
AFOCL: Portable OpenCL Programming of FPGAs
via Automated Built-in Kernel Management

Topi Leppänen, Joonas Multanen, Leevi Leppänen, Pekka Jääskeläinen
Faculty of Information Technology and Communication Sciences

Tampere University
Tampere, Finland

Abstract—OpenCL provides a consistent programming model
across CPUs, GPUs, and FPGAs. However, to get reasonable
performance out of FPGAs, OpenCL programs created for other
platforms need to be modified. These modifications are often
vendor-specific, limiting the portability of OpenCL programs
between devices from different vendors.

In this paper, we propose AFOCL: a cross-vendor portable
programming methodology for FPGAs based on standard
OpenCL and a database of bitstreams. It is based on the built-in
kernel-abstraction introduced in OpenCL v1.2. FPGA reconfigu-
ration is handled automatically by the proposed OpenCL runtime
and is invisible to the software programmer.

To demonstrate the cross-vendor portability of the method,
it is implemented for a PCIe FPGA card from both AMD
and Intel. Templates for efficient dataflow-based kernels are
created, which can be extended and tailored for each built-
in kernel implementation. With a simple evaluation kernel, the
runtimes are 85x and 186x faster than an unoptimized OpenCL
C kernel implemented with FPGA vendor tooling, AMD and Intel
respectively. Against hand-optimized kernel implementations cre-
ated with vendor tools, the proposed method reaches the same
performance as AMD and is only 1.1x slower than Intel, due
to limited clock frequency optimization of the template. Thus,
the method provides a flexible cross-vendor programming model
for FPGAs with competitive performance. The method enables
splitting the roles of software developers, who no longer need
to concern themselves with FPGA-specific details, and FPGA
hardware developers who populate the database. The proposed
method is released in open source and integrated into a popular
OpenCL implementation PoCL.

Index Terms—OpenCL, built-in kernels, FPGA, performance
portability, multi-vendor

I. INTRODUCTION

The slowing growth of CPU performance has led to a
boom in heterogeneous computing architectures. These de-
vices include GPUs, DSPs, ASICs, and FPGAs. Traditionally,
the different device types have had their own programming
models, which means that higher-level programs using them
need to be modified for each new device type. OpenCL [1]
is an open standard aiming to provide a write-once-use-
everywhere model of heterogeneous platform programming. It
relies on OpenCL implementations to hide the device-specific
details from the higher-level programmer.

OpenCL has been found to be a useful programming
abstraction for FPGAs [2]–[5], which are very generic de-

Static Region

Reconfigurable region

Compute
Unit

PCIe
Interface

External
Memory
Interface

Compute
Unit

Compute
Unit

Memory Interconnect

DDR/
HBM

PCIe
Bus

Fig. 1: Generic PCIe FPGA platform for OpenCL

vices able to implement most logic circuits, with the trade-
off being that they are less efficient than the corresponding
logic circuit as a fixed-function ASIC. Still, due to their
flexibility, FPGAs have been deployed as part of commer-
cial cloud computing systems [6], [7]. Since FPGAs need
a circuit description in order to be programmed, compiling
a higher-level program automatically to a circuit description
has been found to raise programmer productivity [8]. This
automated lowering/compilation-step is called High-Level Syn-
thesis (HLS).

FPGA vendors AMD and Intel both offer OpenCL-based
HLS tools for their FPGAs. While these OpenCL implemen-
tations have proven to be useful in many cases, they are still
quite limited. To get the best performance of a specific kernel,
the OpenCL kernel code used for CPUs or GPUs needs to
be heavily modified when it is ported for FPGA devices [9].
These optimizations require significant tool-specific knowl-
edge since they can include heavy transformations to make
the kernel more dataflow-oriented, vendor-specific extensions,
libraries, pragmas, and attributes. The vendor-specific modi-
fications can cause vendor lock-in, where the application be-
comes so tied to specific tools that changing the device vendor
is no longer feasible. Additionally, the vendor implementations
require the user to trigger FPGA reconfiguration by passing the
bitstream to the OpenCL implementation via the host program.

In this work, we propose a more portable and flexible
OpenCL programming model called AFOCL. Instead of ask-
ing the user to first compile the bitstream and then program it
to the FPGA in an explicit call, we propose a method in which
the OpenCL implementation is connected to a database of pre-
compiled bitstreams and where the implementation manages
the FPGA reconfiguration in the ways it sees fit. The user

utilizes the standard OpenCL built-in kernel API (available
since version 1.2 of the standard) to get the functionality they
want and does not need to handle the bitstream binaries, or
anything FPGA vendor-specific.

A separate database of OpenCL built-in kernel implemen-
tations decouples the kernel development from host software
development. The kernel implementations are created by hard-
ware experts and synthesized only once. The OpenCL im-
plementation completely manages the FPGA reconfiguration
behind-the-scenes by fetching the bitstreams from the database
and reconfiguring the FPGA when the kernels are enqueued.
The database contains the same built-in kernel implemented
for different FPGAs to enable cross-vendor portability.

The OpenCL software developer can keep their host appli-
cation completely standard-conformant, which means that they
can develop their applications even with a different OpenCL
implementation and device (e.g. desktop CPU), as long as that
OpenCL implementation contains the implementations for the
same set of built-in kernels.

Thus, the proposed method will help in clarifying and
isolating the roles of software and hardware developers. The
hardware developers will be responsible for adding new ker-
nels to the database. The software developers can focus on
writing host applications without any FPGA vendor-specific
code.

To assist the hardware developers in creating new built-
in kernel implementations to the database, we provide a
command processor template which is distributed alongside
the other sources. The command processor template includes
a small controller to make the communication to the provided
OpenCL driver consistent, a configurable number of DMA
engines for efficient data movement, and the acceleration logic
itself in separate IPs.

To evaluate the proposed methodology, the runtime is im-
plemented on two PCIe FPGAs, one from Intel and one from
AMD. As a demonstration of the cross-vendor portability,
the host program used to control the different FPGAs can
be kept exactly the same. The overhead measurements show
that the proposed method can give significant performance
improvement over unoptimized OpenCL C kernels, and adds
only a small overhead compared to hand-optimized kernel
implementations created with corresponding vendor tooling.

Summarizing, this paper provides the following contribu-
tions:

• AFOCL: a cross-vendor portable programming model for
FPGAs based on standard OpenCL.

• Abstraction of all FPGA-specific details from software
developers via automated FPGA management.

• Methodology for reusing hardware development effort via
shared bitstream database.

The source code of the proposed framework including the
command processor template and the OpenCL implementation
is released in open-source in order to progress the field of
vendor-independent FPGA programming.1

1Source code available at: https://github.com/cpc/AFOCL.

II. RELATED WORK

SYLVA [10] uses a library of macros, which are pre-
synthesized function implementations which they tie together
to generate complete specialized systems for ASIC, FPGA and
CGRA backends. They show how the use of macros can save
expensive hardware development effort and offer an easier
target for high-level synthesis tools compared to lower-level
RTL.

ZUCL [11] is a framework for deploying OpenCL appli-
cations for the Xilinx UltraScale+ MPSoC platform. They
support multiple reconfigurable slots on the FPGA which can
be dynamically reconfigured with pre-synthesized relocatable
OpenCL kernels. The support for relocatable bitstreams allows
them to reuse the once synthesized bitstream in different,
identical in structure, reconfigurable slots. They recognize the
importance of decoupling the accelerator compilation and the
static platform shell, which allows independent development
and updating of each component. In their later work FOS
(FPGA Operating System) [12], they manage FPGA resources
spatially in an analogous manner to generic operating system’s
(OS) temporal sharing to distribute the resources for OpenCL
kernels at runtime based on application characteristics.

PLD [13] is an FPGA compilation framework that supports
different compilation paths based on the optimization level
set by the user. They support compiling the design for a set
of reconfigurable regions connected by an NoC similar to
HiPR [14]. Park et al. [15] extend PLD to support hierarchi-
cal partial reconfiguration where reconfigurable slots can be
recombined to form double- and quad-sized slots.

Rodriquez-Canal et al. [16] support dynamic partial recon-
figuration of OpenCL kernels in their Controller framework.
They support platforms with multiple dynamically reconfig-
urable slots and have support for reconfiguring them separately
based on the application’s needs.

UT-OCL [17] is an OpenCL platform implemented with
hardware and software components to execute OpenCL kernels
on FPGAs. It includes a small MicroBlaze core for each kernel
implementation to handle communication with the OpenCL
driver, which is quite similar to the proposed command pro-
cessor template.

While many of the earlier works described above have
implemented automated FPGA reconfiguration based on the
OpenCL kernel which the user wants to launch, according
to the authors’ best knowledge, the proposed method is the
first work suggesting a database of OpenCL built-in kernels
combined together with the automated FPGA management.
Additionally, the previous works’ discussed here have focused
on only AMD FPGAs, whereas the proposed method suggests
a consistent vendor-independent programming model validated
on devices from both AMD and Intel.

While especially SYLVA [10] and FOS [12] seem very close
in intention to the proposed method, they do not propose the
pre-compilation and distribution of bitstreams. Additionally,
the proposed method explicitly stays within standard OpenCL-
compliant host applications, which keeps them completely

portable and vendor-independent, which was not explicitly
addressed in the related works described above.

III. AUTOMATED BUILT-IN KERNEL MANAGEMENT

The proposed method uses a similar overlay structure to
FPGA vendor OpenCL implementations seen in Fig 1. It
consists of a static platform region for handling the connec-
tivity to external interfaces, which is loaded onto the FPGA
device at power-on time, and a reconfigurable region which is
reprogrammed with the built-in kernel implementations.

AFOCL consists of two major components: A database
of pre-synthesized bitstreams that implement the built-in ker-
nels and a runtime driver which fetches bitstreams from the
database and automatically reconfigures the FPGA.

A. Bitstream Database

At the core of the proposed method is a pre-synthesized
database of built-in kernel implementations. Every bitstream
contains an implementation for one or more built-in kernels.
According to the OpenCL specification [1], built-in kernels
are kernels with the behavior defined by the OpenCL imple-
mentation and only identified by their name.

In order to make sure that the functionality of the pre-
synthesized built-in kernel matches what the software devel-
oper expects, the use of a built-in kernel registry such as the
one proposed in [18] is recommended. The built-in kernel
registry contains the mapping between the built-in kernel name
and its functionality but does not define or contain anything
about where or how the built-in kernel will be implemented
(CPU, GPU, FPGA, etc.). When the kernel implementation
in the bitstream database follows the specification set out in
the built-in kernel registry, there is a guarantee that the built-
in kernel implementation will have exactly the same behavior
as the registry entry. This also provides a consistent program-
lowering target for higher-level tools and frameworks. The dif-
ference between the built-in kernel registry and the proposed
database is further illustrated in Fig. 2.

Supporting multiple different FPGA devices from different
vendors in the same database is possible, as long as every
FPGA device has its own bitstream entry. Therefore, a single
built-in kernel has multiple implementations in the database
for different FPGA devices.

One built-in kernel can be a fusion of two lower-level built-
in kernels. For example, multiply-accumulate-operation is a
fusion of multiply and addition operations. Alternatively, these
two kernels can be implemented as a combination of accelera-
tors on the same bitstream as independently launchable built-in
kernels. This can be seen in Fig. 3 which includes accelerators
A and B both controlled by the same command processor.
Currently, there is no automated support to fuse or combine
built-in kernels, so these kinds of optimizations need to be
performed manually.

Different FPGA device types, kernel fusions, combinations,
and possible kernel specializations can make the total database
size large, thus the effort in expanding it for new FPGAs could
become significant. However, since the centralized database

allows many users to reuse and share common bitstreams, the
method could actually reduce the total number of bitstream
generation runs globally. Additionally, having open and easily
available bitstream databases could increase the use of FPGA
devices, which are commonly known to be hard to utilize.

Another interesting possibility enabled by the shared
database is that updating it with more performant built-in ker-
nel implementations can improve the application runtimes of
potentially thousands of users who have opted-in for updates.
This makes it worth it to spend significant time and effort to
optimize the most popular built-in kernels.

B. Adding New Built-in Kernel Implementations

Adding new built-in kernel implementations is an important
part of the proposed method. This is a step that requires hard-
ware development expertise since the kernel implementations
are meant to be highly optimized.

In order to swap kernels in the reconfigurable region, the
kernels need to have a commonly understood interface. For
this, we use AlmaIF [19] accelerator interface. It is a memory-
mapped interface with configuration and control registers, a
region for a ring buffer of command packets, and a region
for dynamically allocatable data. Every kernel implementation
will need to implement the interface in order for the runtime
driver to be able to communicate with the kernels.

The built-in kernel developer can use whatever technique
they like to implement the built-in kernel including RTL, HLS,
and soft processors. The only requirement is compliance with
the AlmaIF memory-mapped interface specification.

One of the ways to implement the AlmaIF interface is
to have a separate command processor which handles the
interfacing to the driver and a separate accelerator(s) that
performs the core of the computation. We provide a command
processor template shown in Fig. 3, which can be modified
by the built-in kernel developer.

Efficient data movement between the accelerator and the
external memory is highly important for good runtime per-
formance. The command processor template has support for
three different memory access types:

1) Random access to external memory. The most generic
one which will work with most applications. Recom-
mended for large data amounts which require random
access.

2) Random access to on-chip memory. Similarly very
generic and easy to implement, but limited by the
amount of on-chip RAM, and the transfer speed of the
slave memory interface. Recommended for small data
amounts.

3) Streaming dataflow. Burst access between external mem-
ory and on-chip FIFOs. Most efficient utilization of
external bandwidth, but is possibly difficult to implement
for all types of kernels. Recommended for large data
amounts where the access patterns are straightforward.

The memory access types can be freely combined even in
the same built-in kernel implementation. An example template
implementing all three memory access types is released in

Bitstream Database of Built-in KernelsBuilt-in Kernel Registry

kernel void add_i32 (global int* a, global int* b,
 global int* c) {
 int i = get_global_id(0);
 c[i] = a[i] + b[i];
}

Alveo U280

Arria 10 GX
kernel void mul_i32 (global int* a, global int* b,
 global int* c) {
 int i = get_global_id(0);
 c[i] = a[i] * b[i];
}

Alveo U280

Arria 10 GX

mul.i32

mul.i32

add.xclbin

mul.rbf

addmul_combination.xclbin

add.rbf

add.i32

add.i32

add.i32

Bitstream filename FPGA device Implements built-in kernelsKernel name Kernel behavior

add.i32

mul.i32

Arria 10 GX mul.add.i32addmul_fused.rbf

Fig. 2: Simplified illustrations of the built-in kernel registry from [18] and the built-in kernel database (proposed). The built-in
kernel names used in the database are exactly the same as in the registry to enforce the link between the kernel behavior and
implementation.

On-Chip
Data

Memory

FIFO

DMA
Engine

External Memory

Slave
Memory
Interface

(3)

Master Memory
Interface

Device that implements built-in kernels A and B

(1)

Accelerator
A

Stream
Interface

Command
Processor

(2)

FIFO

DMA
Engine

Accelerator
BAlmaIF

Interface

Fig. 3: Command processor template with the three different
memory access types. (1) Random access to external memory
(2) Random access to on-chip memory (3) Streaming dataflow.

open-source to facilitate the easy addition of new built-in
kernel implementations. The command processor template is
FPGA vendor and device-specific and therefore may require
moderate one-time porting efforts when changing the device
type or especially the FPGA vendor. At the time of writing,
the template has been ported for Intel Arria 10 GX and Xilinx
Alveo U280 FPGAs.

The provided command processor template likely needs
small modifications for each new built-in kernel. Typically
only the interfacing between the command processor, DMA
engines, and the acceleration IP needs customization since it
depends on the number and type of kernel arguments.

C. FPGA Reconfiguration

To reconfigure the FPGA, the proposed method includes a
runtime driver component inside the OpenCL implementation
that connects to the bitstream database. At the initializa-
tion time, the runtime driver will parse the database index.
After this, the driver knows which built-in kernels it can
implement, and will report this list in a standard OpenCL
CL DEVICE BUILT IN KERNELS device info query as de-
fined in OpenCL specification [1].

The runtime driver will reconfigure the FPGA when the
kernel is enqueued. This enables more flexible use of FPGA
compared to vendor (AMD, Intel) OpenCL implementations
as shown in Fig. 4. The vendor OpenCL implementations tie

the FPGA reconfiguration to the program object construction
with clCreateProgramWithBinary-call. This can complicate
the host programs somewhat since the program objects cannot
be constructed beforehand for kernels in different bitstreams.
Alternatively, the user must know beforehand which kernels
are used in the same application and synthesize all those into
the same bitstream (if they fit). The proposed method will
automatically reconfigure the FPGA when the user launches a
kernel that is not already configured on the FPGA.

IV. EVALUATION

To demonstrate the cross-vendor portability of the proposed
method and to assess the inevitable overheads that come with
a more generic method, we implemented AFOCL for two
FPGAs from two different vendors. The FPGAs used for the
evaluation are AMD/Xilinx Alveo U280 and Intel Arria 10
GX development kit with 10AX115S2 FPGA.

In all of the evaluations, the host program used for the
proposed method is kept the same when switching between
FPGAs from different vendors. This already demonstrates the
ability of the proposed method to hide vendor-specific details
from the software developer.

A. Command Processor Overhead

The overhead is measured with a vector addition bench-
mark. A simple benchmark is chosen to separate the overhead
measurement from the kernel implementation technique. Since
the application is so simple, it is clear that the runtime perfor-
mance of the design depends on mostly two factors: efficient
utilization of external bandwidth, and the clock frequency of
the design.

The accelerator created with the proposed method consists
of the command processor template (Fig. 3) with three DMA
engines, two for loading the data and one for writing. The
computation kernel is instantiated as a separate accelerator
with streaming-type interfaces. The DMA engines convert
between the memory-mapped and the streaming interfaces,
which means that externally the accelerator looks to be simply
doing memory-mapped burst accesses to external memory.

Table I contains runtime, clock frequency, and area compar-
ison of the proposed method against three different variations
generated with the vendor methodologies. The input data starts

D

A,B

C

E

F

Bitstream
database

Proposed flow

program_ABC =
clCreateProgramWithBuiltinKernels("A;B;C")

FPGA is reconfigured on this step
(if the bitstream is not already loaded)

clEnqueueNDRangeKernel(kernel_A)

clEnqueueNDRangeKernel(kernel_B)

clGetDeviceInfo(CL_DEVICE_BUILT_IN_KERNELS)

clEnqueueNDRangeKernel(kernel_C)

kernel_A =
clCreateKernel(A)

kernel_B =
clCreateKernel(B)

kernel_C =
clCreateKernel(C)

A,B

Vendor flow
User synthesizes a

kernel code with
kernels A,B

clEnqueueNDRangeKernel(kernel_A)

clEnqueueNDRangeKernel(kernel_B)

program_AB = clCreateProgramWithBinary()

C

User synthesizes a
kernel code with

kernel C

A,B

kernel_A =
clCreateKernel(A)

clReleaseProgram(program_AB)

program_C = clCreateProgramWithBinary()C

clEnqueueNDRangeKernel(kernel_C)

kernel_B =
clCreateKernel(B)

kernel_C =
clCreateKernel(C)

X A bitstream file containing
implementation for kernel X

Fig. 4: The method for launching kernels from different bitstreams with the vendor flow (left) and the enqueue-time
reconfiguration of the proposed method (right). The vendor methods allow only one program object to be active simultaneously,
since the clCreateProgramWithBinary-call reconfigures the FPGA. The proposed method automatically reconfigures the FPGA
only after the commands have been enqueued.

TABLE I: Results of 32-bit unsigned addition-kernel synthesized with FPGA vendor methodologies and the proposed method.
The runtime results are calculated with the problem size of 8 million elements.

Intel Arria 10 GX Kernel execution time PCIe transfer time Clock Frequency Area (out of 394 420 ALMs)
Unoptimized OpenCL C kernel 1468.8 ms 18.1 ms 324 MHz 5 290 (1.3%)
SIMD OpenCL C kernel 92.6 ms 18.3 ms 303 MHz 4 866.5 (1.2%)
Streaming dataflow kernel 7.3 ms 18.3 ms 341 MHz 8 222 (2.1%)
Proposed Method (AFOCL) 7.9 ms 31.0 ms 285 MHz 8 593.5 (2.2%)
Xilinx Alveo U280 Area (out of 1 303 680 LUTs)
Unoptimized OpenCL C kernel 681.8 ms 24.8 ms 554 MHz 2 310 (0.18%)
SIMD OpenCL C kernel 29.6 ms 24.7 ms 437 MHz 5 569 (0.43%)
Streaming dataflow kernel 8.0 ms 25.0 ms 523 MHz 6 602 (0.51%)
Proposed Method (AFOCL) 8.0 ms 21.6 ms 266 MHz 16 396 (1.3%)

TABLE II: Kernel launch latencies and the dynamic recon-
figuration times. Streaming dataflow kernel from Table I was
used as a baseline for vendor methodologies.

Intel Arria 10 GX Kernel launch time Reconfiguration time
Vendor OpenCL flow 127 µs 3.7 s
Proposed Method 240 µs 3.3 s
Xilinx Alveo U280
Vendor OpenCL flow 48 µs 3.7 s
Proposed Method 148 µs 3.7 s

from and ends up to an external DDR or HBM memory of
the PCIe FPGA card. Transfers over the PCIe bus from host
CPU to PCIe card DDR/HBM are not included in the kernel
execution time. Only a single memory port between FPGA
and external memory was used to simplify the comparison.

First, an unoptimized implementation of the kernel consists

of a bare-minimum description of the OpenCL C kernel
performing 32-bit element-wise addition of two arrays and
storing the result to an output array. The comparison against
the unoptimized OpenCL C kernel is interesting since it is the
level of abstraction that we expect the software developer to
work on. The software developer is mostly only interested in
what computation the kernel functionally performs. Therefore,
a novice developer using our method will get 85x and 186x
faster vector addition compared to the unoptimized OpenCL
C kernel synthesized with the vendor methods on Alveo U280
and Arria 10 GX, respectively.

Explicit vectorization with the use of OpenCL vector
datatypes is easy to implement for this simple kernel. For this
evaluation, a 16-element vector datatype was chosen. This is
already significantly faster than the unoptimized kernel due
to the wide datapath of the accelerator and wider external
memory accesses. Even still, the proposed method is shown

Master
interface

Read
512b

Add
16x32

Write
512b

Master
interface

FIFO
Read
512b

FIFO

FIFO

Master
interface

Fig. 5: Streaming dataflow implementation of vector addition.

to be 3.7x and 12x faster, respectively.
Finally, a streaming dataflow kernel was constructed that

uses vendor-specific API on AMD FPGA and OpenCL pipe
API on Intel FPGA to describe a task pipeline with four
different stages visualized in Fig 5. It also uses the same 16-
element vectors between the tasks. This is again significantly
faster than merely vectorizing the kernel since it decouples
the data transfer from the computation. This interleaves the
data loading, computation and result writeback with each
other. FIFO buffers in between tasks also help absorb small
variations in external memory accesses.

The proposed method reaches the same performance on
Alveo U280 as the most optimized streaming dataflow kernel.
Since the kernel is so simple, it is likely that the runtime
becomes constrained by the external memory bandwidth. With
Intel Arria 10 GX, the proposed method is 1.1x slower. The
small performance slowdown is likely because of the slower
clock frequency. The lower clock frequency is due to the
command processor template not yet being optimized for clock
frequency. In the future, optimizing this factor should bring the
performance to approximate equality, since there is nothing
fundamental preventing it.

From the results of Table I we can say that the proposed
method does not add significant runtime overhead when com-
pared to the optimized vendor methodology. Additionally, this
benchmark demonstrates how much performance is left on the
table if non-optimized OpenCL C kernels are used.

In this example, the most optimized versions are not
portable between the vendors. The Intel version uses OpenCL
pipes, which the AMD implementation does not support, and
the AMD version uses a vendor-specific hls stream-library.
In the proposed methodology, these types of optimizations
are completely isolated to the creation of the database, where
they aren’t visible to the end user. Additionally, using OpenCL
pipes as was done with Intel’s version of the dataflow kernel
requires having 4 separate OpenCL kernels, which all need to
be instantiated and managed by the host application.

A noticeable FPGA area usage increase of the proposed
method can be seen in Table I. This is due to the inclusion
of the command processor which implements a more generic
AlmaIF-interface for each kernel. This area increase is ex-
pected to stay constant when the size of the kernel is scaled
up, so it is not estimated to be a significant issue.

The command processing of the proposed method is ex-
pected to add a small overhead to all kernel launches since it

is more flexible than the vendor methodologies. We measured
the effect of this with very small data sizes. From Table II we
can see that the proposed method adds only approximately
100 µs latency to each kernel call.

B. Dynamic Reconfiguration

After the user launches the built-in kernel for execution,
the driver will reconfigure the FPGA which takes significant
time. To evaluate the FPGA reconfiguration time, two sample
kernels are created, add.i32 and add.i16. These two kernels are
added to a same local bitstream database. The host program
initializes an OpenCL device with access to this database.
Then, these two kernels are enqueued one after another. The
reconfiguration times are measured and reported in Table II.
The times are shown to be very similar to the vendor tooling
which is unsurprising, since the underlying reconfiguration
technology is exactly the same.

V. FUTURE WORK

The current implementation reconfigures the FPGA imme-
diately when the user enqueues the kernel which can be non-
optimal. This can be solved by implementing deferred recon-
figuration, in which the OpenCL implementation defers the
reconfiguration until the host application directly or indirectly
waits for the enqueue command to finish.

More options should be explored related to external memory
connectivity. It should be possible to have multiple master
interfaces connected to different memory banks of e.g. HBM.
This would additionally require intelligent allocation and par-
titioning logic from the OpenCL implementation.

VI. ACKNOWLEDGEMENTS

The authors are grateful for the funding from Academy of
Finland (decisions #331344 and #353199), which made this
research possible.

VII. CONCLUSION

This paper presented a novel, cross-vendor portable method
AFOCL, for controlling FPGAs using OpenCL built-in ker-
nels. AFOCL consists of a database of presynthesized bit-
streams of built-in kernel implementations and a runtime driver
which automatically reconfigures the FPGA device when the
user enqueues a kernel.

The method was shown to provide a significant perfor-
mance improvement (85x and 186x on AMD and Intel,
respectively) compared to generic usage of FPGA vendor
OpenCL implementations while delivering competitive perfor-
mance (1.0x and 0.90x, respectively) against hand-optimized
vendor-specific kernel implementations. AFOCL demonstrates
significant potential to ease the application development for
FPGAs since the method decouples the difficult-to-create ker-
nel implementations from the application development. This
helps to separate the roles of hardware and software developers
by allowing them to work across a common abstraction.

AFOCL source code was made open to enable further
development of vendor-independent FPGA programming with
open-source OpenCL implementations.

REFERENCES

[1] Khronos® OpenCL Working Group, “The OpenCL™ specification
v3.0.14,” 2023, accessed 19 May 2023. [Online]. Available: https://www.
khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL API.pdf

[2] M. S. Abdelfattah, A. Hagiescu, and D. Singh, “Gzip on a
chip: High performance lossless data compression on FPGAs
using OpenCL,” in Proceedings of the International Workshop on
OpenCL 2013 and 2014, ser. IWOCL ’14. New York, NY, USA:
Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2664666.2664670

[3] N. Brown, “Exploring the acceleration of Nekbone on reconfigurable
architectures,” in 2020 IEEE/ACM International Workshop on Hetero-
geneous High-performance Reconfigurable Computing (H2RC), 2020,
pp. 19–28.

[4] ——, “Porting incompressible flow matrix assembly to FPGAs for
accelerating HPC engineering simulations,” in 2021 IEEE/ACM Inter-
national Workshop on Heterogeneous High-performance Reconfigurable
Computing (H2RC), 2021, pp. 9–20.

[5] J. Oppermann, M. B. Mickaliger, and O. Sinnen, “Pulsar search
acceleration using FPGAs and OpenCL templates,” Experimental
Astronomy, Jan. 2023. [Online]. Available: https://doi.org/10.1007/
s10686-022-09888-z

[6] D. Chiou, “System aspects of deploying FPGAs for cloud infrastructure,”
in 2023 IEEE Custom Integrated Circuits Conference (CICC), 2023, pp.
1–2.

[7] “Amazon EC2 F1 instances,” Amazon, accessed 19 May 2023.
[Online]. Available: https://aws.amazon.com/ec2/instance-types/f1/

[8] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “Are We There
Yet? A Study on the State of High-Level Synthesis,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 5, pp. 898–911, May 2019.

[9] J. de Fine Licht, M. Besta, S. Meierhans, and T. Hoefler,
“Transformations of high-level synthesis codes for high-performance
computing,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 5, p.
1014–1029, may 2021. [Online]. Available: https://doi.org/10.1109/
TPDS.2020.3039409

[10] S. Li, N. Farahini, A. Hemani, K. Rosvall, and I. Sander, “System
level synthesis of hardware for DSP applications using pre-characterized
function implementations,” in 2013 International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), 2013,
pp. 1–10.

[11] K. D. Pham, A. Vaishnav, M. Vesper, and D. Koch, “ZUCL: A
ZYNQ UltraScale+ Framework for OpenCL HLS Applications,” in FSP
Workshop 2018; Fifth International Workshop on FPGAs for Software
Programmers, Aug. 2018, pp. 1–9.

[12] A. Vaishnav, K. D. Pham, J. Powell, and D. Koch, “FOS: A
modular FPGA operating system for dynamic workloads,” ACM Trans.
Reconfigurable Technol. Syst., vol. 13, no. 4, sep 2020. [Online].
Available: https://doi.org/10.1145/3405794

[13] Y. Xiao, E. Micallef, A. Butt, M. Hofmann, M. Alston, M. Goldsmith,
A. Merczynski-Hait, and A. DeHon, “PLD: fast FPGA compilation to
make reconfigurable acceleration compatible with modern incremental
refinement software development,” in Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems. Lausanne Switzerland: ACM, Feb.
2022, pp. 933–945. [Online]. Available: https://dl.acm.org/doi/10.1145/
3503222.3507740

[14] Y. Xiao, A. Hota, D. Park, and A. DeHon, “HiPR: High-level partial
reconfiguration for fast incremental FPGA compilation,” in 2022 32nd
International Conference on Field-Programmable Logic and Applica-
tions (FPL), 2022, pp. 70–78.

[15] D. Park, Y. Xiao, and A. DeHon, “Fast and Flexible FPGA Develop-
ment using Hierarchical Partial Reconfiguration,” in 2022 International
Conference on Field-Programmable Technology (ICFPT), Dec. 2022,
pp. 1–10.

[16] G. Rodriguez-Canal, N. Brown, Y. Torres, and A. Gonzalez-
Escribano, “Task-based preemptive scheduling on FPGAs leveraging
partial reconfiguration,” Concurrency and Computation: Practice and
Experience, p. e7867, 2023. [Online]. Available: https://doi.org/10.
1002/cpe.7867

[17] V. Mirian and P. Chow, “UT-OCL: an OpenCL framework for
embedded systems using Xilinx FPGAs,” in 2015 International
Conference on ReConFigurable Computing and FPGAs (ReConFig).

Riviera Maya, Mexico: IEEE, Dec. 2015, pp. 1–6. [Online]. Available:
http://ieeexplore.ieee.org/document/7393366/

[18] T. Leppänen, A. Lotvonen, and P. Jääskeläinen, “Cross-vendor
programming abstraction for diverse heterogeneous platforms,” Frontiers
in Computer Science, vol. 4, 2022. [Online]. Available: https:
//www.frontiersin.org/articles/10.3389/fcomp.2022.945652

[19] T. Leppänen, A. Lotvonen, P. Mousouliotis, J. Multanen, G. Keramidas,
and P. Jääskeläinen, “Efficient OpenCL system integration of non-
blocking FPGA accelerators,” Microprocess. Microsyst., vol. 97, no. C,
mar 2023. [Online]. Available: https://doi.org/10.1016/j.micpro.2023.
104772

