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ABSTRACT 

The emergence of high-throughput measurement technologies has greatly expanded the 

possibilities for detecting and quantifying biomolecules involved in various subcellular 

and biomolecular processes on a larger scale than previously possible. These 

measurements, along with their accurate and robust analysis, play a crucial role in 

deepening our understanding and explaining a wide range of biological phenomena, 

including the development and progression of cancers. Consequently, this knowledge 

can be harnessed to develop effective interventions, particularly in the management and 

treatment of cancer. 

Within this dissertation, we have pursued two primary aims. Firstly, we aimed to 

develop novel computational and statistical tools and methods for the effective and 

efficient analysis of high-throughput data within the context of cancer. Secondly, using 

the tools and methods we developed, we sought to investigate single and multilevel 

high-throughput data to identify key alterations that drive the development and 

progression of prostate cancer. 

To accomplish the first aim, we devised a computational tool capable of detecting 

somatic copy number alterations. Additionally, we developed other computational and 

statistical approaches to mitigate the inherent biases present in data obtained from high-

throughput sequencing technologies. As for the second aim, using the methods and 

tools we developed, we analyzed single and multilevel high-throughput data from a 

cohort of prostate cancer patients at various stages of their disease, identified multiple 

alterations, and presented our observations in detail. 

In summary, our study demonstrates the potential of the analysis of single and multilevel 

high-throughput data. Through this approach, we were able to replicate previous 

findings and uncover alterations that impact biological processes at different levels 

during the development and progression of prostate cancer. 
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1 INTRODUCTION 

Cancer is one of the leading causes of death among humans, responsible for 

approximately one in five deaths [1,2]. Prostate cancer, which is the subject of study in 

Articles II and III, has been globally ranked as the third most commonly diagnosed 

cancer in 2020 [2]. The ultimate goal of cancer research is to develop effective strategies 

for the prevention, diagnosis, and treatment of cancer by identifying and understanding 

the alterations that contribute to its development and progression. Previous cancer 

research has identified alterations and abnormalities that enable and contribute to the 

transformation of normal cells into abnormal, cancerous ones [3,4]. 

The advent of high-throughput sequencing (HTS) technologies has enabled the 

detection, quantification, and sequencing of biomolecules such as DNA and RNA, and 

their interactions, such as DNA-protein interaction, that play a role in various biological 

processes on a larger scale than was previously possible [5].  

It has been shown that by comparing HTS data generated from samples with different 

conditions (e.g., healthy versus cancer) or different stages of a particular cancer (e.g., 

early-stage versus advanced prostate cancer), we can potentially identify novel 

alterations and abnormalities that contribute to cancer development or progression. The 

contributions from The Cancer Genome Atlas (TCGA) are a case in point where 33 

different tumor types, including ten rare cancers, have been studied by collecting seven 

different data types from 11000 participants [6]. 

While there have been notable contributions towards the understanding of cancer 

development and progression (some of which will be reviewed in the literature review 

section), there are still unresolved questions. For example, we would like to understand 

better why a fraction of prostate cancer patients progress to the advanced stage of the 

disease despite their initial positive response to therapy. There are also multiple 

challenges to be overcome with regard to HTS data analysis. Due to the decrease in the 

cost of HTS data generation, larger HTS datasets are being produced (e.g., the TCGA 

alone has produced 2.5 petabytes which is 2.5 million gigabytes of data [6]) and thus, a 
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challenge is to develop software tools and data processing pipelines capable of robustly 

analyzing large datasets using a reasonable amount of time and other resources such as 

computing memory. Another challenge is to develop approaches and methods for the 

robust analysis of HTS data at single level (e.g., the genome, epigenome, transcriptome, 

and proteome) as well as integrating multiple layers of data. On its own, each data level 

affords uncovering particular alterations, such as finding genomics alterations, or 

changes in the gene expression. On the other hand, the integration and analysis of 

multilevel data can provide a more comprehensive view that may be missed when 

analyzing data from only one level. To illustrate, as demonstrated in Article II, 

alterations in gene expression at the transcriptome level do not always translate to 

similar changes at the proteome level.  

In this work, we aim to address some of these questions and challenges by developing 

computational tools and methods for the analysis of cancer-related, high-throughput 

data either at a single level (Article I) or integrate insights from multiple levels of data 

to provide a more comprehensive picture (Articles II and III).  
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2 LITERATURE REVIEW 

Cancer and the aberrant processes that contribute to its development and progression 

can be studied at different subcellular levels. This section introduces the levels and the 

level-specific biomolecules, and the processes investigated in this work, and describes 

the high-throughput assays used to measure the level-specific biomolecules. In addition, 

examples of level-specific alterations pertinent to prostate cancer will be introduced. 

Figure 1 provides an overview of the levels and concepts, relevant to this work, that will 

be presented in this section. 

 

Figure 1.  An overview of the subcellular levels, level-specific biomolecules and processes, and high-
throughput assays used to measure them, used in this work to study cancer development and 
progression. Figure created with BioRender.com. 
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2.1 Human genome 

The human genome resides inside the cell nucleus as well as by a small fraction inside 

the cell mitochondria in a three-dimensional organization. It is composed of a large 

chain of four different nucleotide biomolecules (approximately 3 x 109 nucleotides) 

packaged in 23 pairs of chromosomes (i.e., a total of 46 chromosomes). Each nucleotide 

is composed of three subunits: a 2’ deoxyribose sugar (2’ is read two-prime), a 

phosphate group, and a nucleobase (aka a nitrogenous base). A phosphate group 

connects the 5’ carbon of one 2’ deoxyribose to the 3’ carbon of another 2’ deoxyribose. 

Together, they form the basic building block of the sugar backbone of the 

deoxyribonucleic acid (DNA). There are four different nucleobases, namely adenine 

(A), guanine (G), cytosine (C), and thymine (T) that are attached to the 2’ deoxyribose 

on the 1’ carbon. Adenine and thymine molecules can pair together (i.e., hybridize) while 

cytosine and guanine can pair with each other. A DNA polynucleotide chain (or a single-

stranded DNA aka ssDNA) has two ends: the end that ends with a phosphate group 

on the 5’ carbon in the sugar backbone is called the 5’ end, and the other end ending 

with a hydroxyl group on the 3’ carbon in the sugar backbone is called the 3’ end. 

The human genome DNA sequence, that is the order of the nucleotides, and its 

composition was first drafted as a result of an international collaboration under the 

Human Genome Project (HGP) in 2001 [7]. The first draft of the human reference 

genome covered about 94% of the human genome that is around 3x109 nucleotides 

long [7]. Later efforts by the Genome Reference Consortium (GRC) and recently by 

the Telomere to Telomere (T2T) consortium and the Human Pangenome Reference 

Consortium (HPRC), have been focused on determining the remaining 6% which are 

inherently difficult to determine [8,9]. 

The human DNA sequence encodes the genetic information in the human genome. In 

particular, the coding regions on the DNA chain encode information or instructions on 

how to make different gene products such as proteins [10]. The HGP project estimated 

that the human genome encodes about 30000-40000 protein-coding and non-coding 

genes [7]. Non-coding genes are genes that do not result in proteins. MicroRNAs (aka 

miRNAs) are non-coding RNA with the ability to regulate the activity of other gene 

products. Furthermore, the DNA sequence of the non-coding regions may contain 

specific patterns (or motifs) allowing for DNA-protein interactions. These interactions 

can regulate the expression of the gene products [11]. 
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Cancer hallmarks refer to the acquired functional capabilities that allow tumors to 

perform functions that contribute to their survival, proliferation, and their 

dissemination [4]. Genome instability and mutation is considered to be an enabling 

characteristic for acquiring other cancer hallmarks [3,4]. A DNA mutation is a 

permanent alteration in the DNA sequence that can result from errors during DNA 

replication, exposure to mutagens, or other genetic processes. Genome instability refers 

to a higher than normal rate of genomic alterations [12]. An example of genome 

instability is copy number alteration [4]. The human reference genome, which reveals 

the normal sequence of the human genome, is an invaluable resource for detecting such 

genomic aberrations. As it will be described later, the high-throughput DNA sequence 

data from cancer samples together with the human reference genome can be employed 

to detect genomic regions that have undergone copy number alterations such as 

duplication, amplification, or deletion. As an illustration, in around half of the localized 

prostate cancer patients, the deletion of approximately 2.7 mega base pairs on 

chromosome 21 has been shown to result in the ERG and TMPRSS2 genes fusion 

resulting in the over-expression of the ERG gene (aka ERG-positive; see Figure 2) 

[13,14]. 

 

Figure 2.  Schematic representation of TMPRSS2-ERG gene fusion as a consequence of deletion. 
Figure created with BioRender.com. 

The ability to detect genomic alterations not only helps to understand how changes at 

the genomic level contribute to the development and progression of diseases such as 

prostate cancer, but also allows us to stratify the patients into different groups based on 

their genomic profiles. This stratification can be useful in predicting the patients’ clinical 

outcomes and guiding the selection of treatment strategies [14]. For example, ERG-

positive and ERG-negative prostate cancers have distinct expression signatures, 
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morphological features, and clinical outcomes [14]. As for another example, together 

with others, in Article I of this work, we showed that using the copy number alterations 

and mutation information, grade II and III glioma samples can be divided into multiple 

subtypes [15]. 

2.2 Human epigenome 

The epigenome comprises genome-wide, inheritable, and potentially reversible chemical 

modifications that do not change the DNA sequence itself, yet regulate gene 

transcription, which is the process by which RNA is synthesized from a DNA template, 

and as a result, regulate the cellular phenotype [16–20]. DNA methylation, 

posttranslational modification of DNA-associated histone proteins, and differential 

chromatin packaging are examples of such modifications. 

DNA methylation refers to the addition of a methyl (CH3) group especially to a cytosine 

nucleotide that is followed by a guanine nucleotide (i.e., CpG dinucleotides). Methylated 

CpGs are sparsely distributed in the human genome except for short regions with a high 

density of unmethylated CpGs known as CpG islands [17]. Methylated regions are 

transcriptionally repressed, whereas half of the genes in the human genome whose 

transcription start site (TSS) are covered by CpG islands are either actively expressed or 

ready to be transcribed [17,21]. DNA methylation was the focus of early epigenomic 

studies since DNA methylation withstands sample processing procedures such as DNA 

extraction [17]. 

The ability to characterize global and local DNA methylation patterns and profiles can 

help understand how alterations at the level of epigenome can enable a particular disease 

[21]. In some cancers, the genome-wide loss genomic methylation (or hypomethylation) 

from the repetitive genomic regions may contribute to genomic instability which is an 

enabling characteristic for acquiring cancer hallmarks [22,23]. In addition, it has been 

observed that DNA hypomethylation progresses during cancer evolution such that large 

regions of the non-coding and gene-poor genome of advanced cancers are 

hypomethylated [24,25]. As an example of local, gene-specific DNA methylation 

alterations, the increase in methylation (hypermethylation) of CpG islands at the 

HOXB13 gene has been detected in around 30% of metastatic castration-resistant 

prostate cancers [26]. This hypermethylation may contribute to the lower expression of 
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HOXB13 gene that is involved in the regulation of androgen receptor (AR) activities 

and androgen-dependent prostate cancer growth [26].  

Another important regulatory epigenetic mechanism is the packaging and compaction 

of the chromosomal DNA through a DNA and protein complex called chromatin [27]. 

The genomic DNA is packaged by wrapping it around a set of histone proteins (H2A, 

H2B, H3, and H4 known as core histones), which forms a nucleosome, the primary 

repeating unit of chromatin [20,27,28]. Nucleosomes are then packed further into a 

hierarchy of multiple loops and coils creating structures of size 30-nm, 300-nm-long, 

250-nm-wide fiber respectively, and finally the chromatid of a chromosome [28,29].  

When DNA is tightly packaged, it is not accessible to DNA-dependent processes such 

as transcription, DNA repair, replication, and recombination [30]. In contrast, when the 

DNA is loosely packed, the DNA sequence becomes accessible for protein interaction. 

One group of such proteins is transcription factors (TF). TFs possess DNA-binding 

domains which can recognize and bind to specific DNA sequence motifs found in 

regulatory regions such as promoters and enhancers [11,31].  

A promoter is a DNA sequence located near the TSS of a gene. The binding of TFs to 

the promoter region helps to form the transcription initiation complex, which is 

necessary for the initiation of transcription. In the context of normal prostate 

development and prostate cancer, AR is a crucial TF. This protein possesses a ligand 

binding domain that interacts with androgens, such as testosterone. When an androgen 

molecule binds to AR, AR undergoes a conformational change, allowing it to translocate 

into the cell nucleus. Once inside the nucleus, AR utilizes its DNA binding domain to 

recognize and bind to specific DNA motifs. These are known as AR binding sites and 

together, they are referred to as the AR cistrome. Moreover, AR can modulate the 

transcriptional activity of its target genes through an additional domain located on its 

N-terminal region. This ability to regulate gene expression is essential in normal prostate 

development and it has implications in the progression of prostate cancer.  

Enhancers are short segments of DNA that can be located far upstream or downstream 

from their target genes, which can regulate their transcription by recruiting TFs [11,31]. 

To become accessible, the chromatin structure needs to be modified via a process called 

chromatin remodeling. Three dynamic processes involved in chromatin remodeling are 

nucleosome composition alteration, nucleosome repositioning, and covalent 

posttranslational modification of histones [27]. Nucleosome composition alteration 
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occurs when a canonical histone in the nucleosome such as H2A is replaced by a histone 

variant such as H2A.Z [27]. Nucleosome repositioning involves changing the position 

of the nucleosomes along with the DNA by sliding of the histone octamer or its ejection 

by chromatin remodelers [27]. Covalent posttranslational modification of histone 

proteins such as methylation and acetylation of lysine residues, and phosphorylation of 

serine and threonine residues is one way in which chromatin remodeling occurs 

[20,27,28]. Histone modifications have different effects on chromatin structure and 

DNA accessibility, as an example, trimethylation of lysine 27 (K27) on histone 3 (i.e., 

H3K27me3) has a repressive effect, whereas the trimethylation of lysine 4 (K4) on 

histone 3 (i.e., H3K4me3) has an activating effect and in general lysine acetylation 

correlates with chromatin accessibility and transcription activity [17,20,28,32]. 

A class of TFs, called pioneer factors, are crucial for these processes to occur [33]. They 

bind to DNA on the nucleosome surface of tightly-packed chromatin, loosen the 

chromatin, and facilitate the subsequent binding of other TFs as well as nucleosome 

remodeling complexes, and histone modifiers [33]. Pioneer factors can perturb the 

nucleosome structure and chromatin accessibility [33]. One such pioneer factor is 

FOXA1. In the context of normal prostate, it induces open chromatin that allows TFs 

such as AR to bind to specific genomic regions, and thus helps to shape AR signaling 

that drives the growth and survival of normal prostate [34,35]. However, FOXA1 is also 

a driver of prostate cancer onset and progression [34]. Together with HOXB13, it can 

reprogram the AR cistrome resulting in transcription of genes that contribute to 

oncogenesis, which is the transformation of normal cells into cancer cells [34,36]. 

Therefore, the ability to detect and characterize genome-wide alterations in the 

chromatin accessibility can provide valuable insights into how such changes may 

contribute to the development and progression of diseases like cancer. 

2.3 Human transcriptome 

Transcriptome refers to the collection of all coding and non-coding transcribed DNA 

sequences also known as RNA transcripts and their abundances in a cell [37,38]. In a 

process called transcription, different enzymes (e.g., RNA polymerase I, II, and III in 

non-plant eukaryotes) interact with a particular DNA template in the accessible genome 

and synthesize different types of RNAs. Transcription requires the binding of RNA 

polymerase to the promoter region of the DNA template that will undergo 

transcription. In addition to RNA polymerase, TFs can bind to the promoter, and they 
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are important factors in the recruitment of RNA polymerase to the promoter and 

consequently in the regulation of transcription. In eukaryotes, RNA polymerase I 

synthesizes precursor ribosomal RNA (rRNA) 45S important for the formation of 

ribosomes - macromolecular complexes that are responsible for protein synthesis. RNA 

polymerase II synthesizes precursor messenger RNAs (mRNAs), miRNAs, and most 

small nuclear RNAs (snRNA) [39]. mRNAs are used by the ribosomes to synthesize 

proteins in a process called translation. miRNAs are non-coding molecules meaning 

that they do not undergo translation. However, they are functional as they are post-

transcriptional regulators. They regulate the expression of their target genes by forming 

complementary base pairs at the 3’ UTR (or the untranslated region) of their target’s 

mRNA transcripts resulting in RNA degradation or inhibition of protein translation, 

which is known as RNA silencing [39–41]. Consequently, it is expected that there exists 

a negative correlation between miRNA expression levels and the expression levels of 

their target mRNAs. One miRNA can regulate several different mRNAs and 

conversely, each mRNA may be targeted by different miRNAs. miRNAs have been 

shown to be involved in multiple cellular processes such as cell proliferation, 

differentiation, and apoptosis [41]. Thus, their dysregulation may have an impact in 

diseases such as prostate cancer. In Article II of this work, we identified miRNAs that 

were dysregulated at different stages of prostate cancer that had an impact on the 

expression of their mRNA and protein targets. 

In humans, miRNAs are found to be transcribed by RNA polymerase III [40]. RNA 

polymerase III synthesizes rRNA 5S as well as transfer RNA (tRNAs) which is 

responsible for transferring amino acids to the ribosomes where messenger RNAs are 

translated into proteins. In addition to the RNA species described here, there are other 

types of RNA such as small interfering RNA, long non-coding RNA, and circular RNA. 

In this work, the focus is on the use of mRNA and miRNA to characterize the 

transcriptome of prostate cancer and its posttranscriptional regulation. Although a 

common expression profile characterizing each tumor stage has not yet been identified 

for prostate cancer, genome-wide characterization of the prostate cancer transcriptome 

can provide insights in understanding the development and progression of prostate 

cancer [41]. 
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2.4 Human proteome 

The human proteome refers to the full set of proteins that are encoded by the human 

genome and expressed in a particular cell [42]. A protein is made of a chain of amino 

acids that are bound together by peptide bonds. An amino acid is thus the building 

block of proteins, and is composed of an amino group, a carboxyl group, and a variable 

side chain. Even though there are hundreds of naturally occurring amino acids, 20 of 

them are encoded by the genetic code [43]. Genetic code is the set of all possible 64 

permutations of 3-letter nucleotide sequences (e.g., ATG or TCC), which are called 

codons. It is possible that more than one codon encodes for the same amino acid. 

During the translation process at the ribosome, individual codons within a mature 

mRNA transcript are recognized by tRNA molecules. Acting as an adapter, the tRNA 

brings the corresponding amino acid to the ribosome, where an rRNA catalyzes the 

formation of a peptide bond, connecting the incoming amino acid with the preceding 

one in the growing polypeptide chain. This process occurs in a stepwise fashion, where 

each amino acid is added to the chain in an ordered sequence as dictated by the mRNA 

codons. The amino acid chain is also referred to as the polypeptide chain, with a peptide 

denoting a short chain containing more than two and up to 50 amino acids. 

Proteomics is a field of study that involves the identification, quantification, and analysis 

of the proteome. This includes the characterization of all possible protein modifications, 

as well as the inference of potential interactions between different proteins [44,45]. 

Quantitative proteomics, as a branch of proteomics, focuses on quantifying the 

proteome [45]. Being able to quantify proteins enables the inference of protein 

expression profiles that can reveal and characterize cellular state at different conditions 

[45,46]. 

2.5 High-throughput measurement 

The advent of the Sanger method used for determining the nucleotide sequences in 

DNA by Frederick Sanger and his colleagues in 1977 started a new era in the 

measurement of biological molecules [10,47,48]. Since 1977 the Sanger method has 

undergone multiple improvements and automation. In 1987, the first automated DNA 

sequencer was developed and used to analyze and determine the structure of a gene in 

rats [49]. All in all, it took around 25 years from the advent of the Sanger method, for 

the next-generation sequencing (NGS) methods to emerge, enabling the simultaneous 
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determination of the sequence of millions of DNA templates [47,50]. NGS methods 

differ from the Sanger method in how they construct their sequencing libraries which 

improves the time required for library construction from approximately one week to 

approximately 2 days [50]. This and other capabilities and advances have made HTS a 

reality and enabled genome-wide (rather than site-specific) characterization of the 

genome, epigenome, and the transcriptome [50]. 

Currently, there are several commercially available NGS platforms/instruments. They 

are distinguished from one another based on factors such as their throughput (i.e., the 

amount of data generated per sequencing run), cost, the typical errors they make, the 

type of output read (e.g., single-end or paired-end reads), and the read length [51]. Each 

combines different methods and protocols to achieve its goal of sequencing the DNA 

(here, the examples explain the Illumina sequencing technology since the data used in 

this work are produced using Illumina sequencers. Additionally, Illumina sequencers are 

currently still one of the most commonly used short-read sequencing platforms [51]). 

These methods can be classified into four broad groups, namely, template preparation, 

sequencing chemistries, imaging/detection, and data analysis [51,52].  

Template refers to the DNA fragment to be sequenced [51]. To prepare the template, 

sample DNA needs to be broken into smaller fragments. Next, DNA fragments may 

undergo size selection, where only DNA fragments within a certain range of length are 

retained. This is because different sequencing instruments work optimally with DNA 

fragments that are within a certain size range. The next step in template preparation is 

either the clonal amplification of the templates where single DNA molecules are cloned 

or single DNA-molecule templates that do not require clonal amplification [51,52]. In 

approaches that require clonal amplification, an amplification step is required so that 

there is a strong enough signal at the imaging/detection step required for reliable 

detection of the incorporated nucleotides [50,51]. In the case of the clonal amplification, 

a set of common adapters are ligated at each end of the DNA fragments [51]. A 

sequence adapter is a short chain of nucleotides that facilitates the amplification cycles 

as well as anchoring the ligated DNA fragment to a surface [50,51]. In addition to 

sequence adapters, primers are used. Primers mark the starting point for DNA synthesis 

and sequencing reaction by providing a free 3’ hydroxyl group to which a DNA 

polymerase can add a new nucleotide. Platforms using the clonal amplification, use 

different strategies to achieve amplification. Illumina sequencers use a solid surface to 

perform the amplification [51,53]. Primers are bound to the solid surface (i.e., flow cell 

in Illumina) in a covalent manner and the ssDNA templates can bind to the primers by 
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hybridization. Polymerase chain reaction (PCR) is mainly used for the clonal 

amplification step, and it may introduce some challenges as described later [52]. 

In terms of sequencing, two primary approaches can be enumerated: sequencing by 

synthesis (SBS), used by the first sequencing platforms, that utilizes DNA polymerase 

enzyme, and sequencing by ligation [54], which employs DNA ligase enzymes to 

identify the nucleotide composition of a DNA sequence [50–52]. SOLiD and BGI 

sequencers are two platforms that use sequencing by ligation [51]. Illumina sequencers 

use SBS resembling partially to the Sanger method [53]. During a sequencing cycle, 

which results in the identification of one of the bases of a DNA fragment, a mixture of 

4 different types of fluorophore-labeled nucleotides that lack hydroxyl group on the 3’ 

carbon of the sugar backbone and DNA polymerases are added to the flow cell [51–

53]. DNA polymerases incorporate the nucleotides in the elongating sequences. In 

theory, each sequence cannot be elongated more than once in each cycle due to the lack 

of 3’ hydroxyl group. At this stage, the elongating sequences are ready to be imaged. 

With regard to the imaging/detection, different methods include the optical 

measurement of signal intensity (e.g., two- or four-color imaging) or the non-optical 

measurement of changes in ionic concentration, as seen in the Ion Torrent platform 

[51,52,55]. Illumina sequencers use two or four laser channels (depending on the 

platform) to excite the fluorophores bound to the incorporated nucleotides in a given 

sequencing cycle and use total internal reflection fluorescence microscopy to 

image/detect the bioluminescence from the clusters on the solid surface [51,53]. Two 

advantages of two-color imaging over four-color imaging is its higher speed and lower 

cost since less imaging is performed and less fluorophore is used [51]. Once the imaging 

of a cycle is complete, in Illumina platforms, fluorophores are cleaved and washed away 

from the flow cell [51–53]. Additionally, the missing 3’ hydroxyl groups are regenerated 

so that in the next cycle, the elongation can continue [51–53]. NGS methods are 

considered high throughput because they can simultaneously perform sequencing and 

detection for millions of DNA fragments/templates, eliminating the need for the 

electrophoresis step required in the Sanger method [50,51]. This is made possible, using 

Illumina technology as an example, because after the clonal amplification of DNA 

fragments, each colony occupies distinct sites, allowing for parallel sequencing reactions 

to take place [51]. Advancements in NGS technologies, including enhanced sequencing 

chemistries and improved detection sensitivities, have led to higher throughput, 

meaning higher volumes of data can be generated per sequencing run [50]. 
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The ultimate output of NGS technologies is a large amount of sequencing reads, each 

of which represents the sequence of bases in a single molecule of DNA that was 

sequenced [51]. Sequencing a DNA template/fragment in a single direction results in 

the production of single-end reads. However, when a DNA fragment is sequenced from 

both the forward and reverse directions (i.e., from each end), it produces paired-end 

reads. In general, the sequence read length generated by the commonly used NGS 

methods is between 30 and 400 nucleotides long which is shorter than 600 to 800 base 

pairs of length achieved by the Sanger method [38,50,56,57]. Short sequencing reads 

pose a few challenges, particularly during genome assembly, alignment, and subsequent 

downstream analyses, as will be described later. Alternative NGS technologies with 

longer read length aims to overcome some of these challenges. However, they are 

currently more expensive and/or have lower throughput, which explains the popularity 

of cheaper platforms with shorter sequence read lengths [51]. Sequencing data for all 

the articles in this work are short read sequences. 

2.5.1 Sequencing considerations and quality control 

Currently, NGS technologies are not entirely error-free due to various types of errors 

and issues. The error rates in NGS platforms typically range from approximately 0.1% 

to 15% [51]. In particular, the overall accuracy of Illumina technology is estimated to 

be greater than 99.5% [53]. These errors and challenges can arise at various stages, 

including sample handling, template preparation, sequencing chemistries, and 

imaging/detection steps [58]. Consequently, varying error profiles can be observed 

across different NGS technologies and instruments [59]. These errors can be 

categorized as random or systematic, with the latter being referred to as bias. Illumina 

technology has been observed to exhibit a systematic tendency for substitution errors, 

where one base is mistakenly identified as another, especially after a guanine [59–61]. 

Some examples of errors and challenges include primer amplification bias, where in the 

first few nucleotides across all sequencing reads, the expected amounts of cytosines and 

guanines (or adenines and thymines) fluctuate; contamination with foreign bacterial or 

viral DNA during sample preparation before sequencing introduces foreign sequence 

reads [62–64]; errors or lower confidence in base-calling due to the increasing 

fluorescence noise as reads are elongated [52,62,65]; optical duplicate reads as a result 

of miscalling one cluster as two; PCR duplicate reads as a result of sequencing PCR 

copies of the exact same DNA fragment [70]; adapter sequence contamination where 

sequencing reads contain part of the adapter sequence [66]. In addition, each sequencing 
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assay used for a specific application can introduce its own set of errors and biases (e.g., 

mitochondrial DNA contamination in ATAC-seq as an assay for characterizing 

chromatin accessibility), which can impact the accuracy and reliability of the resulting 

data. 

To ensure the quality of NGS data, quality control tools such as FastQC or other assay-

specific quality control tools can be employed [62]. These tools can help identify issues 

in the data and guide the proper preprocessing before downstream analyses. To 

illustrate, in case of adapter sequence contamination, tools such as Cutadap can be used 

to remove the adapter sequences and improve the accuracy of the sequencing results 

[66]. 

2.5.2 Sequence alignment 

A crucial step in preparing sequencing data for downstream analyses is the accurate 

mapping of the sequencing reads to their corresponding locations in a reference 

genome. This process involves identifying the genomic coordinates from which a DNA 

fragment originated. This process is commonly referred to as sequencing read 

alignment, or simply alignment, and it is performed by specialized computer software 

known as sequence aligners or aligner for short [67]. One algorithm that has become 

widely used in short-read alignment is the Burrows-Wheeler Transform (BWT) [68]. 

Tools such as BWA [67] and Bowtie2 [69] use the BWT algorithm. 

The task of sequencing read alignment assumes the availability of a reference genome. 

If a reference is not available, a reference genome or transcriptome can be constructed 

by assembling the sequencing reads, a process known as de novo assembly [70]. Thanks 

to the HGP and similar efforts [7,71], the human reference genome is already available. 

Accurate sequence alignment is crucial for many genomic analyses, but several issues 

can result in inaccuracies referred to as artifacts. One example of a challenge in the 

sequence alignment is the presence of multi-mapped reads, where a read can be aligned 

equally well to multiple regions in the genome. These reads can confound downstream 

analyses and interpretation of results. This situation can arise when there are regions of 

sequence redundancy in the genome, such as repeats or duplicated regions [72]. 

According to some estimates around 50% to 60% of the human genome is composed 

of repetitive DNA [73]. Sequence reads obtained from genomic regions with repetitive 

sequences are thus called unmappable reads and these regions are called unmappable 
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regions [72]. Certain aligners discard unmappable reads, which may result in lower 

coverage in unmappable regions compared to other regions and introducing 

mappability bias [74]. Another approach used by certain aligners to handle multi-

mapped reads is randomly selecting one of the potential locations and assigning the 

sequence read to that location while setting the mapping quality score (MAPQ) to 0 

[56,75]. MAPQ score is calculated as -10log10(p) where p indicates the likelihood of a 

read being incorrectly mapped to the reference genome. It is assigned to each aligned 

read, and it is a measure of how confident the aligner was about that particular alignment 

(e.g., a MAPQ of 30 means that there is 1 in 1000 chance that the read was wrongly 

aligned) [75]. The MAPQ score can be used to remove reads with low scores from the 

downstream analysis. For example, discarding reads with MAPQ=0 results in the 

removal of multi-mapped reads. An additional step in dealing with unmappable regions 

and regions with low mappability is to discard them before starting the downstream 

analysis [76,77]. 

2.6 Measurement of genome and its applications 

Whole-genome sequencing (WGS) and whole-exome sequencing are two commonly 

used high-throughput methods for the genomic DNA sequence detection and 

measurement. The first human whole-genome was sequenced using next-generation 

technologies in 2008 [78]. 

Utilizing WGS data allows for comprehensive detection and measurement of various 

types of genomic alterations, including single-nucleotide variations (SNVs), insertions 

and deletions (indels), copy number alterations, and structural rearrangements, across 

the entire genome. SNVs or point mutations arise when a single base is found to differ 

from the corresponding base in the reference genome, such as a change from cytosine 

to thymine. Indels manifest when a small group of nucleotides is inserted into or deleted 

from a specific region of the genome, respectively. In addition, there exist larger 

genomic alterations, also known as structural variants, which include duplications, 

amplification, deletions, and copy-neutral loss of heterozygosity (cnLOH), resulting in 

changes to the copy number. Copy number refers to the number of copies of a genomic 

locus per cell. Humans, being diploid organisms, possess two copies of each autosomal 

DNA. Copy number alterations that occur in the somatic cells are called somatic copy 

number alterations (SCNA), while changes larger than 50 nucleotides that occur in 
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germline cells are called copy number variations [79]. SCNAs can impact crucial genes 

involved in the oncogenesis process [80]. 

In genomic terms, duplication refers to an event where a larger segment of the genome 

is duplicated. Amplification, on the other hand, involves the duplication of a genomic 

segment multiple times, leading to the presence of multiple copies of a specific locus. 

Deletion occurs when one or both copies of a larger genomic segment is deleted, 

resulting in hemizygous and homozygous deletions, respectively. Loss of heterozygosity 

occurs when one of the two copies of the at a heterozygous locus is lost. cnLOH occurs 

when the lost copy is replaced with a duplicated copy of the surviving copy, resulting in 

an unchanged copy number at that locus. 

In the last few decades, multiple methods have been developed to detect SCNAs, 

providing a way to identify potential disease-associated genes, including those involved 

in cancer [81]. These methods include fluorescence in situ hybridization (FISH), 

comparative genomic hybridization (CGH) [82], microarray-based CGH (aCGH) [83], 

and single nucleotide polymorphism (SNP) arrays [84]. However, these methods 

generally exhibit lower resolution. In this context, resolution refers to the level of detail 

in accurately detecting and distinguishing genomic alterations. As an example, FISH has 

a resolution on the scale of several megabases, while aCGH provides a resolution of 

approximately one megabase [81]. 

As the resolution improves, the ability to detect smaller events, such as deletions, and 

the accuracy of localizing the event increase [81,85]. Methods using HTS data offer 

enhanced accuracy and higher resolution compared to earlier mentioned methods, with 

WGS having the potential to detect SCNAs with single-nucleotide accuracy [86]. 

HTS-based SCNA detection typically follows a series of steps. Initially, the number of 

sequencing reads or DNA fragments within overlapping or non-overlapping genome-

wide windows is tallied, with the window size determined manually or algorithmically. 

Assuming no biases like mappability or GC content, the estimated read count reflects 

the underlying copy number [86]. Here, GC content bias refers to a correlation between 

the proportion of G and C bases in a specific genomic region and the count of mapped 

DNA fragments associated with that region [87]. If a paired normal sample is accessible 

for a tumor sample, it becomes feasible to calculate the ratio of read counts between 

the tumor and normal samples during this step, which potentially helps in canceling out 

some of the biases.  



31 
 

The subsequent step involves identifying the breakpoints that delineate genomic regions 

into segments exhibiting significantly distinct copy numbers. Once the segments are 

identified, using the read count ratio between the tumor and normal samples, the copy 

number within each segment is estimated. In certain methods, this step is subsequently 

accompanied by the categorization of the identified segments [86]. 

Tools that solely rely on read count information have limitations in detecting certain 

genomic events like cnLOH. However, when the depth of coverage is sufficiently high, 

the detection of cnLOH events becomes possible by utilizing and calculating the B-

allele fraction (BAF). BAF represents the proportion of the alternate allele at 

heterozygous SNP positions. SNPs are single nucleotides that vary among individuals 

and are present in at least 1% of the population. Heterozygous SNPs indicate the 

presence of two different alleles at a specific SNP locus, while homozygous SNPs 

indicate the presence of the same allele on both copies of a chromosome pair. In normal 

diploid cells, the BAF for heterozygous SNPs is expected to be 0.5 since half of the 

reads contain the alternate allele. Alterations in the genome lead to deviations from the 

expected BAF value of 0.5. In the case of cnLOH in a sample from a pure tumor 

population (with no normal cell contamination), the BAF values are typically 0 or 1, and 

these values shift towards 0.5 as the purity of the sample decreases. 

There are other types of structural alterations or chromosomal rearrangements, such as 

translocations and inversions. Translocation occurs when two nonhomologous 

chromosomes exchange chromosomal segments, while inversion refers to the reversal 

of a stretch of DNA sequence within a chromosome. Figure 3 provides a schematic 

representation of four classes of genomic alterations. 

SCNAs have been implicated as key drivers in various cancer types, with specific gene 

amplifications such as MCL1 and BCL2L1 found to be crucial for the survival of cancer 

cells [79,88]. In the context of prostate cancer, the short arm (p arm) of chromosome 8 

is commonly deleted in 55.7% of localized cases and 90.5% of advanced cases [89]. This 

region harbors the NKX3.1 gene, a prostate-specific tumor suppressor gene and the 

deletion of one copy of this gene may predispose to prostate carcinogenesis [90]. 

In Article I, we developed a tool that utilizes WGS data to detect copy number 

alterations. Additionally, the tool is also capable of detecting cnLOHs. 
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Figure 3.  Schematic representation of four classes of genomic aberration. Figure created with 
BioRender.com.  

2.7 Measurement of DNA methylation and its applications 

Several approaches have been developed to detect and measure genome-wide DNA 

methylation sites. They are categorized into three groups: (1) enrichment-based 

methods that enrich for methylated DNA fragments, (2) digestion-based methods that 

employ methylation-sensitive restriction enzymes, and (3) sequencing-based methods 

that determine the sequence of bisulfite-converted DNA [18,21]. 

Methylated DNA immunoprecipitation (MeDIP), used in Articles II and III, is an 

enrichment-based method that employs an antibody specific for methylated cytosine to 

immunocapture denatured, methylated genomic DNA fragments followed by either 

sequencing or DNA microarray detection [18,21,91]. While enrichment-based methods 

allow for rapid and efficient genome-wide assessment of DNA methylation, they do not 

provide information on individual CpG dinucleotides and exhibit a non-linear 

relationship between enrichment level and DNA methylation level [21,91]. This 

enrichment bias leads to the preferential enrichment of CpG-rich DNA fragments and 

potential underrepresentation of CpG-poor regions with less than 1.5% CpG 

dinucleotides [18,21,92]. This may lead to the misinterpretation of methylated CpG-

poor regions as unmethylated in the absence of appropriate corrections [92]. The 

microarray-based MeDIP method has a resolution of 80 kilobase pairs, whereas 

MeDIP-seq can achieve a resolution of 100-300 base pairs [91,93]. MeDIP-seq may 
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suffer from biases such as copy number alteration bias, GC content bias, and CpG 

density bias [21]. GC content bias leads to lower numbers of DNA fragments map to 

genomic regions with high or low GC content than regions with medium GC content 

due to PCR inefficiency in those regions [94,95]. 

Sequencing-based methods of bisulfite-converted DNA, on the other hand, offer 

genome-wide base-resolution and unbiased information, but they involve a more 

laborious procedure compared to MeDIP and are generally more expensive [18,21,91]. 

Reduced representation bisulfite sequencing (RRBS), a hybrid approach combining 

digestion-based and sequencing-based methods, is a high-resolution method that uses 

a restriction enzyme to digest genomic DNA, enriching for DNA fragments with high 

CpG content regions. Subsequently, bisulfite conversion is performed, and DNA 

fragments are sequenced [18,96]. 

The sequencing reads obtained from either of these assays are quality controlled and 

then aligned to a reference genome. After addressing potential biases, the aligned 

sequencing reads can be used to quantify methylation levels. Proper normalization 

enables the comparison of methylation patterns between samples, facilitating the 

identification of differentially methylated regions (DMRs) across conditions, such as 

healthy vs. disease. Additionally, DNA methylation data can be used to investigate 

epigenetic silencing of tumor suppressor genes [97]. Notably, DNA methylation 

information has been effectively used in the classification of central nervous system 

tumors [98]. 

MEDIPS [99] and QSEA [99,100] are two computational tools that can be utilized for the 

analysis of MeDIP-seq data. These tools offer the capability to quantify DNA 

methylation levels in a genome-wide manner while addressing potential biases. They 

also enable the detection of regions exhibiting differential methylation across different 

samples. 

2.8 Measurement of chromatin accessibility and its applications 

Chromatin accessibility refers to the accessibility of a genomic locus, indicating its level 

of packaging and compaction. Regions with accessible chromatin are characterized by 

a more open structure. Several assays are available for the genome-wide measurement 

of the chromatin accessibility. Direct methods include Assay for transposase-accessible 
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chromatin using sequencing (ATAC-seq), DNase-seq, and Formaldehyde-assisted 

isolation of regulatory elements sequencing (FAIRE-seq), while indirect methods 

include Micrococcal nuclease sequencing (MNase-seq) [30]. 

ATAC-seq, as used in Article III, is an HTS assay that maps open chromatin regions, 

TF and nucleosome occupancy, enabling the inference of nucleosome packing, 

positioning, nucleosome-TF spacing patterns, and TF occupancy and footprints [30]. It 

uses hyperactive Tn5 transposase enzymes to cleave dsDNA and tag them with 

sequencing adaptors. This is followed by library construction via PCR and paired-end 

NGS [30,101]. The resulting sequencing reads undergo quality control, alignment to a 

reference genome, and peak detection using tools like Model-based analysis of ChIP-

Seq (MACS) [102], which identifies regions with enrichment of aligned reads compared 

to inaccessible loci. These regions, known as peaks, indicate accessible chromatin loci. 

Peak detection is influenced by two factors: sequencing read depth and TSS enrichment 

score [103]. A higher sequencing read depth provides greater statistical power to detect 

weaker sites, resulting in the identification of more peaks [103,104]. As a quality metric, 

a higher TSS enrichment score indicates an overall better sample quality, and in general 

enables the detection of a greater number of peaks [103,104]. However, the TSS 

enrichment score relies on TSS annotation, and as a result, it may not directly correlate 

with the characteristics of the detected peaks like those detected in intronic and 

intergenic regions. Another metric used to measure sample and peak call quality is the 

fraction of reads in peaks (FRiP). This metric quantifies the proportion of sequencing 

reads that align to peaks. A low value suggests suboptimal enrichment and may indicate 

issues with the experiment’s quality. These metrics, together with scores or adjusted P-

values generated by peak callers like MACS, collectively provide insights into the 

reliability of the detected peaks. As different samples may have different sequencing 

read depths and TTS enrichment scores, these factors should be considered during the 

analysis of data from multiple samples. With potential biases addressed, the aligned 

sequencing reads can also be used to quantify chromatin accessibility. Normalization 

allows for the comparison of different samples, facilitating the detection of differentially 

accessible regions (DARs) across samples with distinct conditions, such as healthy and 

disease states. 

ATAC-seq offers several advantages compared to other chromatin accessibility assays. 

One key advantage is its requirement for a lower number of starting cells (500-50,000), 

making it suitable for analyzing samples with limited starting materials, including clinical 

samples. In contrast, other assays typically require a larger number of cells (100,000-
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1,000,000) [30]. Additionally, ATAC-seq exhibits comparable sensitivity and specificity 

to DNase-seq, which is widely regarded as the gold standard for studying chromatin 

accessibility [30,101]. However, ATAC-seq does have some limitations. As the distance 

from the accessible loci increases, its ability to map nucleosomes diminishes. Another 

limitation is its susceptibility to mitochondrial DNA contamination [30,101]. This is 

because mitochondria lack the chromatin packaging, making their DNA more 

accessible [105]. Overall, ATAC-seq is gaining popularity in the field of epigenomic 

research. 

2.9 Measurement of transcriptome and its applications 

The transcriptome is the complete collection of all small and large, coding, and non-

coding RNA molecules transcribed from the DNA sequences in a cell [37,38]. It 

includes mRNA, tRNA, rRNA, and other non-coding RNA molecules such as miRNA 

[106]. Depending on the cell type and its physiological state only 1 to 2% of the total 

RNA is mRNA [106]. 

Transcriptomics or transcriptome profiling refers to the mapping and quantifying the 

composition and the structure of the transcriptome in different cell types and conditions 

[16,38,107]. Elucidating the similarities and differences in transcriptomes between 

different cell types, tissues, or conditions is valuable for gaining insight into the 

underlying molecular mechanisms that govern biological processes [38,107]. Several 

approaches have been developed for transcriptome profiling, employing methods such 

as hybridization-based microarray technology or sequencing. 

Sequencing-based approaches can be divided into two categories. The first category 

includes low-throughput methods like cDNA sequencing and expressed sequence tag 

(EST) sequencing. These methods rely on Sanger sequencing. The second category 

consists of HTS approaches [38,107]. 

RNA sequencing (RNA-seq) is an HTS-based approach that enables the profiling of 

the entire transcriptome [107]. RNA-seq enables the detection of transcripts, including 

novel ones and alternative splicing events, even in the absence of known genomic 

sequences. Splicing refers to the process of removing introns and joining exons to form 

mature mRNA transcripts. Additionally, RNA-seq offers the advantage of single base 

resolution in localizing transcription boundaries, enabling precise mapping of 
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transcription start and end sites. Furthermore, through the comparison of aligned reads 

with a reference genome or transcriptome, RNA-seq facilitates the detection of 

sequence alterations, including SNVs, within transcribed regions. Additionally, RNA-

seq overcomes the issue of high background signals often associated with hybridization-

based approaches. Finally, RNA-seq exhibits high accuracy and a low error rate, making 

it a reliable technique for comprehensive transcriptome analysis [38,107]. 

In RNA-seq, the total RNA or a specific fraction, such as poly(A)+ mRNA, is reverse 

transcribed into cDNA, followed by the addition of adaptors. The cDNA is then 

subjected to single-end or paired-end sequencing using various high-throughput 

sequencing technologies [38,107]. 

After sequencing, sequencing reads typically undergo quality control, including the 

assessment of sequence quality, GC content, and the presence of adaptor sequences. 

The reads are typically aligned or mapped to a reference genome or transcriptome to 

determine their source and abundance [106]. The mapping process enables the 

quantification of gene expression levels and the detection of alternative splicing events 

and novel transcripts. In cases where the identification of novel transcripts is desired, 

de novo assembly methods can be applied [106]. 

After quantification, addressing biases, and applying proper normalization, the resulting 

data can be used to determine the transcript composition and the abundances of each 

transcript (or gene expression) in a given sample [106]. Proper normalization is crucial 

for comparing different samples. Gene expression data can be used to identify 

differentially expressed (DE) genes across various cell types or conditions. Statistical 

tools such as DESeq [108,109] or edgeR [110] employ different approaches to detect DE 

genes, taking into account various biases and performing appropriate normalizations. 

Furthermore, gene expression data can be integrated with pathway information to 

identify dysregulated pathways, particularly in diseases like cancer, where a pathway 

refers to a sequential set of molecular interactions and signaling events that collectively 

regulate a specific biological process or cellular function [97]. 

The detection and quantification of miRNAs can be achieved through small RNA 

sequencing, which follows a standardized procedure. Initially, total RNA undergoes size 

fractionation to isolate RNA molecules within a specific length range (typically 18 to 30 

nucleotides). Following size selection, a series of laboratory steps are performed before 

sequencing on high-throughput platforms, such as the Illumina sequencers. 
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2.10 Measurement of the proteome and its application 

Initially, proteomics relied on the separation of proteins using two-dimensional gel 

electrophoresis, followed by mass spectrometric identification. However, gel-free 

approaches have gained popularity due to their higher throughput capabilities [42,44]. 

Mass spectrometry (MS) is a technique used to measure the mass-to-charge ratio of ions 

in a sample, enabling protein identification and quantification [45]. A typical mass 

spectrometer consists of three main components: an ion source, a mass analyzer, and a 

detector [45]. Different types of ion sources, mass analyzers, and detectors offer distinct 

advantages and drawbacks, allowing for the customization of instrument configurations 

to suit specific applications and experimental requirements [45]. 

During proteomics analysis, several factors must be considered, including the 

complexity of the sample, the detection of low abundance proteins, and accurate 

quantification. A popular approach for analyzing complex peptide mixtures is liquid-

chromatography (LC) coupled with tandem mass spectrometry (MS/MS) or LC-

MS/MS [45,111]. In this method, proteins are enzymatically digested, typically using 

trypsin enzymes, to generate peptides. The resulting peptides are then separated using 

liquid chromatography to reduce sample complexity [46,111]. Subsequently, the 

separated peptides undergo two rounds of mass spectrometry analysis.  

The mass spectra obtained from MS are searched against a database, and each spectrum 

is assigned to a specific peptide using pattern-matching algorithms [45]. Peptide 

identification is often preferred over whole protein identification in proteomics, as 

peptide identification methods are more sensitive [45]. 

The LC-MS/MS method can be used to quantify the relative abundances of proteins in 

a sample when the proteins are labeled with stable isotopes [45]. To achieve 

comprehensive protein quantification, it is necessary to synthesize various reagents 

capable of labeling different groups of proteins [45]. However, the use of isotopic 

labeling can increase sample preparation time and costs, which may limit its applicability 

to larger samples [46]. As a result, the throughput of LC-MS method is typically limited 

to a few hundred peptides per analysis, which can be considered relatively low [46,112]. 

In the realm of LC-MS/MS, two primary strategies can be distinguished: shotgun 

proteomics and targeted proteomics [111]. These strategies differ in their mass 
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spectrometric methods [111]. Shotgun proteomics is effective for protein discovery, 

allowing for the identification of a maximal number of proteins. However, it may not 

be suitable for high-throughput quantification when numerous samples need to be 

analyzed [46,111]. In contrast, targeted proteomics is a more suitable approach for 

reproducible detection and quantification of a predefined set of proteins across many 

samples, although it may leave a substantial portion of the proteome undetected and 

unquantified [111,113]. 

In Article II, we employed a quantitative proteomics technique known as sequential 

windowed acquisition of all theoretical fragmentation - mass spectrometry (SWATH-

MS) [113]. This method aims to address the limitations associated with the shotgun 

proteomics and targeted proteomics by combining the comprehensive nature of 

shotgun proteomics with the reproducibility of targeted proteomics [111,112,114]. By 

doing so, SWATH-MS increases the throughput, allowing for the identification and 

quantification of a larger number of proteins across multiple samples, while maintaining 

the consistency and reproducibility achieved through targeted mass spectrometry using 

the selected reaction monitoring method, which is regarded as the gold standard for 

quantitative proteomics [111,112]. 

Furthermore, SWATH-MS is a label-free method, making it a cost-effective option with 

simplified sample preparation [46,113]. Instead of relying on a database search like other 

methods, SWATH-MS utilizes spectral libraries that contain information about 

previously identified peptides to identify peptides of interest [46,111]. Thus, the 

availability of comprehensive proteome-wide spectral libraries becomes crucial for 

successful peptide identification [111,114,115]. Despite being less sensitive than the 

selected reaction monitoring method, SWATH-MS is well-suited for large-scale, high-

throughput, and high-quality quantitative proteomics [113,114]. 

2.11 Integration of data from different levels 

High-throughput data obtained from each of the aforementioned levels offers valuable 

insights into the state of a biological system and its components [16,116]. When 

comparing samples with a specific disease against control samples, using single-level 

data can yield a list of intergroup differences, including biological pathways and 

processes associated with the disease [16]. However, it is important to acknowledge that 

multiple levels may contribute to and regulate a given phenotype. Relying solely on 
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single-level data may overlook these interactions, despite each level being crucial for 

constructing our understanding of a biological system and enabling the exploration of 

diseases from diverse perspectives [117,118]. Moreover, a sole reliance on single-level 

data may undermine confidence in identifying causal effects due to the higher 

prevalence of reactive effects compared to causative effects [16]. Consequently, 

integrating multilevel data can foster a more comprehensive understanding of a 

biological system and its underlying mechanisms. 

To achieve a comprehensive understanding and enhance confidence in elucidating 

causal changes, it is imperative to integrate and analyze data from various levels in a 

multilevel manner [16,44,116–121]. This approach enables us to explore the flow of 

information from the primary cause of a specific disease to its functional consequences, 

discover molecular mechanisms of disease, cluster samples, and make predictions about 

outcomes such as survival [16,44,116–121]. 

The omics data from multiple levels, encompassing the genome, epigenome, 

transcriptome, and proteome, can be analyzed in multiple ways: sequentially or jointly 

[16,116]. In the sequential approach, the results from one level are refined and made 

more specific by incorporating data from other levels, assuming a causal link, such as 

from genomics to transcriptomics [16,116]. 

According to Hasin and colleagues, the sequential approach can be further divided into 

three approaches: genome-first, phenotype-first, and environment-first [16]. In the 

genome-first approach, the identified genomic alterations are further characterized with 

other omics layers to uncover downstream interactions and pathways [16]. To illustrate, 

genes that exhibit copy number alterations such as amplifications or deletions, at the 

genome level, can be assessed for differential expression at the transcriptome level [97]. 

Consequently, the genome-first approach often concentrates on a specific locus or a 

few specific loci. 

In the phenotype-first approach, various levels of omics data are collected for a 

particular phenotype of interest, such as primary prostate cancer. Data from each level 

is analyzed to identify factors that correlate with and may explain the phenotype of 

interest. These identified factors are then combined to further elucidate their roles and 

the affected pathways associated with the phenotype under study [16]. 
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The environment-first approach involves analyzing an environmental factor, such as 

diet, as its primary focus. This analysis employs multilevel omics data analysis to uncover 

potential links to diseases [16]. 

In this work, Articles II and III can be categorized under the phenotype-first approach. 

This is because they aim to gather, analyze, and integrate different levels of omics data, 

focusing specifically on prostate cancer as the phenotype of interest. 

Data integration and analysis pose several challenges, including technological 

limitations, data quality issues, high dimensionality arising from a multitude of biological 

variables, and the relatively limited number of available biological samples [116,120]. 

Consider the case where the current technologies enable the characterization and 

quantification of the majority of a biological system’s transcriptome, while at the time 

of writing, only a fraction of the proteome can be detected and quantified by the existing 

technologies [117]. Moreover, in many omics studies, the number of biological samples 

is significantly smaller than the number of biological variables, such as genes. For 

instance, the TCGA project encompasses approximately 500 prostate adenocarcinomas, 

while more than 50,000 transcripts are quantified for each sample [122]. These 

challenges demonstrate the complexities involved in integrating and analyzing omics 

data, highlighting the need for careful consideration and appropriate methodologies to 

overcome such limitations. 

2.12 High-throughput data analysis techniques and considerations 

2.12.1 High-throughput data normalization 

When comparing two groups of samples under different conditions, our main objective 

is to uncover biological differences. However, the process of sample preparation and 

measurement can introduce technical effects that affect the accuracy of our 

measurements. This means that the observed measurements may not accurately reflect 

the true biological differences between the groups. 

One such technical effect is the variability in the total number of molecules sequenced 

across different samples, which can result in variations in library sizes or sequencing 

depths. For instance, in RNA-seq analysis, observing a large difference in the read count 
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of a gene between two different conditions may simply be the result of differences in 

sequencing depth rather than the gene’s actual differential expression [123]. 

Another technical effect is the variability in library composition due to differences in 

signal-to-noise ratio. The signal-to-noise ratio refers to the ratio of the actual biological 

signal to the background noise present in the sequencing data. In the context of ATAC-

seq data, the term signal refers to the sequencing reads originating from accessible 

regions of the genome, while noise represents sequencing reads that do not originate 

from accessible regions. Such reads can arise from various sources, including 

sequencing errors. 

To overcome these challenges, normalization techniques are employed as correction 

methods to adjust the quantifications, such as gene expressions. The goal is to ensure 

accurate comparisons between samples with different sequencing read depths and 

composition. 

It is important to note that each normalization method operates based on a specific set 

of assumptions. Therefore, the selection of an appropriate normalization method 

requires careful consideration of whether these assumptions can be met [123]. Failure 

to choose a proper normalization method can have adverse consequences in 

downstream analysis and the resulting outcomes, such as an increased number of false 

positives [123]. 

Normalization methods can be classified into various groups. These include 

normalization by library size (e.g., total count normalization), normalization by the 

distribution of read counts (e.g., median of ratio normalization), and normalization by 

controls (e.g., using housekeeping genes or spike-ins expressions for normalization) 

[123,124].  

Normalization by library size relies on the assumption of comparable total expression 

levels across samples, irrespective of the experimental conditions. This assumption is 

based on the idea that the majority of genes exhibit consistent expression across 

conditions, with only a minority of genes displaying differential expression. Based on 

this assumption, this normalization approach aims to mitigate differences in sequencing 

depth between samples. It achieves this by dividing the values in each sample by the 

total number of sequencing reads in that sample [123,124]. On the other hand, 

normalization by read count distribution adjustment assumes that the distributions of 

read counts are similar across the samples [123,124]. 
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Median of ratio normalization falls under the category of normalization by distribution 

of read counts [109]. In this technique, a sample scaling factor (or size factor) is 

calculated through the following process: for each gene, the geometric mean of its read 

counts across all samples is determined, serving as a pseudo-reference or consensus 

sample [109]. Subsequently, for each gene, the ratio of its read count to the read count 

of the same gene in the pseudo-reference sample is computed. The median of these 

ratios within each sample yields the sample scaling factor [109,123,124]. The normalized 

values are obtained by dividing the values in each sample by the corresponding sample 

scaling factor. 

Median of ratio normalization technique operates on the assumption that the majority 

of genes are not DE and, therefore, they should exhibit similar read counts across 

different conditions. Additionally, it assumes that technical effects impact both non-

DE genes and DE genes in a similar manner. Consequently, it is expected to see a ratio 

of 1 for most of the genes [124]. 

Normalization techniques based on read counts distribution are effective when the 

number of dysregulated genes is similar across conditions, regardless of differences in 

the total quantity of a specific molecule per cell [123]. However, it is important to note 

that these normalization methods may be ineffective when there is a global shift in one 

condition, which violates the assumption of symmetry [123]. 

Assuming that the underlying assumptions of median of ratio normalization hold for 

count data other than RNA-seq data, it is reasonable to consider applying this method 

to other data types based on count data. When comparing samples from the same tissue 

but under different conditions, it can be reasonably assumed that the majority of regions 

in the genome are not differentially methylated or accessible. As a result, median of ratio 

normalization can be employed on MeDIP-seq and ATAC-seq data. 

2.12.2 Dimensionality reduction 

High-throughput techniques generate high-dimensional data, meaning they produce 

data with a large number of variables or features. To illustrate, in an ATAC-seq 

experiment, tens of thousands of genomic regions with accessible chromatin can be 

identified from a single sample. Similarly, in an RNA-seq experiment the expression of 

tens of thousands of genes can be quantified for every sample. However, many statistical 

methods struggle with high-dimensional data, which reduces their power [125]. 
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Moreover, the visual exploration of the data is also affected by high dimensionality. To 

overcome this issue, dimensionality reduction can be employed to simplify the data by 

accounting for uninformative and redundant variables, enabling the extraction of 

hidden structures and patterns in the data and their visualization [125]. Dimensionality 

reduction can be applied to ATAC-seq accessible features obtained from an experiment. 

The purpose is to map the data to a lower-dimensional space in order to assess whether 

it can effectively distinguish between different sample groups, such as healthy and 

cancer samples. Various methods exist for dimensionality reduction, including principal 

component analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE). 

PCA serves as a technique for dimensionality reduction. It operates by generating a set 

of new orthogonal variables known as principal components, which are linear 

combinations of the original variables [126]. Together, these principal components 

capture all the variance within the data. In many cases, for visualization purposes, 

researchers opt to employ the first two or three principal components. However, it is 

important to note that this choice comes at the cost of information loss since the initial 

principal components may not capture the entirety of the variance in data. Additionally, 

a drawback of using PCA in computational biology is its limited ability to optimize the 

separation of different groups of samples. Moreover, PCA is insensitive to the source 

of variation in the data. Thus, if some of the variation is caused by systematic 

experimental artifacts, PCA would still incorporate it into the principal components 

[126]. Finally, PCA is susceptible to outliers and cannot effectively capture the local 

structure in the data [127]. 

t-SNE is an additional method used for dimensionality reduction and visualization 

[128]. In addition to revealing the global structure in the data, t-SNE preserves the 

inherent clustering of the data points in the high-dimensional space, when it projects 

the data to a lower-dimensional space. This is achieved by preserving the pairwise data 

point distances. This allows for the capture of local structures in the data, addressing 

one of the limitations of PCA [127,128]. To accomplish this, t-SNE converts the 

pairwise data point Euclidean distances in the high-dimensional space into conditional 

probabilities determined by a Gaussian distribution. Consequently, data points that are 

closer receive higher probabilities (or scores), while those that are farther receive smaller 

scores. To determine the similarity between two points in the low-dimensional space, t-

SNE uses the Student’s t-distribution instead of a Gaussian distribution to address 

optimization problems and the crowding problem observed in the earlier stochastic 

neighbor embedding method [128]. Finally, t-SNE repositions the data points in the 
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low-dimensional space such that their similarity score profile resembles the similarity 

score profile calculated for the high-dimensional space. One practical issue with t-SNE 

is that the results are not deterministic due to the random positioning of the data points 

in the low-dimensional space. In the case of reducing dimensionality to two dimensions, 

the resultant plot in a two-dimensional space might change with each execution of the 

algorithm, unless the random state parameter is explicitly set with a similar value for 

each execution. 

2.12.3 Hierarchical clustering 

Clustering methods are commonly used to group similar data points, such as biological 

samples or their features, together based on their characteristics. They are useful in 

gaining insights into complex, high-dimensional data and identifying hidden patterns or 

structures, such as co-expressed genes in an RNA-seq experiment. 

One major class of clustering methods is hierarchical clustering [129,130]. Hierarchical 

clustering aims to create a tree-shaped data structure, or dendrogram, composed of a 

hierarchy of clusters showing the relationships between the clusters [129,131]. This can 

be done using either a top-down approach, called divisive clustering, or a bottom-up 

approach, called agglomerative clustering. In divisive clustering, one starts with one 

cluster containing all n observations and divides it into smaller clusters until there are n 

clusters. In agglomerative clustering, one starts with n observations each considered as 

one cluster and clusters them together until there is one cluster of n observations. [132]. 

To form a cluster, a similarity metric or distance metric is used. Different distance 

metrics are available, such as Euclidean, Manhattan distance, and Pearson correlation 

coefficient. Additionally, linkage methods, such as single-linkage, average-linkage, and 

complete-linkage define the inter-cluster distance used to cluster two clusters or a cluster 

and an element, such as a gene, together. The selection of the appropriate distance 

metric and linkage method depends on the task at hand [129]. 

Hierarchical clustering results are often displayed with a heatmap accompanied by 

dendrograms. This allows for the visual inspection of samples or genes that are more 

similar to each other than other samples or genes. Dendrograms represent the similarity 

between two elements, such as a gene or a cluster of genes, as well as the cluster 

formation order determined by the length of the branch in the dendrogram. 
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However, there are a few practical issues to consider when using clustering methods 

like hierarchical clustering. Each clustering algorithm aims to optimize a particular 

cluster property. For instance, in complete linkage clustering, the aim is to merge 

clusters in a way that minimizes the maximum pairwise distance within the merged 

clusters [129, 130]. Put differently, the distance between two clusters in the complete 

linkage method corresponds to the maximum distance between any pair of points, with 

one point from each of the two clusters. Additionally, clustering methods may cluster 

the data even in the absence of an actual cluster [129,130]. 

2.12.4 Comparing sample sets through statistical hypothesis testing 

In the context of high-throughput data analysis, it is often desirable to identify features 

like genes that exhibit differences when comparing sample sets under different 

conditions. Consider the case of comparing ATAC-seq experiment data from localized 

versus advanced prostate cancer samples where we might be interested in detecting 

genomic regions with differential accessibility between these two sets. Statistical 

significance tests provide a means to assess whether there is sufficient evidence in the 

data to support a significant difference. Typically, a statistical test yields a P-value, which 

represents the probability of observing a difference at least as extreme as the one 

observed, assuming that there is no difference between the underlying populations 

[133]. In other words, the P-value represents the probability that the observed 

difference is solely due to random chance [134]. When the P-value falls below a 

predefined significance threshold, we conclude that the difference is significant. 

Historically, in the 1930s when computing resources were limited, the significance 

threshold was set at 0.05 or 0.01, with the latter being more common in genomic studies 

[135]. However, it is important to note that a statistically significant test outcome does 

not necessarily equate to a biologically significant difference, although it suggests the 

possibility [134,135]. 

Statistical tests can be categorized into two types: parametric and nonparametric. 

Parametric tests rely on assumptions regarding the underlying distribution of the data, 

and the reliability of the test results can be affected if these assumptions are not met. 

For example, the t-test assumes that samples are drawn from populations with a normal 

distribution and have similar variances [136,137]. In contrast, nonparametric tests, like 

the Wilcoxon rank-sum test, do not make distributional assumptions and can be 

employed even with skewed data or outliers [137,138]. For instance, the Wilcoxon rank-
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sum test (aka Mann–Whitney U test) serves as a nonparametric alternative to the 

unpaired t-test. It does not rely on the assumption of normality, which is a prerequisite 

for the t-test [137,139]. Instead, it assumes that the distributions of the two groups being 

compared are identical, with the potential difference being a shift in location. While 

nonparametric tests are well-suited for analyzing real-world data, they may be less 

sensitive than their corresponding parametric tests when dealing with small sample sizes 

[137]. 

2.12.5 Multiple-testing correction 

During high-throughput data analysis, it is common to perform a large number of 

statistical hypothesis tests to identify differential features, such as genes that are 

differentially expressed across two conditions. However, this can lead to a substantial 

number of false positives, which are results that appear statistically significant by chance 

alone.  

Let us consider a scenario where we aim to identify differentially accessible regions 

between two conditions, dividing the genome into non-overlapping windows of size 

500 base pairs. In this case, approximately 6.5 million statistical tests would be 

conducted. If we set the significance threshold at 0.01, without any actual significant 

differences, around 1% of the windows would be called statistically significant purely 

by chance. This would result in 65,000 false positives when none of them are genuinely 

differentially accessible. 

Let us consider, in a hypothetical manner, that 1% of all 6.5 million genomic regions 

are actually differentially accessible, and the statistical power to detect them is 70%. In 

this scenario, we would be able to detect 45,500 of the genomic regions that are truly 

differentially accessible. However, alongside these true positives, we would also detect 

64,545 false positives. Consequently, the false discovery fraction would be 0.59, 

indicating that roughly 1 out of 2 discoveries are false. This example highlights the 

necessity for multiple-testing correction methods. 

To address this issue, multiple-testing correction methods are employed [133]. These 

methods can be broadly classified into two families: family-wise error rate (FWER) 

methods, such as the Bonferroni method, and false discovery rate (FDR)-based 

methods, such as the Benjamini-Hochberg method [133]. 
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The Bonferroni method adjusts the P-values by multiplying them by the number of 

tests conducted in an analysis [140]. However, this method is highly conservative and 

tends to yield low statistical power [140]. In the aforementioned example, the P-value 

for a truly differentially accessible genomic region should be smaller than 1.538*10^-9 

to retain statistical significance after correction. 

In contrast, the Benjamini-Hochberg correction offers better statistical power 

compared to the Bonferroni method. The Benjamini-Hochberg correction arranges the 

P-values in order, ranks them, and adjusts the P-values inversely proportion to their 

rank [133]. 

Reducing the number of tests is another strategy to enhance detection power. One 

approach is to filter out genes with low expression levels prior to conducting differential 

expression analysis, thereby reducing the number of tests performed [106,141]. 

2.12.6 False discovery rate calculations 

When analyzing high-throughput data, it is a common practice to set a stringent 

significance level (α) in order to minimize false positives, but this approach often leads 

to an increase in false negatives, leading to a reduction in statistical power [142]. 

Moreover, studies utilizing data simulation experiments have shown that the application 

of multiple-testing correction methods tends to decrease statistical power, particularly 

when a large number of tests are conducted and only a small fraction of these tests 

exhibit a genuine effect, indicating a true difference between the two sets of samples 

under investigation [133]. As a consequence, many genomic regions that are truly 

differentially accessible or expressed across the two conditions may remain undetected 

after the application of multiple-testing correction. Additionally, the use of 

nonparametric significance tests can further decrease the statistical power [137]. 

In certain scenarios, particularly during the discovery phase when the cost of false 

positives is deemed acceptable compared to false negatives, it may be justifiable to omit 

the multiple-testing correction. However, this can be compensated for by incorporating 

additional criteria, such as considering the effect size. Nonetheless, it remains valuable 

to calculate the FDR, as it provides information about the proportion of discoveries 

that are likely to be false positives. One approach to estimate the FDR is through the 

use of permutation tests. In this procedure, the labels of the samples are randomly 

shuffled for each genomic region. In particular, a localized prostate cancer sample label 
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may be assigned to an advanced prostate cancer sample, or vice versa. Subsequently, a 

statistical significance test is performed. This process is repeated multiple times for each 

genomic region and all other regions. The number of tests that yield significance (i.e., 

P-value < α, where α is the significance threshold) under this permutation setup can 

provide an estimation of the number of false positives. Consequently, the false positive 

rate and the FDR can be estimated, enabling the establishment of criteria to ensure the 

FDR remains below a certain acceptable threshold [138]. 

2.12.7 Enrichment analysis 

In computational biology, it is often of interest to assess whether a set of results from 

a previous analysis, such as a set of DE genes exhibit an association with a specific 

functionality, such as aerobic respiration. The objective is to determine whether the data 

suggests there is an enrichment of certain functionalities within the list of DE genes 

[143]. To conduct such a test, methods like Fisher’s exact test or the hypergeometric 

test, which rely on the hypergeometric distribution, can be employed [144,145]. 

Let us consider an example to illustrate this concept. Suppose we have collected gene 

expression data for 2000 genes across two conditions, and from this dataset, we have 

identified 60 genes as DE genes. Furthermore, let us assume that among the 2000 genes, 

there are 75 genes known to be involved in aerobic respiration. If seven out of the 60 

DE genes are associated with aerobic respiration, we would like to determine if aerobic 

respiration is enriched in our list of DE genes. These values can be represented in a 

tabular format known as a contingency table as shown in Table 1. 

Fisher’s exact test calculates the probability of observing 7 out of 60 DE genes being 

involved in aerobic respiration or other events that are at least as extreme, under the 

assumption that aerobic respiration is not enriched in the DE gene list. If this 

probability is below a certain significance threshold (e.g., 0.01), we can conclude that it 

is unlikely to observe such a result purely by chance, indicating a significant enrichment. 

In this example, the calculated P-value is 0.0061. Since the P-value is significantly low, 

it is highly improbable to observe a table as extreme as this if aerobic respiration was 

not enriched in the DE gene list. Thus, we can conclude that aerobic respiration is 

indeed enriched in our list of DE genes. 

The hypergeometric distribution can also be utilized to calculate the expected value and 

variance for this example. The expected value is determined as 60 * (75/2000) = 2.25, 
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and the variance is approximately 2.1. Another way to frame the question is to evaluate 

the likelihood of observing values as extreme as 7 purely by chance when the expected 

value and variance are 2.25 and 2.1, respectively. 

Table 1.  Contingency table for the DE gene list enrichment example. 

 Involved in Aerobic 
respiration  

Not involved in Aerobic 
respiration  

Marginal row totals 

DE genes 7 53 60 

Not DE genes 68 1872 1940 

Marginal column totals 75 1925 2000 

It is important to acknowledge that Fisher’s exact test can be computationally 

demanding as it involves exhaustive enumeration of all possibilities [143,145]. 

Alternatively, the P-value can be approximated using the chi-squared test, provided that 

the expected value is greater than 5 [145]. 

In the example mentioned earlier, we focused on testing the enrichment of a single 

functionality (aerobic respiration). However, in practical scenarios, multiple tests may 

be conducted to investigate the enrichment of various functionalities and categories. 

Therefore, it becomes necessary to address the issue of multiple testing and adjust the 

obtained P-values accordingly. Pathway analysis, also referred to as functional 

enrichment analysis, follows a similar approach to identify biological pathways that 

demonstrate enrichment among a given list of identified genes, such as DE genes. 

2.13 Cancer 

Cancer is a disease characterized by a diverse set of alterations in the genome and 

epigenome acquired via a multi-step process [3,4]. For example, tumor suppressor genes 

play a critical role in constraining cells from uncontrolled growth. Alterations to a 

particular tumor suppressor gene may occur through a variety of mechanisms, such as 

deletion, mutations that impair its function, or epigenetic modifications that repress its 

expression, including aberrant promoter hypermethylation [4,91].  
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Cells that have acquired such changes may become capable of uncontrolled growth and 

replication, as well as evading mechanisms that are in place to protect an organism, such 

as humans, from such behavior [3,4]. One single cell in a person with such abilities along 

with its progeny may potentially survive and reproduce over time to create a mass of 

cells or a tumor containing up to 10^12 cells. If left untreated, this can ultimately result 

in the death of the individual [146].  

Metastasis, which is the spread of tumors to distant organs, is estimated to be the cause 

of 90% of deaths from solid tumors [147]. Despite the existence of multiple defense 

mechanisms against uncontrolled growth and replication, cancer remains a common 

disease, and it is estimated that one in five humans will die from cancer [3,146]. 

Over the years, multiple techniques with increasing resolution have been developed to 

study cancer-related alterations in DNA, such as chromosomal metaphase analysis, 

fluorescence in situ hybridization (FISH), microarray-based comparative genome 

hybridization, and PCR amplification followed by Sanger sequencing [148]. However, 

these techniques had certain limitations, such as scalability issues due to the need for a 

large amount of tumor tissue. High-throughput technologies have improved on these 

techniques, allowing for the study of the cancer genome, epigenome, transcriptome, 

and proteome with increased resolution and sensitivity, and facilitating the discovery of 

alterations that enable cells to survive and reproduce limitlessly [148]. 

In 2008, Ley and colleagues were among the first scientists to use high-throughput WGS 

technology to study the cancer genome of acute myeloid leukemia [149]. Since then, 

high-throughput technologies have been used to study and characterize different 

cancers at various omics levels. Measurements from the genome, epigenome, 

transcriptome, and proteome have been utilized in the context of prostate cancer (see 

the following section for some examples). As an example, the loss of DNA methylation 

as well as hypermethylation of CpG islands have been implicated in cancer [17,32] or it 

has been used to classify tumors [98]. 

The exploration of alterations that contribute to the onset and progression of cancer, 

especially through integrated analysis of various omics data, holds immense potential. 

Not only does it pave the way for the development of better treatments, but it also 

enhances our understanding of the fundamental principles of cell biology [146,148]. 
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2.14 Prostate cancer 

Prostate cancer ranks globally as the third most commonly diagnosed cancers in 2020 

[2]. In the same year, it was estimated to be the sixth leading cause of cancer death in 

men [150]. 

Prostate cancer is typically diagnosed through a combination of prostate-specific 

antigen (PSA) blood tests and digital rectal examinations (DREs), followed by a biopsy 

of the prostate gland [35]. The PSA blood test measures the levels of PSA, which is 

synthesized by the prostate gland and is encoded by the KLK3 gene in humans. Elevated 

PSA levels can be a sign of prostate cancer, although other factors such as age and 

inflammation can also affect PSA levels. During a biopsy, small samples of tissue are 

taken from the prostate gland using a thin needle and examined under a microscope to 

check for the presence of cancer cells. 

Prostate cancer can be broadly classified into two main categories: primary prostate 

cancer (PC) and castration-resistant prostate cancer (CRPC). The latter is considered a 

more aggressive form of prostate cancer. During the early stages of prostate cancer, the 

tumor typically remains confined to the prostate gland without spreading to other areas 

of the body. This stage is referred to as localized prostate cancer. Various treatment 

options are available for localized prostate cancer, including active surveillance (close 

monitoring of cancer progression), radical prostatectomy (surgical removal of the 

prostate gland), and ablative radiotherapy (targeted destruction of cancer cells) [35]. If 

the localized prostate cancer diagnosed at an early stage, the life expectancy for 99% of 

men with this disease is over ten years [35]. 

If prostate cancer recurs or relapses after prostatectomy, treatment options may involve 

salvage radiotherapy and/or androgen deprivation therapy (ADT) for local relapse. For 

systemic relapse, ADT may be combined with chemotherapy or novel androgen 

signaling-targeted agents [35]. ADT serves as the cornerstone in the treatment of 

prostate cancer. However, in some cases, prostate cancer becomes resistant to ADT, 

leading to the progression of advanced prostate cancer. At this stage, prostate cancer is 

classified as castration-resistant and considered incurable [35]. Figure 4 provides a visual 

summary of the described steps. 
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Figure 4.  Prostate cancer progression across different stages. Figure created with BioRender.com. 

The analysis of data across various omics levels has not only confirmed previous 

findings obtained by non-HTS methods but has revealed novel factors that play a role 

in the development and progression of prostate cancer. These include genetic 

susceptibility factors [151–153], alterations in the genome [154–164], epigenome 

[36,103,157,160], transcriptome [157,160,161,163,165–168], and proteome [157,169–

171]. Here, we provide some examples of these discoveries from different levels of 

omics analysis. 

Genomic alterations are commonly found in prostate cancer, encompassing genomic 

deletions, amplifications, and mutations. Notable examples of these alterations include 

the deletion of NKX3.1 (8p copy number loss), PTEN, and TP53, as well as the 

amplification of the AR and MYC (8q copy number gain). Additionally, ETS family 

gene rearrangements, such as TMPRSS2-ERG gene fusion resulting from a deletion on 

chromosome 21q22, are also observed. More than 200 risk regions associated with 

prostate cancer have been identified through genome-wide association studies 

(GWASs). These regions contain germline causal variants that disrupt the normal 

regulation of nearby target genes in tissues relevant to the prostate [172]. Several somatic 

mutations have been identified in genes such as AR, SPOP, FOXA1, TP53, IDH1, and 

various chromatin- and histone-modifying genes, including MLL2 [154–156,173–176]. 
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According to the Pan-Cancer Analysis of Whole Genomes (PCAWG) study, FOXA1, 

TP53, and SPOP are the three most common driver genes in prostate cancer [177]. 

Driver gene mutations are recognized for their critical role in the initiation and 

progression of cancerous cells. 

Epigenome analysis has also enhanced our understanding of prostate cancer. Notably, 

through the examination of DNA methylation in primary prostate cancer, alongside 

other omics data types, the TCGA consortium has unveiled distinctive molecular 

subsets within this disease. This analysis has revealed the existence of various subtypes 

based on DNA methylation levels, particularly in the ERG fusion-positive subgroup 

[157]. 

Another notable example involves the TCGA consortium’s utilization of ATAC-seq to 

examine samples from 23 different cancer types, including primary prostate cancer. This 

analysis yielded a comprehensive catalog of loci exhibiting accessible chromatin, which 

are considered as DNA regulatory elements [103]. 

Prostate cancer is dependent on AR, a master transcription factor in the prostate. AR is 

essential for promoting the growth and survival of prostate cancer cells. Due to this, 

researchers consider prostate cancer as an epigenetic disease [36]. 

Transcriptome analysis has contributed to the characterization of prostate cancer 

subtypes and the discovery of novel transcripts associated with the disease. For example, 

Glinsky and colleagues employed microarray-based gene expression data to classify 

prostate cancer patients into different subgroups [167]. Building upon the work of 

Glinsky et al. and other similar studies, Tomlins and colleagues identified another 

prostate cancer subgroup, which is driven by SPINK1 outlier expression [168]. 

Furthermore, Ylipää and colleagues utilized transcriptome analysis to establish the 

oncogenic role of PCAT5, a long non-coding RNA [165]. Annala and colleagues 

leveraged the same data to identify SKIL as another oncogene [166]. 

The application of proteome analysis has enhanced our understanding of prostate 

cancer by uncovering deregulated pathways and identifying proteins specifically 

overexpressed in tumors [178]. Notably, Iglesias-Gato and colleagues generated the first 

large-scale proteome dataset comprising over 9000 proteins from 28 primary, localized 

prostate cancer tumor samples and 8 normal samples [170]. Through the analysis of this 

dataset, they identify tumor-specific overexpressed proteins involved in anabolic 

processes such as fatty acid synthesis [170]. In another study, Iglesias-Gato et al. 
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expanded their investigation to include a dataset of over 5000 proteins from 22 bone 

metastatic prostate cancer samples [171]. Their analysis revealed overexpression of 

proteins involved in cell-cycle progression and DNA damage response, along with the 

underexpression of proteins involved in cell adhesion [171]. 

Studies that have integrated data from different omics levels have shown that the 

transcriptome is a poor predictor of the proteome due to a lack of strong correlation 

between these two data types [169]. To achieve their findings, several studies have 

adopted an integrative approach, combining data from multiple omics levels 

[154,157,160,161,163,169,171,176]. As an example, the TCGA consortium integrated 

DNA methylation data with mRNA expression data, leading to the identification of 164 

epigenetically silenced genes. Among these genes were those known to be 

downregulated in metastatic prostate cancer, as well as genes involved in prostate organ 

development [157]. In another example, Sinha and colleagues utilized proteomic data 

to classify primary prostate cancer into five distinct subtypes, independent of subtypes 

inferred from other omics data [169,178]. 

Despite substantial progress in identifying alterations and understanding the 

mechanisms underlying prostate cancer, there remain knowledge gaps, particularly 

concerning the progression of the disease towards the castration-resistant state. This 

advanced stage is currently deemed incurable, necessitating further research to gain a 

comprehensive understanding of its underlying mechanisms. The development of 

effective therapeutic interventions hinges on bridging these gaps. Therefore, the aim of 

this work is to contribute towards closing these gaps by uncovering novel alterations 

that play a role in the disease. This will be achieved through the development and 

utilization of computational and statistical tools and methods, which will enable the 

proper analysis of multilevel high-throughput data on prostate cancer.  
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3 AIMS OF THE STUDY 

As previously mentioned, a subset of prostate cancer patients experiences disease 

progression to an advanced stage known as CRPC, despite their initial positive response 

to therapy. Unfortunately, this stage of the disease is currently deemed incurable. Hence, 

the purpose of this study is to enhance our understanding of the alterations and 

molecular mechanisms that drive this progression, with the hope that the insights gained 

from this study can contribute to the development of effective treatments. 

We hypothesize that through a comprehensive and robust analysis and integration of 

high-throughput omics data, collected from a unique cohort of prostate cancer patients, 

which represent different stages of the disease, we can identify additional key alterations 

that drive the progression of prostate cancer. To achieve this goal, this study focuses on 

addressing the following two specific aims: 

 

Aim 1: Develop novel computational and statistical tools and methods for the effective 

and efficient analysis of high-throughput, omics data. 

Aim 2: By utilizing the developed tools and methods from Aim 1, investigate both 

single and multilevel high-throughput omics data in order to identify key alterations that 

drive the progression of prostate cancer. 

 

All of the Articles have contributed to the accomplishment of Aim 1 in this study. 

Additionally, Articles II and III have contributed to the achievement of Aim 2 in this 

study. 
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4 MATERIAL AND METHODS 

4.1 Material 

4.1.1 Tampere prostate cancer cohort 

The Tampere prostate cancer cohort includes fresh-frozen tissue specimens from three 

different groups of patients. Untreated primary prostate cancer (PC), locally recurrent 

castration-resistant prostate cancer (CRPC), and benign prostatic hyperplasia (BPH) 

groups. BPH is used as the control group and as a model for the normal prostate. This 

is because BPH is similar to PC in terms of histological, pathological, and genetic 

characteristics [179]. Thus, these three groups can be used to track prostate cancer 

development and progression to castration-resistance.  

The samples were collected at the Tampere University Hospital (Tampere, Finland) 

either via radical prostatectomy (RP) or transurethral resection of the prostate (TURP). 

All samples were examined microscopically and found to contain at least 70% cancerous 

or hyperplastic cells. These samples were used to produce genomics (low-coverage 

DNA-seq, 4X), epigenomics (MeDIP-seq and ATAC-seq), transcriptomics (RNA-seq 

and miRNA-seq), and proteomics (SWATH-MS) high-throughput data. Figure 5 

illustrates the multilevel dataset used in this work. 

 

Figure 5.  Multilevel dataset used in Article III. Figure created with BioRender.com. 
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In Articles II and III, high-throughput data from PC and BPH samples were compared 

to identify early alterations that occur during prostate cancer development. Additionally, 

the comparison between CRPC and PC samples aimed to identify alterations associated 

with cancer progression and castration resistance. 

4.1.2 The Cancer Genome Atlas 

The Cancer Genome Atlas (TCGA) program was launched in 2006 as a collaborative 

initiative between the National Cancer Institute (NCI) and the National Human 

Genome Research Institute (NHGRI) in the United States. The program conducted 

molecular characterization of over 20,000 cancer samples, along with their 

corresponding matched normal from 33 different cancer types. The TCGA program 

generated an extensive collection of data across multiple molecular levels, including 

genomics, epigenomics, transcriptomics, and proteomics [180]. 

In Article I, a subset of genomic data from the TCGA was used, focusing on prostate 

adenocarcinoma and low-grade glioma. The WGS data was used to evaluate the 

performance of our developed tool, Segmentum, in identifying SCNAs using actual WGS 

data (the list of sample barcode names used for the analysis can be found in Appendix 

1). 

Moreover, the TCGA program has published numerous peer-reviewed scientific articles 

that document their comprehensive analyses of the TCGA dataset. These publications 

provide a valuable resource for conducting integrative analysis. In Article III, we 

compared our findings derived from the analysis of chromatin accessibility data 

obtained from the Tampere prostate cancer cohort with the findings from TCGA-

generated chromatin accessibility data [103]. 

4.1.3 miRWalk 2.0 database 

miRWalk2.0 is a comprehensive and freely available database that contains 

experimentally validated and predicted miRNA-target interactions [181]. In Article II, 

we used miRWalk2.0 database to generate a list of predicted mRNA targets of miRNAs. 
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4.1.4 Gene Transcription Regulation Database 

The Gene Transcription Regulation Database (GTRD) is a collection of uniformly 

processed ChIP-seq data used to identify TF binding sites within the human and mouse 

genomes. As of the time of writing, this database contained data from thousands of 

ChIP-seq experiments, encompassing information on hundreds of unique TFs [182]. In 

Article III, we used information provided by the GTRD database to annotate genomic 

intervals that were identified during the analysis of ATAC-seq data derived from the 

Tampere PC cohort. 

4.1.5 GeneHancer 

In Article III, we utilized GeneHancer, a database of human enhancers and their 

corresponding target genes. GeneHancer integrates data from various sources including 

the ENCODE project, the Ensembl regulatory build, the functional annotation of the 

mammalian genome (FANTOM) project, and the VISTA Enhancer Browser [183]. 

This resource allowed us to annotate the genomic loci identified through the analysis of 

ATAC-seq and MeDIP-seq data obtained from the Tampere PC cohort. 

4.1.6 Other datasets 

In Article III, we used data obtained from multiple external publications to guide our 

analysis and enhance the annotation and assessment of our findings. Specifically, we 

incorporated the following information: 

Massie et al. (2011) provided a list of topologically associating domain (TAD) boundaries 
inferred from the LNCaP cell line as well as a list of AR binding sites obtained from 
ChIP-seq experiments conducted in LNCaP and VCaP cell lines [184]. 

Pomerantz et al. (2015) provided a list of AR binding sites derived from ChIP-seq 
experiments performed on prostate cancer samples [185]. 

Pomerantz et al. (2020) provided AR binding sites and histone modifications lists obtained 
from ChIP-seq experiments, as well as a list of accessible chromatin regions derived 
from ATAC-seq experiments conducted on samples across different stages of 
prostate cancer [36]. 

Stelloo et al. (2018) for the list AR binding sites and histone modifications obtained from 
ChIP-seq experiments conducted on primary prostate cancer samples [186]. 
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4.2 Methods 

4.2.1 Somatic copy number alteration detection 

In Article I, we introduced Segmentum, a tool we developed for the detection of SCNAs 

in cancer samples using WGS data. Segmentum was implemented using Python version 

3. The overall workflow of Segmentum is shown in Figure 6. 

 

Figure 6.  Overall workflow of Segmentum. RD, read depth; BAF, B-allele fraction; cnLOH, copy-neutral 
loss of heterozygosity. Figure created with app.diagrams.net. 

In Segmentum, the ratio of read counts between tumor and its matched normal samples 

is calculated for windows of a specified size determined by the user across the genome. 

This ratio then undergoes a logarithm base 2 (log2) transformation using: 

𝑙𝑜𝑔𝑟𝑖  =  log2(
𝑡𝐶𝑖

𝑛𝐶𝑖
), 

where logri is the log2-ratio of the ith genomic window and tCi and nCi are the read 

counts from the ith window for the tumor and normal samples, respectively. 

In addition to the log2-ratios, Segmentum also calculates genome-wide BAFs with:  

𝐵𝐴𝐹𝑖  = (
 𝐴𝑖

𝐴𝑖 + 𝐵𝑖
),  
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where BAFi is the BAF value for the ith heterozygous SNP, and Bi and Ai refer to the 

alternative and reference allele respectively, of the ith heterozygous SNP. 

The calculated BAFs undergo simultaneous mirroring and smoothing. Mirroring the 

BAFs around the 0.5 axis simplifies BAF data analysis by assigning a value of 0 to 

heterozygous SNPs. Deviations from the expected heterozygous SNP BAF value of 0.5 

are assigned values larger than 0, rather than a value between 0 and 1 (excluding 0.5). 

Smoothing is performed using a median filter, which helps mitigate the impact of outlier 

values on the BAF signal profile and effectively reduces noise. The simultaneous 

mirroring and smoothing are done using:  

𝑐𝐵𝐴𝐹𝑖  =  (𝐻 × |0.5 − M9(𝐵𝐴𝐹𝑖)|)  + ((1 − 𝐻)  × M9(|0.5 − 𝐵𝐴𝐹𝑖|)), and 

𝐻 = 1 − 2 × |0.5 − 𝐵𝐴𝐹𝑖|, 

where cBAFi is the simultaneously mirrored and smoothed BAFi and M9() is a median 

filter function that calculates the median value by considering nine estimated BAFs in 

the vicinity of and including the ith SNP. 

To detect breakpoints, a double sliding window is then applied to the estimated logrs 

and cBAFs. The user specifies the size used for both windows within the double sliding 

window. The location of a breakpoint is determined by calculating a value S using the 

following formula. If the calculated value of S exceeds 1, a breakpoint is placed at the 

center of the double sliding window. 

𝑆 =  
|𝑙𝑜𝑔𝑟𝑤𝑖𝑛𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  − 𝑙𝑜𝑔𝑟𝑤𝑖𝑛𝑖+1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  |
2

𝜏𝑙𝑜𝑔𝑟
+

| 𝑐𝐵𝐴𝐹𝑤𝑖𝑛𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅− 𝑐𝐵𝐴𝐹𝑤𝑖𝑛𝑖+1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |
2

𝜏𝐵𝐴𝐹
 ≡

(Δ𝑙𝑜𝑔𝑟)2

𝜏𝑙𝑜𝑔𝑟
+

(Δ𝐵𝐴𝐹)2

𝜏𝐵𝐴𝐹
 , 

where 𝑙𝑜𝑔𝑟𝑤𝑖𝑛𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑐𝐵𝐴𝐹𝑤𝑖𝑛𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are the mean of the log2-ratios and cBAFs falling in the 

left window within the double sliding window at the ith position respectively. 𝑙𝑜𝑔𝑟𝑤𝑖𝑛𝑖+1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

and  𝑐𝐵𝐴𝐹𝑤𝑖𝑛𝑖+1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are the mean of the log2-ratios and cBAFs falling in the right window 

within the double sliding window at the i+1th position respectively. User-provided 

thresholds, τlogr and τBAF, are the thresholds for the absolute mean difference in the log2-

ratios and the BAFs between the two adjacent windows, respectively. Figure 7 depicts 

the decision boundary for breakpoint detection, as implemented by the formula 

described above. 
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Figure 7.  Decision boundary using two criteria for detecting breakpoints. 

A segment is defined by the genomic region bounded by two breakpoints. To 

characterize each segment, the average log2-ratios and average cBAFs within that 

segment are calculated and reported. The average log2-ratio of a segment represents the 

relative copy number of that specific genomic region. Segments with log2-ratios close 

to 0 and cBAFs close to 0.5 are considered as cnLOH. 

4.2.2 Benchmarking Segmentum 

To evaluate the accuracy of Segmentum in detecting SCNAs, we conducted a series of 

benchmark experiments. One such experiment involved the analysis of WGS data 

obtained from one glioma sample, a prevalent type of brain tumor. The WGS data had 

an average coverage depth of approximately 46X. For this particular benchmark 

experiment, we generated five distinct subsamples of the original sample using samtools, 

a widely used genomics research tool [187]. These subsamples represented different 

fractions of the original sample, namely 75%, 50%, 25%, 10%, and 5%. Subsequently, 

we applied Segmentum to analyze each of these subsamples. To validate the results, we 

compared them against a ground truth derived from the TCGA SNP array data, 

specifically the Affymetrix Genome-wide Human SNP array, which was obtained from 

the same sample. To quantify the similarity between the results obtained by Segmentum 

and the ground truth, we calculated the Jaccard similarity index (JSI). The JSI is a 
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measure of the similarity between two sets, and it can be used to compare the overlap 

or similarity between two datasets such as the results from Segmentum against the ground 

truth. The JSI ranges from 0 to 1, where 0 indicates no similarity between the sets, while 

1 signifies complete similarity or identical sets. 

We further benchmarked Segmentum, comparing it with other state-of-the-art tools 

available at the time of publication, including Patchwork, CLImAT, and control-FREEC 

[188–190]. The benchmarking process involved applying these tools to real data with 

varying depth of coverages. We used ten high-coverage TCGA glioma samples (30X to 

100X average depth of coverage), and ten low-coverage TCGA prostate 

adenocarcinoma samples (6X average depth of coverage). To assess the performance, 

we compared the results of each tool to a ground truth derived from TCGA SNP array 

data. The comparison was done by calculating the JSI. 

In order to further evaluate Segmentum’s ability to detect SCNAs in the presence of 

normal cell contamination, we developed a sequencing read count simulator. This 

simulator generates whole-genome read counts for both normal and tumor samples, as 

well as BAF based on deletion, amplification, and cnLOH events. We then applied 

Segmentum to the simulated data, varying the fractions of normal cell contamination. 

To assess Segmentum’s performance, we calculated metrics such as precision, recall 

(sensitivity), and F-measure (F1 score). Precision measures the accuracy by calculating 

the proportion of correctly predicted positive instances out of all instances predicted as 

positive. Recall, on the other hand, assesses the ability to correctly identify positive 

instances by calculating the proportion of correctly predicted positive instances out of 

all actual positive instances. The F measure combines precision and recall into a single 

metric using their harmonic mean, providing a balanced assessment of the tool’s 

performance. 

4.2.3 Enrichment and pathway analysis 

In Article II, we utilized Fisher’s exact test to examine whether the evidence supports 

the hypothesis that a specific DE miRNA negatively regulates a greater number of genes 

within a set of DE genes than would be expected by chance alone. Furthermore, in 

Article II, we conducted pathway analysis by utilizing Ingenuity Pathway Analysis (IPA, 

QIAGEN Redwood City, USA) in order to identify proteins associated with relevant 

biological pathways of interest. 
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4.2.4 ATAC-seq data processing and peak calling 

After quality control using FastQC and trimming the ATAC-seq sequencing reads with 

TrimGalor, the reads were aligned to the GRCh38 reference genome using Bowtie2 

aligner [69]. The resulting aligned reads underwent preprocessing using samtools to filter 

out reads with a MAPQ below 20, and Picard Markduplicates to mark the duplicate 

reads [67,191]. Subsequently, peaks were called using MACS2 [102,192]. A second round 

of quality control was performed using the ataqv tool, to assess the quality of the called 

peaks and other relevant quality metrics [193]. Additionally, regions on autosomal and 

sex chromosomes affected by the alignment of mitochondrial DNA were identified, 

and peaks overlapping these regions were filtered out. 

4.2.5 ATAC-seq signal quantification 

To robustly quantify the ATAC-seq signal across the genome, we developed the 

following approach. Initially, we divided the genome into overlapping bins of size 500 

bp with steps of 250 bp. To count the number of overlapping sequencing reads in each 

bin, we utilized the bedtools coverage -counts subcommand [194]. 

Subsequently, we implemented several correction steps to address various biases and 

normalize the data. The initial step was background correction, which addressed local 

background biases such as copy number alterations [102]. This correction accounted 

for situations in which accessibility could not be detected in deleted genomic regions 

due to the absence of sequencing reads, or where amplification influenced the 

measurement in amplified genomic regions. By decoupling these factors, the 

background correction enabled us to focus on the accessibility itself. To apply the 

background correction, we devised the following formula: 

c(𝑥)  =  max(0, (R(𝑥)  −  max(Q1(P10(𝑥)), Q1(P100(𝑥)), (Pchr(𝑥))))), 

where R(x) represents the read count for the bin located at position x. The terms P10(x) 

and P100(x) denote the lists of read counts encompassing all bins within a range of +/-

5 kilobases and +/-50 kilobases around position x, respectively. Furthermore, Pchr(x) 

denotes the list of read counts for all bins within a specific chromosome arm. P10(x), 

P100(x), and Pchr(x) exclude the bin at position x. Additionally, Q1 denotes the value 

corresponding to the first quartile. 
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After applying the background correction, we utilized the median of ratio normalization 

method to obtain normalized read counts [109]. This step ensures that samples with 

varying sequencing depths can be effectively compared. 

Additionally, we performed sample collection procedure bias correction. This 

correction accounted for potential biases introduced by collecting samples using two 

different procedures: radical prostatectomy (RP) and transurethral resection of the 

prostate (TURP). 

To correct for sample collection procedure bias, we divided the samples into two 

groups: RP (consisting of four BPH and four PC samples) and TURP (comprising four 

BPH and four CRPC samples). For each bin, we conducted a two-sided Wilcoxon rank-

sum test and recorded the resulting P-value. This procedure was repeated 100 times, 

with the samples assigned to each group shuffled each time. Bins with a P-value of 

≤0.01 in 5% or more iterations were identified. For the identified bins, we subtracted 

the difference between the medians of the normalized read counts of all the TURP 

samples and all the RP samples from the read counts of all the TURP samples. 

The quantified ATAC-seq signal was utilized for various purposes in Article III. These 

include the detection of DARs, performing correlation analysis with gene expression 

and protein abundance data, and visualization of the results. 

4.2.6 ATAC-seq consensus peak set compilation and quantification 

In order to construct and quantify a consensus ATAC-seq peak set from the peaks 

identified across multiple samples using MACS2, we made modifications to the approach 

initially proposed by Corces et al., enabling the integration of our correction procedure 

[103]. The following steps were employed: 

1. The peak summits in each sample were extended by ±250 bp, resulting in 500 bp wide 
peak windows. 

2. The quantified ATAC signal, as described earlier, was used to quantify the peaks within 
these windows. 

3. In instances where overlapping peaks were present within a sample, the peak with the 
highest signal was selected. 
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4. To ensure comparability between samples, the peak signals in each sample were scaled 
using a scaling factor. This factor was determined by calculating the sum of all peak 
signals in a sample and dividing it by 10^6. 

5. All peaks from the individual samples were pooled together, and overlapping peaks were 
removed, retaining the peaks with the highest scaled signal value. 

6. Finally, peaks that were supported by only one sample were filtered out, resulting in the 
generation of a consensus peak set. 

For each individual sample, the quantification of the consensus peak set was carried out 

using a similar approach as described in the ATAC-seq signal quantification section. This 

quantification was utilized to discard peaks if all samples had a signal below a data-

driven threshold of 5, which was calculated using the elbow method. 

The peak set was subsequently divided into seven groups, categorized based on the 

sample types that exhibited a peak at the location of each consensus peak. This 

categorization, along with the ATAC-seq signal, was utilized to study the accessibility 

in prostate cancer and to create visualizations to effectively represent and illustrate the 

data. 

4.2.7 MeDIP-seq signal quantification 

Following quality control using FastQC, the sequencing reads from MeDIP-seq were 

aligned to the GRCh38 reference genome using the Bowtie2 aligner [69]. The resulting 

aligned reads were then preprocessed using samtools and Picard Markduplicates to 

eliminate duplicate reads [67,191]. 

To robustly quantify the MeDIP-seq signal, a similar procedure as described for ATAC-

seq signal quantification was employed. This involved partitioning of the genome into 

bins, performing background correction to address local biases, and applying median of 

ratio normalization. 

4.2.8 Detection of differential genomic features between two conditions 

In this study, we employed a specific strategy to identify genomic features that exhibit 

differential expression, accessibility, or methylation between two groups under different 

conditions. Our strategy incorporates three criteria to select such features. 
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The first criterion involves utilizing the nonparametric Wilcoxon rank-sum test to 

determine if the data from the two groups originate from distinct distributions. 

Essentially, this test assesses the significance of the observed difference between the 

medians of the two samples [138]. In addition to the statistical hypothesis test, we take 

into consideration the effect size, which denotes the magnitude of the difference 

between the medians of the two groups [135,138]. Consequently, the second criterion 

examines whether the magnitude of the median difference exceeds a predetermined 

threshold.  

Lastly, the third criterion examines whether the absolute log2-ratio of the medians 

between the two groups surpasses a specified threshold. This information allows for 

determining both the ratio and direction of the change. In the case of ATAC-seq data, 

if the log2-ratio of the median from group 2 to group 1 for a genomic region is +1, it 

suggests that the accessibility of this genomic region is twice as high in group 2 

compared to group 1. To ensure symmetry of positive and negative ratios around zero, 

we apply a log2 transformation to the data. 

The second and third criteria are complementary to each other. To illustrate, if the 

medians of the two compared groups are close to 0 (say 0.016 and 0.004), this might 

result in a considerable log2-ratio (log2(0.016/0.004) = 2) which could satisfy the 

threshold set for the third criterion. However, the second criterion (|0.016 - 0.004| = 

0.012) would not be satisfied. These two criteria work together to reduce the false 

discovery rate in the absence of multiple-testing correction [195]. Although these 

additional criteria do not guarantee a specific level of false discovery rate theoretically, 

our calculations in Article III demonstrate that by appropriately setting the thresholds, 

the false discovery rate can be maintained below 10%. Figure 8 illustrates the effect of 

three criteria, namely P-value, absolute median difference, and log2-ratio, on the 

estimation of FDR through permutation testing. The figure focuses on the detection of 

DARs from ATAC-seq data obtained from two distinct prostate cancer groups, namely 

BPH and PC, from the Tampere PC cohort. 
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Figure 8.  Impact of P-value, absolute median difference, and log2-ratio on FDR in detecting DARs from 
ATAC-seq data between BPH and PC prostate cancer groups. 

In Articles II and III, we applied this strategy to identify DE genes at the transcriptome 

and proteome levels, as well as differentially accessible regions (DARs), and 

differentially methylated regions (DMRs). In Article III, when identifying DARs and 

DMRs, we determined and set the threshold values for the aforementioned criteria 

(through performing permutation tests, as explained earlier) to maintain the FDR within 

reasonable limits. 

DARs were identified using the following criteria: |log2-ratio| > 2, P-value < 0.01, 

absolute-median-difference > 14. These criteria corresponded to FDR of 9.7% for the 

BPH to PC comparison and 9.14% for the PC to CRPC comparison. DARs with 

positive log2-ratio were classified as opening DARs, while DARs with negative log2-

ratio were classified as closing DARs. 

DMRs were identified using the following criteria: |log2-ratio| > 2, P-value < 0.01, 

absolute-median-difference > 10. These criteria corresponded to FDR of 4.61% for the 

BPH to PC comparison and 7.90% for the PC to CRPC comparison. DMRs with 

positive log2-ratio were classified as hypermethylated DMRs, while DMRs with negative 

log2-ratio were classified as hypomethylated DMRs. 
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In Article II, we initially identified the common genes in both the transcriptome and 

proteome datasets, resulting in a total of 3310 genes. Subsequently, employed specific 

criteria to identify DE genes, utilizing a threshold of |log2-ratio| > 1.5 and an adjusted 

P-value < 0.05 obtained from a non-parametric Wilcoxon test. Similar criteria values 

were used to find DE miRNAs. 

It should be noted that several other methods have been proposed for detecting DE 

genes between two conditions. Notably, DESeq [108,109] and edgeR [110] are two 

widely used methods in this context. The principles introduced and utilized by these 

methods have also been adapted to detect differential genomic regions, such as in terms 

of methylation [196] or protein-DNA binding [197,198]. In our approach described 

above, we incorporated the normalization step proposed in DESeq, specifically the 

median of ratio normalization, to ensure comparability between samples [109]. 

4.2.9 Data integration 

Our work, particularly in Articles II and III, aligns with the sequential, phenotype-first 

approach, as explained in the literature review. We focus on prostate cancer progression 

as the phenotype of interest and apply data integration techniques on multilevel omics 

data to characterize this phenotype. 

In a previous study, conducted on the Tampere PC cohort, RNA-seq was used to 

identify somatic point mutations in PC and CRPC samples, as well as germline point 

mutations in BPH samples within transcribed loci. These variants were further validated 

through targeted sequencing [166]. Building upon this research, in Article II, we 

investigated the impact of these point mutations on gene and protein expression of the 

genes with these mutations. To assess the impact, we employed an impact score 

calculation method as described by Zhang et al. [199]. The impact score was determined 

using the following formula: 

𝑆𝑐𝑜𝑟𝑒 =  (𝐸𝑋𝑃 − 𝑀𝑒𝑑𝑖𝑎𝑛𝑛𝑜𝑛−𝑆𝑁𝑉) / 𝑀𝐴𝐷𝑛𝑜𝑛−𝑆𝑁𝑉 , 

where EXP represents the expression level of the gene or protein in the sample 

containing the specific SNV. Mediannon-SNV and MADnon-SNV refer to the median and 

median absolute deviation of the expression levels of the gene or protein across all 

samples without the SNV, respectively. 
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In Article II, we investigated the impact of alterations in copy number on gene/protein 

expressions by utilizing copy number estimates in terms of log2-ratios obtained from a 

previous study [165]. The analysis involved a dataset comprising 3185 common genes 

and 23 common PC and CRPC samples. For each sample, we computed the Spearman 

correlation between the copy numbers and gene/protein expressions. The resulting 

correlations were then visualized to provide a clear representation of the findings. 

Similarly, we examined the impact of alterations in methylation on gene/protein 

expressions by utilizing DMRs obtained from a previous study [165]. Specifically, we 

focused on genes that had a DMR within a 10 kilobases vicinity. The analysis involved 

a dataset consisting of 751 common genes and 25 common PC and CRPC samples. For 

each sample, we computed the Spearman correlation between the DMR log2-ratios and 

gene/protein expressions. These correlations were subsequently visualized to provide a 

clear representation of the findings. 

In Article III, we utilized DNA-seq to find copy number alterations in the genome, 

using Segmentum, the tool we developed in Article I. Additionally, we employed MeDIP-

seq and ATAC-seq data to detect epigenetic alterations such as DARs and DMRs across 

different groups, that corresponded to the observed changes in gene expression. 

Furthermore, we investigated how these alterations manifested in the proteome using 

correlation analysis and other techniques. 

To complement our analysis, we incorporated external datasets into our study. To 

illustrate, in Article III, we identified a few thousands of DARs across BPH, PC, and 

CRPRC groups. To gain insights into the functionality of these loci, we leveraged 

external resources such as GeneHancer to identify potential enhancer regions. We also 

employed data and results from other relevant prostate cancer studies to annotate and 

assess our findings. Moreover, we annotated these sites with experimentally validated 

transcription factor binding sites (TFBS) from the GTRD database. To accomplish this, 

we employed various tools such as bedtools and Hypergeometric Optimization of Motif 

EnRichment (HOMER) [194,200]. 

In Article II, we employed the miRWalk2.0 database to compile a comprehensive list 

of experimentally verified and predicted mRNA targets of miRNAs. Subsequently, we 

integrated multiple datasets including RNA-seq, miRNA-seq, MeDIP-seq, and 

proteomics data from the Tampere prostate cancer cohort with this list. Our objective 

was to identify miRNAs that hold particular relevance in the context of prostate cancer. 

Specifically, we used the information on mRNA and miRNA expression levels, protein 
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abundances, their DE status, and the list of miRNA targets to guide our correlation 

analysis. We initiated the analysis by considering DE miRNAs and their corresponding 

target list. We then calculated the Spearman correlation between the expression levels 

of DE miRNAs and their target genes, either in terms of mRNA or protein levels, and 

focused on those exhibiting a negative correlation greater than -0.50. Furthermore, we 

performed an enrichment analysis using a hypergeometric test (with a significance 

threshold of P-value < 0.05). The purpose was to identify DE miRNAs that 

demonstrated a significant enrichment in the number of negatively correlating mRNAs 

when compared to the total number of the targets associated with the miRNA under 

study. 

Additionally, we integrated information on the position of TADs obtained from cell 

line studies. This integration allowed us to limit the number of correlation calculations 

between DARs and gene expressions, thus mitigating the issue of multiple testing. 

4.2.10 Data visualization 

In this study, we employed various visualization techniques to effectively convey the 

information. Multiple visualizations, including PCA, t-SNE, hierarchical clustering 

plots, and boxplot showing coverage at peaks, DARs, and DMRs were generated to 

provide clear visual representations of the data. To accomplish this, we primarily utilized 

the Python programming language and widely used visualization modules such as 

matplotlib to create the visualizations and present our results [201]. 
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5 RESULTS 

In this chapter, we present the findings of this work. The findings are arranged in the 

same sequence as we introduced the omics levels in the literature review. 

5.1 Alterations in the genome 

5.1.1 Somatic copy number alterations 

SCNAs contribute to genome instability, which is an enabling characteristic for 

acquiring other cancer hallmarks [3,4]. This phenomenon is particularly notable in 

prostate cancer, where a subset of patients with advanced disease undergoing ADT 

display large copy number amplifications within the AR gene locus and its enhancer 

region [202]. Consequently, multiple tools and techniques have been developed to 

identify and characterize these alterations, each varying in accuracy, usability, speed, and 

integrability with other tools. Thus, our aim was to develop a tool that is accurate, user-

friendly, efficient, and capable of seamless integration with other existing tools when 

creating computational pipelines. 

To fulfill this aim, we developed Segmentum in Article I, a computational tool designed 

to detect SCNAs, including cnLOH events, by analyzing WGS data from tumor and 

matched normal samples. Additionally, Segmentum can detect recurrent alterations across 

multiple samples within a cohort. The output generated by Segmentum is formatted as a 

SEG file, which can be parsed by other tools or programmatically and visualized using 

tools like the Integrative Genomics Viewer (IGV) [203,204]. 

The benchmark results from a subsampling experiment demonstrated that Segmentum 

can accurately detect SCNAs. It achieved a JSI exceeding 0.93, even with an average 

depth of coverage as low as approximately 4X, indicating a high level of concordance 

with the ground truth. 
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We further benchmarked Segmentum against other state-of-the-art tools available at the 

time of publication. The evaluation was based on the accuracy of the results and the 

analysis time requirement, using different datasets with varying depths of coverage. 

For the high depth of coverage sequencing data, we utilized 10 TCGA glioma samples 

with an average depth of coverage ranging from 30X to 100X. The ground truths were 

established using TCGA SNP array data. Our results demonstrated that Segmentum 

generated highly similar results to the ground truth, with a JSI of 0.90. The next best 

tool achieved a JSI score of 0.86. 

In the case of low depth of coverage sequencing data, we employed 10 TCGA prostate 

adenocarcinoma samples with an average depth of coverage of 6X. The ground truths 

were also derived from TCGA SNP array data. Segmentum ranked second in generating 

results most similar to the ground truth, with a JSI score of 0.88, while the best tool 

achieved a JSI score of 0.93. 

In terms of analysis time requirement, Segmentum outperformed other tools. However, 

when considering both the average preparation time and analysis time, Segmentum ranked 

second. Nonetheless, it was twice as fast as the second-best performing tool in terms of 

accuracy. These findings suggest that Segmentum offers comparable accuracy and speed 

to other state-of-the-art tools available at the time of publication, while providing a 

simpler approach, and easier to use compared to the other tools included in the 

benchmark. 

It is important to note that Segmentum does not infer the ploidy or tumor content. 

However, benchmarking Segmentum with simulated data demonstrated that Segmentum 

accurately detects SCNAs when the normal cell contamination is below 50% (or in other 

words the tumor purity exceeds 50%). Beyond this threshold, the ability to detect 

changes drops significantly. 

It is worth mentioning that Segmentum’s output is compatible as an input to other tools 

such as ABSOLUTE [192], which is capable of inferring ploidy and tumor purity. This 

compatibility makes Segmentum suitable for integration into tumor analysis pipelines. 
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5.2 Alterations in the epigenome 

5.2.1 Chromatin accessibility alterations 

In Article III, we utilized ATAC-seq data to characterize the alterations in the chromatin 

accessibility in the context of prostate cancer progression. In order to accurately analyze 

the data and account for any systematic errors and biases, we developed a robust 

method for quantifying the ATAC-seq signal. This approach effectively mitigated the 

impact of both global background noise levels and local background factors, such as 

the influence of SCNAs on ATAC-seq readouts and the bias introduced by the sample 

collection procedure. Figure 9 illustrates the efficacy of our correction approach in 

mitigating the impact of SCNAs on chromatin accessibility readouts. Specifically, 

regions that exhibit copy number gains or amplifications in CRPC samples are 

appropriately corrected, resulting in a more comparable profile to that of normal 

regions. 

 

Figure 9.  The correction approach developed in Article III effectively addresses the copy number 
alterations as intended. We utilized seven CRPC samples with available WGS data. We calculated 
the ATAC-signal and the raw counts at the ATAC-seq peaks set. Segmenum was used to calculate 
the log2 ratios. The log2 ratios were categorized into five groups assuming an 80% tumor purity. 
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Furthermore, we identified a range of 23,840 to 138,942 open chromatin loci or peaks 

per sample (refer to Figure 10A). From these, we constructed a consensus ATAC-seq 

peak set comprising 178,206 reproducible open chromatin regions. 

When annotating these open chromatin loci using external data, we discovered a 

significant overlap of 79% with regulatory regions identified in normal tissues or TCGA 

data [103,205] (refer to Figure 10B). Furthermore, we found that 66% of the prostate 

cancer-specific peaks identified in the TCGA study overlapped with our accessible 

chromatin loci [103]. This substantial agreement with external data underscores the 

consistency of our findings with previous investigations. Moreover, our analysis 

uncovered 38,157 novel, putative, regulatory open chromatin loci relevant to prostate 

cancer. 

Further annotation revealed that the loci commonly observed in a substantial number 

of samples within the cohort were predominantly located in promoter regions. Notably, 

60% of the loci that displayed accessibility across all samples were located in promoters. 

Conversely, the loci common to only a few samples were mainly situated in intronic or 

exonic regions indicating their potential role in trans-regulatory functions (refer to 

Figure 10C). Additionally, it was observed that in all three groups, peaks within the 

promoter region displayed a stronger signal intensity compared to peaks in other regions 

(refer to Figure 10D). These observations indicate that promoters remain accessible, 

and their accessibility remains unchanged throughout the development and progression 

of prostate cancer. 

Additionally, we classified the peak set into seven groups based on the sample types 

that had a peak at the location of the consensus peak. This analysis revealed that only a 

minor fraction of these loci was specific to a particular group, indicating a considerable 

overlap in the accessible chromatin regions across different sample types (refer to Figure 

10E). 

We employed the quantified signal obtained from ATAC-seq analysis and using our 

approach, we identified 1,727 DARs during the transition from BPH to PC, with an 

FDR of 9.7%. Similarly, we identified 3,498 DARs during the transition from PC to 

CRPC, with an FDR of 9.14%. Notably, a large proportion of these DARs were found 

in the intronic and intergenic regions (refer to Figure 11A). 
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Figure 10.  The landscape of prostate cancer open chromatin. A. The distribution of identified peak counts 
reveals variations in the number of peaks across different samples, both within and across groups. B. 
The annotation of peak sets not only confirms consistent results with earlier studies but also sheds 
light on the potential functionality of the identified open chromatin regions. C. Majority of the open 
chromatin loci common to a few samples may have trans-regulatory functions as they primarily 
coincide in the intergenic and intronic regions. D. Peaks in the promoter region exhibited stronger 
signal intensity compared to peaks in other regions E. The majority of peaks in the peak set are 
shared across all three prostate cancer groups. 

Interestingly, we observed minimal overlap between the DARs identified during the 

BPH to PC and PC to CRPC transitions, comprising only 113 DARs, which accounts 

for approximately 2% of the total DARs. This finding suggests distinctive alterations in 

chromatin accessibility during the development and progression of prostate cancer 

(refer to Figure 11B). 

To further investigate the patterns within the ATAC-seq signal across all DARs, we 

employed t-SNE dimension reduction technique. This enabled the separation of 

samples into their respective groups (refer to figure 11C).  

Lastly, hierarchical clustering of the ATAC-seq signal at DARs, resulted in the division 

of these DARs into four distinct groups. One subgroup was specifically associated with 

disease progression (refer to figure 11D). 
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Figure 11.  DARs provide insights on the development and progression of prostate cancer. DAR, 
differentially accessible region. A. DAR annotation reveals that the majority of the DARs are located 
in intergenic and intronic regions. B. Diagram reveals a limited overlap between the DARs from the 
two contrasts. C. The DARs can be used to classify samples into their respective groups using t-SNE 
dimension reduction. D. Hierarchical clustering of the DARs divides the samples into their 
corresponding groups and identifies prostate cancer progression-related chromatin accessibility 
patterns (metric: Pearson correlation; linkage: Weighted Pair Group Method with Arithmetic Mean). 

5.2.2 DNA methylation alterations 

Using the approaches we developed, we quantified the signal from MeDIP-seq data and 

identified 2,061 DMRs during the transition from BPH to PC, with an FDR of 4.61%. 

Similarly, we identified 2,723 DMRs during the transition from PC to CRPC with an 

FDR of 7.90%. These findings highlight significant DNA methylation alterations during 

the onset and progression of prostate cancer. 
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Similar to the DAR results, a large proportion of the DMRs were also found in the 

intronic and intergenic regions, as illustrated in Figure 12. Furthermore, the majority of 

these alterations are hypermethylation, particularly nearby CpG islands at promoter 

regions (refer to Figure 12). 

 

Figure 12.  Hypermethylation of CpG islands during both prostate cancer onset and progression is 
evident. DMR, differentially methylation region. 

5.3 Alterations in the transcriptome 

In Article II, a total of 3310 common genes were identified in both the transcriptome 

and proteome datasets. Our approach in differential expression analysis revealed 425 

DE genes during the transition from BPH to PC, and 203 DE genes during the 

transition from PC to CRPC. 

Additionally, in a previous study, the Tampere PC cohort samples underwent miRNA 

expression profiling using small RNA sequencing [165]. Leveraging this data, our 

approach identified a total of 95 DE miRNAs during the transition from PC to CRPC. 
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5.4 Alterations in the proteome 

In Article II, we employed the SWATH-MS method to detect and quantify a total of 

3394 proteins with high-confidence in the Tampere prostate cancer cohort. We 

identified 728 DE proteins during the transition from BPH to PC. Additionally, in the 

progression from PC to CRPC, we detected 382 DE proteins. Intriguingly, only 153 

DE proteins were found to be common between these two transitions, highlighting the 

involvement of distinct protein dysregulation events at different stages of prostate 

cancer. 

Our pathway analysis of DE proteins identified alterations in the regulatory pathways. 

Notably, we uncovered changes in key pathways such as the tricarboxylic acid cycle 

metabolic pathway, which remained undetectable in our transcriptomic data. 

5.5 Multilevel observations 

Our study integrated multilevel data, incorporating genomics (DNA-seq), epigenomics 

(MeDIP-seq and ATAC-seq), transcriptomics (mRNA-seq and miRNA-seq), and 

proteomics (SWATH-MS). The integration revealed several noteworthy observations 

as described in the following sections. 

5.5.1 Point mutation, copy number, and methylation impact on gene and protein 
expression 

The analysis of point mutations impact on expression, encompassing both somatic and 

germline SNVs, revealed a statistically significant association between somatic 

mutations and mRNA levels when compared to germline variants (Fisher’s exact test, 

P-value=0.0055). However, no statistically significant impact on protein abundance 

levels was observed. 

In Article II, we observed that alterations in copy number and methylation had an 

impact on the mRNA expressions of CRPC samples. However, these changes had 

comparatively lower impact at the proteome level (refer to Figure 13). 
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Figure 13.  The impact of alterations in copy number and methylation on CRPC samples is more 
pronounced at the transcriptome than at the proteome level. A. Spearman correlations between copy 
number and gene/protein expressions reveal that copy number alterations exert a relatively greater 
influence on CRPC samples at the transcriptome level. B. Spearman correlations between genes’ 
nearby DMRs and their gene/protein expressions show that methylation alterations have a relatively 
stronger impact on CRPC samples at the transcriptome level. PC, prostate cancer; CRPC, 
Castration-resistant prostate cancer; DMR, differentially methylation region. 

In Article II, our data analysis uncovered a total of 140 DE genes at either the 

transcriptome or proteome level, which had a DMR within a 10 kilobases vicinity. 

Notably, we observed that hypermethylation can influence the expression of these DE 

genes, resulting in either a decrease or increase in their expression levels. 

5.5.2 Interactions at the epigenome 

Upon examining the accessible chromatin loci within the consensus peak set and their 

vicinity, we observed a clear enrichment of chromatin accessibility signals and a 

concurrent depletion of DNA methylation across all three prostate cancer groups (refer 

to Figure 14A). Furthermore, the extent of overlap between DARs and DMR was found 

to be modest (refer to Figure 14B, also Figure 11A and Figure 12). This finding 

underscores the distinctive regulatory roles played by chromatin accessibility and DNA 

methylation throughout the course of prostate cancer development and progression. 
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Figure 14.  The interplay between chromatin accessibility and methylation reveals interesting insights. A. 
Depletion of DNA methylation signal at the accessible chromatin loci within the peak set indicates a 
potential regulatory relationship. B. Only a modest overlap between DAR and DMRs across different 
transitions were observed. DAR, differentially accessible region; DMR, differentially methylated 
region. 

5.5.3 miRNA alterations impact the transcriptome and proteome 

In Article II, integrative analysis of miRNA expression with mRNA and protein 

abundance data resulted in a few observations. Specifically, during the transition from 

PC to CRPC, we identified 474 genes that exhibited a negative correlation with 95 DE 

miRNAs at the transcriptome level. Similarly, at the proteome level, 482 genes displayed 

a negative correlation with the same set of 95 DE miRNAs. Interestingly, only 122 

genes were found to be common between the transcriptome and proteome levels (refer 

to Figure 15). 

Upon further examination of the targets of these 95 DE miRNAs, we discovered 115 

DE genes at the transcriptome level and 218 DE genes at the proteome level in the PC 

to CRPC transition. Surprisingly, there were only 24 DE genes that overlapped between 

the transcriptome and proteome levels (refer to Figure 15). 

This outcome highlights the efficacy of our integrative analysis in generating a 

comprehensive list of relevant miRNAs and their target genes in the progression of 

prostate cancer. Notably, a few of the miRNA-target interactions observed solely at the 

proteome level underwent successful validation in the laboratory using prostate cancer 

cell lines. 
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Figure 15.  The Venn diagrams illustrate the number of genes exhibiting negative correlation with a 
targeting DE miRNA and the number of a subset of genes that are DE themselves, categorized by 
their expression at either the mRNA or protein level. Notably, only a small fraction of the miRNA 
targets is identified simultaneously at both the mRNA and protein level. DE, differentially expressed. 

5.5.4 mRNA expression data alone cannot reliably predict protein abundances 

In Article II, our observations revealed that a mere 73% of the genes quantified at the 

proteomics level exhibited a positive correlation with mRNA expression. Notably, the 

average correlation among these genes was a modest 0.15 (refer to Figure 16A). 

Additionally, it was noted that CRPC samples exhibited a comparatively lower 

correlation between mRNA and protein expression when compared to the other two 

groups (refer to Figure 16B). Furthermore, by analyzing the overlap of DE genes 

between mRNA and protein abundance datasets, we observed that only a small subset 

of DE genes was common between the two datasets (refer to Figure 16C). These 

findings offer valuable perspectives on the constraints of relying solely on mRNA 

expression data to predict protein levels accurately. Furthermore, each dataset reveals 

largely distinct events in the development and progression of prostate cancer. 
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Figure 16.  mRNA expression data alone is insufficient for accurate prediction of protein abundances. A. 
On average, there is a moderate correlation between mRNA and protein expression when Spearman 
correlation is calculated at the gene level. The mean is represented by a green triangle. B. In 
comparison to the BPH and PC groups, CRPC samples demonstrate a relatively weaker correlation 
at the sample level between mRNA and protein expression. C. The Venn diagrams illustrate a 
relatively small overlap between the numbers of DE genes and proteins across two transitions. DE, 
differentially expressed.  
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6 DISCUSSION 

6.1 Comprehensive and robust analysis of high-throughput omics 
data 

High-throughput measurements at the subcellular and molecular level not only provide 

valuable data on cellular processes but also offer insights into alterations associated with 

specific conditions, like cancer. In this study, we employed multiple high-throughput 

measurement techniques, including DNA-seq, MeDIP-seq, ATAC-seq, RNA-seq, 

small-RNA-seq (miRNA-seq), and SWATH-MS, to comprehensively investigate the 

genome, epigenome, transcriptome, and proteome of prostate cancer. Our objective 

was to elucidate the alterations contributing to disease progression. To ensure reliable 

findings, we addressed technical variability, biases inherent to high-throughput data, and 

project-specific issues. 

In Article I, we benchmarked our developed method for detecting SCNAs, 

demonstrating its robustness to normal cell contamination under practical conditions. 

The use of matched normal samples minimized biases such as mappability and GC 

content biases in HTS data. 

In Article II, we partly used preprocessed and analyzed data from earlier studies 

conducted on the Tampere PC cohort. These studies had already addressed various 

issues and biases, including the bias resulting from the use of different RNA extraction 

reagents. We applied appropriate normalization techniques to ensure reliable 

comparison between sample groups. Moreover, we applied the Benjamini-Hochberg P-

value adjustment method to account for multiple hypothesis testing. 

In Article III, we developed an ATAC-seq data analysis method that effectively 

mitigated global background noise levels and local background factors, such as the 

influence of SCNAs. We established criteria thresholds to maintain a reasonable FDR 

and corrected for a project-specific bias rustling from sample collection procedure. 

Moreover, we normalized the data to enable reliable comparison between sample 

groups. 
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Ensuring the robustness of tools and methods designed for the analysis of HTS data is 

of paramount importance. We believe that, taken together, our considerations allowed 

us to develop robust HTS data analysis tools and methods. 

6.1.1 Other considerations 

When detecting DARs, our approach employed a genome-wide detection of DARs 

rather than solely focusing on the detection of differentially accessible peaks within the 

ATAC-seq consensus peak set. This decision was made because the genome-wide DAR 

detection method allows for the unbiased identification of a larger number of actual 

DARs enhancing the comprehensiveness of our analysis [206]. While this approach may 

potentially result in more false positives, the chosen criteria threshold values have been 

selected to maintain the FDR below a reasonable level. 

6.2 Exploring prostate cancer progression through single and 
multilevel high-throughput data analysis 

By conducting single-level analyses, we successfully identified multiple distinct 

alterations occurring at various stages of prostate cancer development and progression 

across different omics levels. Our findings encompassed common and unique DARs, 

DMRs, DE genes and miRNAs, as well as DE proteins. The intriguing aspect of these 

observations lies in the presence of a small overlap between these alterations across 

different transition stages of prostate cancer. For example, out of 1110 DE proteins, 

only 153 (approximately 14%) were found to be common between the two transition 

stages, indicating the existence of discrete dysregulation events at each stage of prostate 

cancer. 

Through multilevel analyses, we uncovered intricate interactions of different processes 

occurring across various stages and levels of prostate cancer. At the epigenome level, 

we examined the interplay between chromatin accessibility and DNA methylation. 

Throughout the genome, an increase in chromatin accessibility coincided with a 

decrease in DNA methylation. Furthermore, we observed a minimal overlap between 

DARs and DMRs, suggesting that chromatin accessibility and DNA methylation play 

distinctive regulatory roles throughout the course of prostate cancer development and 

progression. 
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In another multilevel example, we explored the impact of alterations at the genome or 

epigenome level on the transcriptome and proteome. Intriguingly, we observed that 

certain alterations, such as copy number changes, exert a stronger impact on the 

transcriptome compared to the proteome. Furthermore, we observed that 

transcriptome expression levels alone are insufficient for accurately predicting 

proteome expression levels. By integrating data encompassing miRNA, mRNA, and 

proteome abundances, we uncovered miRNAs that primarily regulate a subset of the 

proteome through inhibition of translation, rather than mRNA degradation. 

Collectively, these insights underscore the robustness of the proteome in the face of 

genomic and epigenomic alterations as compared to the transcriptome. It should be 

noted that these insights would remain hidden without the integrative analysis of 

multilevel data. 

In summary, this study has compiled a comprehensive catalog of alterations across 

different levels and has elucidated their intricate relationships and their impacts on each 

other. These results not only corroborated existing knowledge regarding prostate cancer 

development and progression but also offer novel observations that warrant further 

investigation and validation in other patient cohorts. 

6.3 Challenges and limitations of the study 

Throughout this work, we encountered a number of challenges that we made efforts to 

overcome. Furthermore, it is important to acknowledge that our study had certain 

limitations, which we aim to elucidate in the following sections. 

6.3.1 Key considerations in using Segmentum 

In Article I, we demonstrated the capability of Segmentum to accurately detect SCNAs, 

even when the average depth of coverage was as low as approximately 4X. However, at 

such coverage levels, the reliable identification of heterozygous SNPs is limited. 

Consequently, the detection of cnLOH events becomes infeasible, restricting the 

analysis solely to the identification of deletions and gains. It is worth noting that this 

limitation is not unique to Segmentum but affects other tools that rely on heterozygous 

SNPs for cnLOH detection. 
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Furthermore, our investigation revealed that when normal cell contamination exceeds 

50%, Segmentum’s ability to detect changes diminishes significantly. However, 

considering that the typical range of normal cell contamination in real tumors is usually 

around 30-40%, we can expect Segmentum to perform well under practical conditions. 

While Segmentum does not provide estimates of absolute copy number for each SCNA 

event, the ability to do so would be valuable for various applications, such as stratifying 

cancer patients based on the copy number of relevant SCNAs to determine appropriate 

treatment strategies [207]. Fortunately, there are existing tools like ABSOLUTE, ACE, and 

Rascal specifically designed to estimate absolute copy number [208–210]. Segmentum’s 

output is compatible as input for tools like ABSOLUTE, and it can be utilized to estimate 

absolute copy number. This compatibility makes Segmentum well-suited for integration 

into tumor analysis pipelines. 

6.3.2 Tampere prostate cancer cohort  

In comparison to some recent studies in prostate cancer, the Tampere prostate cancer 

cohort may be considered relatively small [36]. It is often the case that cohorts with 

smaller sample sizes are criticized for their limited statistical power and the potential 

increase in false positive rates during discovery. These concerns are indeed valid and 

warrant attention. 

Addressing the issue of limited statistical power poses a considerable challenge, and one 

of the most effective approaches to overcome it is by utilizing larger sample sizes. 

However, an indirect assessment of the power of a cohort or approach in discovery can 

be made by integrating and annotating the discovery results with available external data. 

In Article III, we demonstrated that 66% of the prostate cancer-specific peaks found in 

the TCGA study overlapped with the accessible chromatin loci detected in our study 

[103]. 

On the other hand, addressing the concern regarding the increase in false positive rates 

during discovery, as we have shown (e.g., in Article III), is a less daunting task. It is 

possible to calculate the FDR of a discovery analysis by employing techniques such as 

permutation tests and setting appropriate criteria thresholds to ensure that the FDR 

remains below a certain predetermined value. When detecting DARs and DMRs in 

Article III, we established criteria thresholds that maintained the FDR below 10%, 

which is an acceptable threshold for discovery purposes. 
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It is important to note that a smaller cohort may possess unique merits that larger 

cohorts may not offer. For instance, smaller cohorts may exhibit distinctive sample 

group compositions that provide a novel perspective for research or have 

comprehensive characterizations across various omics levels. Hence, the size of a cohort 

alone should not warrant its outright dismissal, as it can still provide valuable insights 

and perspectives. 

During the course of our research for Article III, we observed that the sample collection 

procedure for prostate cancer (i.e., RP vs. TURP) had introduced a bias in the 

measurements obtained from the ATAC-seq assay. To address this issue, we refined 

our correction approach to effectively account for this bias and minimize its impact on 

the results. It is important to note that this specific bias was not observed in other data 

types analyzed during our study. 

It is important to highlight that collecting normal prostate tissues for research purposes 

raises ethical concerns and is not always feasible. In the absence of such samples, one 

approach employed is to utilize the normal tissue inadvertently removed during the 

surgical extraction of a prostate tumor. In the Tampere prostate cancer cohort, BPH 

samples have been used as the control group and as a surrogate for the normal prostate 

tissue. This choice is justified by the fact that BPH exhibits similarities to prostate cancer 

in terms of histological, pathological, and genetic characteristics [179]. 

6.3.3 Considerations in measurements and the measurement assays 

In Article II, we presented findings indicating a lack of concordance between mRNA 

expression and protein abundances, a phenomenon also observed in other studies [169]. 

This lack of concordance can be attributed to various processes, including post-

transcriptional and post-translational regulation, protein degradation, local availability 

of resources for protein biosynthesis, and buffering of mRNA fluctuations [118,211]. 

While these factors help explain the observed discrepancy, two additional reasons may 

also contribute to this phenomenon. 

Firstly, in our study, we employed SWATH-MS to quantify 3394 proteins, which was 

an impressive number at the time of publication. However, it is important to 

acknowledge that a significant portion of proteins remained undetected and 

unquantified. 
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Secondly, it is crucial to note that the omics data used in this study were generated from 

the same set of samples, with different sections of each specimen utilized for each omics 

measurement, which may contribute to variations observed across different omics 

levels. It is worth noting that this is not unique to our study but affects other studies as 

well. To address these concerns, emerging approaches that enable the simultaneous 

measurement of multiple levels of molecular information can be employed in future 

studies, helping to mitigate some of these limitations. 

Nonetheless, the work presented in Article II stands as a pioneering integrative study in 

prostate cancer. This is thanks to its comprehensive multilevel analysis of genomic, 

epigenomic, transcriptomic, and proteomic data. 

In Article III, our analysis revealed a limited overlap between the detected DMRs and 

DARs. This finding suggests that chromatin accessibility and DNA methylation may 

represent distinct epigenetic regulatory mechanisms in prostate cancer development and 

progression. However, it is important to consider that the observed low overlap could 

be partially attributed to the inherent limitations of the MeDIP-seq approach in 

detecting DMRs when compared to alternative technologies for DNA methylation 

measurement, such as MethylCap-seq or RRBS [212].  

Studies conducted by Bock and colleagues have demonstrated that MethylCap-seq 

outperforms MeDIP-seq in detecting DMRs, detecting approximately twice as many 

regions at comparable depth of coverage [212]. Therefore, the relatively low overlap 

observed between DMRs and DARs in our analysis may be influenced, at least in part, 

by the limitations of the MeDIP-seq method. Nevertheless, it remains crucial to further 

investigate and validate this observation in additional datasets. 

The data utilized in Articles II and III are considered bulk data, where each 

measurement represents an average level across a large population of input cells. It is 

important to recognize that such bulk data can encompass a heterogeneous group of 

cells, including distinct cell types or diverging subpopulations originating from similar 

cells within the context of cancer. Consequently, relying solely on average 

measurements may not accurately reflect the true state of each specific cell group. 

Furthermore, bulk measurement methods typically require a substantial number of cells, 

often ranging in the hundreds of thousands. To address the limitations associated with 

bulk data, the field of single-cell sequencing and measurement approaches has made 

significant progress since the emergence of techniques like single-cell mRNA-seq in 
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2009 [213]. Single-cell mRNA-seq, for example, enables the characterization of 

transcriptome at a single-cell resolution, providing insights into cellular heterogeneity 

and capturing individual cell states more faithfully. 

The prospect of acquiring and analyzing multilevel single-cell data from cohorts, like 

the Tampere prostate cancer cohort utilized in Article II and III, is not only intriguing 

but also holds tremendous potential in unraveling additional mechanisms underlying 

the development and progression of prostate cancer. Meanwhile, as the acquisition of 

such resources is underway, it is important to acknowledge the existence of tools like 

CibersortX, which have been designed to deconvolve bulk data by utilizing single-cell 

data [214]. These tools enable the extraction of cell-type-specific information from bulk 

measurements, leveraging single-cell information. 

6.4 Future work 

As of the writing of this dissertation, our ongoing work involves further characterization 

of the Tampere prostate cancer cohort by incorporating and conducting integrative 

analysis of Hi-C measurements [215]. Hi-C data provides valuable insights into the 3D 

architecture of genomes, allowing us to study the spatial organization of chromatin 

within the nucleus. This spatial organization plays a crucial role in gene transcription 

regulation [216].  

By integrating Hi-C data, we aim to complement and provide further explanations for 

the findings obtained in our earlier studies. In Article III, we observed correlations 

between the chromatin accessibility of certain loci, as determined by ATAC-seq data, 

and the abundance of corresponding mRNA or protein. Hi-C data can provide 

additional evidence to support some of these observed correlations. As an example, it 

can reveal that a distantly accessible chromatin region functions as an enhancer that 

spatially interacts with a specific gene promoter, potentially influencing its expression. 

Moreover, Hi-C data can also be utilized to detect sequence variations and SCNAs, 

thereby complementing the WGS data available in our cohort [217,218]. The analysis 

of higher-order chromatin interactions and their influence on gene regulation holds the 

potential to unveil novel insights into the development and progression of prostate 

cancer. 
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7 CONCLUSIONS 

As highlighted in the literature review, despite initial positive response to therapy, a 

subset of prostate cancer patients experiences disease progression to an advanced stage. 

Unfortunately, this advanced stage is currently considered incurable, despite numerous 

efforts to understand the underlying mechanisms and devise suitable therapeutic 

interventions. Given these challenges, the specific aims of this study were twofold. 

Firstly, we aimed to develop computational and statistical tools and methods for the 

effective and efficient analysis of high-throughput, omics data within the context of 

cancer. Secondly, we sought to use the developed tools and methods from our first aim, 

to investigate single and multilevel high-throughput, omics data to uncover additional 

key alterations that drive the prostate cancer development and progression, with the 

aspiration that these newfound insights could contribute to the development of 

effective treatments. While acknowledging the scope and limitations of this study, we 

believe that we have achieved these goals by presenting the findings of this study in 

three original articles. All of the Articles contributed to the accomplishment of Aim 1 

in this study. Additionally, Articles II and III contributed to the achievement of Aim 2 

in this study. 

SCNAs play a significant role in genome instability, a critical factor in acquiring other 

cancer hallmarks. Therefore, the identification of SCNAs is important. In Article I, we 

developed Segmentum, a novel tool capable of accurately identifying SCNAs using WGS 

data. Through benchmarking analysis, we demonstrated that Segmentum performed 

equally well as other state-of-the-art tools, while also exhibiting a notable speed 

advantage of at least twofold. Additionally, we also examined the limitations of 

Segmentum in accurately identifying SCNAs under certain scenarios, such as the presence 

of normal cell contamination. 

Shifting our focus to multilevel analysis of high-throughput omics data, Article II 

presents our findings from the investigation of proteomic data obtained from the 

Tampere prostate cancer cohort, encompassing various stages of prostate cancer onset 

and progression. By developing integrative approaches and integration of proteomics 

data with other sources, we identified alterations occurring at different levels and 
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examined their interactions across multiple layers. Notably, we observed the robustness 

of the proteome in the presence of alterations at other levels, and we concluded that 

transcriptomic gene expression information alone is insufficient to predict the proteome 

abundances. 

Article III expands upon our multilevel analysis by incorporating chromatin accessibility 

data derived from the ATAC-seq assay into the characterization of the Tampere 

prostate cancer cohort. To ensure the reliability of downstream analyses, we developed 

a correction approach to effectively mitigate both global background noise levels and 

local background factors as well as the influence of SCNAs on ATAC-seq readouts, the 

biases introduced by the sample collection procedure, and the variability in sequencing 

depths. Consequently, we confidently identified alterations in chromatin accessibility 

and integrated them with other datasets from multiple omics levels for a more 

comprehensive understanding. 

In summary, our study demonstrates the potential of single and multilevel analysis of 

high-throughput omics data, which allows us to reproduce previous findings and 

uncover the alterations that affect biological processes at different levels during prostate 

cancer development and progression. We hope that these findings enhance our 

understanding of the disease and provide valuable prospects for the development of 

future therapeutic interventions. 
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8 APPENDIX 1 

Tables 1-3 present the list of TCGA sample barcode names utilized in Article I to 

benchmark Segmentum’s performance on real data as well as the classification of grade II 

and III gliomas based on genomic alterations. 

 

Table 1.  TCGA low-grade glioma sample barcode names employed for the evaluation of 
Segmentum’s performance on high coverage actual data, ranging from 30X to 100X. 

Sample barcode names 

TCGA-HT-7689-01A-11D-2253-08 

TCGA-DB-5278-01A-01D-1468-08 

TCGA-DU-7301-01A-11D-2086-08 

TCGA-DU-5872-01A-11D-A465-08 

TCGA-DU-5874-01A-11D-1705-08 

TCGA-CS-5395-01A-01D-1468-08.1 

TCGA-DU-6401-01A-11D-1705-08.2 

TCGA-DU-7013-01A-11D-A461-08.1 

TCGA-DU-7304-01A-12D-A461-08.4 

TCGA-FG-8182-01A-11D-2253-08.3 

Table 2.  TCGA prostate adenocarcinoma sample barcode names employed for the evaluation of 
Segmentum’s performance on low-coverage (6X) actual data. 

Sample barcode names 

TCGA-G9-6332-01A-11D-1785-01 

TCGA-G9-6338-01A-12D-1959-01 

TCGA-G9-6342-01A-11D-1959-01 

TCGA-G9-6362-01A-11D-1785-01 

TCGA-G9-6364-01A-21D-1785-01 

TCGA-G9-6373-01A-11D-1785-01 

TCGA-G9-6494-01A-11D-1785-01 

TCGA-HI-7171-01A-12D-2112-01 

TCGA-HC-7211-01A-11D-2112-01 

TCGA-EJ-7784-01A-11D-2112-01 
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Table 3.  TCGA low-grade glioma sample barcode names employed for the classification of grade II 
and III gliomas based on their genomic alterations.  

Sample barcode names 

TCGA-CS-6668-01A-11D-1893-08 

TCGA-DB-5278-01A-01D-1468-08 

TCGA-DH-A669-01A-12D-A31L-08 

TCGA-DU-5870-01A-11D-A461-08 

TCGA-DU-5874-01A-11D-1705-08 

TCGA-DU-6397-01A-11D-A461-08 

TCGA-DU-7009-01A-11D-2024-08 

TCGA-E1-5318-01A-01D-1468-08 

TCGA-E1-5319-01A-01D-1893-08 

TCGA-EZ-7264-01A-11D-2024-08 

TCGA-FG-5964-01A-11D-1705-08 

TCGA-HT-7695-01A-11D-2253-08 

TCGA-HW-7486-01A-11D-2024-08 

TCGA-HW-7487-01A-11D-2024-08 

TCGA-CS-6665-01A-11D-1893-08 

TCGA-DU-5872-01A-11D-A465-08 

TCGA-DU-6407-01A-13D-1705-08 

TCGA-DU-7301-01A-11D-2086-08 

TCGA-FG-5965-01B-11D-1893-08 

TCGA-HT-7689-01A-11D-2253-08 

TCGA-HT-A5R7-01A-11D-A461-08 

TCGA-HT-A61B-01A-11D-A461-08 

TCGA-IK-7675-01A-11D-2086-08 

TCGA-TQ-A7RK-01A-11D-A33T-08 

TCGA-TQ-A7RV-01A-21D-A34A-08 

TCGA-TQ-A8XE-01A-11D-A36O-08 

TCGA-DU-6401-01A-11D-1705-08 

TCGA-DU-7304-01A-12D-A461-08 

TCGA-FG-8182-01A-11D-2253-08 

TCGA-FG-A4MT-01A-11D-A461-08 

TCGA-HT-7602-01A-21D-2086-08 

TCGA-TM-A7CF-01A-11D-A32B-08 

TCGA-DU-7013-01A-11D-A461-08 

TCGA-CS-5395-01A-01D-1468-08 

TCGA-CS-6669-01A-11D-1893-08 

TCGA-DU-6404-01A-11D-A461-08 

TCGA-FG-7643-01A-11D-A461-08 

TCGA-HT-8104-01A-11D-A461-08 
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Abstract

Background: Somatic alterations, including loss of heterozygosity, can affect the expression of oncogenes and
tumor suppressor genes. Whole genome sequencing enables detailed characterization of such aberrations.
However, due to the limitations of current high throughput sequencing technologies, this task remains challenging.
Hence, accurate and reliable detection of such events is crucial for the identification of cancer-related alterations.

Results: We introduce a new tool called Segmentum for determining somatic copy numbers using whole genome
sequencing from paired tumor/normal samples. In our approach, read depth and B-allele fraction signals
are smoothed, and double sliding windows are used to detect breakpoints, which makes our approach
fast and straightforward. Because the breakpoint detection is performed simultaneously at different scales,
it allows accurate detection as suggested by the evaluation results from simulated and real data. We applied
Segmentum to paired tumor/normal whole genome sequencing samples from 38 patients with low-grade glioma
from the TCGA dataset and were able to confirm the recurrence of copy-neutral loss of heterozygosity in chromosome
17p in low-grade astrocytoma characterized by IDH1/2 mutation and lack of 1p/19q co-deletion, which was previously
reported using SNP array data.

Conclusions: Segmentum is an accurate, user-friendly tool for somatic copy number analysis of tumor samples. We
demonstrate that this tool is suitable for the analysis of large cohorts, such as the TCGA dataset.

Keywords: Somatic copy number analysis, Loss of heterozygosity, Segmentation, Whole-genome sequencing, Cancer

Background
Somatic copy number alterations (SCNA) are a group
of genomic aberrations commonly observed in many
cancers [1]. Copy number is the number of copies
per cell of a particular gene or DNA sequence. Som-
atically acquired chromosomal rearrangements such
as deletions and duplications may change the copy
number of a gene. Consequently, the expression level
of a gene is often correlated with its copy number [2]
- a phenomenon known as the gene dosage effect.
Loss of heterozygosity (LOH) is an event in which
one of the two alleles at a heterozygous locus is lost
due to segmental aneuploidy, gene conversion, mitotic
recombination, or mitotic nondisjunction [3]. LOH
events involving tumor suppressor genes such as
PTEN, RB1, and TP53 have been observed in many
cancer. LOH may alter gene expression. For example,

monoallelic expression (MAE), which is the expres-
sion of a gene from only one of two alleles in a dip-
loid organism, is associated with LOH [3]. By
analyzing a cohort of 23 triple-negative breast cancer
patients, Ha et al. [3] have shown that LOH is a
prominent aberration in this type of cancer, and mod-
ulates a significant portion of the transcriptome in
the form of MAE. Copy-neutral LOH (cnLOH) is a
specific type of LOH that occurs when the lost allele
is replaced with a duplicated copy of the surviving
allele, resulting in the copy number remaining
unchanged. Suzuki et al. have shown recurring
cnLOH at chromosome 17p (harboring TP53 gene) in
low-grade astrocytoma [4]. The altered expression of
genes with allelic imbalance due to LOH events may
bring about selective advantages for tumorigenesis
and tumor progression. Additionally, regions with
cnLOH may harbor genes with driver mutations [5].
Hence, accurate and reliable detection and
characterization of events, such as SCNAs and LOH,
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are crucial for the identification of prospective
cancer-related genes, such as tumor suppressor genes
and oncogenes, and eventually for informing new
approaches to treat cancer [6].
High throughput sequencing (HTS)-based SCNA

detection approaches (including both whole exome
sequencing (WES) and whole genome sequencing (WGS))
have become popular due to their potential for accurate
copy number estimation and breakpoint detection with
single nucleotide accuracy. However, the short read length
of current HTS technologies makes it difficult to map
some reads to unique locations in the genome. Further-
more, due to GC-content bias, GC-content-rich regions in
the genome will have increased number of reads. These
ambiguities make accurate estimation of coverage and
consequently copy number a challenge [7]. Additionally,
tumor ploidy and normal cell contamination introduce
further challenges in SCNA detection [8].
HTS-based copy number analysis is, in most cases,

based on read depth (RD) estimations at each gen-
omic location and further segmentation and quantifi-
cation of the RD profiles into segments of consistent
copy number (Additional file 1: Table S1 for a list of
SCNA tools) [9, 10]. However, such tools are only
capable of detecting deletions and duplications. Recently,
RD-based analysis has been augmented to identify cnLOH
events by incorporating information from an alternate
allele’s fraction at heterozygous single nucleotide poly-
morphism (SNP) positions (or B-allele fraction (BAF)). The
BAF of a heterozygous SNP has an expected value of 0.5 in
normal diploid cells. Deviation from 0.5 in the heterozy-
gous SNP BAF points to an aberration. In the case of
cnLOH, BAF values are expected to be either 0 or 1 in a
pure tumor population. Tools such as Control-FREEC
[11], Patchwork [12], and CLImAT [13] incorporate BAF
data to extend SCNA detection. Control-FREEC deter-
mines the breakpoints using a least absolute shrinkage
estimator (LASSO) regression. Sample ploidy is provided
by the user to Control-FREEC. It also evaluates and cor-
rects for normal cell contamination, GC-content, and map-
ability biases while inferring the copy number profile of a
tumor genome. Patchwork performs GC and positional
normalization and segments the genome using a circular
binary segmentation (CBS) algorithm. It also estimates nor-
mal cell contamination and tumor ploidy. CLImAT imple-
ments corrections for GC-content and mapability bias and
models the RD and BAF data with a hidden Markov model
(HMM) to infer the somatic copy number variation, nor-
mal cell contamination and tumor ploidy (Additional file 1:
Overview of Tools section for more details on these tools).
While the above tools are well-suited for SCNA detection,
their use has some limitations. Control-FREEC and Patch-
work utilize computationally costly models, which leads to
long analysis times. The main motivation of our study was

to develop an accurate and user-friendly tool that could be
used to analyze large WGS datasets, such as the cancer
genome atlas (TCGA) datasets. In our approach, the RD
and BAF signals are smoothed, and double sliding windows
subsequently are used to detect breakpoints, which makes
our approach fast and straightforward. Because the break-
point detection is performed simultaneously at different
scales, it allows accurate detection. Our tool, Segmentum,
is freely available under MIT license at: https://github.-
com/eafyounian/Segmentum (Additional file 2 contains
the software code. For the lates version of the software
code please visit the project’s online repository).

Implementation
Pipeline
Segmentum was developed and written in the Python
programming language (version 3) and requires the
SciPy library to be installed (If the user wishes to use the
‘plot’ sub-command to inform parameter value selection,
matplotlib library is also required). Segmentum employs
SAMtools to extract RD and heterozygous SNPs BAF
data from BAM files containing WGS data. These con-
stitute the inputs required by Segmentum to perform
copy number analysis. Figure 1 illustrates the

Fig. 1 Segmentum pipeline. Normal and tumor RDs are used to
calculate RD log-ratios. RD log-ratios are then corrected for biases.
BAF data are simultaneously mirrored and smoothed. Using RD
log-ratios and BAF, the genome is segmented with a double sliding
window method. Segmentation results are used to identify cnLOH
regions in the genome (see the following sections for more details
on each step)
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Segmentum pipeline. Each step is explained in more de-
tail in the following sections.

RD extraction and BAF calculation for heterozygous SNPs
To extract the RD from the BAM files, the genome is
divided into bins of user-defined length (2 kbp by
default) and the number of reads overlapping each bin is
counted to determine the RD at each bin. To calculate
the BAF values, heterozygous SNPs in the normal sam-
ple are identified at known SNP sites in the human gen-
ome (based on SNP annotations such as those produced
by the 1000 Genomes project). Next, the number of ref-
erence and alternative alleles at each heterozygous SNP
position is extracted from the tumor sample and the
BAF for the ith heterozygous SNP is calculated using the
following equation:

BAFi ¼ alti
alti þ ref i

where alti and refi refer to the alternative and reference
allele, respectively, of the ith heterozygous SNP.
It should be noted that by default reads with mapping

quality score 10 are filtered out before RD extraction
and BAF calculation in order to address the challenges
raised by reads not mapping to a unique region in the
genome (the read filtration criterion based on the map-
ping quality score is a parameter to Segmentum and can
be set by the user).

Log-ratio calculation
The RD log-ratio is calculated using the following
equation:

logri ¼ log2
tRDi

nRDi

� �

where logri is the log-ratio of the ith genomic window
and tRDi and nRDi are RDs extracted from the ith gen-
omic window of a specific size (determined by user;
default is 2 kbp) for the tumor and normal samples,
respectively.
Differences in the total number of aligned reads in the

normal and tumor samples may bias the estimation of
the RD log-ratios. The correction was performed by
finding the mode of log-ratio values for each chromo-
some and subtracting the median of all of the modes
from each log-ratio value. It should be noted that
median, in the correction step, is robust to the changes
in one mode. For instance, one chromosomal arm
having a copy number change has no effect on the
correction since it only affects one of the chromosomal
modes.

Mirroring and smoothing of the BAF values
The BAF of a heterozygous SNP has an expected value
of 0.5 in normal diploid cells. In the presence of somatic
copy number alterations, the BAF can diverge from 0.5
if the relative abundance of the two alleles changes. To
make smoothing and segmentation of BAF data possible,
the BAF values must be mirrored about the 0.5 axis so
that the B allele fraction always represents the allele
fraction of the dominant allele. Without this mirroring
step, the BAF values will be symmetric about the BAF =
0.5 axis and smoothing will underestimate the absolute
divergence from 0.5 [14]. In this study, a median filter is
used for smoothing the BAF data. Simultaneous mirror-
ing and smoothing is implemented using the following
equation:

cBAFi ¼ H � 0:5−M9 BAFið Þj j þ 1−Hð Þ �M9 0:5−BAFij jð Þ:

where BAFi is the BAF value for the ith heterozygous SNP,
cBAFi is the simultaneously mirrored and smoothed BAFi,
H is a heterozygosity measurement calculated with the
following equation: H = 1 − 2 ∗ |0.5 − x|, and M9 refers to
applying a median filter to 9 SNPs in the vicinity of and
including the ith SNP.

Segmentation using a double sliding window approach
To detect changes in the RD log-ratio and BAF signals,
two non-overlapping, fixed-sized windows (determined
by the user) are slid over the RD log-ratio and BAF
values and a compound score (S) is calculated for each
of the adjacent two windows. If the compound score is
greater than 1, a change is detected and a breakpoint is
placed at the place where the two windows touch each
other. The compound score is calculated using the
following equation:

S ¼ logrwini − logrwiniþ1

�� ��2
τlogr

þ cBAFwini − cBAFwiniþ1

�� ��2
τBAF

where logrwini is the mean of the RD log-ratio values in
the ith window, cBAFwini is the mean of the mirrored
and smoothed BAF values in the ith window, τlogr and
τBAF are thresholds for the absolute mean difference in
the RD log-ratios and the absolute mean difference in
the BAF values in the two adjacent windows,
respectively.
It is possible that some breakpoints will not be de-

tected by a single pass of a double sliding window due
to a given window size. Thus, to increase the sensitivity,
Segmentum analyzes the signals for the detection of
breakpoints multiple times with different window-sizes
and thresholds. Each new window is 1.5 times larger
than the previous one. The increase in the window size
decreases the detection thresholds. This is due to the
fact that increasing the window size increases the sample
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size (assuming sampling from normal distribution with
N(μ, σ2)) and consequently decreases the standard devi-
ation of the mean (mean having probability distribution

of N μ; σ2
.

n

� �
). The new standard deviation of the

mean when window size is increased 1.5 times is 1ffiffiffiffiffi
1:52p

times the old standard deviation. Let τ = ασ where τ is
the threshold and α is a scalar and σ is the standard de-
viation. It follows that:

τnew ¼ α:σnew ¼ 1ffiffiffiffiffiffiffi
1:52

p : α:σold ¼ 1ffiffiffiffiffiffiffi
1:52

p : τold

Thus both the τlogr and τBAF thresholds are updated
using the following equation:

τnew ¼ 1ffiffiffiffiffiffiffi
1:52

p � τold

The process of increasing the window-size is contin-
ued as long as the updated thresholds are greater than
the thresholds for the merging two consecutive seg-
ments (see below). After detecting all the breakpoints, a
consensus list of breakpoints is created by accepting all
of the breakpoints detected by the first pass of the
double sliding window and adding the breakpoints de-
tected from the larger windows to the list only if the
breakpoint is not in the vicinity of an existing breakpoint
in the list (i.e., |cpcurrent − cpexisting| > window size, where
cp is a detected breakpoint). Consensus breakpoints are
used to create the segments. Two consecutive break-
points constitute a segment. For each segment, the aver-
age RD log-ratio and average mirrored and smoothed
BAF is calculated. Two consecutive segments are
merged if the following conditions are met:

logrsegi − logrsegiþ1

�� �� < τmergelogr

and j cBAFsegi −cBAFsegiþ1
j < τmergeBAF

where logrsegi is the mean RD log-ratio of the ith seg-
ment, cBAFsegi is the mean mirrored and smoothed BAF
of the ith segment, and τmergelogr and τmergeBAF (determined
by user) are the RD log-ratio and BAF merging thresh-
olds, respectively.

Detection of cnLOH events within a single sample
A segment is considered to be a cnLOH segment if the
following conditions are met:

logrsegi
�� �� < τcnLOHlogr and 0:5 − cBAFsegi

� 	
< τcnLOHBAF

where logrsegi is the mean RD log-ratio of the ith seg-
ment, cBAFsegi is the mean mirrored and smoothed BAF
of the ith segment, τcnLOHlogr and τcnLOHBAF (determined
by the user) are thresholds for calling a cnLOH segment.

Detection of recurrent cnLOH regions across multiple
samples
To find genomic regions with recurrent cnLOH
events, all cnLOH regions for individual samples are
identified following the procedure described earlier.
Then, the number of occurrences of a cnLOH event
for a specific region across multiple samples is
counted using an interval tree data structure
(Additional file 1: Figure S1).

Simulator
To evaluate Segmentum in terms of segmentation ac-
curacy, a simulator capable of simulating whole-
genome RD for both normal and tumor samples and
BAF based on events such as deletions, amplifications
and cnLOH was developed. The simulator receives a
normal sample RD data and outputs 4 sets of data in-
cluding the simulated normal and tumor RD, BAF
data and a ground truth. First, the simulator learns
the distribution of the RD data from the provided
normal sample by simply counting the number of
times two consecutive RD values (e.g., 368 and 299)
occur together throughout the genome (Additional
file 1: Figure S2). The learned distribution also ac-
counts for the inherent noise in the RD data. Next,
inverse transform sampling (Smirnov transform) is
used to generate RD values for each position in the
genome based on the learned distribution. Then,
noise is removed using a median filter. A normal RD
is constructed by adding independent Poisson noise
to the simulated RD data. To construct the tumor
RD, two copy number tracks (because autosomal
chromosomes come in maternal and paternal pairs)
harboring random SCNAs are constructed. The tumor
sample RD is calculated using the copy number
tracks, the simulated normal sample RD and the nor-
mal sample contamination (i.e., a parameter deter-
mined by user). To construct the BAF data,
heterozygous SNPs are initially randomly distributed
across the genome (1 heterozygous SNP per 1.5 Kbp).
The number of B-alleles at a heterozygous SNP is cal-
culated using a binomial distribution with the param-
eters n (total number of reads at heterozygous SNP
position) and p (probability that a read is coming
from the B-allele). n is extracted from the simulated
normal RD at heterozygous SNP positions. p is calcu-
lated using the two constructed copy number tracks
and the normal sample contamination. Once the
number of B-alleles is calculated, it is used to calcu-
late the BAF values (Additional file 1: Figures S3 and
S4 for the simulator pipeline and the simulated data
visualized in the integrative genomics viewer (IGV)
[15], respectively).
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Results
Segmentum segmentation accuracy for the simulated
data
Using the simulator (see the ‘Simulator’ section for more
details), RD data for both normal and tumor samples
and BAF values for heterozygous SNPs from the tumor
sample as well as a ground truth were simulated with
different percentages of normal contamination (an ex-
ample set of simulated data is available at Segmentum’s
online repository. See the ‘Availability and requirements’
section for the link to the repository). The simulated
data were analyzed by Segmentum. The segmentation
results were evaluated against the ground truth. The
precision, recall, and the F-measure values were calcu-
lated based on this evaluation (Fig. 2 and Additional file
1 for the definitions of precision, recall, and F-measure).

Segmentum segmentation accuracy for real data
compared to other tools
To assess segmentation accuracy of Segmentum for real
data, paired tumor/normal whole genome sequencing
samples (30x < coverage < 100x) from 10 individuals
diagnosed with low-grade glioma (LGG) were down-
loaded from the TCGA dataset and used as is. Further-
more, segmentation results from SNP-array data (level 3
data) (completed by TCGA using an Affymetrix
Genome-wide human SNP array 6.0) was used as
ground truth (Additional file 1: Table S3). Segmentum’s
results were evaluated against Control-FREEC, Patch-
work, and CLImAT as competing tools. To evaluate the
segmentation accuracy, the genome was broken into
100 bp. blocks (excluding all blocks in centromeres and
sex chromosomes). Using block annotations from

different tools, genome-wide proportions of the blocks
annotated as SCNA by different combinations of tools
were calculated and the results were illustrated by a
Venn diagram (Fig. 3).
Additionally, to measure the pairwise degree of simi-

larity of the segmentation results between two tools, the
Jaccard similarity index (JSI) was calculated for all of
the pairs using the following equation:

JSI ¼ ∩ pairj j
∪ pairj j

where | ∩ pair| and | ∪ pair| are the cardinalities of inter-
section and union, respectively. Intersection and union
values were extracted from the Venn diagrams. Figure 4
represents a heat map of the JSI values for each pair of
tools averaged over 10 TCGA LGG samples. According
to the heat map, on average, Segmentum produces the
most similar results to the SNP array segmentation
results with a JSI score of 0.9, followed by Patchwork
with a JSI score of 0.86.
Similar evaluations using low coverage data (6x aver-

age coverage) are shown in Additional file 1: Figures S5
and S6. The low coverage data is comprised of the
paired tumor/normal whole genome sequencing samples
of 10 individuals diagnosed with prostate adenocarcin-
oma (PRAD). With regard to the low coverage data,
Patchwork produces the most similar results to the SNP
array segmentation results with a JSI score of 0.93,
followed by Segmentum with a JSI score of 0.88. Add-
itional file 1: Table S4 contains the names of the 10
TCGA PRAD samples (Additional file 1: Tables S6-S10
represent the parameter values used for running the

Fig. 2 Segmentation accuracy of Segmentum for simulated data with different degrees of normal contamination. Estimated precision, recall, and
F-measure values for simulated data at different normal contamination levels (Additional file 1, Derivation of the precision, recall, and F-measure
of the simulated data)
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competing tools. Additional file 1: Segmentum’s param-
eter value selection section provides guidance on select-
ing parameter values for Segmentum. Additional file 1:
Figure S9 represents an example plot made by Segmen-
tum’s 'plot' sub-command that can be used to guide the
parameter value selection).

Segmentum segmentation accuracy for the subsampled
real data
To assess the segmentation accuracy of Segmentum for
real data with respect to sample’s coverage, we

subsampled one of the LGG samples (i.e. TCGA-CS-
5395) at different subsampling fractions (i.e. 75%, 50%,
25%, 10%, and 5%) using Samtools (version 1.3.1). We
analyzed each subsample by Segmentum and bench-
marked it against ground truth in the same manner as
explained earlier. Figure 5 represents the JSI scores for
each subsample (Additional file 1: Figure S7 shows the
average coverage of the subsamples for normal and
tumor pairs). It can be seen that Segmentum reaches
high accuracies even with low coverage data. For in-
stance, the accuracy for the 10%-fraction subsample was
93.4% (where the average coverage for tumor and nor-
mal subsamples were 3 and 4 respectively).
It should be noted that as the coverage decreases the

number of identified heterozygous SNPs decreases
(Additional file 1: Figure S8). For instance, for the 10%-
fraction subsample only 1997 heterozygous SNPs were
identified from the entire genome (in contrast to the
original sample where the number of identified heterozy-
gous SNPs was more than 3 million SNPs). Even though
Segmentum is shown to work with low coverage data,
one should note the implications of low amounts of
detected heterozygous SNPs on the reliable detection of
cnLOH events.

Time usage evaluation
All of the computations were completed on the same
UNIX server. Table 1 shows the average time required
by each tool to perform the analysis for 10 TCGA LGG
samples (30x < coverage < 100x). Based on the results, on
average, CLImAT appears to be the fastest, followed by
Segmentum, Patchwork, and Control-FREEC. It should
be noted that to assign the allele-specific copy number
to genomic segments, Patchwork requires users to deter-
mine some parameter values by interpreting plots pro-
duced by the tool, and this interpretation time is not
included here. Additionally, the time required to create
the pileup files used by Patchwork and Control-FREEC
is different due to the use of different parameter values
in SAMtools. It should be noted that time required for
making pileup files can be decreased by parallelizing the
process on machines with multiple cores or on com-
puter clusters (e.g. by assigning one core to each
chromosome). Similarly, BAF calculation for Segmentum
can be parallelized. However, since this is not a core fea-
ture of the benchmarked tools and not all tools support
parallelization, to be fair, only the required linear time is
reported here. A similar time usage evaluation, using
low coverage data (average coverage 6x), is shown in
Additional file 1: Table S2. With regard to the low cover-
age data, Segmentum comes second after CLImAT in
terms of analysis time, which is consistent with the
results from the high coverage data.

Fig. 3 Comparison of the SCNA results with different tools and the
SNP array (ground truth). Venn diagram values (averaged over ten
TCGA LGG samples) represent the percentage of overlap among the
SCNA calls

Fig. 4 Pairwise JSI scores averaged over ten TCGA LGG samples.
JSI scores range between 0 and 1, where 0 means no similarity and
1 represents identical results between two tools
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Recurrent cnLOH detection case study
In a study of lower grade gliomas (LGGs), i.e., grade II
and III gliomas, Suzuki et al. [4] characterized the muta-
tional landscape of these glioma types by dividing them
into 3 distinct subtypes based on their distinct sets of
mutations and clinical behaviors. These subtypes are dis-
tinguished with the following criteria: (1) mutation in
IDH1/2 accompanied by co-deletion of chromosomes 1p
and 19q (subtype I), (2) mutation in IDH1/2 without co-
deletion of chromosomes 1p and 19q (subtype II), and
(3) IDH1/2 wild type (subtype III). Of interest to our
study was the recurrence of cnLOH events in chromo-
some 17p in subtype II [4]. To show the ability of
Segmentum to detect such aberrations from large data-
sets, 38 paired-end WGS samples from the TCGA data-
set (30x < coverage < 100x)) for patients diagnosed with
LGG were downloaded and analyzed by Segmentum.
We were able to distinguish all three subtypes as charac-
terized in [4], including the recurrence of cnLOH in
subtype II at chromosome 17p. We also identified a

fourth subtype with a mutation in IDH1/2 without co-
deletion of chromosomes 1p and 19q and no cnLOH at
17p (Fig. 6).

Discussion
By comparing the simulated (Fig. 2) and real data (Figs. 3,
4 and 5 and Additional file 1: Figures S5 and S6), we can
conclude that Segmentum can recover true copy
number aberrations with high accuracy even when the
coverage is as low as ~4 reads (Fig. 5, Additional file 1:
Figure S7). On average, Segmentum produces results
that are the most concordant with the copy number ab-
errations identified from the SNP array data (i.e. ~90%
of concordance) (Fig. 4). As shown in Table 1, our tool
is more than twice as fast as the second best performing
tool in terms of accuracy. Segmentum is also the second
fastest tool after CLImAT compared to the other tools
evaluated in this study (Table 1). However, CLImAT
ranks last in terms of accuracy (Fig. 4). One explanation
for the speed of CLImAT is that it computes the BAF
values for a subset of known SNPs (~13.7 million SNPs
that are retrieved from the dbSNP database [16]). In
contrast, Segmentum, computes the BAF values for het-
erozygous SNPs determined from the 1000 Genomes
project’s SNP list (~85 million SNPs) [17]. The other
reason for the speed of CLImAT might be that it does
not require a normal sample for analysis.
As the normal contamination in the simulated data in-

creases, the number of false negatives increases and the
recall rate decreases (Fig. 2). However, within the ranges
of realistic amounts of normal contamination (i.e. ~30%
to 40%), Segmentum performs consistently well.
Segmentum is able to report recurrent cnLOH regions

across multiple cancer genome samples; a characteristic

Fig. 5 Pairwise JSI scores (Segmentum vs. SNP array as ground truth) for different subsamples. JSI scores range between 0 and 1, where 0 means
no similarity and 1 represents identical results between two tools

Table 1 Average tool analysis time for high coverage data
(30x < coverage < 100x)

Tool Average preparation time Average analysis
time

Segmentum - 10 h 34 min for extracting RD
from normal or tumor BAM file

- 4 h 25 min for calculating BAF
values

- 1 min 45 s

Patchwork - 29 h 37 min for creating pileups
from normal or tumor BAM file

- 3 h 56 min

Control-FREEC - 33 h 28 min for creating pileups
from normal or tumor BAM file

- 7 h 11 min

CLImAT - 2 h 12 min for extracting RD - 29 min
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Fig. 6 SCNA landscape in grade II and III gliomas. WHO-grade, histological class, and molecular subtype classification are shown by color
as indicated. The thirty-eight samples are divided into 4 distinct subtypes based on the occurrence of a mutation in IDH1/2, co-deletion
of chromosomes 1p and 19q and the presence of 17p cnLOH. Deletions and amplifications are visualized by boxes with different shades
of blue and red, respectively. White regions are either normal or cnLOH regions. The bar charts below each box represent the mirrored
and smoothed BAF values. Large mirrored and smoothed BAF values (close to 0.5) point to heterozygous SNP allelic imbalance. In the second subtype
(from the top), at chromosome 17p, recurring cnLOH is apparent where the bar charts point to large mirrored and smoothed BAF values, though no
deletion or amplification is detected at that region (Additional file 1: Table S5 for TCGA LGG sample barcode names)
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of cancer genomes that has been neglected until recently
[4]. By applying Segmentum to TCGA data, we were
able to recover recurrent cnLOH events from low-grade
glioma samples that were reported earlier by SNP array-
based data analysis. It is worth mentioning that Segmen-
tum can work in two modes, i.e., with or without BAF
value. In the case where BAF values are not used, Seg-
mentum cannot detect regions with cnLOH. Further-
more, Segmentum is capable of reliably segmenting the
cancer genome using both high (Figs. 3 and 4) and low
(Fig. 5 and Additional file 1: Figures S5 and S6) sequence
coverage data. However, with the low sequence coverage
data, the estimated BAF values for the heterozygous
SNPs will be less reliable. This is also reflected in
Additional file 1: Figure S8, where it is shown that the
number of detected heterozygous SNPs drop as the aver-
age coverage decreases. The implications of low
amounts of detected heterozygous SNPs on the reliable
detection of cnLOH events should not be overlooked.
Even though we have shown that Segmentum is

highly accurate at recovering the true copy number,
other tools in this study do more than just segment-
ing the genome. For instance, CLImAT and Patch-
work are capable of estimating tumor ploidy and
tumor purity and consequently, reporting the integral
copy numbers for each segment. Patchwork and
Control-FREEC are also capable of reporting the
genotype of each segment and CLImAT reports the
genotype for each SNP within each segment. This is
in contrast to Segmentum that only reports the mean
RD log-ratio and BAF value of each segment. How-
ever, tools such as ABSOLUTE [18] or THetA [19]
can be used to estimate tumor impurity and ploidy
from Segmentum’s segmentation result, meaning that
Segmentum can be used as part of a larger tumor
evolution analysis pipeline. Finally, a strength of our
tool is its minimum dependence on third party tools,
with the exception of SAMtools, for calculating the
RD and BAF.

Conclusions
We have developed Segmentum as a tool for the
identification of SCNAs, including cnLOH in tumor
samples, using WGS data. We have shown that Seg-
mentum is accurate and fast with regards to other
state-of-the-art tools, making it suitable for analyzing
cohorts with a large number of samples, such as
TCGA cohorts.

Availability and requirements
Project name: Segmentum
Project homepage: https://github.com/eafyounian/Segm
entum

Operating system(s): Linux
Programming language: Python
Other requirements: SciPy, Samtools, and matplotlib if
the ‘plot’ sub-command is used.
License: MIT license
Any restrictions to use by non-academics: None
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To understand functional consequences of genetic and transcriptional aberrations in prostate

cancer, the proteomic changes during disease formation and progression need to be revealed.

Here we report high-throughput mass spectrometry on clinical tissue samples of benign

prostatic hyperplasia (BPH), untreated primary prostate cancer (PC) and castration resistant

prostate cancer (CRPC). Each sample group shows a distinct protein profile. By integrative

analysis we show that, especially in CRPC, gene copy number, DNA methylation, and RNA

expression levels do not reliably predict proteomic changes. Instead, we uncover previously

unrecognized molecular and pathway events, for example, several miRNA target correlations

present at protein but not at mRNA level. Notably, we identify two metabolic shifts in the

citric acid cycle (TCA cycle) during prostate cancer development and progression. Our

proteogenomic analysis uncovers robustness against genomic and transcriptomic aberrations

during prostate cancer progression, and significantly extends understanding of prostate

cancer disease mechanisms.
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Prostate cancer is the most common male malignancy in
Western countries, and the second most common cancer
among men overall1. Currently, no curative treatment exists

for castration resistant prostate cancer (CRPC)2. To understand
the etiology of the disease and to find more specific drug targets,
the driver mutations and expressional changes in prostate cancer
have been examined through extensive genomic and tran-
scriptomic characterization3–7. Although significant insight has
been gained through these efforts, it is clear that not all molecular
alterations influencing the tumor outcome can be captured
through these approaches.
Proteins are regulated at multiple levels, and their expression is

not always reflecting the levels of mRNA8,9. Thus, a compre-
hensive understanding of the molecular events in cancer require
thorough investigation of the proteome10. Recent developments
in mass spectrometric methods11–13 have enabled high
throughput analysis of clinical patient samples, and the first

integrative studies involving large scale, mass spectrometry-based
proteomics of human cancer have recently been published14–16.
For prostate cancer, recent proteomic advancements have inclu-
ded high scale, mass spectrometry-based studies performed in
diagnostic body fluids17,18, as well as primary tumors19 and the
tumor microenvironment20. So far, the only integrative proteo-
genomic analysis of clinical prostate cancer involved genomic and
transcriptomic data of CRPC combined with phosphoproteomic
analysis21. Despite the merits of this study in interrogating the
active signaling pathways in CRPC, the large-scale proteomic
view of PC and CRPC, and reflections of them to the disease
progression are still lacking.
Here, we provide the first integrative view on human prostate

cancer with the proteome of clinical patient samples of benign
prostatic hyperplasia (BPH), untreated primary prostate cancer
(PC) and locally recurrent CRPC. Our analysis adds a new level to
the current knowledge of prostate cancer development and
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Fig. 1 Proteomic analysis reveals distinct protein expression patterns in PC and CRPC. a Heat map of all protein expressions identified and quantified by
mass spectrometry in the proteomic analysis of BPH and prostate cancer samples (PC and CRPC). Each column of heat map represents a patient sample
and each row represents a specific protein (n= 3394). b Venn diagram showing the numbers of differentially expressed proteins in PC vs BPH and CRPC
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progression by identifying several molecular and pathway events
not previously described based on transcriptomic data.

Results
Mass spectrometric analysis of proteomic profiles. Samples of
10 BPH, 17 untreated PC (Supplementary Table 1), and 11 CRPC
(Supplementary Table 2) were analyzed. The CRPC samples came
from patients that had been treated either by castration and/or
antiandrogens and experienced urethral obstruction (ie. local
recurrence) during the treatment. With sequential window
acquisition of all theoretical fragment ion spectra mass spectro-
metry (SWATH-MS), we identified a total of 213,979 peptides,
corresponding to 1,753,161 identified spectra in an assembly of
4601 protein groups using false discovery rate of 1%. Protein and
peptide quantification data can be found from Supplementary
Data 1. From this library, 3394 proteins had distinct peptides
sequences with matching spectras to SWATH-MS analysis and
were quantified in all samples (Supplementary Data 2). The
SWATH-MS data was reproducible with mean intraclass corre-
lation (ICC) coefficient of 0.98 between technical replicate MS
analyses. Permutation tests (Spearman correlation) showed that
98.6% of the technical replicate MS analyses had a p-value < 0.05,
demonstrating excellent quality. The represented protein classes
(PANTHER protein class) and gene ontology groups (GO;
molecular functions, cellular components, and biological pro-
cesses) are shown in Supplementary Fig. 1a. The distribution of
the proteins into different protein classes was largely according to
expected as compared to Homo sapiens reference list (Supple-
mentary Fig. 1a,b). The major overrepresented groups included
the highly abundant nucleic acid binding (mainly RNA binding)
and ribosomal proteins, oxidoreductases, and hydrolases. The
major underrepresented groups were transcription factors and
receptors, including immunoglobulins, consistent with the cell
type-dependent expression of especially the latter group.
Expression profiles of the identified proteins in the prostate

tissue samples are shown in Fig. 1a. We wanted to assess changes
occurring at the protein level during prostate cancer development
and progression. As a model for benign tissue, we used BPH
samples, against which primary PC samples were compared to

identify early cancerous events. To identify events related to
cancer progression and castration resistance, CRPC samples were
compared to PC samples. We identified 728 proteins in PC vs
BPH and 382 proteins in CRPC vs PC to be differentially
expressed (Wilcoxon rank sum test with Benjamini & Hochberg
adjustment p-value < 0.05 and median ratio (fold change) >1.5)
between the comparison groups (Fig. 1b). While the overall
protein classes of the differentially expressed proteins and their
distribution to groups of molecular function, cellular component,
and biological process were similar between PC vs BPH and
CRPC vs PC comparisons (assessed by Panther analysis; data not
shown), only a subset (n= 153) of the differentially expressed
proteins were common between the comparison groups (Fig. 1b).
The expression profiles of the differentially expressed proteins
clearly distinguished between the patient sample groups, as
shown in Fig. 1c (PC compared to BPH) and Fig. 1d (CRPC
compared to PC). These results show that the proteomic profile of
prostate cancer is significantly altered during the course of the
disease.

Correlations of copy number and methylation with pro-
teomics. We have previously performed whole genome sequen-
cing for copy number analysis, DNA methylation sequencing, and
whole transcriptome sequencing to majority of the samples used
in the proteomic analysis described here (Supplementary Table 3)
7,22. We compared the correlation between gene copy number,
and mRNA or protein expression levels between the common
samples. While at the transcriptome level, the mRNA expression
and copy number have an increased overall correlation in the
CRPC samples compared to PC samples (Fig. 2a, Supplementary
Fig. 2a), a similar global correlation change with gene copy
number is not present at the proteomic level. Next, we compared
the correlation between DNA methylation at differentially
methylated regions (DMRs), and mRNA or protein expression
levels in the same samples. Similarly as with the copy number
data, the increased negative correlation between DNA methyla-
tion and mRNA expression at a global level in the CRPC samples
compared to PC samples is not detected at the level of the pro-
teome (Fig. 2b, Supplementary Fig. 2b). These results suggest that,
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on a global level, the genomic and epigenomic events that
influence mRNA levels are not directly translated to protein
expression in prostate cancer.
The effect of altered methylation in prostate cancer on selected

genes is, on the other hand, evident also at the proteomics data.
There were 140 genes, which were differentially expressed either
at mRNA or protein level, with a DMR close by (<10 kb). Within
this group, there were several examples of methylation correlating
with, and thus likely affecting, mRNA and protein expression. For
example, the previously described increased DMR methylation in
prostate cancer on genes ALDH1A2, GSTP1, GPX3, and CYB5R2
correlate with decreased expression of their mRNA and protein
according to our data (Supplementary Fig. 3). We further

identified increased promoter DMR methylation in prostate
cancer correlating with decreased expression of mRNA and
protein expression also on FBXO2, TGFB1I1, and TNS1
(Supplementary Fig. 4). Increased gene body methylation in
prostate cancer correlating with decreased expression of mRNA
and protein expression was identified on GNAO1, LGALS1, TNS1,
and PPAP2B (Supplementary Fig. 5). Decreased methylation
significantly correlating with increased expression was identified
for ENO1, SOAT1, RPS2, and TACSTD2 (Supplementary Fig. 6).
Altered DMR methylation found in prostate cancer samples
identifies also genes that are less likely to affect directly the
outcome of the cancer cells. This is due to either their expression
primarily in stromal cells (e.g., CSRP1, CA3) or the fact that,
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despite mRNA expression being affected, the expression level of
the protein is not being affected by the differential methylation of
the gene (e.g., CLU, CNTN1) (Supplementary Fig. 7). Interest-
ingly, we also identified genes whose differentially increased
methylation significantly correlated with increased expression in
mRNA and/or protein level (GMDS, MCCC2, MIA3, and PYCR1)
(Supplementary Fig. 8).

Impact of mutations on protein expression. We identified
amino acid altering mutations in expressed genes from the RNA-
sequencing data of the samples used in this study, and validated

these from the DNA using targeted sequencing (Supplementary
Table 4). For all somatic and germline variants, we evaluated the
impact of the variant to mRNA and protein expression as
described earlier14. While somatic mutations had a statistically
significant impact to mRNA levels in relation to germline variants
(Fisher’s exact test, p-value= 0.0055, Supplementary Fig. 9), we
observed no impact on protein expression levels between somatic
and germline mutations or in relation to null distribution esti-
mated from unmutated genes (Supplementary Fig. 9).
To screen for proteins with potential involvement in mutation

accrual during prostate cancer development and progression, we
assessed correlations of protein expression in relation to mutation
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burden of the samples, including the somatic point mutations,
copy number alterations, and genomic rearrangements. The two
proteins, expression of which correlated best with point mutation
burden, were mitochondrial antioxidant regulator PRDX3
(peroxiredoxin 3) and CAD (carbamoyl-phosphate synthetase
2) functioning in de novo synthesis of pyrimidine nucleotides
(Supplementary Table 5). For copy number alterations and
genomic rearrangements, the best correlating proteins had
functions mostly in mitochondria and cytoskeleton. Notably,
the strongest negative correlations with the number of rearrange-
ments were with expression of two Talin proteins (TLN2 and
TLN1)(Supplementary Table 5).

Comparison of expression profiles at RNA and protein levels.
The expression levels of most of the proteins identified in our
dataset were positively correlated with the expression level of
their mRNA, as expected (Fig. 3a). However, when comparing the
sample groups, we found that in CRPC, the correlation between
individual mRNA-protein pairs was lower in general than in BPH
or PC samples (Fig. 3b). We next tested whether similar genes are
identified as differentially expressed based on both mRNA and
protein expression data. In both PC vs BPH and CRPC vs PC
comparisons, only a fraction of the differentially expressed genes
were common between the identifications based on tran-
scriptomic and proteomic data, the difference being larger in
CRPC vs PC comparison (Fig. 3c). Of the commonly identified
genes, 97 and 95% of the differential expressions detected were
oriented to the same direction (up or downregulated) in both PC
vs BPH and CRPC vs PC comparisons based on mRNA and
protein expression data, respectively. According to these results,
proteomic and transcriptional data help identify largely different
events during prostate cancer development and progression.
Next, we integrated small RNA sequencing data for PC and

CRPC samples common between the proteomics and mRNA
expression data. MicroRNAs regulate gene expression by binding
to mRNA molecules and preventing translation, which leads to
decreased target protein expression. miRNA binding to the target
can induce degradation of the mRNA, however, also stabilization
of the target mRNA has been reported23. To study how much of
the observed gene expression in prostate cancer is potentially
connected to regulation by miRNAs, we studied the pool of
differentially expressed genes and their correlating miRNAs. As
one miRNA can have several target mRNAs, and one mRNA can
be targeted by several miRNAs, we considered individual
miRNA-target pairs based on both transcriptome and proteome
data, and the predicted or verified miRNA target annotations.
Negative correlations between miRNA and differentially
expressed targeted mRNAs in CRPC vs PC samples revealed 30
miRNAs and 205 individual miRNA-target pairs (Supplementary

Table 6). Of these, 9 miRNAs were also differentially expressed
(Supplementary Table 6). For 34 of the miRNA-target pairs,
negative correlation was also found between miRNA and protein
expression of the target, indicating a functional impact of miRNA
regulation for these particular targets (Supplementary Table 6).
To look for the miRNA targets for which the miRNA does not
induce mRNA degradation, but effect primarily through inhibi-
tion of translation, we searched for negative correlations between
miRNA and differentially expressed targeted proteins in the
proteome of CRPC vs PC samples. This analysis identified
additional 49 miRNAs and 268 individual miRNA-target pairs
(Supplementary Table 7). Of these, 8 miRNAs were also
differentially expressed (Supplementary Table 7). This pool of
miRNA-target pairs represents a resource of novel associations in
prostate cancer that have not been visible through previous
transcriptome analyses.
To understand the capacity that miRNAs have in regulating

prostate cancer progression, we assessed the number of
differentially expressed miRNAs and the fraction of the proteome
they are collectively able to regulate. There were 95 miRNAs that
were differentially expressed between CRPC and PC samples.
Assuming negative correlation between a miRNA and its
database-predicted or verified target either at the mRNA or
protein expression level, the differentially expressed miRNAs in
our dataset had the potential to target 16% of the genes in the
study. There were 474 and 482 genes according to mRNA and
protein expression, respectively, targeted by and negatively
correlating with at least one regulating miRNA (Fig. 3d,
Supplementary Data 3-4). Of these, only 122 genes were
commonly identified (Supplementary Table 8). To look for the
miRNA targets which most likely affect prostate cancer progres-
sion, we assessed the fraction of the miRNA-regulated genes that
were differentially expressed. Of the above miRNA-regulated
targets identified based on mRNA expression, 24% (n= 115)
were differentially expressed between CRPC and PC samples at
the mRNA level (Supplementary Fig. 10a, Supplementary
Table 9). Similarly, of the regulatory targets identified based on
the proteomics data, 45% (n= 218) were differentially expressed
at the protein level (Supplementary Fig. 10b, Supplementary
Table 10). There were 24 genes common between these groups
(21% or 11% of the genes identified based on mRNA and protein
expression, respectively). A genomic map of the differentially
expressed miRNAs and their differentially expressed targets in
CRPC vs PC samples based on transcriptomics and proteomics is
shown in Fig. 3e. Collectively, these data indicate that by studying
the miRNA-target correlations at the protein expression level we
were able to identify a significant number of potential regulatory
events, which were not identified based on mRNA expression
data of clinical prostate cancer samples.

Fig. 4 Proteomic analysis identifies novel pathways as regulated in PC and CRPC. a Venn diagram showing numbers of differentially regulated pathways
according to Ingenuity Pathway Analysis in PC vs BPH and CRPC vs PC comparisons. Despite partial overlap, the different disease states have a significant
number of pathways specifically regulated. b Differentially regulated pathways in a according to pathway types. Metabolism is the largest group in both
comparisons, with roughly a similar number of pathways differentially regulated. Numbers of most of the other pathway types that are differentially
regulated between the disease states vary. c–e Examples of signaling pathways found to be differentially regulated according to proteomics (protein) or
transcriptomics (mRNA) data in PC vs BPH and CRPC vs PC comparisons. c Examples of signaling pathways groups identified as regulated according to
proteomic data. Especially translation activating, growth promoting pathways are identified as regulated solely based on proteomic data. RXR-related
pathways are identified better by proteomics than transcriptomics to be regulated in PC. Pathways related to cytoskeleton, migration, and invasion, as well
as GTPase signaling pathways are identified to be regulated in PC solely by proteomics, although in CRPC they are better identified as regulated by
transcriptomics. d Metabolic pathways differentially identified as regulated based on proteomic and transcriptomic data include pathways identified as
regulated in both PC and CRPC solely based on proteomics (TCA cycle, mitochondrial dysfunction, ketogenesis, acetyl-CoA biosynthesis), and pathways
that are equally identified by proteomics and transcriptomics, but are specific for PC (fatty acid oxidation, glycolysis) or CRPC (glycogen degradation,
oxidative ethanol degradation). e While DNA repair pathways regulated in PC and CRPC were identified based on proteomics only, the regulated cell cycle
pathways were altered in CRPC and identified based on either proteomic or transcriptomic data. The color key below panel c applies to panels c, d, and e
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To validate our analysis for miRNA targets detectable both at
the mRNA or the protein level, we transfected PC-3 prostate
cancer cells with pre-miRNA constructs and assessed the mRNA
and protein levels of predicted targets. We selected two
representative miRNAs that were differentially expressed to
opposite directions during prostate cancer progression, namely
miR-22 as downregulated and miR-493 as upregulated in CRPC
compared to PC, and verified their successful transfection by
TaqMan RT-qPCR (Supplementary Fig. 11a). As positive controls
for miRNA targeting at the mRNA level, we performed RT-pPCR
on two predicted targets of miR-493 that were identified as
negatively correlated based on our analysis at the target transcript
level (Supplementary Data 3). Supplementary Fig. 11b shows that,
as expected, the mRNA levels of ENDOD1 and GOLM1 are
significantly decreased by miR-493 expression. Further, the
negatively correlating miRNA-target pairs identified only in the
proteomic analysis show decreased protein expression in MS/MS
quantification, but no decrease in mRNA levels in RT-qPCR
assay, as shown for miRNA-target pairs miR-22—KHRSP1 and
miR-493—DNML1 (Supplementary Fig. 11c and d, respectively).
These results confirm that our miRNA-target analyses based on
the proteomics data have identified miRNA targets that are not
identified at the mRNA level.

Proteomic analysis reveals novel regulated pathways. To test
whether proteomics reveal pathway alterations in prostate cancer
that have not previously been found by interrogation of mRNA
expression changes, we next performed pathway analysis com-
parison between mRNA and protein expression data from the
same samples. Supplementary Fig. 12a shows that roughly similar
numbers of pathways were found significantly regulated based on
proteomics and RNA expression data when comparing PC to
BPH, and slightly more based on proteomics in CRPC to PC
comparison. However, only a minority (16–26%) of the pathways
found in each comparison category were common between RNA
and proteomics data. These results show that proteomic data is
able to reveal pathway regulations not visible at the RNA
expression level, especially when comparing CRPC to PC.
We further analyzed which signaling pathways were deregu-

lated during prostate cancer development and progression at the
proteomic level. Comparing PC samples to BPH, 99 pathways
were found regulated according to Ingenuity Pathway Analysis,
while 90 pathways were regulated in CRPC vs PC (Fig. 4a,
Supplementary Table 11). Fifty pathways were common between
these comparisons. The pathway categories were similar in both
comparisons, with metabolic pathways being the most prominent
(Fig. 4b). In PC vs BPH, cytoskeleton, attachment, and motility-

related pathways were the second largest group, while in CRPC vs
PC it was the signaling pathways. Exclusively in PC vs BPH, there
were protein degradation pathways found significantly regulated,
while in CRPC vs PC, certain cell cycle pathways were
significantly regulated. The pathways common between the PC
vs BPH and CRPC vs PC comparisons (Supplementary Table 11)
included mostly metabolic pathways, as well as cytoskeleton,
attachment and motility-related pathways (62% of the common
pathways). It is noteworthy that all significantly regulated DNA
metabolism and repair pathways, and most of the vesicle
transport pathways, were common between the comparison
groups. In contrast, only a few of the regulated signaling pathways
were common between the comparison groups, all of which
represented Rho GTPase signaling pathways (Supplementary
Table 11).
In PC vs BPH, the top significantly regulated pathways

included EIF2, eIF4 and p70S6K signaling, as well as FXR/RXR
and LXR/RXR activation (Supplementary Table 11, Fig. 4c).
While the former pathways promote growth- and survival
through alterations in levels of several translation initiation
factors and ribosomal proteins, the latter signal to metabolic
pathways regulated by farnesoid X receptor (FXR), liver X
receptor (LXR), and retinoid X receptor (RXR). When comparing
CRPC to PC samples, the most significantly altered pathways
during progression of prostate cancer include ILK signaling and
glucose metabolism-related pathways (Fig. 4c, d, Supplementary
Table 11).
Next, we wanted to further understand the differences in

pathway regulation at mRNA and protein levels. Despite being
largely different pathways, the biological functions of the
pathways most often found by either RNA expression or
proteomics were similar, with metabolic, signaling, and cytoske-
leton and cell movement-related pathways being the most
common (Fig. 4c, d, Supplementary Fig. 12b, Supplementary
Fig. 13a,b). Examples of differentially identified signaling path-
ways are shown in Fig. 4c. Most prominently, the translation-
activating and growth-promoting EIF, p70S6, and mTOR
signaling, and cytoskeleton-related signaling in PC vs BPH were
found solely based on proteomics data. RXR-related signaling in
PC vs BPH, as well as several cytoskeleton-related signaling
pathways in CRPC vs PC, were found by both transcriptomics
and proteomics similarly. Interestingly, GTPase signaling was
significantly regulated in PC vs BPH by proteomics and in CRPC
vs PC by transcriptomics.
The group of metabolic pathways that was regulated in both

PC vs BPH and CRPC vs PC comparisons was extensive
(Supplementary Fig. 12b). Despite the relatively low overlap in
individual pathways between the comparisons (between disease
groups, and between proteomic and transcriptomic data), all the
analyses identified pathways from the major groups of energy,
amino acid, and lipid metabolism (Supplementary Table 11;
examples shown in Fig. 4d, Supplementary Fig. 13b). It is
noteworthy that the mitochondria-related metabolic pathways
and ketogenesis were identified as differentially regulated only
by proteomics, while e.g., glycolytic and glycogen degradation-
related pathways were identified by both transcriptomics and
proteomics (Fig. 4d). One of the most prominent group of
metabolic pathways in prostate cancer were amino acid
metabolic pathways (Supplementary Fig. 13b). Interestingly,
while different cell cycle regulatory pathways were found
regulated by transcriptomic and proteomic data, DNA repair
pathways were found solely by proteomics analysis (Fig. 4e).
Other interesting groups of differentially identified pathways
based on RNA and protein expression were vesicular traffic-
related and protein degradation pathways (Supplementary
Fig. 13c,d).

Table 1 TCA cycle proteins with altered expression levels in
prostate cancer

Symbol Entrez gene name PC vs
BPH

CRPC vs
PC

ACO2 aconitase 2 3.141 0.472
CS citrate synthase 1.705 n.s.
FH fumarate hydratase 1.598 n.s.
IDH3A isocitrate dehydrogenase 3 (NAD

(+)) alpha
n.s. 0.653

MDH2 malate dehydrogenase 2 2.167 1.912
OGDH oxoglutarate dehydrogenase 1.653 0.608
SUCLA2 succinate-CoA ligase ADP-forming

beta subunit
1.909 n.s.

SUCLG1 succinate-CoA ligase alpha subunit 2.091 0.469

Fold changes in protein expression are shown. n.s., not significantly altered
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Changes in TCA during prostate cancer evolution. Based on
our analysis, metabolic changes are prominent during both
development and progression of prostate cancer. One of the most
interesting pathways identified by our proteomic data was the
tricarboxylic acid cycle (TCA; also referred to as the citric acid
cycle, or the Krebs cycle), which was altered in both PC vs BPH
and CRPC vs PC comparisons. This pathway was not found

regulated by RNA expression data, suggesting changes taking
place primarily at the protein level. Furthermore, although
alterations in certain enzyme activities in TCA have previously
been shown to occur during prostate cancer development24, our
proteomics results indicated a previously undescribed, two-step
modulation of the TCA cycle. The TCA pathway proteins that
were considered regulated by the pathway analysis were mostly
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altered to opposite directions in PC vs BPH and CRPC vs PC
comparisons: upregulated in PC vs BPH, and downregulated in
CRPC vs PC (Table 1, Fig. 5a). An exception was malate dehy-
drogenase 2 (MDH2), levels of which continued to increase in
CRPC (Table 1, Fig. 5a). Comparison of protein and RNA
expression of TCA genes8,23 in all three groups of samples
revealed that the TCA proteins are divided into three classes: (1)
proteins whose mRNA and protein expression go hand in hand
indicating primary regulation by gene expression (CS, FH,
IDH3A, IDH2, and SUCLG2), (2) proteins, whose protein levels
are not changed (IDH3B, IDH3G), and (3) proteins, that exhibit
regulation at the protein level not correlating with mRNA
(ACO2, MDH2, OGDH, SUCLA2, and SUCLG1) (Supplemen-
tary Fig. 14). From the latter group of proteins, ACO2, OGDH,
SUCLA2, and SUCLG1 were all upregulated at the protein level,
but not at the mRNA level, in PC vs BPH, while being down-
regulated in CRPC vs PC either at the mRNA or protein level.
Increase in MDH2 protein expression in PC vs BPH did correlate
with an increase in mRNA levels, but the increase in CRPC vs PC
did not, suggesting posttranslational regulation (Supplementary
Fig. 14).
To study more closely the events identified in the TCA cycle,

and to validate the results of the proteomics data, we selected two
TCA proteins showing significant but different alterations at their
protein expression between the prostate cancer sample groups to
study further. As a representative of the most common alteration
pattern we chose aconitase 2 (ACO2) which showed statistically
highly significant (p < 0.001, Mann–Whitney test) upregulation of
the protein in PC vs BPH, as well as statistically highly significant
(p < 0.001, Mann–Whitney test) downregulation in CRPC vs PC
(Fig. 5b). As a second protein we chose MDH2 exhibiting the
deviant behavior amongst the TCA proteins, as it was upregulated
statistically significantly both in PC vs BPH (p < 0.001;
Mann–Whitney test) and further upregulated in CRPC vs PC
(p < 0.05; Mann–Whitney test) (Fig. 5b). We performed western
blotting on these proteins with representative samples of BPH,
PC, and CRPC used in the proteomic analysis, and found similar
changes than by mass spectrometry (Fig. 5c, Supplementary
Fig. 15 and 16), validating the mass spectrometry detection and
analysis results.
We performed further validation on the differential regulation

of these proteins during prostate cancer progression by
immunohistochemical stainings on larger sample sets of clinical
PC and CRPC. Grading of the immunohistochemical staining
intensity (example staining intensities of grades 0–3 displayed in
Supplementary Fig. 17) showed that relative percentage of
samples with no or low staining intensities (0–1) of ACO2
increased in CRPC vs PC (Fig. 5d), indicating that the relative
levels of ACO2 decreased in CRPC. On the other hand, the
relative percentage of samples with higher staining intensities
(2–3) of MDH2 increased in CRPC vs PC (Fig. 5d), indicating
that the relative levels of MDH2 increased in CRPC. These results

confirm the mass spectrometry results and show that the TCA
cycle proteins ACO2 and MDH2 are differentially regulated at the
protein level during prostate cancer progression.
We further assessed potential mechanisms that could explain

the distinct regulation of MDH2. We found that two miRNAs
predicted to target MDH2, namely miR-22 and miR-205, were
identified as differentially expressed in our analysis and were
negatively correlating with MDH2 protein (Supplementary
Data 4) but not mRNA (Supplementary Data 3) levels in the
large scale datasets. We transfected PC-3 prostate cancer cells
with these miRNAs, and verified the transfection efficiency with
TaqMan RT-qPCR analysis (Supplementary Fig. 18a). We
detected no significant alterations at MDH2 mRNA levels in
RT-qPCR analysis upon elevated expression of the miRNAs
(Supplementary Fig. 18b). In contrast, luciferase assay showed
statistically significant decrease in reporter production from a
MDH2 3′-UTR construct by both miR-22 and miR-205 over-
expression (Supplementary Fig. 18c), indicating that these
miRNAs are able to directly target MDH2 mRNA. Furthermore,
MS/MS quantification showed a substantial decrease in MDH2
protein levels by both miR-22 and miR-205 expression (Supple-
mentary Fig. 18c). These results validated the predictions of miR-
22 and miR-205 to directly target MDH2, and identified these
miRNAs as prostate cancer-relevant, differentially expressed
regulators of the TCA.

Discussion
We have provided the first extensive proteomic view of prostate
cancer development and progression. With over 3000 individual
proteins quantified in each of the BPH, PC and CRPC samples
analyzed, we described the protein level alterations occurring in
clinical prostate cancer, and found several previously undescribed
biological events with important implications and potential for
future studies. In addition, we provided novel views on the
relationship of proteomic, genomic, and transcriptomic changes
occurring during castration resistance. The comprehensive view
obtained by our integrative analysis underlines the importance of
protein level dissection of the molecular mechanisms supporting
cancer growth and progression.
Our results showed that neither the altered gene dosages, nor

the global methylation changes were translated to the level of the
proteome to the same extent as they influence the global RNA
expression in CRPC. This suggests that, in the progressed stage, a
large proportion of changes in gene copy number and differential
DMR methylation are side products of the catastrophic state of
cancer cell regulatory systems which are untranslated and thus,
subsequently, left without a functional effect at the protein level.
Yet, our data confirmed several previously identified regulatory
DNA methylation events with associated expression changes
occurring in prostate cancer. We also identified several previously

Fig. 5 TCA cycle is differentially regulated during prostate cancer progression. a A schematic view of the TCA cycle protein expression changes in PC vs
BPH and CRPC vs PC comparisons according to the Ingenuity Pathway Analysis. Differential expression of TCA enzymes (diamonds) are highlighted in
green (downregulation) and red (upregulation). As mostly the same enzymes are involved in both PC and CRPC, the primary mode of expression change is
upregulation in PC and downregulation in CRPC. b Examples of a typical (ACO2) and a unique (MDH2) TCA protein expression patterns as identified by
mass spectrometry proteomics. ACO2 is upregulated in PC compared to BPH, and gets downregulated in CRPC compared to PC. MDH2 protein expression
levels increase in PC compared to BPH, and continue to increase in CRPC. Boxplots show interquartiles with mean values, whiskers represent minimum and
maximum values. ***p-value < 0.001 (Mann–Whitney test). c ACO2 and MDH2 protein expression patterns verified in a subset of BPH, PC, and CRPC
samples by western blotting. ACO2 and MDH2 protein expression according to the proteomic mass spectrometry analysis (upper panel bar graph) and in
corresponding samples according to western blotting (WB; lower panels). Pan-actin is used as a loading control. d Change in ACO2 and MDH2 protein
expression patterns during progression of prostate cancer verified by immunohistochemistry. Immunohistochemical analysis in clinical tumor samples of
PC and CRPC show statistically significantly decreased ACO2 and increased MDH2 staining intensity in CRPC compared to PC and (Chi squared test; 0=
no staining, 1=weak staining, 2= intermediate staining, 3= strong staining)
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undescribed protein expression alterations in PC and CRPC
associated with differential methylation of DMRs.
We showed that the proteomic profile of prostate cancer is

significantly altered during the course of the disease. We identi-
fied differentially expressed proteins, potential miRNA regulatory
effects, and significantly altered pathway events. The key notion is
that these have not been identified through transcriptomic ana-
lyses. This supports the view that not all proteins apply to changes
at the mRNA level, and underlines the importance of mechanistic
studies at the protein level.
Especially intriguing is the group of predicted miRNA-target

pairs that we found to have negative correlations between miRNA
expression and target protein expression without alterations
detected at the target mRNA level. These target mRNAs may be
bound by the miRNAs without induced degradation of the target.
For each miRNA-target pair, the targeting and relevance for
prostate cancer needs to be verified by follow-up experiments.
Here, we verified several targets for three example miRNAs that
are differentially expressed in CRPC vs PC, and thus may play
regulatory roles during prostate cancer progression. Our pro-
teomic pathway analysis identified especially translation-related
growth pathways as significantly altered in primary PC compared
to BPH samples. In addition, changes in protein degradation
pathways were better detected by proteomics than tran-
scriptomics. Thus, protein homeostasis in prostate cancer seems
to be regulated primarily at the protein level. In CRPC, the
proteome-specific pathway alterations were concentrated on
mitochondria-related metabolism and DNA repair. While the
glycolytic and long-term energy storage utilization pathways were
significantly regulated in prostate cancer at both proteomic and
transcriptomic levels, the changes in the core TCA and mito-
chondrial pathways are evident solely based on the proteomic
data. This indicates that posttranscriptional events are taking
place in the mitochondria during castration resistance, in order
for the cancer cells to ensure survival and propagation under the
altered conditions.
As a key finding, we detected two metabolic shifts involving the

TCA during prostate cancer development and progression. The
changes in TCA enzyme activities during prostate cancer devel-
opment have been studied earlier, but the second shift occurring
during progression to CRPC is previously undescribed. In pri-
mary prostate cancer, it is well-established that the normally high
tissue citrate levels decrease24,25. Costello and Franklin24 sug-
gested that normal citrate-producing prostate epithelial cells
become citrate-oxidizing when they turn malignant. Under this
bioenergetic hypothesis, mitochondrial aconitase ACO2 is a key
enzyme for the bioenergy transformation26. Subsequently,
Juang27 showed that downregulation of mitochondrial aconitase
in cultured prostate cancer cells decreases cell proliferation rate.
Mitochondrial aconitase gene expression was earlier shown to be
regulated by testosterone in prostate epithelial cells in vitro28,
suggesting that in high AR activity tumors ACO2 gene expression
could be upregulated. In our gene expression data, ACO2 mRNA
levels increase in PC compared to the levels in BPH. However, in
CRPC compared to PC, reflecting events during formation of
castration resistance and involving increased AR expression,
ACO2 mRNA levels are not increased further, and the protein
levels decrease. Thus, while our results support previous evidence
of upregulation of mitochondrial aconitase levels during devel-
opment of prostate cancer, progression to CRPC seems to involve
primarily posttranslational regulation of the enzyme, reflecting
the differences between the first and the second metabolic shift
during the course of prostate cancer evolution.
Most of the TCA enzymes are upregulated during the first

metabolic shift in prostate cancer, and then either stay upregulated
(CS, FH) or are downregulated (e.g. ACO2, OGDH, and SUCLG1)

during the second shift. The exception is MDH2, protein levels of
which continue to increase in the second shift during prostate
cancer progression. As a mechanism explaining the continued
increase in MDH2 protein levels in CRPC, we identified decreased
expression of miR-22 and miR-205, miRNAs which were both
confirmed to decrease MDH2 protein levels without decreasing the
MDH2 mRNA expression. MDH2 is mitochondrial malate dehy-
drogenase, which is an enzyme that catalyzes the NAD/NADH-
dependent, reversible oxidation of malate to oxaloacetate. It has
been reported previously that patients with MDH2 overexpression
have a significantly shorter period of relapse-free survival after
undergoing neoadjuvant combination chemotherapy followed by
surgery29. Further, stable knockdown of MDH2 via shRNA in
prostate cancer cell lines decreased cell proliferation and increased
docetaxel sensitivity29. Together with our data, these results col-
lectively suggest MDH2 inhibition as a mechanism to target cas-
tration resistant tumors. MDH2 druggability has been studied in
the context of doxorubicin-induced cardiomyopathy, where the
non-specific MDH2 inhibitors mebendazole, thyroxine, and iodine
have been found promising30. Thus, development of MDH2-
specific chemical inhibitors could be of great benefit against pro-
gressed prostate cancer, as well as for prevention of cardiotoxicity
during chemotherapy.
In conclusion, we identified here several key aspects of prostate

cancer biology with the most comprehensive proteomics on pri-
mary and progressed prostate cancer samples so far. In addition
to increasing our understanding of prostate cancer biology, our
study identified several important aspects of prostate cancer sig-
naling and metabolism for future studies.

Methods
Samples. Fresh-frozen tissue specimens from 10 BPH, 17 untreated PC, and 11
CRPC samples were acquired from Tampere University Hospital (Tampere, Fin-
land). PC samples (Supplementary Table 1) were obtained by radical prosta-
tectomy. Mean age at diagnosis was 62.0 years (range: 47.4–71.8) and mean PSA at
diagnosis was 9.8 ng/ml (range: 3.5–19.8). Locally recurrent CRPC samples
(Supplementary Table 2) were obtained by transurethral resection of the prostate.
Samples were snap-frozen and stored in liquid nitrogen. Histological evaluation
and Gleason grading were performed by a pathologist based on hematoxylin/eosin-
stained slides. All samples contained a minimum of 70% cancerous or hyperplastic
cells. The use of clinical material was approved by the ethical committee of the
Tampere University Hospital and the National Authority for Medicolegal Affairs.
Written informed consent was obtained from the subjects.

Chemicals and materials. Acetonitrile (ACN), formic acid (FA), water (UHPLC-
MS grade), triethyl ammonium bicarbonate buffer (TEAB), sodium dodecyl sulfate
(SDS), iodoacetamide (IAA), trifluoro acetic acid (TFA), ammonium bicarbonate
(ABC), tris-(2-carboxyethyl)phosphine (TCEP), urea and pellet pestles were all
purchased from Sigma Aldrich (St. Louis, MO, USA). RIPA lysis buffer, protease
inhibitor cocktail (Halt™) and sample clean up tips (C18) were from Thermo Fisher
Scientific (San Jose, CA, USA). Bio-Rad DC™ protein assay kit and bovine serum
albumin standard were purchased from Bio-Rad (Hercules, CA, USA) and 30 kDa
MWCO centrifugal devices from PALL (Port Washington, NY, USA). TPCK-
treated trypsin was from AB Sciex (Framingham, MA, USA). HRM Calibration Kit
was purchased from Biognosys AG (Zurich, Switzerland).

Protein extraction from tissue samples and enzymatic digestion. Five 5 µm
slices were cut from fresh-frozen tissue samples. Tissues were homogenized with
polypropylene pellet pestle in ice-cold RIPA lysis buffer containing Halt protease
inhibitor. The disrupted tissues were subjected to sonication for 5 min followed by
a 30 min incubation on ice. After incubation, lysates were centrifuged to remove
any remaining cell debris (16,000 xg, 20 min, +4 °C). Total protein concentration
of the samples was measured with Bio-Rad DC protein assay. Mean amount of
protein recovered from frozen tissues was 91.5 ± 67.3 µg (SD). From 9 to 50 µg of
protein was precipitated with acetone (−20 °C) overnight. The protein amounts
were selected based on our previous testing of suitable injection volume of 5 µg
total protein in 2 µl volume in SWATH. Precipitated proteins were centrifuged,
supernatant was decanted, and samples were allowed to dry for 5 min. Proteins
were dissolved in 0.05 M ABC with 2% SDS and reduced by 0.05 M TCEP. After 60
min of incubation at+ 60 °C, samples were transferred into 30 kDa molecular
weight cut-off centrifugal filters and flushed twice with 8M urea in 0.05 M Tris-
HCl. Cysteine residue blocking was carried out by 0.05M IAA in 0.5 M Tris-HCl at
room temperature in the dark. Samples were repeatedly flushed with 8 M urea and
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0.05M ABC to remove urea prior to digestion with trypsin for 16 h at+ 37 °C at a
trypsin-to-protein ratio of 1:25. Digests were collected by rinsing the centrifugal
devices with 0.1 M TEAB followed by 0.5 M NaCl and dried in a speed vacuum
concentrator. Samples were dissolved in 0.1% TFA and desalted with C18 tips.
Sample clean-up and desalting was performed with Pierce C18 tips according to
manufacturer’s instructions. Samples were dried in speed vacuum concentrator and
stored at −20 °C until reconstituted in loading solution (5% ACN, 0.1% FA) at
equal concentrations. HRM peptide mix was added to each sample before
NanoRPLC-MSTOF SWATH analysis.

NanoRPLC-MSTOF for discovery proteomics. Digested peptides were analyzed
by Nano-RPLC-MSTOF instrumentation using Eksigent 425 NanoLC coupled to
high speed TripleTOF™ 5600+mass spectrometer (Ab Sciex, Concord, Canada). A
capillary RP-LC column (cHiPLC® ChromXP C18-CL, 3 µm particle size, 120 Å,
75 µm i.d × 15 cm, Eksigent Concord, Canada) was used for LC separation of
peptides. Samples were first loaded into trap column (cHiPLC® ChromXP C18-CL,
3 µm particle size, 120 Å, 75 µm i.d × 5 mm) from autosampler and flushed for 10
min at 2 µl/min (2% ACN, 0.1% FA). The flush system was then switched to line
with analytical column and gradient alution. All samples were analyzed with 120
min 6 step gradient using eluent A: 0.1% FA in 1% ACN and eluent B: 0.1% FA in
ACN (eluent B from 5 to 7% over 2 min, 7 to 24% over 55 min, 24 to 40% over 29
min, 40 to 60% over 6 min, 60 to 90% over 2 min and kept at 90% for 15 min, 90 to
5% over 0.1 min and kept at 5% for 13 min) at 300 nl/min.

In order to perform SWATH-MS quantification, we first generated a spectral
identification library with 57 different samples (prostate tissue and cancer cell line
samples). Key parameters for MSTOF mass spectrometer in SWATH ID library
analysis were: ion spray voltage floating (ISVF) 2300 V, curtain gas (CUR) 30,
interface heater temperature (IHT)+125 °C, ion source gas 1 13, declustering
potential (DP) 100 V. All methods were run by Analyst TF 1.5 software (Ab Sciex,
USA). For IDA parameters, 0.25 s MS survey scan in the mass range 350–1250 mz
were followed by 60 MS/MS scans in the mass range of 100–1500 Da (total cycle
time 3.302 s). Switching criteria were set to ions greater than mass to charge ratio
(m/z) 350 and smaller than 1250 (m/z) with charge state 2–5 and an abundance
threshold of more than 120 counts. Former target ions were excluded for 12 s.
Information dependent acquisition (IDA) rolling collision energy (CE) parameters
script was used for automatically controlling CE. SWATH quantification analysis
parameters were the same as for spectral identification library analyses, with the
following exceptions: cycle time 3.332 s and MS parameters set to 15 Da windows
with 1 Da overlap between mass range 350–1250 Da followed by 40 MS/MS scans
in the mass range of 350–1250 Da.

Mass spectrometric data analysis. SWATH library analysis were performed with
Protein pilot software version 4.7 (Ab Sciex, Canada) which was used to analyze
MS/MS data and searched against the UniprotKB/Swiss-prot database for protein
identification. Settings in the Paragon search algorithm in Protein pilot were
configured as follows. Sample type: identification, Cys-alkylation: MMTS, Diges-
tion: Trypsin, Instrument: TripleTOF 5600+ , Search effort: thorough ID. False
discovery rate (FDR) analysis was performed in the Protein pilot and FDR < 1%
was set for protein identification. The data from all the identification runs were
combined as a batch and used for library creation for SWATH relative
quantification.

For quantification we used PeakView® software 2.0 with SWATH-plug in to
assign the correct peaks to correct peptides in the library. Two replicate MS
analyses were done from each sample. iRT peptides (Biognosys, Switzerland) was
used for retention time calibration with PeakView. 1–15 specified peptides per
protein were selected to be used in SWATH quantification. Peptide peak areas were
extracted and filtered to remove all peptides, which do not have a single
measurement with an FDR <1% across all measurements. The SWATH-MS data
exhibited excellent quality and reliability with p-value < 0.05 in 98.6% of replicate
MS analyses (permutation tests, Spearman’s rank correlation) and mean interclass
correlation (ICC) coefficient of 0.98.

Statistical analysis of proteomics data. Data processing included log2-trans-
formation and quantile normalization. The quality of the replicate MS analyses was
analyzed by calculating the intraclass correlation (ICC) and Spearman’s rank
correlation was used to generate p-values in permutation tests (n= 1000 permu-
tations/replicate MS analyses). Further analysis was performed on the mean values
of the replicate MS analyses. Wilcoxon rank sum test was implemented to analyze
the differences between sample types. Benjamini and Hochberg adjustment were
applied to all initial p-values, where applicable, to account for the multiple testing
issues. R software version 3.2.3 (R Core Team. Foundation for Statistical Com-
puting, Vienna, Austria) was used to analyze data. Ingenuity Pathway Analysis
(IPA, QIAGEN Redwood City, USA) was used to conduct pathway analysis and
identify proteins connected to pathways of interest. Protein grouping and classi-
fication was performed by using PANTHER Classification System31.

Analysis of differentially expressed mRNA and protein. Common samples
(Supplementary Table 3) between the proteomic analysis performed here and
previously described mRNA expression (RNA sequencing) data7 were used to

extract common genes (n= 3310) between the protein and mRNA data. mRNAs
and proteins were considered differentially expressed across different comparisons
(BPH vs PC, PC vs CRPC) if absolute median ratio of two conditions was greater
than 1.5 with a p-value < 0.05 (Benjamini–Hochberg adjusted p-value of a non-
parametric Wilcoxon test).

Association between protein expression and gene copy number. The Spear-
man’s rank correlation was calculated for each sample between gene level DNA
copy numbers7 and mRNA expressions, or copy numbers and protein expressions
(Supplementary Table 3). Using the correlation values probability density functions
(PDFs) for each correlation value sets were estimated using kernel density esti-
mation with Gaussian kernels and Scott’s rule for bandwidth determination. The
estimated PDFs were then plotted and supplemented by rug plots of the exact
correlation values. To estimate background distributions, the Spearman’s rank
correlations of each sample with all other samples were calculated between copy
numbers and mRNA expressions or copy numbers and protein expressions. Using
the correlation values PDFs for each correlation value set were estimated as detailed
above.

Association between protein expression and DNA methylation. Based on
MeDIP-sequencing data7 we identified 751 differentially methylated regions
(DMRs) within 10 kb from TSS of 557 unique genes with available expression
values for RNA expression and protein expression (Supplementary Table 3).
Subsequently, the Spearman’s rank correlations were calculated for each sample
between DMR normalized fragment counts and mRNA expressions or DMR
normalized fragment counts and protein expressions. Kernel density estimation
was used for visualization of the correlation values as described above. Background
distributions were calculated in the same manner as explained earlier. Furthermore,
we identified 2773 genes common between mRNA and protein expression datasets
where their absolute distance to a nearby DMR was <250 kb. Of these, 745 genes
were showing absolute correlation >0.3 between their gene expression and nearby
DMRs. 140 out of 745 genes were differentially expressed both at mRNA and
protein level. Finally only 79 of these genes had absolute distance ≤10 kb from 117
DMRs (these were used for scatter plots).

Structural variation analysis. To identify rearrangements whole genome
sequencing reads were aligned against the GRCh37 reference genome using
Bowtie-2.0.0-beta732. An in-house structural variant calling software called
Breakfast (https://github.com/annalam/pypette) was then used to identify paired
end reads where the mates aligned discordantly. A paired alignment was con-
sidered discordant if both mates aligned to the genome but aligned to separate
chromosomes or >100 kb apart. Mates with an alignment quality phred value < 20
were discarded from analysis. Next, individual mates that did not initially align to
the reference genome were split into 25 bp anchors. The 25 bp anchor pairs were
then realigned and searched for discordant alignments using the same criteria as
with paired end reads. The full 90 bp sequences corresponding to discordant
anchor pairs were compared against the reference genome to identify exact
breakpoints and to analyze for sequence homologies. A discordant anchor pair was
discarded if the sequence homology between the read and one of the breakpoint
flanking sequences was above 70% for the nucleotides matching with the dis-
cordant anchor. The exact breakpoint was determined by selecting the breakpoint
associated with the lowest amount of nucleotide mismatches. After identifying
discordant pairs from paired end and split reads, the discordant pairs were reor-
iented so as to always have the pair with the lower chromosome or coordinate first.
Discordant pairs were then clustered using a sliding window approach. A cluster of
discordant pairs was accepted as a putative structural variant if it contained at least
one paired end read and one split read indicating the structural variant. To filter
out false positives, structural variants were also called in BPH samples, and all
genomic regions within 1 kb of a breakpoint identified in a BPH sample were
blacklisted.

Point mutation impact analysis. Somatic and germline point mutations22 in each
sample were used to find their impact on the expression level of the genes har-
boring the mutations as described earlier14. Null distribution was generated by
comparing expression of randomly selected unmutated sample to other unmutated
samples.

Association between protein expression and mutation burden. Number of
somatic point mutations22, rearrangements (as described above), and chromosomal
instability (CIN) in each sample across common samples between protein and
mRNA expression data (Supplementary Table 3) were used to find their association
(Spearman’s rank correlation) with individual genes in the protein dataset. CIN
was calculated as the mean of integer copy numbers assigned to non-overlapping
blocks of size 500 bp spanning across the entire genome.

Association between protein and miRNA expression. miRNA expression data
(small RNA sequencing)7 were used to extract miRNAs with negative correlation
with their targets using the common samples (Supplementary Table 3). Predicted
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targets of miRNAs were downloaded from miRWalk 2.0 database33 using the
following parameter values: Input parameters Promoter 2 kb, 3′ UTR, minimum
seed length 7 and/or p-value 0.05. We considered mRNA to be a target for miRNA
if targeting was predicted by 2/3 of the databases miRanda, PICTAR2, and Tar-
getscan34–36. Differentially expressed miRNAs were defined as having an absolute
median ratio between two conditions >1.5, and the Benjamini-Hochberg adjusted
p-value of a non-parametric Wilcoxon test <0.05. miRNAs were considered
unexpressed if all samples had read count below 8 and they were excluded from
differential expression analysis. Spearman’s rank correlations were calculated
between the miRNA expression and the expression of its predicted targets with a
threshold for negative correlation <=−0.50. For enrichment analysis, hypergeo-
metric test was used to test statistical significance (p-value < 0.05) of the number of
negatively correlating predicted targets of a miRNA. miRNA—target associations
were visualized as circos plot using POMO37.

Transfections of pre-miRNA. PC-3 cells (ATCC, Rockville, MD, USA) were
cultured under the recommended conditions and reverse transfected with 10 nM
non-targeting control (miR-control) or pre-micro-RNA constructs (Applied Bio-
systems/Ambion, Austin, TX, USA) using INTERFERin transfection reagent
(Polyplus Transfection SA, Illkirch, France) according to manufacturer’s instruc-
tions. Cells were incubated for 48 or 72 h before collection for RNA or protein
samples, respectively.

RNA extraction and RT-qPCR. RNA was extracted using TriReagent® (Sigma-
Aldrich) according to manufacturer’s instructions. Quantitative RT-PCR for
miRNAs was performed using TaqMan microRNA Assay (Applied Biosystems,
Foster City, CA, USA) according to the manufacturer’s recommendations. RNU6B
was used as a reference gene. Quantitative RT-PCR for mRNAs was performed
using Maxima SYBR Green (Fermentas Inc., Burlington, Ontario, Canada) from
cDNA made using Maxima RT reverse transcriptase (ThermoFischer Scientific
Inc.). TBP was used as a reference gene. qPCR reactions were performed with the
CFX96 q-RT-PCR detection system (Bio-Rad Laboratories Inc., Hercules, CA,
USA).

Luciferase reporter assay. PC-3 cells were reverse transfected with 10 nM non-
targeting control (miR-control) or pre-micro-RNA constructs (Applied Biosys-
tems/Ambion, Austin, TX, U.S.A.), and MDH2–3′-UTR in pEZX-MT05-GLuc-
SEAP luciferase reporter plasmid (GeneCopoeia, Rockville, MD, USA; 10 ng/well)
in 96 well plates using jetPRIME transfection reagent (Polyplus Transfection SA,
Illkirch, France) according to manufacturer’s instructions. Cells were incubated for
24 h before the medium was collected for analysis of secreted Gaussia luciferase
(GLuc) and secreted alkaline phosphatase (SEAP) activities with Secrete-Pair™ Dual
Luminescence Assay Kit (GeneCopoeia) according to manufacturer’s instructions.

MicroLC-MSTRAP for targeted protein validation analysis. Proteins for tar-
geted MS/MS analysis were selected based on their expression in discovery analysis.
Peptides for each protein were selected based on their specificity, intensity (based
on SWATH-MS analysis), amino acid composition, and water solubility in the
tissue samples. All peptides with methionine or modifications or missing cleavage
sites were disqualified. For each selected peptide, an isotopically labeled standard
peptide (AQUA-peptides, Sigma-Aldrich) was used to confirm the identification.
For each protein in the analysis, two peptides for targeted MS analysis were
selected, and each peptide analysis was confirmed using 3 fragment ions. The
peptides, fragment ions, and corresponding isotopical standards for each protein
are represented in Supplementary Table 12.

Cell lysis, protein measurements, and tryptic digestion were performed as
before. TEAB-solution supplemented with 20 fg of each targeted peptide isotope
per 1 µg of total protein in the sample was used to flush the digested peptides of the
membrane. Sample cleanup was performed as before. 1 µg of cleaned samplewas
used for MicroLC-MSTrap analysis. Analysis was performed with Sciex 6500+
MSTrap coupled with Eksigent NanoLC 425 with 1–10 µl/min microLC flow cell.
MicroLC utilized a 42 min 6 step gradient using eluent A: 0.1% FA in MQ and
eluent B: 0.1% FA in ACN (eluent B from 10 to 30% over 22 min, 30–50% over 8
min, 50–80% over 2 min, kept at 80% for 5 min, 80–10% over 0.2 min and kept at
10% for 5 min, at 5 µl/min. MSTrap settings were as follows; Curtain gas: 30, Spray
voltage: 5300, Collision gas: medium, Temperature: 150 °C, Ion source gas 1: 20,
Ion source gas 2: 20, were set the same for all peptides. Collision energy was
specifically set to 40 for OLA1 peptide IPAFLNVVDIAGLVK and to its respective
isotope standard and to 30 for all others. Results were normalized against their
representative isotopically labeled standard peptide and then compared between
samples. Standard deviation for each peptide in the analysis method was calculated
using isotope labeled peptide standards. Relative standard deviation for all the
peptides was under 10%.

Western blotting. LNCaP cells (ATCC) were cultured under the recommended
conditions. Cells and sections of frozen tissue were lysed in Triton-X lysis buffer
containing 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0,5% Triton x-100, 1 mM
PMSF, 1 mM DTT and 1× complete protease inhibitor cocktail (Roche Inc.,
Mannheim, Germany), after which the lysates were sonicated four times for 30 s at

medium power with Bioruptor equipment (Diagenode Inc., Liège, Belgium), and
cellular debris was removed by centrifugation. Proteins were separated by poly-
acrylamide gel electrophoresis (SDS-PAGE) and transferred to PVDF membrane
(Immobilon-P; Millipore Inc., Billerica, Massachusetts, USA). Primary antibodies
against ACO2 (HPA001097; Sigma-Aldrich, St. Louis, MO, U.S.A.; dilution
1:1000), MDH2 (HPA019714; Sigma-Aldrich; 1:1000), and pan-actin (ACTN05;
NeoMarkers, Portsmouth, NH, USA; 1:1000) were used and detected using anti-
rabbit HRP-conjugated antibody produced in swine (1:5000, DAKO Inc., Den-
mark) or by anti-mouse HRP-conjugated antibody produced in rabbit (1:5000,
DAKO Inc., Denmark) and Western blotting luminol reagent (Santa Cruz Inc.,
Santa Cruz, California, USA) with autoradiography. Original scans including
molecular weight information for the western blots are presented in Supplementary
Fig. 19.

Immunohistochemistry. Formalin-fixed, paraffin-embedded tumor microarrays of
PC and CRPC samples38 were used. Sections were deparaffinized and antigen
retrieval was performed by using Tris-EDTA buffer 0.05% Tween-20 (pH 9) at+
98 °C for 15 min. The staining was performed by Lab Vision Autostainer (Ther-
moFischer Scientific Inc., Waltham, MA, USA). Primary antibodies (as above) and
secondary antibody (N-Histofine® Simple Stain MAX PO; Nichirei, Tokyo, Japan)
were used. ImmPACT DAB (Vector Laboratories, Burlingame, CA, USA) was used
as a chromogen. The sections were counterstained with hematoxylin and mounted
with DPX mounting medium (Sigma-Aldrich). Scoring of staining intensity on
tumor areas was performed on a 0–3 scale (Supplementary Fig. 17), and the dif-
ference in score distributions between PC and CRPC groups was statistically
assessed with Chi squared test.

Data availability. Mass Spectrometry data has been deposited to Peptide Atlas
repository under dataset identifier PASS01126. Deep sequencing data has been
deposited to European Genome-Phenome Archive under accession number
EGAS00001000526.

Received: 17 May 2017 Accepted: 21 February 2018

References
1. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).
2. Wong, Y. N. S., Ferraldeschi, R., Attard, G. & de Bono, J. Evolution of

androgen receptor targeted therapy for advanced prostate cancer. Nat. Rev.
Clin. Oncol. 11, 365–376 (2014).

3. Taylor, B. S. et al. Integrative genomic profiling of human prostate cancer.
Cancer Cell. 18, 11–22 (2010).

4. Barbieri, C. E. et al. Exome sequencing identifies recurrent SPOP, FOXA1 and
MED12 mutations in prostate cancer. Nat. Genet. 44, 685–689 (2012).

5. Grasso, C. S. et al. The mutational landscape of lethal castration-resistant
prostate cancer. Nature 487, 239–243 (2012).

6. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer.
Cell 161, 1215–1228 (2015).

7. Ylipää, A. et al. Transcriptome sequencing reveals PCAT5 as a novel ERG-
regulated long noncoding RNA in prostate cancer. Cancer Res. 75, 4026–4031
(2015).

8. Vogel, C. & Marcotte, E. M. Insights into the regulation of protein abundance
from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13, 227–232
(2012).

9. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels
on mRNA abundance. Cell 165, 535–550 (2016).

10. Boja, E. S. & Rodriguez, H. Proteogenomic convergence for understanding
cancer pathways and networks. Clin. Proteom. 11, 22 (2014).

11. Megger, D. A., Bracht, T., Meyer, H. E. & Sitek, B. Label-free quantification in
clinical proteomics. Biochim. Biophys. Acta 1834, 1581–1590 (2013).

12. Chapman, J. D., Goodlett, D. R. & Masselon, C. D. Multiplexed and data-
independent tandem mass spectrometry for global proteome profiling. Mass.
Spectrom. Rev. 33, 452–470 (2014).

13. Rosenberger, G. et al. A repository of assays to quantify 10,000 human
proteins by SWATH-MS. Sci. Data 1, 140031 (2014).

14. Zhang, B. et al. Proteogenomic characterization of human colon and rectal
cancer. Nature 513, 382–387 (2014).

15. Mertins, P. et al. Proteogenomics connects somatic mutations to signalling in
breast cancer. Nature 534, 55–62 (2016).

16. Zhang, H. et al. Integrated proteogenomic characterization of human high-
grade serous ovarian. Cancer Cell. 166, 755–765 (2016).

17. Jia, X. et al. Detection of aggressive prostate cancer associated glycoproteins in
urine using glycoproteomics and mass spectrometry. Proteomics 16,
2989–2996 (2016).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03573-6

12 NATURE COMMUNICATIONS | (2018)9:1176 |DOI: 10.1038/s41467-018-03573-6 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


18. Larkin, S. E. et al. Detection of candidate biomarkers of prostate cancer
progression in serum: a depletion-free 3D LC/MS quantitative proteomics
pilot study. Br. J. Cancer 115, 1078–1086 (2016).

19. Iglesias-Gato, D. et al. The proteome of primary prostate cancer. Eur. Urol. 69,
942–952 (2016).

20. Staunton, L. et al. Pathology-driven comprehensive proteomic profiling of the
prostate cancer tumor microenvironment. Mol. Cancer Res. 15, 281–293
(2017).

21. Drake, J. M. et al. Phosphoproteome integration reveals patient-specific
networks in prostate. Cancer Cell. 166, 1041–1054 (2016).

22. Annala, M. et al. Recurrent SKIL-activating rearrangements in ETS-negative
prostate cancer. Oncotarget 6, 6235–6250 (2015).

23. He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene
regulation. Nat. Rev. Genet. 5, 522–531 (2004).

24. Costello, L. C., Franklin, R. B. & Feng, P. Mitochondrial function, zinc, and
intermediary metabolism relationships in normal prostate and prostate
cancer. Mitochondrion 5, 143–153 (2005).

25. Mycielska, M. E. et al. Citrate transport and metabolism in mammalian cells:
prostate epithelial cells and prostate cancer. Bioessays 31, 10–20 (2009).

26. Costello, L. C. & Franklin, R. B. Bioenergetic theory of prostate malignancy.
Prostate 25, 162–166 (1994).

27. Juang, H. H. Modulation of mitochondrial aconitase on the bioenergy of
human prostate carcinoma cells. Mol. Genet. Metab. 81, 244–252 (2004).

28. Costello, L. C., Liu, Y., Zou, J. & Franklin, R. B. Mitochondrial aconitase gene
expression is regulated by testosterone and prolactin in prostate epithelial
cells. Prostate 42, 196–202 (2000).

29. Liu, Q. et al. Malate dehydrogenase 2 confers docetaxel resistance via
regulations of JNK signaling and oxidative metabolism. Prostate 73,
1028–1037 (2013).

30. Liu, Y. et al. Visnagin protects against doxorubicin-induced cardiomyopathy
through modulation of mitochondrial malate dehydrogenase. Sci. Transl. Med.
6, 266ra170 (2014).

31. Thomas, P. D. et al. PANTHER: a library of protein families and subfamilies
indexed by function. Genome Res. 13, 2129–2141 (2003).

32. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome
Biol. 10, R25 (2009).

33. Dweep, H. & Gretz, N. miRWalk2.0: a comprehensive atlas of microRNA-
target interactions. Nat. Methods 12, 697 (2015).

34. Betel, D., Koppal, A., Agius, P., Sander, C. & Leslie, C. Comprehensive
modeling of microRNA targets predicts functional non-conserved and non-
canonical sites. Genome Biol. 11, R90 (2010).

35. Anders, G. et al. doRiNA: a database of RNA interactions in post-
transcriptional regulation. Nucleic Acids Res. 40, D180–D186 (2012).

36. Agarwal, V., Bell, G. W., Nam, J. W., Bartel, D. P. Predicting effective
microRNA target sites in mammalian mRNAs. eLife 4, e05005 (2015).

37. Lin, J. et al. POMO–plotting omics analysis results for multiple organisms.
BMC Genom. 14, 918 (2013).

38. Leinonen, K. A. et al. Loss of PTEN is associated with aggressive behavior in
ERG-positive prostate cancer. Cancer Epidemiol. Biomark. Prev. 22,
2333–2344 (2013).

Acknowledgements
We thank Paula Kosonen, Riina Kylätie, Artturi Lassila, Katja Liljeström, Saara Lähde-
korpi, Päivi Martikainen, and Marika Vähä- Jaakkola for their technical assistance and
M.D. Teemu Tolonen for his professional assistance. This work was supported by grants
from the Academy of Finland (Project Nos. 269474 MN, 127187 TV), Sigrid Juselius
Foundation (M.N., T.V.), Cancer Society of Finland (M.N., T.V.), Competitive State
Research Financing of the Expert Responsibility area of Tampere University Hospital
(TV, MN, TT), TEKES (Project No. 66/31/2012 U.A., R.B., A.J., J.N., H.U.), and Elsemay
Björn Fund (U.A., A.J., J.N., H.U.). We would also like to acknowledge CSC—IT Center
for Science Ltd. (https://www.csc.fi/csc) for providing the computational resources.

Author contributions
U.A., R.B., M.N., H.U., and T.V. conceived and supervised the study. All authors
designed and discussed experiments. A.J. carried out the mass spectrometry and SWATH
analysis. A.J. and J.N. performed proteomics data analysis. E.A. performed integrative
bioinformatics analyses. M.A. and K.W. performed mutation analyses. L.L. and J.N.
performed pathway analysis. L.L. carried out western, immunohistochemical, and cellular
analyses, and prepared the manuscript. All authors contributed to writing of the
manuscript, as well as reviewed and accepted the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-03573-6.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03573-6 ARTICLE

NATURE COMMUNICATIONS | (2018)9:1176 | DOI: 10.1038/s41467-018-03573-6 |www.nature.com/naturecommunications 13

https://www.csc.�fi/csc
https://doi.org/10.1038/s41467-018-03573-6
https://doi.org/10.1038/s41467-018-03573-6
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications




PUBLICATION
III

Chromatin accessibility analysis uncovers regulatory element landscape in
prostate cancer progression

Uusi-Mäkelä J.*, Afyounian E. *, Tabaro F.*, Häkkinen T.*, Lussana A.,

Shcherban A., Annala M., Nurminen R., Kivinummi K., Tammela T.L.,

Urbanucci A., Latonen L., Kesseli J., Granberg K. J., Visakorpi T., Nykter M.

bioRxiv (2020)

DOI: 10.1101/2020.09.08.287268

Publication reprinted with the permission of the copyright holders.





Chromatin accessibility analysis uncovers regulatory element landscape in prostate 
cancer progression

Joonas Uusi-Mäkelä1,2*, Ebrahim Afyounian1,2*, Francesco Tabaro1,2*, Tomi Häkkinen1,2*, 
Alessandro Lussana1,2, Anastasia Shcherban1,2, Matti Annala1,2, Riikka Nurminen1,2, Kati 
Kivinummi1,2, Teuvo L.J. Tammela1,2,3, Alfonso Urbanucci4, Leena Latonen5, Juha Kesseli1,2, 
Kirsi J. Granberg1,2, Tapio Visakorpi1,2,6, Matti Nykter1,2✦

1 Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere 
University, Tampere, Finland
2 Tays Cancer Center, Tampere University Hospital, Tampere, Finland
3 Department of Urology, Tampere University Hospital, Tampere, Finland
4  Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 
Oslo, Norway
5 Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
6 Fimlab Laboratories Ltd, Tampere, Finland

*These authors contributed equally.

✦Corresponding author

1

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 9, 2020.;https://doi.org/10.1101/2020.09.08.287268doi:bioRxiv preprint

https://doi.org/10.1101/2020.09.08.287268
http://creativecommons.org/licenses/by/4.0/


Abstract

Aberrant oncogene functions and structural variation alter the chromatin structure in cancer
cells. While gene regulation by chromatin states has been studied extensively, chromatin
accessibility  and  its  relevance  in  aberrant  gene  expression  during  prostate  cancer
progression is not well understood. Here, we report a genome-wide chromatin accessibility
analysis of clinical tissue samples of benign prostatic hyperplasia (BPH), untreated primary
prostate  cancer  (PC)  and  castration-resistant  prostate  cancer  (CRPC)  and  integrative
analysis  with  transcriptome,  methylome,  and  proteome profiles  of  the  same samples  to
uncover  disease-relevant  regulatory  elements  and  their  association  to  altered  gene
expression during prostate cancer progression.  While promoter accessibility  is consistent
during disease initiation and progression, at distal sites chromatin accessibility is variable
enabling transcription factors (TFs) binding patterns that are differently activated in different
patients  and  disease  stages.  We  identify  consistent  progression-related  chromatin
alterations  during  the  progression  to  CRPC.  By  studying  the  TF  binding  patterns,  we
demonstrate  the  activation  and  suppression  of  androgen  receptor-driven  regulatory
programs  during  PC  progression  and  identify  complementary  TF  regulatory  modules
characterized by e.g. MYC and glucocorticoid receptor. By correlation analysis we assign at
least  one putative  regulatory region for  62% of  genes and 85% of  proteins  differentially
expressed during prostate cancer progression. Taken together, our analysis of the chromatin
landscape in PC identifies putative regulatory elements for the majority of cancer-associated
genes and characterizes their impact on the cancer phenotype. 
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Introduction

Prostate cancer (PC) is a common malignancy with heterogeneous phenotypes in men. In
18% of patients, disease progresses to lethal castration-resistant prostate cancer (CRPC)
(Siegel et al., 2018). Recurrent genomic alterations in primary and metastatic PC have been
identified and their role in disease progression has been studied extensively (Armenia et al.,
2018; Espiritu et al., 2018; Grasso et al., 2012; Gundem et al., 2015; Peng et al., 2015;
Quigley et al., 2018; Robinson et al., 2015). In addition to implicating cancer genes, genome
sequencing  studies  have  revealed  structural  variation  in  non-coding  regions,  including
enhancer elements driving oncogene expression  (Takeda et al., 2018; Viswanathan et al.,
2018). Epigenetic characterization studies have further extended understanding of the non-
coding genome by revealing the role of DNA methylation patterns (Bedford and van Helden,
1987; Börno et al., 2012; Friedlander et al., 2012; Jimenez et al., 2000; Lee et al., 1997;
Mahapatra et al., 2012; Varambally et al., 2002; Xu et al., 2012; Zhao et al., 2020), specific
transcription  factor  (TF)  binding  sites  and  histone  modifications,  including  the
characterization  of  the  active  enhancer  landscape  in  PC  tissues  (Kron  et  al.,  2017;
Pomerantz et al., 2015, 2020; Stelloo et al., 2018; Urbanucci et al., 2012, 2017; Yu et al.,
2010).  Still,  how  the  chromatin  landscape  evolves  during  PC  progression  and  drives
aberrant  transcriptome  (Cancer  Genome  Atlas  Research  Network,  2015) and  proteome
(Latonen et al., 2018; Sinha et al., 2019), is unclear.

Genomic  aberrations  and  epigenetic  regulation  alter  chromatin  structure  in  cancer  cells
(Flavahan et al.,  2017; Losada, 2014). Different chromatin accessibility analysis methods
have been used to identify the chromatin landscape across cell lines (Thurman et al., 2012),
tissues (Roadmap Epigenomics Consortium et al., 2015), and, most recently, tumor tissues
(Corces et al., 2018). In PC, the study by  Corces et al. uncovered chromatin accessibility
changes  at  single-nucleotide  polymorphism  that  are  associated  with  increased  PC
susceptibility and illustrated androgen receptor (AR) binding site enrichment in regulatory
regions  specific  to  primary  PC  (Corces  et  al.,  2018).  A  recent  epigenetic  study  further
demonstrated an association between prostate lineage-specific regulatory elements and PC
risk loci and somatic mutation density in different stages of PC  (Pomerantz et al., 2020).
Binding of AR prominently occurs at distal regulatory elements (Massie et al., 2011; Yu et
al., 2010), and AR-driven regulatory programs are context-dependent (Sharma et al., 2013;
Wang et al., 2009)(Pomerantz et al., 2020)(Sharma et al., 2013; Wang et al., 2009). In PC
cells, AR (Urbanucci et al., 2012; Yu et al., 2010), FOXA1 (Adams et al., 2019; Parolia et al.,
2019; Sahu et al., 2011), HOXB13 (Chen et al., 2018; Pomerantz et al., 2015), ERG, and
CHD1 (Augello et al., 2019) have emerged as epigenetic drivers of disease (Stelloo et al.,
2018). More specificly, ERG fusion-positive tumors have a cis-regulatory landscape that is
distinct from other tumors (Kron et al., 2017), and aberrant ERG expression has been shown
to  alter  chromatin  conformation  and  regulation  in  prostate  cells  (Rickman  et  al.,  2012;
Sandoval et al., 2018; Yu et al., 2010).

To gain insight into the role of the chromatin dynamics in determining phenotypes in PC
progression, we analyzed chromatin accessibility in a cohort of clinical patient samples of
human PC from benign prostatic hyperplasia (BPH), untreated primary prostate cancer (PC),
and locally recurrent castration-resistant prostate cancer (CRPC). By integrating DNA, RNA,
protein, and DNA methylation data (Annala et al., 2015; Latonen et al., 2018; Ylipää et al.,
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2015) from the same samples, we provide a comprehensive catalogue of  chromatin-related
alterations in PC development and progression. Our results highlight high heterogeneity of
regulatory  elements  utilization,  complementarity  of  chromatin  accessibility  with  DNA
methylation, and extensive chromatin-driven reprogramming of the AR activity. In this study,
we uncover putative regulatory elements for 65% and 85% of progression-related genes and
proteins, respectively. 

Results

ATAC-seq data from human prostate tissues

To  study  the  chromatin  landscape’s  role  in  PC  development  and  progression,  we  first
optimized the assay for transposase-accessible chromatin using a sequencing (ATAC-seq)
protocol  (Buenrostro  et  al.,  2013) for  frozen tissue samples.  We characterize  chromatin
accessibility  in  11 BPH, 16 PC,  and 11 CRPC  prostate tissue samples (see  Methods,
Supplementary Table 1). In earlier studies, we have analyzed these same samples using
DNA,  RNA,  and DNA methylation  sequencing  and SWATH proteomics  (Supplementary
Table 1) (Latonen et al., 2018; Ylipää et al., 2015). Here, these data types were integrated
with the ATAC-seq data (Figure 1A). ATAC-seq data depth varied from 69 to 204 million
reads  per  sample.  Quality  control  illustrated  that  there  was  no  significant  association
between the sequencing depth and key quality parameters such as transcription start site
(TSS) enrichment or  number of detected peaks (Supplementary Figure 1A-C).  On the
contrary,  we  observed  a  good  correlation  between  high  quality  autosomal  alignments
(HQAA) and TSS enrichment, indicating a good signal to noise ratio. 

Chromatin accessibility at distal sites is heterogeneous in prostate cancer

To  identify  accessible  and  progression-related  chromatin  features,  we  used  two
complementary  approaches.  In  the first  approach,  accessible  chromatin  regions in  each
sample were identified by peak calling using MACS2 peak calling algorithm (Zhang et al.,
2008). We identified 23,840 to 138,942 raw peaks per sample (Supplementary Table 1).
The  number  of  detected  peaks  was  not  characteristic  to  a  specific  sample  group,  but
samples with high and low peak count were observed throughout BPH,  PC, and CRPC
groups (Figure 1B). To obtain a robust set of reproducible peaks across samples, we used a
previously proposed approach to unify raw peak calls (see Methods)(Corces et al., 2018).
This  approach  resulted  in  the  compilation  of  178,206  peaks  across  the  sample  set
(Supplementary Table 1).  This  is  consistent  with previous estimates for  the  number  of
cancer  type-specific  peaks  in  chromatin  accessibility  data  (Corces  et  al.,  2018).  In  the
second approach, we performed genome-wide analysis to identify differentially accessible
regions  (DARs)  by  comparing  samples  in  BPH  to  PC  and  PC  to  CRPC  groups  (see
Methods). As a result, we identified 1,727 and 3,498 differentially accessible regions (DARs)
for BPH to PC and PC to CRPC, respectively, with  false discovery rate (FDR) below 10%
(Supplementary Table 2). For peaks and DARs, a clear chromatin accessibility signal is
detected (Figure 1C, Supplementary Figure 2A) and DNA methylation is depleted (Figure
1C, Supplementary Figure 2A) consistent with previous studies reporting decreased DNA
methylation at accessible chromatin loci (Corces et al., 2018; Urbanucci et al., 2017). 

Of the 180,442 identified chromatin features, 72% overlapped with regulatory regions found
in normal tissues  (Corces et al., 2018; Roadmap Epigenomics Consortium et al., 2015) or
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TCGA data  (Corces et al., 2018; Roadmap Epigenomics Consortium et al., 2015) (Figure
1D). The overlap was consistent for both peaks and DARs (Supplementary Figure 2B).
TCGA data included 20 primary PC samples and within these samples 65.8% of their peaks
overlap  with  our  peak  set.  Taken  together,  our  data  showed  consistency  with  earlier
chromatin accessibility studies and we were able to expand the known regulatory landscape
by discovering 38,157 new prostate cancer related chromatin features. 

Of  all  identified  chromatin  features  7.4%  were  in  promoters,  6.6%  were  in  exons  and
untranslated  regions,  39.3%  were  in  introns  (51.8%  overlapping  previously  marked
enhancers), and 46.7% were intergenic (32.5% overlapping previously marked enhancers)
(Fishilevich et al., 2017) (Figure 1D). Peaks and DARs were distributed similarly, except for
the promoter region in which 7.4% of the peaks but only 1.9% to 2.4% of the DARs were
located  (Supplementary  Figure  2B).  Furthermore,  the  peaks  located  at  promoters  had
higher  signal  intensity  than  peaks  in  other  genomic  annotation  groups  (Supplementary
Figure 2C-D).  In addition,  60% of the peaks common to all  the samples are located on
promoters (Figure 1E, Supplementary Figure 2E). When assigning the peaks to a sample
group or groups based on if they are present in a specific sample (Figure 1F), we observed
that most peaks are not group-specific. For the peaks assigned to each sample group, the
annotation  distribution  is  similar  (Supplementary  Figure  2F).  Importantly,  we  did  not
observe any peaks that would be group-specific and present in all the samples of that group
(Supplementary  Figure  2G).  These  data  show that  while  promoters  are  robustly  open
across samples, accessibility at other genomic regions is highly variable between samples
and  sample  groups.  This  indicates  that,  while  accessibility  remains  robust  during  PC
progression, most of the chromatin alterations occur at intronic and intergenic regions.
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Figure 1: Chromatin accessibility in promoters is robust during prostate cancer 
progression
A. Cartoon illustration of ATAC-seq data analysis. After (1) generating ATAC-seq data from
human prostate tissues, we (2) identified peaks and differentially accessible regions (DARs)
between BPH, PC and CRPC groups.  We (3)  compared chromatin accessibility  to  DNA
methylation  and  (4)  gene  and  protein  expression.  Next,  we  associated  (5)  accessible
chromatin regions with correlating target genes within the same topologically  associating
domains  (TADs).  Finally,  (6)  transcription  factor  binding  at  accessible  chromatin  was
analyzed  using TF footprinting,  integration  with ChIP-seq data,  and using deep learning
models to uncover binding context. B. Boxplots of the number of raw peaks in each sample
(grey dots)  in  BPH,  PC,  and CRPC groups are shown.  Peak counts in  each group are
comparable.  C. Background-corrected coverages from ATAC-seq data  at  peak locations
show a strong signal. Background-corrected DNA methylation data in the same locations is
slightly depleted. Distances are relative to peak center. Median signals from BPH, PC, and
CRPC samples are shown.  D. Chromatin features are ordered in the donut plot based on
their annotation to genomic location categories: intergenic, intron, promoter, and exon and
untranslated  regions  (5’-UTR,  3’-UTR,  transcription  termination  sites,  non-coding  RNA).
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Majority of the features are located in intergenic and intronic regions. For each category, the
proportion  of  previously  identified  areas of  accessible  chromatin  (Roadmap and TCGA),
known enhancer regions (GeneHancer), and detected TF binding sites from ChIP-seq data
(GTRD) are shown. Fraction of chromatin features belonging to each region is shown in the
donut plot with percentages given in labels. E. The proportion of peaks located in genomic
location categories is shown for peaks present in the different number of samples. Most
consistently observed ATAC peaks are located at promoters, and peaks in the distal regions
are more heterogeneous across the samples.  F. Percentage of peaks in different sample
group combinations. Although the majority of peaks are present in samples from all three
sample groups, a subset of peaks are sample group-specific. 

Progression-related chromatin alterations are consistent 

Having  characterized  chromatin  features,  we  looked  into  its  alterations  over  disease
progression.  Comparing  DARs in  BPH to  PC and  PC to  CRPC we  found  little  overlap
(Figure 2A) suggesting that differential accessibility-related chromatin changes are specific
to PC initiation and to progression of CRPC (Figure 2B, Supplementary Figure 3A). DARs
in  PC  to  CRPC  comparison  show  a  clear  increase  in  untranslated  and  exon  regions
(Supplementary  Figure  2B,  Supplementary  Figure  3B).  These  loci  are  not  usually
reported to harbor gene regulatory elements, but this combined with the finding that CRPC
samples  show  more  opening  DARs  than  the  other  group  (Figure  2A, Supplementary
Figure 2B) may reflect overall chromatin relaxation (Urbanucci et al., 2017) or events related
to chromatin reorganization.

Using  methylated  DNA immunoprecipitation  sequencing  (MeDIP-seq)  data  on  the  same
clinical samples, we also called progression-related differentially methylated regions (DMRs)
(see Methods). Comparing BPH to PC and PC to CRPC, we found 2,061 and 2,723 DMRs
(Supplementary Table 2, Figure 2C). Comparing DARs and DMRs, we detected only 13
(0.6%) and 23 (0.8%) overlapping features  in each comparison(Figure 2C, Supplementary
Figure 2B, Supplementary Figure 3C, Supplementary Table 2). Little overlap between
DARs and DMRs suggests that regulation of chromatin accessibility and DNA methylation
might  work  as  distinct  epigenetic  regulatory  mechanisms  in  PC,  affecting  different
transcriptional outputs.  

Heterogeneity  in  chromatin  accessibility  is  associated  with  disease-relevant
regulators

As most of the observed chromatin alterations occur at intronic and intergenic regions, to
understand  how the  heterogeneity  of  chromatin  relates  to  disease  progression,  we  first
focused on the cancer-specific peaks (Figure 1F) with highest variance in signal across the
samples. This includes mostly peaks distal from TSS, whilst promoter peaks are depleted in
this set (Supplementary Figure 3D). Unsupervised analysis of these peaks (see Methods)
separated the samples in three clusters containing 273 to 1655 peaks, but failed to separate
PC and CRPC samples in a data-driven manner (Figure 2D, Supplementary Figure 3E).
The three clusters did not correlate with tumor class/state, Gleason score, or ERG fusion
status.  However,  the  peaks separated in  seven clusters based  on consensus clustering
(Supplementary Figure 3F). Enrichment analysis using TF binding site predictions in each
of the seven peak clusters was used to evaluate whether these contained regulatory regions
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for specific TFs (Supplementary Figure 3E, Supplementary Table 1). Interestingly, each
peak cluster is associated with DNA binding of different PC-related TFs. ERG-enriched and
AR-  and  FOXA1-enriched  clusters  showed  a  similar  activity  pattern  across  samples.
Likewise epithelial to mesenchymal transition (EMT) associated Wnt/β-Catenin signaling and
TEAD1 and SNAI1 clusters behave similarly (Odero-Marah et al., 2018; Zhou et al., 2016).
AR pioneering factors GATA2 and HOXB13 (Hankey et al., 2020; Pomerantz et al., 2015)
were enriched into the same cluster, which showed the highest accessibility in the CRPC-
rich sample group. Other clusters represent sample specific signals, for example, immune
response related TFs were highly accessible only in one CRPC sample, possibly due to the
patient’s immune response. 

To further study the effect of chromatin accessibility variation on TF activity, we performed
TF footprint analysis in each sample for expressed TFs with available binding motif (see
Methods,  Figure 2E, Supplementary Table 3). Quantification of TF footprint by “flanking
accessibility” (FA) and “footprint depth” (FD) allows the study of TF activities in a genome-
wide manner (Baek et al., 2017). For the majority of TFs, FA and FD correlate. Notably, we
do not detect any TF e.g. with low FA and high FD. Several disease relevant TFs, including
AR and FOXA1, are among the ones with largest change in FA and FD during progression
(Figure 2E). AR, and related co-factors FOXA1, and HOXB13 have similar Tn5 insertion
patterns with the highest accessibility in PC (Figure 2F) while ERG accessibility is similar in
all sample groups. During progression to CRPC, CTCF displays a large change in FA which
might reflect relaxation or other alterations of chromatin structure. 

Taken together, these results highlight a highly heterogeneous chromatin landscape across
samples, and demonstrate that the observed regulatory patterns are associated with known
disease-relevant processes and regulators. Furthermore, changes in disease relevant TF
activities are consistent over progression.

Similar TF binding syntaxes are conserved  across tumor samples

To  understand  if  the  heterogeneity  in  chromatin  accessibility  leads  to  variability  in   TF
binding  syntax,  we  utilized  the  recently  developed  BPNET  model  (Avsec  et  al.)(see
Methods).  BPNET  builds  predictive  models  of  chromatin  accessibility,  and  recursively
decomposes the output to assign base-pair contribution scores to every input sequence that
can be combined to obtain binding syntax motifs. We tested the model with cell line data and
were able to discover highly  detailed binding patterns,  e.g.  different  forms of  known AR
binding  configuration,  demonstrating  the  feasibility  of  the  approach  with  ATAC-seq  data
(Supplementary Figure 4). With application to data from patient samples we observed that
model  performance  is  dependent  on  both  the  signal-to-noise  ratio  and  the  number  of
available training peaks (Figure 2G).  When we trained the model  on individual  samples
using the whole  reproducible  peak set,  we were able  to recover  motifs  that  match with
known  TFs,  including  AR,  FOXA1,  CTCF,  GRHL2  and  SP  family  (Figure  2H,
Supplementary Table 3). Despite high heterogeneity in peaks across samples, detected
binding syntaxes are consistent. When performing model training using only peaks with a
known DNA binding site (see Methods) for key TFs AR, FOXA1, or HOXB13, we observed
a consensus binding motif for all tested TFs across high quality samples (Supplementary
Table 3, Supplementary Figure 5-8). This observation further supports the idea that TFs
binding  properties  do  not  change  despite  heterogeneity  in  chromatin  accessibility.  In
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addition, we were able to identify disease state-related factors co-occurring with selected
driver TFs (Supplementary Table 3, Supplementary Figure 5-8).

Figure 2: Differential accessibility is concentrated on regulatory regions
A.  Venn diagram showing  the  numbers  BPH to  PC and  PC to  CRPC DARs and  their
overlap. Only a small portion of DARs are shared between comparisons.  B.  Clustering of
samples using ATAC-seq signal of DARs separates them into BPH, PC, and CRPC groups,
and identifies progression-related chromatin accessibility patterns. Scale bar shows log2 of
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normalized ATAC-seq signal.  Pearson correlation  was used as the distance metric,  and
linkage  was  calculated  using  the  Weighted  Pair  Group  Method  with  Arithmetic  Mean
(WPGMA) algorithm. C. Donut plots show genomic location categories for DMRs from BPH
to PC and PC to CRPC comparison groups. Rings show whether DMR is hypermethylated
or  hypomethylated and whether  it  is  located in  a known CpG-island (within  +/2kb).  The
outermost wedges show overlap with opening and closing DARs. In labels, percentages are
given for BPH to PC and PC to CRPC DMRs, respectively. Differential accessibility and DNA
methylation during progression occur at distinct loci. D.  Unsupervised clustering of cancer-
specific peaks shows clear clusters but fails to separate PC samples from CRPC samples.
E. TF footprinting based on Tn5 transposase insertion sites was done for all expressed TFs
with HOCOMOCO motif to quantify flanking accessibility and footprint depth. Averages from
BPH, PC, and CRPC samples are shown and transitions in footprinting space (BPH to PC in
green, PC to CRPC in red) are illustrated for PC-related TFs and those with the largest
change between groups. Mean change is shown in the inset.  F. Detailed TF footprints for
key TFs AR, FOXA1, HOXB13, and ERG to illustrate the change in chromatin accessibility
during progression. Quantification of footprint depth and flanking accessibility are shown in
the  insets.  G.  Motif  discovery  with  BPNET  correlates  with  the  signal  to  noise  (TSS
enrichment) and the number of peaks used in training. H. Example of discovered motifs with
BPNET on high quality sample PC_9324.

Distal regulatory elements accessibility correlate with expression of disease relevant
genes 

To gain insight into the functional role of accessible chromatin, we integrated ATAC-seq data
with  RNA  and  protein  expression  data  from  the  same  samples  (see  Methods).  While
promoter accessibility was consistent across samples, correlation between gene expression
and transcription start sites (TSS) accessibility is very moderate (Spearman correlation ρ =
0.11 and ρ = 0.04 for RNA and protein data, respectively; Figure 3A, Supplementary Table
4).  Analysis  of  gene  groups  with  different  expression  levels  (high,  moderate,  low,  and
housekeeping  genes)  suggests  that  this  is  due  to  promoters  of  expressed genes  being
mostly open in basal state (Figure 3B). However, differential chromatin accessibility at TSS
and differential expression between groups are still co-occurring. For differentially expressed
(D.E.)  genes in  the BPH to PC comparison,  we observed an enrichment  of  genes with
association between accessibility and expression (Fisher’s exact test p < 10 -16, Figure 3C).
These included several PC-related oncogenes such as AR, MYC, and BCL11A (Figure 3D).
In the PC to CRPC comparison, there was an enrichment of genes in which TSS closing was
associated with decreased expression (Fisher’s  exact  test  p = 9.19 *  10-16,  Figure 3C).
Overall, from the promoter-proximal regions (-1kbp/+100bp), we detected 418 peaks, one
BPH to PC DAR, and 9 PC to CRPC DARs with strong correlation (|correlation coefficient| >
0.5) to expression for the adjacent gene (Supplementary Table 4). For the PC to CRPC
comparison, eight out of nine DARs showed increased accessibility.  The remainder DAR
shows reduced accessibility in CRPC and is  located in the promoter of the MIR30A gene,
which codes for a tumor suppressor miRNA  (Jiang et al., 2018) downregulated in CRPC
(log2 fold change  -1.2389, Spearman ρ = 0.7 p = 6.18*10-5). Thus, while global correlation is
moderate,  the  expression  of  several  disease-relevant  genes  is  strongly  correlated  with
promoter  accessibility,  suggesting  reconfiguration  of  the  promoter  state  during  disease
progression. 
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Next, we focused on understanding how  distal accessible chromatin sites, that vary the
most across the sample set, associate with gene expression changes. Co-regulated genes
are  found  within  topologically  associating  domains  (TAD,  (Pombo  and  Dillon,  2015)).
Therefore, to limit the target gene associations to a biologically meaningful context, we used
previously  published annotations  of  TADs  (Pombo and Dillon,  2015) from PC cells  (see
Methods). Within these TADs boundaries, we identified all peak-gene and DAR-gene pairs
with  a  strong  correlation  (see  Methods,  Supplementary  Figure  9).  All  together  9.6%
(17,066) of all peaks and 25.4% (1300) of DARs were assigned to putative target genes
based on correlation (Supplementary Table 4),  including 8977 unique genes from 1871
TADs. We found that 29.6% of PC to CRPC DARs correlate with gene expression while only
16.4%  of  BPH  to  PC  DARs  correlate.  Ingenuity  Pathway  Analysis  (IPA)  performed
separately for genes associated with either DARs or peaks showed several PC-related and
cancer-related pathways enriched (Supplementary Table 4), demonstrating that chromatin-
related changes reflect disease-relevant target gene alterations.

When looking into associations with specific PC genes, we found 5 PC to CRPC DARs and
48 peaks with strong correlation to  AR expression (Figure 3E,  Supplementary Table 4).
DARs correlated with AR expression are located within 2 Mbp region around the AR locus,
indicating regulatory potential throughout the TAD area. These DARs harbor binding sites for
key TFs including AR, FOXA1,  HOXB13, and ERG (Figure 3E). Peaks correlating with AR
expression are mainly upstream of TSSs (41/48) (Figure 3E). Identified peaks include an
enhancer known to be amplified in advanced PC ((Takeda et al., 2018; Viswanathan et al.,
2018)).  The expression of  42 known oncogenes (e.g.  EGFR, ERBB2,  JUN, FGFR1 and
FGFR2), 27 tumor suppressor genes (e.g.  NOTCH1, BRCA1, BRCA2, IL2) and 22 genes
related to chromatin regulation (e.g.  HDAC1, HDAC2, HDAC5, HDAC6, HDAC9, HDAC10,
and  SMARCD1)  correlated  with  the  chromatin  accessibility  of  at  least  one  peak
(Supplementary  Table  4).  In  addition,  the  expression  of  4  oncogenes  (JUN,  PIM1,
CARD11, and TFG), 5 tumor suppressor genes (PTEN, NOTCH1, CDK6, FH, and WT1) and
2 factors involved in chromatin regulation (HDAC7 and CHRAC1) were strongly associated
with DARs  irrespective of the comparison group (Supplementary Table 4).

Analyses of distal and promoter areas identified 418 associations from TSS signal to gene
expression as well as 27,353 peak–gene and 3,513 DAR-gene pairs. Expression-associated
areas of chromatin accessibility are mostly located close to TSSs (median distance 4.7 kbp
upstream of TSS) (Figure 3F). Also, 45.8% (4,124) of genes with expression correlating with
chromatin accessibility are linked to exactly one regulatory element, while 97 genes (1.07%)
can be associated to 30 or  more regulatory  elements  (mean= 3.4,  Figure 3F,  middle).
Likewise, 72.4% (13,359) of peaks or DARs correlating with gene expression are associated
with a single gene and 35 are linked to 30 or more unique genes, indicating that those might
be regulatory hubs (mean=1.7,  Figure 3F, right). Taken together, we could associate at
least  one  peak  or  DAR  to  45.5%  of  genes  and  30.8%  of  proteins  (Figure  3G,
Supplementary Table 4). When focusing on the genes with differential expression patterns,
62.4% and 84.7% of genes and proteins were associated, respectively. As reported earlier,
correlations at  the transcript  and protein levels  are not  consistent  (Latonen et  al.,  2018;
Sinha  et  al.,  2019),  but  both  data  levels  support  the  conclusion  that  the  majority  of
differential  expression  in  progression-related  genes   can  be  correlated  with  chromatin
accessibility.
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Figure 3: Distal features detected by ATAC-seq are correlated with gene expression in
prostate cancer samples
A.  Correlation between TSS chromatin accessibility and gene expression is moderate at the
genome-wide scale.  Density  plot  of  Spearman correlation coefficient  between gene (top,
median=0.11)  or  protein  (bottom,  median=0.04)  expressions  and  normalized  ATAC-seq
signal at the TSS. B. ATAC-seq background-corrected coverage on TSS. TSSs are grouped
based on expression of the gene (high, middle, and low (see  Methods)) or annotation to
housekeeping genes. Chromatin of expressed genes is accessible at TSS. Low expression
genes  show  minimal  chromatin  accessibility.  C.  Differential  expression  and  chromatin
accessibility  have  positive  association.  Scatter  plots  visualize  the  association  between
differential RNA expression and TSS accessibility in BPH to PC (top panel) and PC to CRPC
(bottom panel) comparisons. Differentially expressed genes are shown in red. Gray and red
lines  show regression  lines  fitted  to  their  corresponding  data  points  to  demonstrate  the
association between data types. Selected oncogenes are labeled. Numbers in the corners of
each quadrant of the scatter plot report counts of differentially expressed and total  genes.
Differentially  expressed  genes  are  enriched  for  opening  chromatin  and  increased
expression,  and closing and decreased expression in  BPH to PC comparison.  In PC to
CRPC comparison, enrichment is seen only in closing and decreased expression quadrant.
D.  Correlation  between  chromatin  accessibility  and  gene  expression  for  the  selected
oncogenes  demonstrate  increasing  (AR,  MYC)  and  decreasing  (BCL11A)  accessibility
during progression. For AR, outlier chromatin accessibility is observed for samples with high-
level  amplification identified from DNA-seq data (CRPC_278,  CRPC_541).  E. Correlation
analysis between chromatin accessibility and gene expression identifies putative regulatory
elements. In total 48 peaks and 5 DARs are detected in a 2 Mbp TAD region around the AR
locus. Known associations from GeneHancer database are shown in red. Binding sites for
selected TFs from GTRD database within associated DARs are shown. Red arrow indicates
a peak detected at recently reported AR enhancer locus. F. Characterization of correlations
shows that  associations between regulatory elements and genes are specific.  Left  panel
shows the distance of correlating chromatin features from TTS. Middle panel indicates the
number of chromatin features mapped to each gene. Finally, the last panel gives the number
of genes mapped to each chromatin feature. Summary statistics are given in the insets.
Mean, median, and maximum upstream (max up) and downstream (max down) distances
are reported for the distance distribution. For the middle and right panels, mean, median,
upper  quartile  and  maximum  number  of  associations  are  reported.  G. Summary  of  all
correlation  analyses.  Fraction  of  genes and proteins  correlating  with  ATAC-seq features
across all analyses is reported. Data for all and differentially expressed gene subsets are
shown.

Chromatin accessibility alterations during disease progression are associated with
different transcription factors regulatory modules

To gain understanding on how the chromatin accessible sites direct transcriptional programs
during PC progression, we generated TF–gene expression regulatory network. TFs were
connected to their target genes through known binding sites in accessible chromatin regions
(see  Methods).  We focused this  analysis  specifically  on DARs that  correlate  with  gene
expression  (Figure  4A).  From  the  TF-gene  network  that  we  generated,  we  identified
regulatory modules, defined as a set of TFs that share a set of target genes (see Methods).
Two clear modules with 1082 and 799 target genes emerged from the analysis. The module
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with the largest  number of  target  genes represents the well-characterized AR regulatory
program, including AR, FOXA1, and ERG (Figure 4B, Supplementary Figure 10A). The
second module contains a number of TFs with known function in driving aggressive prostate
cancer e.g. glucocorticoid receptor (NR3C1) as well as TF coding genes MYC, HOXB13,
GATA2, NKX3-1, and PGR (Chen et al., 2018; Grindstad et al., 2018; Isikbay et al., 2014;
Koh et al., 2010; Rodriguez-Bravo et al., 2017). Surprisingly, genes targeted by this second
module are a subset of AR module target genes (Figure 4C). We validated this by repeating
the analysis using peaks instead of DARs (Figure 4D, Supplementary Figure 10B-D). IPA
analysis  of  target  genes  confirmed  AR  as  an  upstream  regulator  for  both  modules
(Supplementary Table 4), but in the second module, AR activity is predicted to be inhibited.
This suggests that this second TF module could compensate for reduced AR activity e.g.
due to androgen deprivation treatment. This was clearly shown for glucocorticoid receptor
which is upregulated in CRPC especially resistant to enzalutamide treatment  (Arora et al.,
2013).

To elucidate the interplay of TFs in more detail, we performed a comparative analysis of TF
binding sites, identified from prostate cancer cells,  in opening and closing DARs (Figure
4A). In DARs from BPH to PC comparison AR, FOXA1 and HOXB13 binding sites are the
most abundant and are co-occurring within 53.1% and 2.1% of  opening and closing AR
sites,  respectively  (Figure 4E,  Supplementary Figure 10E).  In PC to CRPC DARs,  we
observed  the  opposite  pattern  with  1.6% and  36.1% of  opening  and  closing  AR  sites,
respectively  (Figure  4F,  Supplementary  Figure  10E).  Again,  we  observed  consistent
correlations  when repeating the analysis  using peaks instead of  DARs (Supplementary
Figure 5F). These results suggest that chromatin opening in PC remains mostly accessible
also in CRPC and harbour AR binding sites. Moreover, in CRPC new chromatin opening
events enable additional TFs to bind the regulatory regions (Supplementary Figure 10G-H).
Concomitantly, in CRPC several AR binding sites are closing, consistent with reduced AR
activity in CRPC samples (p=0.02, Supplementary Figure 10I).

To test whether the chromatin in CRPC is selectively closed in AR binding sites related to
canonical AR regulation, we used publicly available cell line data (Massie et al. 2011). To
study  the  interplay  between AR chromatin  binding,  androgen  stimulation  and  chromatin
accessibility we evaluated the overlap between androgen-induced AR binding sites in cell
lines and DARs (Figure 4G, Supplementary Figure 11A). The majority of DARs are open
in BPH to PC and closed in PC to CRPC comparison, which confirms our hypothesis that the
canonical AR regulation is suppressed during progression to CRPC. In agreement with this
observation, more PC-specific ATAC-seq peaks overlap these AR binding sites than CRPC-
or BPH-specific peaks (Supplementary Figure 11B). We also note that the AR binding site
locations  from the cell  line have most accessible  chromatin in  PC samples (Figure 4H,
Supplementary Figure 11C-F).
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Figure 4: Disease progression alters prostate cancer-specific transcription factor 
binding site accessibility and regulatory programs
A. Donut plots showing numbers of gene expression correlating DARs in BPH to PC (left)
and PC to CRPC (right) comparisons. Shown are also percentages of opening and closing
sites and whether they harbour TF binding sites as characterized in the GTRD database. B.
Hierarchical clustering of TF  gene expression network uncovers two groups of TFs: a core
cluster  composed of AR, ERG, FOXA1 and ESR1, and a second cluster  sharing a high
number of target genes with the AR core cluster. Complete linkage and euclidean distance
were used in clustering. Scale bar encodes the number of shared genes. C. Venn diagram
shows that the two TF clusters indicated in B share a substantial amount of target genes. D.
Repeating the intersection analysis with genes linked to peaks, a similar pattern as in C is
observed.  E. Oncoprints illustrate 15 TFs with the highest number of binding sites (taken
from GTRD prostate cancer subset) overlapping with gene expression correlating DARs.
Panels  represent  sites  from BPH to  PC opening  (top)  and  closing  (bottom)  DARs.  AR
binding sites are present in almost all  (92%) opening sites in this comparison.  F.  Similar
oncoprints as in E but for PC to CRPC opening (top) and closing (bottom) DARs. In this
comparison, most of the closing sites (92%) include AR binding sites G. Androgen-induced
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AR binding sites taken from Massie et al. 2011 within DARs are present in opening regions
in  BPH  to  PC  comparison  and  in  closing  regions  in  PC  to  CRPC  comparison. H.
Background-corrected ATAC-seq coverage of AR binding sites from androgen-treated (DHT)
cells (Massie et al. 2011) is stronger in PC samples than other sample groups.

Discussion

In this study we integrated for the first time data on chromatin accessibility, DNA methylation,
transcriptome,  and  proteome in  clinical  BPH,  PC,  and CRPC tissue samples.  We used
ATAC-seq to define a catalogue of accessible genomic regions and to characterize changes
in chromatin accessibility during PC progression. The identified open chromatin regions are
consistent with previous chromatin accessibility studies (Roadmap Epigenomics Consortium
et al., 2015); (Corces et al., 2018). Furthermore, the number of detected peaks is consistent
with earlier  predictions of  cancer type-specific  peaks  (Corces et  al.,  2018). Our analysis
extended  the  known  chromatin  landscape  by  38,157  reproducible  previously  uncovered
accessible  chromatin  sites  specific  for  PC.  The  majority  of  these  sites  have  previously
reported TF binding activity.  

The chromatin accessibility  of  PC shows inter-sample heterogeneity.  While  we observed
consistent accessibility at promoter regions during disease progression, accessibility does
not correlate well with gene expression at the genome-wide level. As gene expression is
regulated by the repressive or activating functions of the TFs binding to the promoters and
distal regulatory elements, it is clear that promoter accessibility signal alone cannot be highly
predictive  of  expression,  as  reported  also  by  several  earlier  ATAC-seq  studies  across
different systems (Rajbhandari et al., 2018; Scharer et al., 2018; Toenhake et al., 2018; Wu
et al.,  2018). This  also highlights the important  role of enhancers and their  regulation in
driving  tumor  development  and  progression.  We  did  observe  strong  correlation  with
promoter or putative enhancer accessibility to gene expression for a subset of PC-related
genes. At least one putative accessible regulatory element was found for 62.4% of protein
coding genes and 84.7% of proteins with a differential  expression. The majority of these
regulatory elements are from the peaks and DARs that correlate with genes within the same
TAD,  providing  a  rich  resource  of  candidate  genes  and  regulatory  elements  for  future
investigation. 

Still, a large fraction of putative regulatory regions could not be associated with genes. This
might be explained by our utilization of stringent criteria for detecting target genes because
of the limited cohort size. In addition, we used predefined TAD structure in the analysis and
thus,  our  analysis  could  not  detect  associations  resulting  from  altered  TAD boundaries
(Taberlay  et  al.,  2016).  Furthermore,  many  of  the  identified  regions  might  contribute  to
functions  other  than direct  regulation  of  gene expression.  For  example,  it  is  known that
higher order chromatin structure alterations may occur in PC tumorigenesis  (Gerhauser et
al., 2018), such as chromatin compartment formation and looping  (Gerhauser et al., 2018;
Rowley et al., 2018; Weischenfeldt et al., 2017). We did observe a large number of CTCF
binding sites in peaks and DARs that may partially reflect these phenomena. Moreover, the
majority  of  DARs  in  BPH  to  PC  and  PC  to  CRPC  were  opening  (84.3%  and  63.2%,
respectively), supporting the idea that chromatin in PC initiation and progression undergoes
a process of continued relaxation (Urbanucci et al., 2017)(Braadland and Urbanucci, 2019). 
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Chromatin accessibility and DNA methylation had the expected inverse relationship at the
genome-wide level. The increase in the number of DMRs in the PC to CRPC comparison
was not as significant as the two-fold increase in the number of DARs. This indicates that
methylation-independent changes in chromatin accessibility are more prevalent during the
progression to CRPC. Furthermore,  DMRs and DARs overlapped in only a few regions,
suggesting  that  these  two  epigenetic  mechanisms  are  driving  different  transcriptional
regulatory programs. Earlier work has shown the interplay between chromatin modifications
and DNA methylation through interaction of EZH2 with DNA methyltransferases (DNMTs)
(Viré  et  al.,  2006).  Further  studies  are  needed  to  better  understand  how  differential
regulation of DNA methylation and chromatin accessibility are targeted.  

Integration of TF binding data and predictions with accessible chromatin areas allowed us to
analyze the regulatory programs that are associated with the identified peaks and DARs.
Analysis  of  TF  binding  patterns  demonstrated  that  despite  high  variability  in  chromatin
accessibility, the observed motifs and TF enrichments are consistent during PC evolution.
This suggests that there are a number of different chromatin configurations that can lead to
similar phenotypes. For instance, AR was identified among the top candidate regulators but
at  the  same  time,  the  AR  gene  was  one  of  the  most  targeted  genes  by  chromatin
remodelling during PC progression. A number of  sites with accessibility were present in the
genomic neighborhood of AR, including a previously reported AR-enhancer site, which was
shown  to  be  activated  by  structural  rearrangement  (Takeda  et  al.,  2018).  The  analysis
revealed that the interplay between AR, FOXA1, and HOXB13 TFs (Pomerantz et al., 2015)
was the most prominent PC initiation-associated transcriptional regulatory module. FOXA1 is
known to pioneer TFs binding to chromatin, including AR (Lupien et al., 2008) (Jozwik and
Carroll, 2012). HOXB13 is a prostate lineage-specific TF and germline alterations have been
shown to increase PC risk (Ewing et al., 2012). Previous studies with PC cell-lines identified
alternative AR programs in CRPC (Sharma et al., 2013; Wang et al., 2009). Here we were
able to show that this AR, FOXA1, HOXB13 program is initially activated in PC then depleted
during progression to CRPC, when it is substituted by  the activation of alternative regulatory
modules composed of  several TFs previously  reported to be important in progression to
CRPC. These  TFs  include  glucocorticoid  receptor,  known  to  have  a  role  in  developing
resistance to antiandrogens  (Arora et al., 2013), and progesterone receptor that has been
associated with disease progression (Grindstad et al., 2015, 2018). Overall, these analyses
demonstrate that epigenetic  chromatin reprogramming during CRPC progression enables
binding sites for disease driving TFs, in addition to AR. 

In summary, we demonstrated how transcriptional regulatory programs are altered in PC
progression by characterizing the chromatin accessibility  landscape and its alterations in
human PC tissue.  We reveal  regulatory  elements  that  are  activated  in  PC and  identify
putative regulators for known oncogenic and tumor suppressive genes. 

Methods

Sample collection

Fresh frozen tissue specimens were acquired from Tampere University Hospital (Tampere,
Finland). 11 BPH, 16 untreated PC, and 11 CRPC samples were used for ATAC-seq library
generation. BPH samples included were collected either by transurethral resection of the
prostate (TURP; n=4) or  radical prostatectomy (RP; n=7) (Supplementary Table 1).  PC
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samples were obtained by radical  prostatectomy. Locally  recurrent  CRPC samples were
obtained by transurethral resection of the prostate. Samples were snap-frozen and stored in
liquid nitrogen. Histological evaluation and Gleason grading was performed by a pathologist
based  on  hematoxylin/eosin-stained  slides.  All  samples  contained  a  minimum  of  70%
cancerous or hyperplastic cells.  The use of clinical  material was approved by the ethical
committee of the Tampere University Hospital. Written informed consent was obtained from
the donors.

Tissue sample processing 

Samples were cut from the frozen blocks as 2x50 µm sections. Nuclei were isolated from
these sections. All the steps were performed on ice. First 6 ml of ice cold lysis buffer (10 mM
Tris·Cl, pH 7.4, 10 mM NaCl, 3 mMMgCl2, 0.1% (v/v) Igepal CA-630, 1× protease inhibitors
(Roche, cOmplete)) was added to pre-cooled petri dish and sections were moved from tube
to petri dish with 1 ml of lysis buffer. Sections were cut into smaller pieces with a scalpel.
Buffer and sections pieces were moved to a 15 ml Falcon tube. Each sample was pulled
through a 16 G needle 15 times. Larger pieces were let to sink to the bottom. Supernatant
was moved into a new tube and centrifuged at 700 g for 10 min at 4 °C. Supernatant was
removed and the pellet  was dissolved in a PBS buffer. Nuclei  were counted and 50,000
nuclei were transferred to a new tube. Nuclei were pelleted by centrifugation at 700 g for 10
min at 4 °C. Supernatant was removed. 

Processing of cell lines

VCaP cells  were cultured in  culbecco’s  modified  eagle’s  medium with  10% fetal  bovine
serum and  1% L-glutamine.  Cells  were  harvested  using  trypsin  and  counted.  We  took
50,000 cells and centrifuged them at 500 x g for 5 min, 4°C. Cells were washed once with 50
µl  cold  1xPBS  buffer  and  centrifuged  again  with  the  same  settings.  Supernatant  was
removed and cells resuspended to 50 µl of cold lysis buffer followed by centrifugation with
the same settings. Supernatant was removed.  

ATAC-seq library generation and sequencing

ATAC-seq libraries were generated as presented earlier  (Buenrostro et al., 2013). Briefly,
transposition mix (25 μl 2× TD buffer, 2.5 μl transposase (Tn5, 100 nM final), 22.5 μl water)
was  added  to  the nuclear  pellet.  Reaction  was incubated  at  37 °C for  45 minutes  and
amplified using PCR. Samples were purified using Qiagen MinElute PCR Purification Kit and
again  using  Agencourt  AMPure  XP  magnetic  beads.  For  primer  sequences,  see
Supplementary Table 1. 

Samples  were  sequenced  using  Illumina  NextSeq  high  output  2x75  bp  settings.  Seven
samples were sequenced per run.  Number  of  obtained sequencing reads is  provided in
Supplementary Table 1. 

ATAC-seq data quality control, alignment, and peak detection

Raw  sequencing  reads  were  inspected  using  fastqc  version  0.11.7
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and subsequently trimmed with
Trim Galore version 0.5.0 (https://github.com/FelixKrueger/TrimGalore) using parameters --
fastqc --paired --length 20 -q 20. Sequence alignment was performed using Bowtie2 version
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2.3.4.1  (Langmead  and  Salzberg,  2012) against  GRCh38  reference  genome.  During
alignment, parameters --sensitive-local and -X 2000 were used. Additional filtering (-q 20),
sorting and indexing was done with Samtools version 1.8 (Li et al., 2009). Finally duplicates
were  marked  using  Picard  Markduplicates  tool  version  2.9.2
(http://broadinstitute.github.io/picard/),  with  parameters
VALIDATION_STRINGENCY=LENIENT and REMOVE_DUPLICATES=FALSE. For filtered
alignments, peak calling was done with MACS2 v2.1.0 (Zhang et al., 2008) using parameters
-g hs --llocal 160000 --slocal 147 -q 0.05 -f BAMPE --nomodel --broad --bgd --call-summits.
Final quality control was performed for aligned samples after peak calling using ataqv toolkit
(version 1.0.0, https://github.com/ParkerLab/ataqv).

Identification of artefact regions

As significant number of ATAC-seq reads originate from mitochondria, this can bias analysis
at loci which have homology to autosomal or sex chromosome sequences. To exclude these
regions  from the  analysis,  we  generated  100  copies  of  all  the  30-mer  sequences  from
mitochondrial  DNA  and  aligned  them  to  CRGh38  genome  reference  from  which
mitochondrial DNA had been excluded. Bowtie2 with --very-sensitive parameter was used.
Alignments were converted to bed ranges using bedtools version 2.27.1 genomecov and
merge tools (Quinlan and Hall, 2010).

ATAC-seq signal quantification

We binned the genome into overlapping windows of size 500 bp and steps of 250 bp. To
obtain  read  counts  in  each  window,  we  used  bedtools  coverage  -counts.  For  robust
quantification of the signal in loci of interest, background correction, normalization and bias
correction steps were performed. To obtain background corrected read count c for a given
window at position x, we used the following formula:

c (x )=max(0 ,(R(x )−max (Q1(P10 kbp(x)),Q1(P100 kbp(x)) ,Q1(Pc h r(x ))))) 

where R is the read count for the window at position x, P10kbp(), P100kbp(), and Pchr()  are lists of
read counts for all windows within the range of +/-5kbp, +/-50kbp, and chromosome arm,
respectively,  from  position  x,  excluding  the  window  at  position  x.  Q1 is  the  value
corresponding to the first  quartile.  This  correction compensates for  the variation in  local
background  between  samples  and  also  enables  detection  of  DARs  from  copy  number
aberrated genome areas (Supplementary Figure 12A).  After  background correction,  we
applied  the  median  of  ratio  normalization  (Anders  and  Huber,  2010),  where  sites  with
geometric  mean  below  1  were  excluded  from  the  calculation  of  the  ratios,  to  obtain
normalized read counts.

To compensate for potential bias due to sample collection procedure (RP and TURP), we
divided the samples in the two groups. In the TURP group, we randomly assigned 4 BPH
and 4 CRPC samples and in the RP group 4 BPH and 4 PC samples to keep the group sizes
fixed.  For  each  window,  we  applied  the  two-sided  Wilcoxon  rank-sum  test.  Random
assignment of samples and significance testing was repeated 100 times. If 5th percentile of
p-value distribution for a given window was less than p=0.01, we calculated the difference
between medians of all the TURP and RP samples normalized read counts and subtracted
this  difference  from all  the  TURP  samples  normalized  read  counts  (717930  sites  were
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corrected i.e.  6.5% of  all  sites).  Application  of  this  correction to normalized read counts
resulted in quantified ATAC-seq signal.  

Identification of the differentially accessible regions (DARs)

To identify DARs, we compared the samples from two different groups (BPH to PC or PC to
CRPC).  We  calculated  the  log2-ratio  of  the  median  value  of  each  group  (eg.
log2(median(PC) / median(BPH))),  absolute median difference between two groups (e.g |
median(PC) - median(BPH)|), and used the two-sided Wilcoxon rank-sum test of two groups.
For each window, we checked whether all the following 3 criteria were satisfied: |log2-ratio| >
2; p-value < 0.01; absolute-median-difference > 14. These thresholds were derived based on
false discovery rate (FDR) analysis and correspond to FDR 9.7% and 9.14% in BPH to PC
and PC to CRPC comparisons, respectively. If  the log2-ratio of a DAR was positive,  we
called it an opening DAR and if the log2-ratio of a DAR was negative, we called it a closing
DAR.   

Copy number aberration analysis

Raw sequencing reads from the whole  genome sequencing experiment (DNA-seq) were
aligned to the GRCh38 reference genome using Burrows-Wheeler Aligner (BWA) version
0.7.17  (Li and Durbin, 2009). Duplicate reads were marked using SAMBLASTER version
0.1.22 (Faust and Hall, 2014). Alignments were converted to BAM format and sorted using
Samtools. We used Segmentum (Afyounian et al., 2017) to perform copy number analysis
for the samples for which we had whole genome sequencing data (i.e. 4 BPH, 15 PC, 7
CRPC samples). Copy numbers were called using pooled BPH samples as reference with
the  following  parameters:  read  depth  were  extracted  for  windows  of  width  500  bp,
window_size=15, clogr_threshold=0.8, min_read=35, logr_merge=0.2. We used the reported
log2-ratios for each genomic segment from Segmentum’s result to infer the copy number of
that  segment.  This  data  was  used  to  confirm  that  quantified  ATAC-signal  was  not
confounded by copy number alterations (Supplementary Figure 12A).  

Identification of the differentially methylated regions (DMRs)

Methylated DNA immunoprecipitation  (meDIP)  sequencing  data was aligned  to GRCh38
using Bowtie2 (settings: --score-min L,0,-0.15.), alignments were converted to BAM format
and  sorted  using  Samtools.  Duplicated  reads  were  marked  with  Picard  Markduplicates.
Samtools was used to filter out the duplicate reads. Differentially methylated regions were
identified as described above for DARs using meDIP samples for which we had ATAC-seq
data available. In the median of ratio normalization step, sites with geometric mean below 2
were excluded from calculating the ratios. DMRs were called with criteria  |log2-ratio| > 2; p-
value < 0.01; absolute-median-difference > 10, corresponding to FDR 4.61% and 7.90% for
BPH to PC and PC to CRPC comparisons, respectively.  If  the log2-ratio of a DMR was
positive, we called it a hypermethylated DMR and if the log2-ratio of a DMR was negative,
we called it a hypomethylated DMR.

Compilation and quantification of the peak set

In order to compile a consensus set of peaks across all samples, we adapted the approach
from  (Corces et al., 2018). For each individual sample, we used the summits position of
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peaks called by MACS2 (Zhang et al., 2008) and extended them by +/- 250 bp to acquire the
raw peak set for that sample. Preliminary signal for each raw peak was obtained using the
above presented ATAC-seq signal  quantification.  If  a  raw peak was overlapping several
adjacent windows, the weighted average based on the amount of overlap between the peak
and overlapping windows, was used. For each sample, if there were overlapping raw peaks,
the raw peak with the highest  preliminary  signal  was selected.  To standardize the peak
signals across samples, these were further scaled in each sample by the sum of the signals

of all the peaks divided by 106 (i.e.  (∑
i=1

n

❑it h peak signal)/10
6where n is the number of raw

peaks in a given sample). Next, we pooled the peaks across all samples and removed their
overlaps  with the above approach using scaled signal  values.  Further,  we removed raw
peaks from the set if  they were only present in one sample. This resulted in a peak set
without overlaps. 

To quantify the peaks signal, we used the approach above at the peak coordinates. A peak
was removed from the peaks set,  if  all  samples had standardized signals below a data-
driven  threshold  (t=5)  for  that  peak  (Supplementary  Figure  12B).  Using  this  filtering
criterion, we removed 4,935 loci. Finally, 127 peaks overlapping the artefact regions were
removed. This resulted in a final 178,206 peak set for analysis.  

Quantification of chromatin accessibility at Transcription Start Sites (TSSs)

We extracted TSS coordinates  for  18,537 protein  coding genes and 1,471 miRNA (see
quantification of gene and smallRNA expression below) from Ensembl version 90. For each
gene and miRNA, we quantified chromatin accessibility within +/-500bp window from TSS
using  the  same  signal  quantification  approach  as  with  the  above  peak  set.  The  larger
window size  was  used  to  account  for  the  shape  of  the  ATAC  signal  at  the  TSS sites
(Supplementary Figure 1A).

Visualization of the coverage at peaks, DARs and DMRs

All boxplots show the quantified ATAC-seq signal at peak or DAR locations. In all boxplots,
the median is  shown with a green line  and mean with a red triangle.  Lower  and upper
whiskers have been set to first quartile (Q1) - 1.5*IQR (interquartile range) and third quartile
(Q3) + 1.5*IQR, respectively.

In coverage plots, we extended midpoints of loci of interest by +/-1.5 kbp. For the resulting
regions in each sample, we extracted the read counts in bins of size 10bp using  bedtools
coverage. Next, we subtracted an estimated global background from the read count of each
bin to acquire the background corrected read counts. To estimate the global background, we
randomly selected 50,000 loci of size 500 bp excluding those that overlap with the loci of
interest using bedtools random. We extended, binned and quantified each of these loci as
above. The global background was calculated by the arithmetic mean across all the binned
read counts from random loci.  In case of meDIP data, if a bin had a background corrected read
count above 50 across all samples, it was considered as an artefact region and the read counts
for that locus were set to zero. To generate sample-specific profiles, we calculated the arithmetic
mean  of  background  corrected  values  across  the  corresponding  bins  for  all  loci  of  interest.
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Finally, we calculated the median across the corresponding bins of sample-specific profiles
for each group (i.e. either BPH, PC, or CRPC).

Annotation of peaks and DARs and DMRs

We  annotated  the  loci  of  interest  using  annotatePeaks.pl  routine  from  Hypergeometric
Optimization of Motif EnRichment tool (HOMER; (Heinz et al., 2010)). We grouped regions
annotated  as  3'  UTR,  TTS,  non-coding,  5'  UTR,  and  exon  under  the  term  “Exon  +
untranslated”. We further annotated the loci of interest using  bedtools intersect  or  closest
with the following data sets. GeneHancer version 4.7 (Fishilevich et al., 2017) was used to
annotate known regulatory elements (enhancers and promoters) and predicted regulatory
region target gene associations. Pan-cancer peak set and PRAD peak calls from ATAC-seq
data  generated  from TCGA samples  (Corces  et  al.,  2018),  and  Roadmap Epigenomics
project  DNase-seq data  (Roadmap Epigenomics  Consortium et  al.,  2015) were used to
annotate previously identified accessible chromatin areas. Roadmap Epigenomics data was
downloaded  from  reg2map
(https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger_release/)  and  data
from  3  distinct  sets  of  regions  (i.e.  promoters,  enhancers  and  dyadic  regions)  were
combined. Duplicates were removed and LiftOver (Hinrichs et al., 2006) was used to convert
the GRCh37 coordinates to GRCh38 (only 0.03% of the sites were lost due to LiftOver). To
annotate  ATAC  features  with  experimentally  validated  transcription  factor  binding  sites
(TFBS), we downloaded the data from the Gene Transcription Regulation Database version
18.06 (Yevshin et al., 2019) which collects 5,068 ChIP-seq experiments and data from 846
unique TF. From the entire database,  we subset  GTRD ChIP-seq data for  binding sites
detected in  prostate cancer cell  lines  and use it  as a prostate-specific  set,  including 40
unique  TFs  from  1818  experiments.  We  assigned  TFBS  to  ATAC  features  using  R
findOverlaps function.

We checked the overlap between DMRs and the CpG islands using the information obtained
from  UCSC  genome  browser
(http://hgdownload.cse.ucsc.edu/goldenpath/hg38/database/cpgIslandExt.txt.gz)  by  using
bedtools closest. If the distance of a locus and its closest CpG island was below 2 kbp, we
marked that locus as a CpG island.

We retrieved a list  of  3,804 human housekeeping genes from  (Eisenberg and Levanon,
2013). We mapped gene names to Ensembl gene id version 90 using the R merge function.
The resulting list included 3,662 genes. 

Quantification of gene expression 

Previously  published  transcriptome  sequencing  data,  including  12  BPH,  30  PC  and  13
CRPC samples (Ylipää et al., 2015) was aligned to GRCh38 and quantified by STAR version
2.5.3a using Ensembl version 90 annotations. We obtained quantification of 58243 genes.
Samples  with high quality  data were matched with  ATAC-seq samples  (Supplementary
Table 1). Lower quartile value of expression distribution across all the samples was used as
a  threshold  to  remove  low  expressed  genes,  resulting  in  18537  protein  coding  genes
(mitochondrial excluded) available for the analysis. The DESeq2 version 1.20 Bioconductor
package was used to model the data and extract differentially expressed genes. We fit the
model taking into account both RNA isolation methods (Qiagen™ Trizol™ and Qiagen™ All
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Prep™) and stages of prostate cancer progression (BPH, PC, CRPC). To address the bias
introduced by different extraction protocol, we used coefficients estimated from the model
(Ylipää et al., 2015): we extracted coefficients for the RNA isolation method covariate using
DESeq2 coef function and subtracted these values from library size corrected read counts of
Trizol-treated samples in log2 scale. We detected differential expression in two comparisons,
BPH to PC and PC to CRPC. A gene was considered differentially expressed (D.E.) if the
absolute median difference of normalized read counts between the groups was greater than
180, the log2 fold change was greater than 1 and the FDR corrected p-value lower than
0.05. In the BPH to PC comparison and PC to CRPC comparisons 933 and 533 D.E. genes
were detected. If the log2-ratio of a D.E. was positive, we called it an overexpressed D.E.
gene. If the log2-ratio of a D.E. was negative, we called it an underexpressed D.E. gene.

Quantification of small RNA expression

Previously published small RNA sequencing data  (Ylipää et al., 2015) was re-analysed by
mapping  sequence  tags  to  human  sequences  from  mirBase  version  22.  We  mapped
sequencing tags allowing for single base deletion at the 3' or insertion at either 3’ or 5’.
Modified  sequences  mapping  to  the  same  mirBase  identifier  were  collapsed  and  their
abundance summed. This process yielded data for 1471 annotated miRNA sequences. The
resulting  data  matrix  was  normalized  using  median  of  ratios  normalization,  genes  with
geometric  mean  lower  than  15  were  discarded.  Differentially  expressed  miRNA  were
detected  in  BPH  to  PC  and  PC  to  CRPC  comparisons.  A  miRNA  was  considered
differentially expressed if showing a log2 fold change greater than 1 and a FDR adjusted t-
test p-value lower than 0.05. This analysis yielded 26 and 51 differentially expressed miRNA
for BPH to PC and PC to CRPC comparisons, respectively.

Protein expression data

We used our  previously  published  sequential  window acquisition  of  all  theoretical  mass
spectra (SWATH-MS) data and defined differentially expressed proteins as described earlier
(Latonen et al., 2018).

Quantification of AR activity score

AR  activity  score  was  determined  using  a  publicly  available  gene  expression  signature
composed of 27 genes (Hieronymus et al., 2006). Of these,  21 genes are upregulated in the
first 24 hours after androgenic treatment: PSA, TMPRSS2, NKX3-1, KLK2, GNMT, TMEPAI,
MPHOS9,  ZBTB10,  EAF2,  BM039,  SARG,  ACSL3,  PTGER4,  ABCC4,  NNMT,  ADAM7,
FKBP5, ELL2, MED28, HERC3, MAF. 
Normalized gene expression values in log2 scale were converted to z-scores: 

z i=
g i−μi
σ i

where i represents a gene from the list above, g the gene expression, μ the arithmetic mean
of expression values and  σ the standard deviation of the gene. Both mean and standard
deviation  were  computed  using  all  samples.  For  each  sample,  AR  activity  score  was
computed by summing genes scores:

s j=∑
i

❑

❑z ij
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Scores were split according to sample groups: BPH, PC and CRPC. Score distributions were
visualized as violin plots. Both upper and lower quartiles and the mean activity score value
were overlaid on the figures. P-values were computed with two tails Mann-Whitney U-test to
assess the statistical significance between BPH and PC or PC and CRPC scores under the
null hypothesis of no difference between groups. 

Association of chromatin accessibility with target genes

To  link  chromatin  features  (peaks  and  DARs)  to  putative  target  genes,  we  performed
correlation analysis across all samples with RNA-seq, smallRNA-seq, or SWATH-MS protein
data.  We calculated Pearson and Spearman correlations between ATAC-seq signal  and
gene or  protein expression in  four  different  contexts:  1)  at  transcription start  site (TSS),
defined as +/-500bp from TSS annotation, we computed correlation between TSS ATAC-seq
signal and corresponding gene expression; 2) we defined a region of 1 kbp upstream and
100 bp downstream of TSS as a promoter, we searched for ATAC features overlapping this
region  and computed correlation between their signal and corresponding gene or protein
expression, if available; 3) for each ATAC feature we searched for the closest gene using
annotations from the HOMER tool and computed correlation between their signal and gene
or protein expression, if available; 4) we used all  ATAC features and genes falling within
same TAD to compute correlation between all pairs. To define TAD boundaries, we used
annotations  from  ENCODE  consortium based  on  data  from  LNCaP  cell  line  (ENCODE
Project  Consortium,  2012),  GEO  accession:  GSE105557,  downloaded  from
http://promoter.bx.psu.edu/hi-c/  (Wang et  al.,  2018)).  We extended this  list  with genomic
intervals included between each pair of TAD using  bedtools complement and merged the
resulting list with the initial one.

To  derive  a  threshold  for  significant  associations,  in  each  context,  we  computed  null
distributions  by  randomizing  sample  order  prior  to  correlation  coefficient  computation
(Supplementary Figure 9A). To enable false positive rate estimation, randomization was
repeated 10 times for each pair of comparisons in each context. Based on evaluation of the
distributions, we chose to set thresholds to |correlation coefficient|  > 0.5 for genes and |
correlation coefficient| > 0.6 for proteins resulting in false positive rate from 5.4 * 10-3 to 1.3 *
10-3,  respectively  (Supplementary  Figure  9A).  Associations  with  either  Pearson  or
Spearman correlation above threshold were kept for the downstream analysis. The above
analysis  was implemented by custom script  using standard Unix tools,  Python 3.6.8,   R
version  3.5.2  and  packages  from  the  Bioconductor  framework  managed  via  the
BiocManager package version 3.8, HOMER tool and bedtools. 

TF gene expression network

Each  gene  was  assigned  to  one  or  more  ATAC-seq  features  from previous  correlation
analysis. Transcription factor binding sites in ATAC-seq features were detected during the
annotation step. A gene was defined as the target of a transcription factor if its expression
showed correlation with accessibility of an ATAC-seq feature carrying a binding site for the
TF. For each pair of TFs, the number of co-regulated genes was calculated resulting in a
contingency matrix of 845x845 TFs. This matrix was filtered to retain TFs sharing at least
100 genes, leaving a 192x192 contingency matrix. Hierarchical clustering was applied and
two clusters were detected. Manhattan distance was used as distance metric and UPGMA
as clustering algorithm (Supplementary Figure 10A). The smallest cluster, containing the
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majority of detected connections, was extracted. Another filter was implemented similarly to
the one described above: TFs sharing at least 300 genes with at least one other factor were
retained. This filtering procedure resulted in a 41x41 contingency matrix. For visualization
hierarchical  clustering  was  calculated  using  Euclidean  distance  as  distance  metric  and
complete linkage as  clustering algorithm. The analysis was implemented in R 3.5.2 using
the pheatmap package for visualization and basic clustering functions.

TF binding site enrichment analysis

We determined the number of clusters for k-means clustering using consensus clustering
with  elbow method.  For  clustering,  we  used  top  20% peaks  with  highest  variance.  For
relative  TF  enrichment  analysis,  each  cluster  was  compared  against  all  the  others.
Enrichment analysis was performed using HOMER findMotifs.pl version 4.10. We used the
full HOCOMOCO version 11 human TF (p 0.001) (Kulakovskiy et al., 2018) database as a
known input TF list. Plotting  was done using the R 3.5.2 and ggplot package.

TF footprinting and accessibility

For TF footprint depth and flanking accessibility analysis Tn5 cut sites were counted using
custom R scripts. Pooled samples for BPH, PC and CRPC groups were generated using
Picard MergeSamFiles and used for group level analysis. In other analysis, individual BAM
files were used directly. Possible TF binding locations were predicted using FIMO version
5.0.2  (Grant et al., 2011) with HOCOMOCO v11 database and  --thresh 0.001 parameter.
Predicted sites were intersected with peaks and DARs from BPH to PC and PC to CRPC
comparison  groups.  We  filtered  the  TF  list  by  gene  expression  across  samples.  TF
belonging to the lower quartile of this distribution were discarded. We quantified footprint
base  as  mean  count  of  insertions  at  the  motif  positions,  while  for  flanking  height,  we
considered 25 bases around each detected motif. To quantify each motif background, we
used a set of 25 bp windows 200 bp upstream and downstream of the motif center. We
computed flanking accessibility as log2(flanking height/background) and footprint depth as
log2(footprint  base/flanking  height).  For  expression  association,  Pearson  correlation
between  these  footprint  parameters  and  TF  expression  was  calculated.  In  footprint
visualization,  the  number  of  cutting  sites  were  scaled  according  to  read  numbers  in
respective phenotypes.

Motifs discovery from accessible chromatin sites

We used the BPNET Python package version 0.0.21 (Avsec et al.) to train and interpret
sequence-to-profile convolutional neural networks from sample-specific ATAC-seq data. In
BPNET recurring patterns with high contribution scores are clustered based on sequence
identity to build contribution weight matrices (CWMs). We first tested the applicability of the
BPNET model  with  data  from VCaP cell  lines.  We compared the CWMs obtained  from
models  trained  with  publicly  available  AR Chip-seq data  (Massie  et  al.,  2011) and with
ATAC-seq  data  generated  in-house.  These  data  were  aligned  and  peaks  detected  as
presented  above.  To  consider  the  TF-specific  binding  context  in  ATAC-seq  data,  we
extended the ATAC-seq peaks summits by 50 bp in both directions, and intersected the 100
bp  regions  with  the  direct  AR-DNA  interaction  map  defined  in  the  UniBind  database
(Gheorghe et al., 2019). We kept the regions having an intersection of at least 1 bp, and
selected these peaks as model training sequences. We tested the similarity between the
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resulting  CWMs  and  all  the  known  Position  Weight  Matrices  (PWMs)  collected  in  the
HOCOMOCO v11 database (Kulakovskiy et al., 2018) using the Tomtom motif comparison
tool  (Gupta et al., 2007). Tomtom results were used to identify the TF or TF family to be
associated with each CWM. We observed that the motifs discovered by the model trained
with  Chip-seq  data  were  also  discovered  by  the  model  trained  with  ATAC-seq  data
(Supplementary Figure 4). We trained BPNET models for each of the 38 clinical samples
using the above presented peaks set  summits to define the training sequences and the
ATAC-seq data. We then applied the procedure we tested on cell lines to build and interpret
TF-specific models for 4 TFs - namely AR, FOXA1, HOXB13, and ERG - on the highest
quality samples (6 BPH, 4 CRPC, 8 PC) having TSS enrichment > 3.5. ATAC-seq BPNET
models  were  trained  on  canonical  chromosomes  with  default  hyper-parameters,  and
chromosomes  2,  3,  and  4  as  validation  chromosomes.  Chip-seq  BPNET  models  were
trained  using  the  same  configuration,  except  an  increased  kernel  size  of  50  for  the
transposed convolution layer.  The models trained in cell  lines and the models trained in
clinical samples using the above presented peaks set summits were trained with a patience
of 5 epochs. The TF-specific models trained in clinical samples were trained with a patience
of 20 epochs. We represented the information content of the discovered motifs as sequence
logos using the built-in BPNET function;  when more than one meta cluster was reported by
BPNET, we omitted the meta clusters with no matching TFs if at least one pattern in another
meta cluster had a TF or a TF family assigned to it (Supplementary Figures S5-S8). 

Data and code availability

Sequencing  data  has  been  deposited  in  European  Genome-phenome  Archive  under
accession  number  EGAS00001000526.  Code  used  for  the  analysis  is  available  at
https://github.com/nykterlab/Tampere_PC/
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Figure S1

A. ATAC-seq enrichments at TSS for all  samples. Sample groups have comparable
quality and variability.  B.  Fragment length patterns in all samples show the first peak
around 160 bp, matching single nucleosome size. A second peak is observed for the
second nucleosome. C. Correlations between TSS enrichment and several key quality
control values. The “high-quality autosomal alignments percentage overlapping peaks”
value correlates with TSS enrichments,  as expected.  These show that  no bias was
introduced by the sequencing step. 
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Figure S2

A.  Background-corrected  ATAC-seq  and  MeDIP  coverage  for  loci  corresponding  to
opening (left column) and closing (right column) DARs for BPH to PC (top row) and PC
to CRPC (bottom row) comparisons. Each curve’s baseline has been shifted to zero for
presentation  clarity.  The  curves  have  been  smoothed  with  a  Gaussian  filter  with  a
standard deviation set to 7. B. Donut plots for locations of peaks and DARs from both
comparisons. Majority of peaks and DARs are located in intergenic and intronic regions
but there is a clear difference in promoter regions where ~7.5% of peaks are located
compared to ~2% in both DAR comparisons. Overlaps with DMR regions are shown in
the  DAR  donut  plots.  C. Peaks  ATAC-signal  in  different  annotation  categories.
Strongest  ATAC-seq signal  is  detected at  the promoters.  D.  Comparable ATAC-seq
signal  across  different  genome  annotation  areas.  For  each  sample  group,  the  left
boxplot shows the signal in closing and right boxplot in opening DARs from respective
comparisons. Data from the group of samples that were not part of the comparison
(CRPC in top panels, BPH in lower panels) are shown from the same loci for reference.
E. Normalized  peak  counts  present  in  different  numbers  of  samples.  F.  Genomic
locations of peaks belonging to each sample group or combination of sample groups.
Peaks belonging to the set with all sample groups have over 10% of peaks annotated to
promoters, whereas in other groups the promoter fraction is 1.2-2.6%. G.  Number of
samples reporting peaks by group or combination of groups membership. The number
of samples in which a peak is present is shown on the X-axis. Labels for sample groups
and sample group combinations are reported. In addition, points where the number of
peaks in groups or group combinations go to zero are also shown. The proportion of
peaks in each group is shown on the Y-axis.
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Figure S3

A. Two-dimensional t-SNE dimension reduction using normalized ATAC-seq signal from
all DARs separates samples to their respective groups. Python’s Scikit-Learn package t-
SNE  algorithm  implementation  was  used  with  default  parameter  values  except
perplexity=15,  metric  =  Pearson  correlation,  and  method  =  exact.  B.  Annotation  of
different  genomic  locations  for  DARs  detected  in  BPH  to  PC  and  PC  to  CRPC
comparisons. A higher fraction of DARs are located in the gene body and near the gene
body in PC to CRPC compared to BPH to PC. C. Number of overlaps between DARs
and DMRs in BPH to PC and PC to CRPC comparisons show only minimal overlap. D.
Donut  plot  showing genomic  annotations of  cancer-specific  peaks and  overlap  with
previously  reported  features.  E.  K-means consensus clustering of  the  20% topmost
peaks with the highest variance identifies 7 clusters. Scale bar indicates quantification
value. Examples of disease-relevant TFs from TF binding site enrichment analysis are
shown for each cluster.  F. Selection criteria for K=7 clusters in the cluster analysis.
Consensus matrix (K=7, left),  cumulative distribution function (CDF) plots for K=2-10
(middle), and relative change in CDF (right) are shown. K=7 illustrates stable cluster
structure with relative CDF change at elbow point of the curve. 
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Figure S4

A. Binding motifs discovered with BPNET from AR ChIP-seq data generated from VCaP
cell line. B. Discovered binding sites using ATAC-seq data from VCaP cells with binding
sites for AR, FOXA1, HOXB13, and ERG.
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Figure S5

Binding motifs discovered with BPNET from clinical ATAC-seq samples using AR 
binding sites overlapping with peaks from ATAC-seq data. For each pattern, the number
of BPNET seqlets contributing to that pattern is reported in parenthesis (see Methods).
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Figure S6

Binding motifs discovered with BPNET from clinical ATAC-seq samples using FOXA1 
binding sites overlapping with peaks from ATAC-seq data. For each pattern, the number
of BPNET seqlets contributing to that pattern is reported in parenthesis (see Methods).
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Figure S7

Binding motifs discovered with BPNET from clinical ATAC-seq samples using HOXB13 
binding sites overlapping with peaks from ATAC-seq data. For each pattern, the number
of BPNET seqlets contributing to that pattern is reported in parenthesis (see Methods).
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Figure S8

Binding motifs discovered with BPNET from clinical ATAC-seq samples using ERG 
binding sites overlapping with peaks from ATAC-seq data. For each pattern, the number
of BPNET seqlets contributing to that pattern is reported in parenthesis (see Methods).

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 9, 2020.;https://doi.org/10.1101/2020.09.08.287268doi:bioRxiv preprint

https://doi.org/10.1101/2020.09.08.287268
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 9, 2020.;https://doi.org/10.1101/2020.09.08.287268doi:bioRxiv preprint

https://doi.org/10.1101/2020.09.08.287268
http://creativecommons.org/licenses/by/4.0/


Figure S9

A.  Pearson  and  Spearman  correlation  coefficients  for  all  associations  between
chromatin accessibility and gene or protein expression. Data are shown for both gene
(RNA-seq  and  smallRNA-seq)  and  protein  expressions  (SWATH-MS).  Number  of
correlation coefficients used for null distribution, false positives and false positive ratio
are reported in the inset.  B. Histograms of distances between ATAC-seq features and
TSS of the associated gene are shown across all comparisons. In addition, numbers of
peaks/DARs associated to a given gene and also the number of genes associated to a
given peak/DAR are shown as histograms (truncated at 30). Mean of these histograms
is given in the figure. In addition, 95th percentile and fraction of peaks/DARs linked to a
single  gene  are  given  in  respective  comparisons.  Mean,  median  and  maximum
upstream (max up) and downstream (max down) distances are reported for the distance
distribution.  The  percentage  of  ATAC-features  linked  to  exactly  one  gene  is  also
reported for the right panel. 
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Figure S10

A. The heatmap represents a gene expression regulatory network created by using
DARs and  genes  that  have  correlation:  rows  and  columns are  transcription  factors
(nodes), each cell in the matrix represents an edge, the weight of the edge is given by
the number of shared genes which is encoded in the color.  Rows and columns are
filtered to have at least one cell with a value greater than 100. B. Same as panel A but
using peaks.  C. Subset of TFs with the highest number of genes (from data shown in
panel B). The highest number of genes can be seen in the top right corner where there
are the same four TFs as in  Figure 4B.  D.  AR cluster-regulated genes from C are a
superset of the genes regulated by the other cluster of TFs. The Venn diagram reports
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the agreement between the sets of genes regulated by the two clusters. E. Number of
TFs that have binding site in DARs with associated target genes. Data are shown using
all  the data from GTRD (top panels) and using only prostate cancer-specific subset
(GTRD prostate; bottom panels). Shown are both BPH to PC (left panels) and PC to
CRPC (right panels) comparisons. F.  Number of TFs that have binding site in peaks
with  associated  target  genes.  Data  are  shown  using  all  the  data  from GTRD (top
panels) and using only prostate cancer-specific subset (GTRD prostate; bottom panels).
In the GTRD prostate, we see that several key TFs like AR, FOXA1, ERG and HOXB13
are  among  the  most  common  ones.  G.  Oncoprints  representing  TF  binding  sites
overlapping DARs correlated with gene expression in BPH to PC comparison using the
complete GTRD dataset. Number of binding sites for each TF is shown. In parentheses,
the percentage of DARs reporting that binding site is also shown. H. Same as panel G
but for PC to CRPC comparison.  I.  Violin plots of AR activity scores for each sample
group. Individual samples are shown as grey dots.
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Figure S11

A. Number of sites and their overlap from DHT- and vehicle-treated VCaP cells. Sites
that are present in DHT-stimulated cells are compared to DARs. In BPH to PC, most of
the  sites  overlap  with  opening  DARs  and  in  PC  to  CRPC  with  closing  DARs.  B.
Comparison of BPH, PC, and CRPC group-specific peaks to AR-stimulated peaks from
LNCaP and VCaP cell lines (Massie et al., 2011) shows the highest overlap with the PC
group. C. Background-corrected ATAC-seq coverage of AR binding sites from all GTRD
AR binding sites.  D.  Background-corrected ATAC-seq coverage of  AR binding sites
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from vehicle-treated  cells  (Massie  et  al.  2011).  E.  Background-corrected  ATAC-seq
coverage at AR binding sites from vehicle-treated VCaP cells. F. Same as panel E but
with DHT stimulation. Signal is stronger in PC samples than other sample groups.
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Figure S12

A.  Effect of the background correction and normalization (Signal, red dots) in relation to
raw  ATAC  data  (black  dots)  and  DNA  copy  number.  Background  correction  and
normalization successfully removes the linear relationship between copy number and
ATAC  coverage.  B.  Distribution  of  peak  quantifications  across  samples.  Different
percentiles and the utilized threshold 5 are shown (top). The number of sites that would
be removed with a given threshold (bottom).
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Supplementary Table legends

Supplementary Table 1: Quality control metrics and peak detection results

Table contains information about samples, and relevant information from sequencing
such as quality control  metrics and primers used. In addition, it  contains information
about peaks and their clustering.

Supplementary  Table  2:  Differentially  accessible  and  differentially  methylated
regions

Table contains information about differentially accessible and differentially methylated
regions in different comparison groups. 

Supplementary Table 3: TF binding analysis

Table  contains  information  about  transcription  factor  footprint  analysis,  correlation
between  footprint  depth,  flanking  accessibility  and  gene  expression  as  well  as
information about motifs discovered using BPNET.

Supplementary Table 4: Correlations of accessible chromatin regions and gene
expression

Table contains information about peaks and DARs correlation coefficients computed
against gene and protein expression in different biological contexts. Table also reports
gene names of transcription factors with binding site overlapping peaks and DARs and
basic annotations of correlated genes.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 9, 2020.;https://doi.org/10.1101/2020.09.08.287268doi:bioRxiv preprint

https://doi.org/10.1101/2020.09.08.287268
http://creativecommons.org/licenses/by/4.0/






Tampere University Dissertations 931

931/2024
EB

R
A

H
IM

 A
FYO

U
N

IA
N

    C
om

putational Analysis of M
ultilevel H

igh-throughput D
ata from

 cancer tissue

Computational Analysis of 
Multilevel High-throughput 

Data from Cancer Tissue

EBRAHIM AFYOUNIAN


	ACKNOWLEDGMENT
	ABSTRACT
	ABBREVIATIONS
	ORIGINAL PUBLICATIONS
	1 INTRODUCTION
	2 LITERATURE REVIEW
	2.1 Human genome
	2.2 Human epigenome
	2.3 Human transcriptome
	2.4 Human proteome
	2.5 High-throughput measurement
	2.5.1 Sequencing considerations and quality control
	2.5.2 Sequence alignment

	2.6 Measurement of genome and its applications
	2.7 Measurement of DNA methylation and its applications
	2.8 Measurement of chromatin accessibility and its applications
	2.9 Measurement of transcriptome and its applications
	2.10 Measurement of the proteome and its application
	2.11 Integration of data from different levels
	2.12 High-throughput data analysis techniques and considerations
	2.12.1 High-throughput data normalization
	2.12.2 Dimensionality reduction
	2.12.3 Hierarchical clustering
	2.12.4 Comparing sample sets through statistical hypothesis testing
	2.12.5 Multiple-testing correction
	2.12.6 False discovery rate calculations
	2.12.7 Enrichment analysis

	2.13 Cancer
	2.14 Prostate cancer

	3 AIMS OF THE STUDY
	4 MATERIAL AND METHODS
	4.1 Material
	4.1.1 Tampere prostate cancer cohort
	4.1.2 The Cancer Genome Atlas
	4.1.3 miRWalk 2.0 database
	4.1.4 Gene Transcription Regulation Database
	4.1.5 GeneHancer
	4.1.6 Other datasets

	4.2 Methods
	4.2.1 Somatic copy number alteration detection
	4.2.2 Benchmarking Segmentum
	4.2.3 Enrichment and pathway analysis
	4.2.4 ATAC-seq data processing and peak calling
	4.2.5 ATAC-seq signal quantification
	4.2.6 ATAC-seq consensus peak set compilation and quantification
	4.2.7 MeDIP-seq signal quantification
	4.2.8 Detection of differential genomic features between two conditions
	4.2.9 Data integration
	4.2.10 Data visualization


	5 RESULTS
	5.1 Alterations in the genome
	5.1.1 Somatic copy number alterations

	5.2 Alterations in the epigenome
	5.2.1 Chromatin accessibility alterations
	5.2.2 DNA methylation alterations

	5.3 Alterations in the transcriptome
	5.4 Alterations in the proteome
	5.5 Multilevel observations
	5.5.1 Point mutation, copy number, and methylation impact on gene and protein expression
	5.5.2 Interactions at the epigenome
	5.5.3 miRNA alterations impact the transcriptome and proteome
	5.5.4 mRNA expression data alone cannot reliably predict protein abundances


	6 DISCUSSION
	6.1 Comprehensive and robust analysis of high-throughput omics data
	6.1.1 Other considerations

	6.2 Exploring prostate cancer progression through single and multilevel high-throughput data analysis
	6.3 Challenges and limitations of the study
	6.3.1 Key considerations in using Segmentum
	6.3.2 Tampere prostate cancer cohort
	6.3.3 Considerations in measurements and the measurement assays

	6.4 Future work

	7 CONCLUSIONS
	8 APPENDIX 1
	9 REFERENCES
	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Pipeline
	RD extraction and BAF calculation for heterozygous SNPs
	Log-ratio calculation
	Mirroring and smoothing of the BAF values
	Segmentation using a double sliding window approach
	Detection of cnLOH events within a single sample
	Detection of recurrent cnLOH regions across multiple samples
	Simulator

	Results
	Segmentum segmentation accuracy for the simulated data
	Segmentum segmentation accuracy for real data compared to other tools
	Segmentum segmentation accuracy for the subsampled real data
	Time usage evaluation
	Recurrent cnLOH detection case study

	Discussion
	Conclusions
	Availability and requirements
	Additional files
	Abbreviations
	Acknowledgments
	Funding
	Authors’ contributions
	Authors’ information
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher’s Note
	References
	Integrative proteomics in prostate cancer uncovers robustness against genomic and transcriptomic aberrations during disease progression
	Results
	Mass spectrometric analysis of proteomic profiles
	Correlations of copy number and methylation with proteomics
	Impact of mutations on protein expression
	Comparison of expression profiles at RNA and protein levels
	Proteomic analysis reveals novel regulated pathways
	Changes in TCA during prostate cancer evolution

	Discussion
	Methods
	Samples
	Chemicals and materials
	Protein extraction from tissue samples and enzymatic digestion
	NanoRPLC-MSTOF for discovery proteomics
	Mass spectrometric data analysis
	Statistical analysis of proteomics data
	Analysis of differentially expressed mRNA and protein
	Association between protein expression and gene copy number
	Association between protein expression and DNA methylation
	Structural variation analysis
	Point mutation impact analysis
	Association between protein expression and mutation burden
	Association between protein and miRNA expression
	Transfections of pre-miRNA
	RNA extraction and RT-qPCR
	Luciferase reporter assay
	MicroLC-MSTRAP for targeted protein validation analysis
	Western blotting
	Immunohistochemistry
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS

	Tyhjä sivu
	Tyhjä sivu
	Tyhjä sivu
	Tuni_Ebrahim_Afyounian_kannet.pdf
	Tyhjä sivu
	Tyhjä sivu




