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HIGHLIGHTS

� The novel BioPRS, constructed from

combining statistically relevant CHD

biomarkers, was clearly predictive of CHD

in both the UK Biobank and FinnGen.

� CHDBioPRS, combining BioPRS with a

standard CHD PRS, improved the

prediction of the CHD PRS, with

the largest effect size observed among

the early onset cases.

� We observed similar HRs of CHDBioPRS

for men and women.
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LRT = likelihood ratio test
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SBP = systolic blood pressure
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There are several established biomarkers for coronary heart disease (CHD), including blood pressure, choles-

terol, and lipoproteins. It is of high interest to determine how a combined polygenic risk score (PRS) of CHD-

associated biomarkers (BioPRS) can further improve genetic prediction of CHD. We developed CHDBioPRS,

combining BioPRS with PRS of CHD in the UK Biobank and tested it on FinnGen. We found that BioPRS was

clearly predictive of CHD and that CHDBioPRS improved the standard CHD PRS. The largest effect was

observed with early onset cases in FinnGen, with HRs above 2 per standard deviation of CHDBioPRS.

(J Am Coll Cardiol Basic Trans Science 2023;-:-–-) © 2023 The Authors. Published by Elsevier on behalf of the

American College of Cardiology Foundation. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
C oronary heart disease (CHD), a com-
plex disease caused by a gradual
build-up of fatty deposits in the ar-

teries, is a major cause of death worldwide.
In addition to family history, age, sex, smok-
ing history, and levels of blood pressure,
inflammation and lipoproteins are estab-
lished biomarkers for CHD.1-4 These risk fac-
tors are also used in clinical risk calculators
to evaluate preventive therapies and strate-
gies. Although clinical risk scores enable
identification of some individuals at high risk,5-7 a
large proportion of CHD cases are not detected by
these scores, and the utility of clinical scores is
limited for young adults3,8-10 and women.11,12

Genome-wide association studies (GWAS)
involving large human genetic data sets have identi-
fied more than 100 loci statistically associated with
CHD, mostly within populations of European
descent.13-18 These genetic discoveries together with
the introduction of sophisticated statistical tools that
incorporate linkage disequilibrium information, have
greatly advanced risk prediction.19-21 Particularly,
several studies have shown that inclusion of poly-
genic risk scores (PRS) improve CHD prediction and
identification of high-risk groups.13,22-24 Because PRS
are based on germline DNA, risk profiling can be
conducted in early life when the individuals with the
highest values of PRS are likely to benefit from an
early adoption of preventive strategies.

The landmark study of PRS for common diseases
conducted by Khera et al23 showed that a sizable
portion of the population carry a polygenic CHD
risk equivalent to known monogenic mutations
conferring severalfold increased risk. This PRS,
ttest they are in compliance with human studies committe

d Food and Drug Administration guidelines, including patien

r Center.

ceived March 9, 2023; revised manuscript received July 6, 202
comprising more than 6 million single nucleotide
polymorphisms (SNPs), was generated with the use of
LDPred19 and has proven to be effective in validation
sets across multiple populations while also perform-
ing favorably compared with other PRS25 composed of
smaller numbers of variants.

Because PRS have proven to be successful for CHD
prediction, it remains of high interest to systemati-
cally determine how a combined polygenic biomarker
score (BioPRS) constructed with biomarkers associ-
ated with CHD can improve on the established
CHDPRS. Recently, multi-PRS models, using 35 PRS
from blood and urine biomarkers, have been shown to
improve genetic risk prediction of common diseases
such as type 2 diabetes and gout.2 While other exist-
ing studies have focused on combining several GWAS
of CHD,13,26,27 our focus is on the combination of
effects of known CHD-associated biomarkers into
a single PRS and its integration with CHDPRS.
Furthermore, because the current risk calculators do
not work equally well for women as for men, it is of
high importance to quantify the contribution of Bio-
PRS within each sex.28 Another important goal is to
predict a subgroup of CHD cases with an early onset
of the disease.29

METHODS

The workflow of the study is presented in Figure 1.

UK BIOBANK DATA. The design of UK Biobank (UKB)
and the background of its participants have been re-
ported previously.22,30 We restricted our analyses to
samples that were of self-reported European ancestry
to avoid potential spurious associations driven by
allele frequency differences when including
es and animal welfare regulations of the authors’

t consent where appropriate. For more information,
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FIGURE 1 Study Design and Workflow

CHD biomarkers: We identified CHD associated risk factors or biomarkers from UKB (Table 2 and Supplementary Table 1). Genome-wide

association study (GWAS) was performed on UKB genotype data (UKB (self-reported British White) Training and Validation combined),

separately in females and males, for 16 biomarkers. Construction and testing of CHDBioPRS: We regressed CHD on the biomarkers in the UKB

training data using elastic net Cox regression and retained 10 biomarkers. BioPRS is constructed by weighting each PRS by its coefficient in

joint Cox regression model for CHD in UKB training data. CHDBioPRS is the sum of the standard CHDPRS and BioPRS where the weights are

estimated from a Cox regression model predicting CHD within UKB validation data. Independent testing was performed on the FinnGen and

the UKB Test (self-reported NonBritish White) cohorts.
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individuals from different ancestry backgrounds in
our GWAS. We made use of 4 sets of UKB samples.
First, our GWAS set contained 343,695 samples who
were unrelated (pairwise kinship coefficients re-
ported by UKB <0.044) and who self-reported “White
British” as their ethnicity. Out of the GWAS set,
297,158 individuals had data on all 16 biomarkers
(listed subsequently) and we split these into our UKB
training (70%, 208,010 individuals) and UKB valida-
tion (30%, 89,148 individuals) sets. The split was
done randomly by maintaining a constant CHD case
ratio and sex ratio within each set. Finally, we also
collected a UKB test set of 25,765 unrelated in-
dividuals with self-reported ethnicity as “White non-
British” and biomarker measurements available. The
UKB test set did not overlap with the UKB GWAS set,
UKB training set, or UKB validation set.

UKB CHD DEFINITION. The UKB CHD endpoint was
defined as fatal or nonfatal myocardial infarction
(MI), or coronary revascularization (percutaneous
transluminal coronary angioplasty [PTCA] or coro-
nary artery bypass grafting [CABG]). In detail, and
consistently with previous studies,23,31 CHD cases
were defined as having a heart attack diagnosed by
a doctor or self-report of noncancer illness or
operation including PTCA and CABG. In addition,
coronary revascularization was assigned based on
OPCS-4 coded procedure for CABG (K40.1-4, K41.1-
4, and K45.1-5) or PTCA (K49.1-2, K49.8-9, K50.2,
K75.1-4, and K75.8-9). MI cases from summary
hospital episode statistics (ICD-10 and ICD-9 codes)
were defined with ICD-10 I21, I22, I23, I24.1, and
I25.2 and ICD-9 410, 411, and 412. We further
merged the outcomes from the UKB MI algorithmi-
cally defined outcomes and dates. The UKB field
codes of the CHD endpoint are listed in Table 1. We
defined prevalent CHD cases as those who had CHD
already when their blood sample was taken; other
CHD cases were considered incident CHD cases. The
age at onset in prevalent cases was determined by
hospital episode data and self-reported age of
onset, or for incident CHD cases by hospital or
death records demonstrating disease onset after
UKB enrollment.

UKB BIOMARKERS AND GWAS. We identified 16
variables from UKB that have been previously re-
ported to be associated with CHD (the UKB codes are
listed in Table 2): high-density-lipoprotein (HDL)
cholesterol, low-density-lipoprotein (LDL) direct, tri-
glycerides (TRIG), apolipoprotein (Apo) A1, ApoB,
diastolic blood pressure, systolic blood pressure
(SBP), glycated hemoglobin (HbA1c), glucose, C-reac-
tive protein (CRP), creatinine, lipoprotein(a), doctor-
diagnosed diabetes, body mass index (BMI) and

https://doi.org/10.1016/j.jacbts.2023.07.006


TABLE 1 Sample Characteristics in UKB and FinnGen

UKB UKB Female UKB Male FinnGen FinnGen Female FinnGen Male

Sample size 297,158 158,382 138,776 300,496 169,508 130,988

Enrollment age, y 56.9 � 7.99 56.7 � 7.90 57.12 � 8.09 53.88 � 16.63 52.35 � 16.96 55.86 � 15.74

Incident CHD cases 5,011 (1.69) 1,353 (0.90) 3,658 (2.63) 13,623 (4.53) 3,652 (2.15) 9,971 (7.61)

Age at onset for incident cases, ya 65.13 � 6.90 66.24 � 6.95 64.92 � 7.14 70.29 � 10.80 72.56 � 12.16 69.46 � 10.13

Follow-up, y 10.01 � 0.90 10.00 � 0.89 10.04 � 0.90 10.43 � 8.96 9.22 � 8.72 10.89 � 9.01

All CHD casesb 16,803 (5.65) 3,762 (2.38) 12,896 (9.30) 30729 (10.22) 8,486 (5.00) 22,243 (16.98)

Age at onset, y 59.93 � 9.43 61.41 � 9.83 59.50 � 9.26 65.37 � 11.82 67.97 � 12.50 64.37 � 11.39

Values are mean � SD or n (%). aFor incident coronary heart disease (CHD) cases, age at onset is after the blood sample was taken. bCHD case endpoints were defined based on
the following UKB (UK Biobank) fields (codes): myocardial infarction (MI) hospitalization: 41202 (ICD-10)/41203 (ICD-9); heart attack doctor diagnosed: 6150; percutaneous
transluminal coronary angioplasty operation: 20004 (K49.1-2, K49.8-9, K50.2, K75.1-4, and K75.8-9); coronary revascularization: 41272 (K40.1-4, K41.1-4, and K45.1-5); and
MI algorithm: 42000/42001 (date of onset).
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cigarettes per day (CPD). In addition, total cholesterol
was calculated from the Friedewald formula32 as
HDL þ LDL þ TRIG/2.2 in units of mmol/L. For
simplicity, we use the term “biomarker” to refer to all
of these variables even though some of them (namely,
blood pressure, diabetes, BMI, and CPD) are not
typical biomarkers measured from a blood or tis-
sue sample.

Statin usage was identified from treatment medi-
cation (13 drugs: 1141146234, atorvastatin; 1141192414,
crestor 10 mg tablet; 1140910632, eptastatin;
1140888594, fluvastatin; 1140864592, lescol 20 mg
capsule; 1141146138, lipitor 10 mg tablet; 1140861970,
lipostat 10 mg tablet; 1140888648, pravastatin;
1141192410, rosuvastatin; 1141188146, simvador 10 mg
tablet; 1140861958, simvastatin; 1140881748, zocor
10 mg tablet; 1141200040, zocor heart-pro 10 mg
tablet). Adjustment for statin usage2 was done for the
TABLE 2 UKB Biomarkers Mean Levels After Adjustment for Statins

Biomarker UKB Code Control Cases (Fem

Apolipoprotein A1,b g/L 30630 1.52 � 1.61

Apolipoprotein B,b g/L 30640 1.08 � 1.07

Body mass index, kg/m2 21001 27.31 � 26.99

Cigarettes per dayb 3456 1.05 � 0.92

Creatinineb, mmol/L 30700 71.60 � 63.98

C-Reactive protein,b mg/L 30710 2.48 � 2.61

Diabetes 2443 4.1% � 3.1%

Diastolic BP, mm Hg 4079 84.12 � 82.24

Glucose, mmol/L 30740 5.07 � 5.03

HbA1c,
b mmol/mol 30750 35.54 � 35.41

HDL,b mmol/L 30760 1.46 � 1.60

Lipoprotein A, nmol/L 34.25 � 35.17

LDL,b mmol/L 30780 3.78 � 3.80

Systolic BP,b mm Hg 140.8 � 137.85

Total cholesterol, mmol/L NAc 6.06 � 6.16

Triglycerides,b mmol/L 30870 1.78 � 1.58

aStatin adjustment for statin users (16.2%) is done either by division (/) or addition (þ)
identified with the use of fields 20003, 6153, and 6177. bSelected in optimal regularized m
in units of mmol/L.

BP ¼ blood pressure; HDL ¼ high-density lipoprotein; LDL ¼ low-density lipoprotein
following biomarkers by dividing the biomarker value
with the given coefficient: HDL 1.053, LDL 0.684,
TRIG 0.874, ApoA1 1.07, ApoB 0.722, lipoprotein(a)
1.102, glucose 1.029, CRP 1.230, creatinine 1.058, and
HbA1c 1.042. We also adjusted the subjects taking
blood pressure reduction drugs by adding þ15 to SBP
and þ10 to diastolic blood pressure. UKB statin and
blood pressure drug codes are listed in Table 2, along
with the statin and blood pressure–adjusted values of
these biomarkers for the UKB training set.

GENOME-WIDE ASSOCIATION STUDY. Genome-wide
association study (GWAS), using BOLT-LMM v2.3.2,33

was performed on UKB genotype data (release 3),
separately in 183,130 women and 157,821 men, for the
16 biomarkers. We first regressed out sex, age, age-
squared, and the top 10 principal components of
genetic structure from the biomarkers and then
ale) Incident CHD Cases (Female) Statin Adjustmenta

1.37 � 1.51 /1.065364

1.14 � 1.15 /0.721928

28.82 � 28.52

1.89 � 2.19

75.38 � 62.91 /1.0580718

2.89 � 3.54 /1.2300281

13.1% � 10.3%

87.09 � 84.97 þ10 (BP meds)

5.37 � 5.33 /1.028824

38.0 � 37.53 /1.0418022

1.22 � 1.43 /1.053

38.59 � 37.81 /1.101954

3.90 � 4.04 /0.684

149.65 � 148.04 þ15 (BP meds)

6.26 � 6.56

2.18 � 1.96 /0.874

by the value given in the last column. Statin and blood pressure medicinal use was
odel. cTotal cholesterol calculated from Friedewald formula of HDLþ LDLþ TRIG/2.2

; other abbreviations as in Table 1.
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applied rank-based inverse-normal transformation to
the residuals.

FinnGen. The design of the Finnish FinnGen34 project
and participant backgrounds are presented in Table 1.
The FinnGen test cohort contained 321,302 FinnGen
data freeze 7 participants. The CHD case definition
in FinnGen (I9_CHD) is consistent with our UKB
CHD definition except that the FinnGen definition
also includes samples with angina only (I20.0) as
cases. Consequently, we removed the 2,989 angina-
only cases from FinnGen, in addition to removal of
6,109 participants younger than 16 years old
at enrollment.

BIOMARKER MODEL. Using the 16 CHD associated
biomarkers for the UKB training data as predictors
and incident CHD as outcome (and excluding prev-
alent CHD cases), we used penalized Cox propor-
tional hazard models (glmnet R package) using the
elastic net penalty (a ¼ 0.50) with 20-fold cross-
validation.35,36 The optimal model identified 10
biomarkers, which were selected for BioPRS con-
struction (Table 2). As shown in Supplemental
Figure 1, a ¼ 0.25 (closer to ridge regression) pro-
duced the same optimal set as a ¼ 0.50, and
a ¼ 0.75 (closer to lasso regression) further
excluded ApoA1.

BIOMARKER PRS. PRS with continuous shrinkage
(CS)21 was run on each of the GWAS summary results
of the selected 10 biomarkers. To account for linkage
disequilibrium (LD), we used the 1000 Genomes13,37

project’s phase 3 European reference panel ,which
resulted in LD-adjusted posterior effect sizes for
1,139,910 SNPs. The PRS for each biomarker was then
computed as a sum over SNPs of the products of the
individual’s genotype and the posterior effect size for
the SNP with the use of PLINK2.0.38

WEIGHTS OF BIOMARKER PRS ON CHD. The PRS
of the 10 selected biomarkers were used as pre-
dictors for incident CHD in a Cox proportional
hazards model in the UKB training data without the
prevalent CHD cases. According to this model, the
hazard rate at age t depends on the predictors as
follows:

hðtÞ ¼ h0ðtÞ$exp
�
bhdlPRSxhdlPRS þbldlPRSxldlPRS

þ btgPRSxtgPRS þbapoaPRSxapoaPRS þbapobPRSxapobPRS
þ bcpdPRSxcpdPRS þ bcreaPRSxcreaPRS þ bcpdPRSxcpdPRS

þ bhba1cPRSxhba1cPRS þbsbpPRSxsbpPRS þ bT
z xz
�

(Equation 1)

Where h0(t) is the baseline hazard rate, z denotes the
vector of covariate values (sex and the first 10 prin-
cipal components of population structure), and each
biomarker has coefficient bbiomarkerPRS that corre-
sponds to a change in the logarithm of the hazard rate
per one standard deviation of the biomarker
PRS value.

We used the “coef” function from the “survival”
library39 of R software to estimate the bbiomarkerPRS

coefficients as previously recommended.40,41

BioPRS. We combined the biomarker PRS into a score
named BioPRS by standardizing (mean of 0 and SD of
1) the sum of the 10 biomarker PRS after multiplying
each PRS by the beta-coefficient (bi) of the corre-
sponding biomarker from formula (equation 1):

BioPRS ¼ standardize

 X10
i¼ 1

bi $PRSi

!
(Equation 2)

CHDPRS. We generated a PRS for CHD (named
CHDPRS) by applying PRS-CS21 to CHD GWAS re-
ported by Nikpay et al13 using the European panel
from the 1000 Genomes Project37 for LD reference.
Our CHDPRS contained 1,087,715 SNPs. In addition,
we compared our CHDPRS with “Khera PRS,” which is
the PRS for CHD generated with the use of LDpred by
Khera et al23 based on the same GWAS13 that we used
to generate our CHDPRS.

CHDBioPRS. CHDBioPRS was constructed from inte-
gration of BioPRS and CHDPRS. Weights of the 2 PRS
(CHDPRS and mBioPRS) were estimated in the UKB
validation set with the use of a Cox regression model
with CHD as outcome:

hðtÞ ¼ h0ðtÞ $ exp ðcCHDPRSxCHDPRS þ cBioPRSxBioPRSÞ
(Equation 3)

CHDBioPRS is the standardized sum of the CHDPRS
and BioPRS multiplied by their weights from formula
(equation 3):

CHDBioPRS ¼ standardizeðcCHDPRS CHDPRSi

þ cBioPRSBioPRSiÞ
(Equation 4)

In addition to the derivation above, a similar pro-
cedure was done also for men and women separately
(biomarker selection using glmnet, biomarker
weights in BioPRS using Cox regression, and combi-
nation of CHDPRS and BioPRS using another Cox
regression).

SCORE2. SCORE242 is a prediction model for 10-
year cardiovascular disease risk that uses informa-
tion on age, total cholesterol, HDL, SBP, diabetes,
and smoking. We calculated SCORE2 in our UKB
data sets to give a comparison point for our PRS.
We note that performance of SCORE2 may be overly
optimistic in UKB, because the UKB data were used
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TABLE 3 HRs (With 95% CIs) From Cox Regression Model of 3 Different PRS

on Incident CHD

Cohort BioPRS CHDPRS CHDBioPRS

UKB training 1.45 (1.42-1.48) 1.64 (1.61-1.67) 1.76 (1.72-1.79)

UKB validation 1.42 (1.38-1.46) 1.62 (1.57-1.67) 1.73 (1.68-1.78)

UKB test 1.45 (1.36-1.55) 1.78 (1.67-1.91) 1.88 (1.76-2.01)

UKB test women 1.53 (1.34-1.75) 1.72 (1.50-1.98) 1.86 (1.62-2.14)

UKB test men 1.42 (1.32-1.53) 1.72 (1.60-1.85) 1.84 (1.71-1.98)

UKB test early onset 1.60 (1.43-1.78) 1.90 (1.69-2.13) 2.07 (1.85-2.32)

FinnGen 1.27 (1.26-1.29) 1.57 (1.55-1.60) 1.60 (1.58-1.62)

FinnGen women 1.27 (1.24-1.30) 1.53 (1.50-1.57) 1.56 (1.53-1.60)

FinnGen men 1.27 (1.25-1.29) 1.58 (1.55-1.60) 1.61 (1.59-1.63)

FinnGen early onset 1.51 (1.47-1.55) 2.01 (1.95-2.07) 2.10 (2.04-2.16)

BioPRS is combination of PRS of 10 CHD-related biomarkers, CHDPRS is a standard PRS for CHD,
and CHDBioPRS combines BioPRS and CHDPRS. Early onset was defined as CHD before 55 years
of age. C-index, AUC, and P values are in Supplemental Tables 2 to 7, likelihood ratio statistics are
in Supplemental Table 18, and SCORE2-related statistics are in Supplemental Table 19.

PRS ¼ polygenic risk score; other abbreviations as in Table 1.
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in the derivation of SCORE2. Because SCORE2 re-
quires laboratory measurements, it cannot be
applied in FinnGen, where those lab measurements
are not available. We constructed combined pre-
dictors SCORE2 þ CHDPRS and SCORE2 þ
CHDBioPRS by an approach similar to that described
by equations (3) and (4).

EARLY ONSET. We identified all individuals with
early CHD onset (<55 years of age), and to further
account for sex differences, we defined early CHD
onset for women as <60 years of age and early CHD
onset for men as <50 years of age.43

STATISTICAL ANALYSIS. All analyses were done
with the use of R software.36,39,44-46 All scores were
standardized to have a mean of 0 and a variance of
1. Cox proportional hazard models were used to
estimate time until CHD ,with results presented as
the HR with 95% CI and compared with the use of
the likelihood ratio test statistic (LRT). In Cox
regression, age was used as the time scale. When
evaluating PRS, the CHD outcome variable included
both incident and prevalent cases. In UKB, we
excluded prevalent cases from the analysis when
we selected relevant biomarkers and when we
estimated the biomarker weights for generating
BioPRS. In survival analyses of early onset cases,
the cases with late onset were excluded and the
control cases were censored at the upper limit of
the early onset age.

C-Index,47 a metric for prediction concordance,
and AUC with 95% CI were used to assess model
discrimination. We also computed how much each
biomarker PRS explains of the variance of the corre-
sponding biomarker by using the adjusted R2 measure
for the linear model where the biomarker PRS was the
only predictor in the model. Net reclassification
improvement (NRI) between different prediction
models was obtained to determine how well the new
model reclassifies patients compared with the previ-
ous model.

RESULTS

For our UKB GWAS set, we generated statin-adjusted
GWAS results for 16 CHD-associated biomarkers. After
accounting for withdrawals and missing biomarker
measurements, we identified a total of 297,158 par-
ticipants (53.3% female) comprising 16,658 CHD cases
(22.6% female). We further split these data into
training (70%) and validation (30%) sets while main-
taining similar case and sex proportions. Our UKB test
data set of 25,765 (56.4% female) unrelated in-
dividuals of “non-British White” self-identified
ethnicity included 949 CHD cases (23.2% female).
Our FinnGen test data contained 300,496 Finnish
individuals (56.4% women; 10.4% CHD cases of which
27.6% were women). A combined PRS of CHD bio-
markers (BioPRS) was derived across PRS of 10 bio-
markers (Supplemental Table 1) (HDL, LDL, TRIG,
total cholesterol, systolic blood pressure, CPD, HbA1c,
CRP, creatinine, ApoB, ApoA1) by combining the in-
dividual biomarker PRS generated with PRS-CS on
1,106,191 SNPs. We validated in UKB test data that this
BioPRS (C-index: 0.781; SE: 0.007) performed at least
as well as a corresponding PRS constructed from all 16
biomarkers (C-index: 0.778; SE: 0.007). BioPRS was
further integrated with the CHDPRS constructed
from 6,630,150 variants from a GWAS13 involving
184,305 participants of European ancestry to yield
CHDBioPRS. We also compared our CHDPRS to the
Khera PRS23 and found that our CHDPRS gave a
similar result in UKB training data (HR: 1.64 [95% CI:
1.61-1.67]; compared with HR: 1.62 (95% CI: 1.59-1.64)
(Supplemental Table 2). CHDBioPRS is approximately
normally distributed and, on average, higher in
CHD cases relative to the control cases (mean differ-
ence: 0.518 SD; 95% CI: 0.490-0.546) (Supplemental
Figure 2).

Table 3 presents the results from UKB data sets and
FinnGen. In UKB, results from the training set are
similar to results from the validation and test sets,
which suggests that the model is not overfitting in the
training data. In all 3 UKB data sets, we observed the
same pattern, where BioPRS itself is clearly predictive
of CHD (HR estimates per SD vary from 1.42 to 1.45),
CHDPRS on its own is more predictive than BioPRS
(HR estimates vary from 1.62 to 1.78), and CHDBioPRS
is the most predictive (HRs vary from 1.73 to 1.88). For

https://doi.org/10.1016/j.jacbts.2023.07.006
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FIGURE 2 CHD Prediction Using PRSes in FinnGen and UKB Test Samples. Both

Cohorts are Disjoint from the Samples Used in Construction of BioPRS and

CHDBioPRS. Early onset ¼ onset < 55 Years of Age.
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C-index, z-scores, and AUC metrics, see Supplemental
Tables 2 to 4. When the scores are applied in FinnGen
(Supplemental Table 5), the pattern was repeated,
where BioPRS is clearly predictive and improves the
prediction by CHDPRS when combined with CHDPRS
into CHDBioPRS. Overall, the HRs in FinnGen are
smaller than in UKB for all PRS.

When comparing the CHD risk between the top 5%
of the PRS distribution and the rest, we observed
larger HRs for CHDBioPRS (UKB test: 4.16 [95% CI:
3.09-5.60], FinnGen: 4.04 [95% CI: 3.76-4.35]) than
for CHDPRS (UKB test: 3.56 [95% CI: 2.62-4.86],
FinnGen: 3.84 [95% CI: 3.56-4.14]. HRs for other
percentiles along with their AUCs are listed in
Supplemental Table 6 for UKB Test and Supplemental
Table 7 for FinnGen.

We next studied the PRS in cases with early CHD
onset (<55 years of age). For UKB test data, we had
325 cases (20.6% female) and for FinnGen 5,965 cases
(21.4% female). For both cohorts, we observed higher
HRs for early onset cases than for all cases and again
we saw HRs growing when using CHDBioPRS (UKB
test: 2.07 [95% CI: 1.85-2.32], FinnGen: 2.10 [95% CI:
2.04-2.16]) instead of CHDPRS (UKB test: 1.90
[95% CI: 1.69-2.13], FinnGen: 2.01 [95% CI: 1.95-2.07]
(Figure 2, Table 3; see also Supplemental Table 6 for
UKB test and Supplemental Table 7 for FinnGen).
Among all CHD cases, the CHDBioPRS values peaked
for cases with an onset at around 40 years of age
(Supplemental Figure 3).

It is known that CHD incidence and biomarker as-
sociations vary between sexes.3,10 Therefore, we
stratified UKB data and FinnGen data by sex. In both
sexes, the regularized optimal models built in UKB
training data consisted of the same 8 biomarkers
(HDL, LDL, TRIG, SBP, CPD, HbA1c, CRP, and ApoB).
Using these biomarkers, we refitted the models in
each sex separately and derived corresponding scores
(BioPRS and CHDBioPRS). The CHD HR had similar
dynamics between CHDPRS and CHDBioPRS
compared with the full cohort (Table 3, Supplemental
Tables 8 to 11). Among FinnGen women with onset
before 60 years of age, the HRs were 1.82 (95% CI:
1.74-1.90) for CHDPRS and 1.90 (95% CI: 1.81-1.99) for
CHDBioPRS (Supplemental Table 12), and for FinnGen
men with onset before 50 years of age, the HRs were
2.17 (95% CI: 2.07-2.27) for CHDPRS and 2.26 (95% CI:
2.16-2.36) for CHDBioPRS (Supplemental Table 13).

We observed that CHDBioPRS provided improved
prediction in terms of HR, C-index, and LRT
compared with SCORE2, a prediction algorithm based
only on measured risk factors, but that a combination
of SCORE2 and CHDBioPRS gave the best performance
(Figure 2, Supplemental Tables 18 and 19). In
evaluating NRI, we found that CHDBioPRS improved
NRI over CHDPRS (Supplemental Table 16) by 0.239
for UKB test, 0.301 for UKB test early onset, 0.101 for
FinnGen, and 0.139 for FinnGen early onset. Finally,
we also found that CHDBioPRS improved LRT
compared with CHDPRS in both UKB test and Finn-
Gen cohorts (Supplemental Figure 4, Supplemental
Table 18).

DISCUSSION

In an analysis of more than 600,000 participants
involving 2 nationwide study cohorts, UKB and
FinnGen, we showed that combining a biomarker PRS
derived from 10 CHD-associated biomarkers with a
standard PRS for CHD improved the prediction of
CHD. This improvement in prediction was largest for
early onset CHD for both men and women.

Our BioPRS compared well with the recently pub-
lished multi-PRS score by Sinnott-Armstrong et al,2
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which was derived from 35 UKB biomarkers. Their
multi-PRS score was reported to have an HR of 1.19
(95% CI: 1.17-1.22) in FinnGen (data freeze 3) for MI,
while our BioPRS achieved an HR of 1.29 (95% CI: 1.27-
1.31) using the same endpoint and same covariates in
the more recent and larger data freeze 7 of FinnGen.
In addition, when Sinnott-Armstrong et al combined
their multi-PRS with a standard PRS for CHD in
FinnGen, they reported an HR of 1.50 (95% CI: 1.46-
1.53), while our CHDBioPRS achieved an HR of 1.60
(95% CI: 1.58-1.62) in FinnGen (data freeze 7). Simi-
larly, a MetaGRS score from Inouye et al,26 which
combined 3 genetic risk scores (GRS46K,22 another
score based on 202 significant genetic variants from
CARDIOGRAMplusC4D,17 and a genome-wide score
based on the same GWAS13), reported an HR of 1.71
(95% CI: 1.68-1.73) when tested on UKB, while our
CHDBioPRS yielded an HR of 1.88 (95% CI: 1.75-2.01)
in our UKB test data.

There were clear differences in effect sizes be-
tween UKB and FinnGen. These differences could in
part relate to differences in sample ascertainment
procedures and genetic background. The UKB par-
ticipants are known to be healthier than the general
population,48 and therefore the relative contribution
of genetics to their disease risk may be larger,
whereas the FinnGen participants are recruited
through their contacts with the Finnish health care
system. In addition, the FinnGen participants are on
average 5 years older than the UKB participants, and
the CHD case rate in FinnGen is nearly double that of
UKB (10.2% vs 5.6%). Differences in performance
of PRS are known to exist even between populations
of European ancestry.49 In our study, the biomarker
GWAS effect sizes and LD information used in
creating PRS were derived in UKB or from other non-
Finnish European populations, which could lead to
better predictive power of PRS in UKB compared with
Finnish data.50 For our CHDPRS, the effect sizes were
taken from a large GWAS meta-analysis13 that may
have included some of our FinnGen test samples.
However, because our CHDPRS performed better in
UKB than in FinnGen, we do not expect this potential
overlap to have caused serious overfitting in our
FinnGen test data.

Both sex-specific CHDBioPRS were constructed
from the same set of 8 biomarkers (HDL, LDL, TRIG,
SBP, CPD, HbA1c, CRP, and ApoB) and achieved pre-
diction improvements compared with the standard
CHD PRS. Importantly, we observed fairly similar HR
estimates for men and women, which is in contrast
with existing CHD clinical scores, such as QRISK/
QRISK2 which is known to underestimate the CHD
risks in women.51-54 We also observed larger HRs for
early onset cases than all cases, indicating that our
PRS are also informative about age at onset.

Throughout the analyses, we saw that prediction
using CHDBioPRS was statistically strongly favored
over that from CHDPRS when measured by likelihood
ratio. Similarly, we saw that CHDBioPRS led to higher
performance compared with SCORE2,42 which is a
predictor based on traditional risk factor measure-
ments, and the combination of CHDBioPRS and
SCORE2 performed best. Thus, when both genetic
data and risk factor measurements are available, the
combination of the two may be beneficial. An
important caveat here is that because we were able to
compute SCORE2 only on UKB, and UKB data have
been used in derivation of the SCORE2 algorithm, our
SCORE2 predictions in UKB data may be too
optimistic.

STUDY LIMITATIONS. Disease risk prediction using
multiple biomarkers and genome-wide set of genetic
variants is a very high-dimensional problem and
therefore adding more sparsity to the model building
could improve the risk prediction. For example,
one could attempt to use, for each genomic region
separately, only a relevant subset of biomarkers.55

Furthermore, genomic regions could be prioritized,
for example, by curated CHD molecular pathways56

including known lipid-associated genomic regions.57

The present study is limited to individuals with
European ancestry. Given recent discoveries about
imperfect transferability of PRS between pop-
ulations,58,59 training of an optimal CHDBioPRS for
non-European ancestries would require appropriate
training data from those other ancestries. This is also
important because the potential to use genetic scores
to identify high-risk individuals from birth could
exacerbate the health differences between in-
dividuals with European ancestry and others until
there is a broader inclusion of underserved ethnicities
in research, particularly in multiethnic countries such
as the UK and the U.S.60

An approach similar to our BioPRS could also
improve prediction of other complex diseases, such
as type 2 diabetes and breast cancer, with established
PRS and known heritable risk factors.59

CONCLUSIONS

The integration of biomarker PRS improves on the
standard PRS for prediction of CHD, where the gain
was largest among early onset CHD cases. This study
strengthens the evidence for genome-based CHD
prediction and quantifies the interplay between
standard CHD PRS and PRS of biomarkers associated
with CHD.



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: CHD is a leading

cause of death, and there is an increased need for better genetic

prediction, especially for high-risk individuals. A standard PRS for

CHD has already been shown to improve prediction. A new PRS,

constructed by combining the CHD PRS with PRS of statistically

relevant CHD risk factors, can further improve genetic prediction,

particularly for high-risk individuals. The identification of indi-

viduals with the highest risk of CHD can assist clinicians in their

decision making.

TRANSLATIONAL OUTLOOK: Additional research is needed

to establish the clinical benefit of the novel PRS, which includes

information from multiple CHD-associated biomarkers, providing

a more individualized prediction for CHD.
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ETHICS STATEMENT AND METHODS. Patients and
control subjects in FinnGen provided informed con-
sent for biobank research, based on the Finnish Bio-
bank Act. Alternatively, separate research cohorts,
collected before the Finnish Biobank Act came into
effect in September 2013 and the start of FinnGen in
August 2017, were collected based on study-specific
consents and later transferred to the Finnish bio-
banks after approval by the Finnish Medicines Agency
(Fimea), the national supervisory authority for wel-
fare and health. Recruitment protocols followed the
biobank protocols approved by Fimea. The Coordi-
nating Ethics Committee of the Hospital District of
Helsinki and Uusimaa statement no. for the FinnGen
study is HUS/990/2017.

The FinnGen study was approved by the Finnish
Institute for Health and Welfare (permit nos.
THL/2031/6.02.00/2017, THL/1101/5.05.00/2017,
THL/341/6.02.00/2018, THL/2222/6.02.00/2018, THL/
283/6.02.00/2019, THL/1721/5.05.00/2019, THL/1524/
5.05.00/2020, and THL/2364/14.02/2020), the Digital
and Population Data Service Agency (permit nos.
VRK43431/2017-3, VRK/6909/2018-3, and VRK/4415/
2019-3), the Social Insurance Institution (permit
nos. KELA 58/522/2017, KELA 131/522/2018, KELA
70/522/2019, KELA 98/522/2019, KELA 138/522/2019,
KELA 2/522/2020, and KELA 16/522/2020), Findata
(THL/2364/14.02/2020) and Statistics Finland
(permit nos. TK-53-1041-17 and TK/143/07.03.00/
2020 [earlier TK-53-90-20]).

The Biobank Access Decisions for FinnGen samples
and data used in FinnGen data freeze 7 include
THL Biobank BB2017_55, BB2017_111, BB2018_19,
BB_2018_34, BB_2018_67, BB2018_71, BB2019_7,
BB2019_8, BB2019_26, and BB2020_1, Finnish Red
Cross Blood Service Biobank 7.12.2017, Helsinki Bio-
bank HUS/359/2017, Auria Biobank AB17-5154 and
amendment no. 1 (August 17, 2020), Biobank Borealis
of Northern Finland 2017_1013, Biobank of Eastern
Finland 1186/2018 and amendment 22 x /2020,
Finnish Clinical Biobank Tampere MH0004 and
amendments 21.02.2020 and 06.10.2020, Central
Finland Biobank 1-2017, and Terveystalo Biobank STB
2018001.
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