(ik∆r · r′)d2r′. (83)

Here W1(r0, ∆r) is the leading term in a Taylor series expansion1261

of W0(r, ∆r) around the centroid of the obstacle r0, and Λ(r0, ∆r)1262

is the autocorrelation of the obstacle, whereas the primed coor-1263

dinates denote far-zone quantities. As is evident, this method1264

produces an approximation of the coherence function. Even if1265

only the leading term is employed, the error only goes up to1266

12 % for completely coherent fields, and decreases relatively fast1267

for lower coherence [109].1268

The obstacle can either be a phase discontinuity, or an am-1269

plitude object that produces a shadow. The shadow method is1270

preferable, since the phase discontinuity method cannot measure1271

small values of ∆r reliably. Moreover, the measurement error is1272

smallest for a field obeying the Schell-model and more general1273

fields are difficult to estimate with this method. It is possible – at1274

least in principle – to include higher order terms from the Taylor1275

series to reduce the error, but this is rather cumbersome.1276

7. DISCUSSION1277

To limit the scope of the paper we made some assumptions1278

at the start: restricting the discussion to second-order classical1279

coherence and concentrating on paraxial (or beamlike) fields.1280

However, as we saw in Sect. 3A, many of the sources we need1281

to characterize produce non-paraxial radiation. Fortunately,1282

the paraxial-domain techniques described above can be readily1283

adapted to measure coherence of non-paraxial fields. Figure 201284

illustrates some options for doing this.1285

In Fig. 20(a) we present a goniometric setup that can be used1286

for coherence measurements in the far-field. Here the source1287

is fixed, radiating into the positive half-space. In the far-zone1288

the field becomes a diverging spherical wave with a linearly1289

increasing radius of curvature R, which is independent of ω, and1290

we are interested in measuring coherence at planes tangential1291

to this reference sphere around a given (but arbitrary) central1292

direction θ. This is accomplished by mounting the measurement1293

setup D on a rotating arm of length R, moving along G over an1294

interval −π/2 < θ < π/2. Here D can be either a single-point1295

detector (for intensity measurements), a spectrometer, or any1296

instrument discussed above, with its input plane tangential to1297

G. Alternatively, we may rotate the source itself to achieve the1298

same goal, as illustrated in Fig. 20(b). The geometry (b) is more1299

convenient particularly if the source is compact, such as a white1300

Fig. 20. Coherence measurements of non-paraxial fields.
(a) Goniometric measurement with the instrument mounted
on a rotation arm. (b) Goniometric measurement by rotating
the source and keeping the measurement instrument at a fixed
position. (c) Measurement of source-plane coherence using
a secondary source generated by a high-NA imaging system
with sufficient magnification. S: source at object plane O, D:
detector, G: Goniometric sphere of radius R, RS: rotating stage,
MO: microscope objective, O’: image plane of O.

LED, and it eliminates the need to rotate the entire measurement1301

system.1302

The goniometric systems just discussed are particularly at-1303

tractive if the source generating the strongly diverging field is1304

quasihomogeneous. This is the case, for instance, if the source is1305

an LED or a thermal one, limited in size by a (hard or apodizing)1306

aperture with dimensions substantially larger than the coherence1307

area in the source plane. In such circumstances the coherence1308

area in the far-field is also small compared with the divergence1309

of the field, as discussed qualitatively in Sect. 3A and more1310

quantitatively in Sect. 4D. Hence, the assumption that far-field1311

coherence can be measured by considering directions close to θ1312

is well justified. Moreover, for quasihomogeneous fields only1313

far-field intensity measurements are needed to determine the1314

source-plane coherence and only far-field coherence measure-1315

ments are needed to determine the source-plane intensity (Sect.1316

5.3.2 of [2], [112]), whereas in general the full CSD in the far-field1317

needs to be measured to get the full source-plane CSD (Sect.1318

5.3.1 of [2]).1319

In the quasihomogeneous case the measurement of the low-1320

frequency (LF, or non-evanescent) part of the far-field spectral1321

density allows the use of inverse diffraction techniques to deter-1322

mine the complex degree of spectral coherence (see Sect. 5.3.3 of1323

[2] and the references cited therein). It turns out that the source-1324

plane coherence area has wavelength-scale dimensions, but can1325

depend significantly on frequency. This effectively forbids di-1326

rect source-plane coherence measurements, but it is possible1327

to use imaging systems with a high numerical aperture (NA)1328

and a large magnification to generate a secondary source at O’1329

that radiates paraxially as illustrated in Fig. 20(c). If the NA is1330

sufficiently high to collect the entire diverging field, the spatial1331

distribution of the spectral DOC across he secondary source1332

is essentially a magnified version of that at the plane of the1333

primary source. Thus, it can be measured if the magnification1334

is sufficiently high to match the spatial resolution of the array1335
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detector. If, however, the radiation is highly divergent (extend-1336

ing up to θ ∼ 90◦), as in the case of incoherent or Lambertian1337

sources, the entire low-frequency part cannot be collected in1338

practice. As a consequence, the DOC at the secondary source1339

plane is not equal to that at the primary source (see Ref. [42] for1340

a quantitative discussion).1341

We also restricted the discussion to stationary fields even
though many of the sources discussed in Sect. 3A are nonsta-
tionary, with fields consisting of trains of pulses with durations
depending strongly on the type of source. In this case, individual
pulses may be considered as (deterministic) field realizations,
over which ensemble averages can be taken to obtain either the
two-frequency CSD – W(r1, r2; ω1, ω2) – or the two-time MCF
– Γ(r1, r2; t1, t2). In view of Eq. (19), the correlation functions in
the space-time and space-frequency domain are related via

Γ(r1, r2; t1, t2) =
∫∫ ∞

0
W(r1, r2; ω1, ω2)

× exp [i (ω1t1 − ω2t2)]dω1dω2. (84)

Direct measurements of full correlation functions for nonstation-1342

ary fields is notoriously difficult; the only straightforward way1343

that we are aware of is to measure an ensemble of individual1344

realization using nonlinear techniques for characterization of1345

ultrashort pulses [113, 114] and then carry out the construction1346

of the ensemble averages numerically.1347

However, if the measurements are done with ‘slow’ square-
law detectors using devices discussed in Sect. 5, we obtain the
time-averaged MCF, which depends only on the time difference:

Γ̄(r1, r2; ∆t) =
∫ ∞

−∞
Γ(r1, r2; t, ∆t)dt

= 2π
∫ ∞

0
W(r1, r2; ω, ω) exp (−iω∆t)dω, (85)

where the latter form follows from Eq. (84). Then, setting ∆t = 0,1348

the relation between easily measurable spatial coherence func-1349

tions in the space-time and space-frequency domains becomes1350

analogous to the corresponding relation for stationary fields.1351

Apart from the general scope limitations, there are many spe-1352

cific topics that are of current interest but could not be discussed1353

here in detail. In some cases, custom-designed coherence mea-1354

surement techniques have been developed for field characteriza-1355

tion. One notable example is a recently introduced formalism1356

that allows a unified analysis of coherence and orbital angular1357

momentum of light fields [115]. The results were verified ex-1358

perimentally in Ref. [116] by employing a variant of Young’s1359

interferometer with two thin concentric annular apertures in-1360

stead of pinholes.1361

8. CONCLUSIONS1362

We have described and compared the most important techniques1363

for measuring the spatial coherence of light fields in a way that is1364

hoped to be accessible to both experimentally and theoretically1365

oriented readers. The mathematical formulation of partially1366

coherent light in the space-frequency and space-time domains1367

was presented in sufficient detail to understand the operating1368

principles and fundamental limitations of the methods covered.1369

Instrumentation issues were addressed in some detail, as well as1370

practical aspects related to data acquisition speed and the light1371

power levels required for reliable measurements.1372

To conclude, techniques based on wavefront folding and1373

shearing interferometers (WFIs and WSIs) generally outperform1374

all other methods. The light efficiency is such that if one can1375

measure the spatial intensity (spectral density) of the incident1376

field, one can also measure the complex degree of spatial coher-1377

ence in the space-time (space-frequency) domain. Both WFI and1378

WSI systems can be implemented in either 1D or 2D form. The1379

performance of the two is essentially identical, but it is worth1380

noting that WSIs measure the correlations directly between two1381

cartesian points r1 and r2, while WFIs give the results more nat-1382

urally in average and difference coordinates r̄ = (r1 + r2)/2 and1383

∆r = r2 − r1. In 1D folding/shearing implementations, spectral1384

information can be measured simultaneously with spatial infor-1385

mation along one spatial dimension by adding a spectrometer1386

in the instrument. The 2D implementations allow the measure-1387

ment of full 4D correlation functions (also in practise), but only1388

for a single spectral band at a time.1389
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