
Memory Mapped I/O Register Test Case Generator
for Large Systems-on-Chip

Roni Hämäläinen
Unit of Computing Sciences

Tampere University
Tampere, Finland

roni.hamalainen@tuni.fi

Henri Lunnikivi
Unit of Computing Sciences

Tampere University
Tampere, Finland

henri.lunnikivi@tuni.fi
0000-0003-4817-2939

Timo Hämäläinen
Unit of Computing Sciences

Tampere University
Tampere, Finland

timo.hamalainen@tuni.fi
0000-0002-7867-0800

Abstract—This paper addresses automated testing of a massive
number of Memory Mapped Input/Output (MMIO) registers in
a real large-scale Systems-on-Chip (SoC). The golden reference is
an IP-XACT hardware description that includes a global memory
map. The memory addresses for peripheral registers are required
by software developers to access the peripherals from software.

However, frequent hardware changes occur during the HW
design process, but the changes might not always propagate to
the SW developers and an incorrect memory map can cause
unexpected behaviour and critical errors. Our goal is to ensure
that the memory map corresponds exactly to the HW description.

The correctness of the memory map can be verified by writing
software test cases that access all MMIO-registers. Writing them
manually is time consuming and error prone, for which reason
we present a test case generator. We use a Rust-based software
stack, where the generator itself is written in Rust while the
generator input is in CMSIS-SVD-format that is generated from
IP-XACT. We have used the generator extensively in Tampere
SoC Hub Ballast and Headsail SoCs and fixed several errors
before the chips manufacturing. The test generator can be used
with any IP-XACT based SoCs.

Index Terms—verification, MMIO, SVD, IP-XACT, Rust

I. INTRODUCTION

The System-on-Chip (SoC) Hub project of Tampere Univer-
sity targets the design and implementation of one large chip
per year [19]. The project combines multiple stakeholders’
effort to boost SoC design competence from application re-
quirements to chips, software stack and demo applications.
To this date, two SoCs, Ballast and Tackle, have been man-
ufactured and tested. The third SoC, Headsail, is taped out
in fall 2023. Ballast [14] is a heterogeneous RISC-V based
multi-processor SoC (MP-SoC) designed with a subsystem-
based architecture and design methodology. Ballast includes
three RISC-V based subsystems: SysCtrl, housing a 32-bit
single-core RISC-V CPU, MPC, also a 32-bit single-core,
a 64-bit dual-core HPC, a digital signal processor designed
using OpenASIP [9], Nvidia NVDLA-based deep learning ac-
celerator [12] and three connectivity subsystems. Subsystems
communicate via a multi-level interconnect, consisting of a
top-level and subsystem-level interconnects.

Funded by Business Finland and SoC Hub

To write software that communicates with the various
peripherals present in the system, the SW developers need
to know which addresses map to which peripherals. These
addresses are documented into one or multiple memory maps.
Each processor subsystem has a separate memory map and in
total the Ballast contains 3 252 Memory Mapped IO (MMIO)
registers and each register can contain multiple fields. Due
to the multi-level interconnect architecture, a single memory
access can contain multiple address translations which makes
determining final memory maps complex.

This paper addresses all Ballast’s RISC-V subsystems which
can all use the same software framework despite their distinct
architectures. The software stack for SoC Hub chips supports
both bare-metal applications and Linux-kernel and is written
in Rust which is a modern memory-safe systems-programming
language [16].

Rautakoura et al. discuss the design flow [14] and methodol-
ogy [15] of Ballast. This paper contributes to the verification
phase of the overall development, and more specifically the
HW/SW-boundary. Our research question is summarized as
follows: how to make sure that the given memory map
represents the given SoC correctly for software development?
We will focus on the presence, location and some limited
behaviour of the MMIO-registers based on the SoC HW
description given in IP-XACT as the golden reference. How
to fix the HW design errors or manipulate the IP-XACT
descriptions in the design flow are out of the scope of this
paper. In addition, we focus on simulation-based verification.
The method presented in this paper is available as an open
source tool [11] and it can be generalized to any platform that
is representable with standard IP-XACT.

This paper is structured as follows. The Ballast SoC and
its software stack is described in section II. The verification
problem is described in detail in section III, after which we
present related work in section IV. Our approach is described
in section V, followed by the results presented in section VI.
Discussion of the results is presented in section VII and
conclusion with future ideas in section VIII.

979-8-3503-3757-0/23/$31.00 ©2023 IEEE

II. SOC HUB CHIPS

In the following we take Ballast as an example of the SoC
Hub chips. The architecture is presented in Figure 1 [14].
Each Ballast subsystem conforms to a subsystem architecture
template which includes an independent clock domain with
a Phase-Locked Loop (PLL) and a standardized interface to
the rest of the system, including an AXI-interface, a clock
domain crossing, status-signals, interrupts and clock and reset
control signals. Subsystems enable a hierarchical ASIC design
flow, enabling the subsystems to be verified separately and in
parallel.

The top-level interconnect contains three fully-connected
crossbars with independent clock domains and is divided to
64-bit and 32-bit wide data regions. Processor subsystems
communicate with other subsystems and system-level periph-
erals, e.g. the global interrupt router, via the top-level inter-
connect, interrupts and shared memory. Processor subsystems
communicate with subsystem-level peripherals, e.g. timers,
via their respective subsystem-level interconnect. Since the
processor subsystems were designed to be as autonomous as
possible, each of them provides their own JTAG and memory
for verification, debug and chip validation. Peripherals are
exposed to the processor cores via MMIO-registers by normal
memory access instructions. The assignments of peripherals’
registers are documented in the memory map.

The SW stack is depicted in Figure 2. A peripheral access
crate (PAC) is generated from the memory map. It provides
an interface to the MMIO-registers which is then used by the
hardware abstraction layer (HAL). RISC-V-specific routines
are provided by a µ-architecture crate riscv which is adapted
to Ballast with ballast-riscv. A minimal runtime for bare-metal
applications is provided by riscv-rt which is again adapted to
Ballast with ballast-rt. Bare-metal applications can be built
on top of these components as presented in the figure where
a horizontal dotted line separates software that supports bare-
metal applications from software designed to support operating
systems (OS). The boot ROM loads a program called hpc-
loader which configures the system for rustsbi [17] which
eventually boots the Linux-kernel using U-Boot [22].

Since each processor subsystem uses its own memory map,
each subsystem also has its own PAC. The HAL depends on
the PAC but with compile-time configuration, the same HAL
can be used with all processor subsystems. The µ-architecture
crates and runtimes are adapted to corresponding processor
subsystem. Changes to the memory map directly change the
corresponding PAC. The HAL needs modification if the PAC’s
symbolic names change. Since the µ-architecture crate depends
on the processor ISA, which is in this case standardized by
RISC-V, it is unlikely to be affected by changes in the memory
map. However, changes to memory regions affect the runtime’s
linker script which is used to determine the placement of the
SW sections.

III. OVERVIEW OF THE VERIFICATION PROBLEM

During system design, the hardware team selects what
components are used and how they are connected based on
the requirements and the specification [6]. Typically both
new and reused components are included. Each IP block has
its own memory addresses, and after instantiation an SoC
specific memory map is created. SoC Hub-project uses the
Kactus2-program to create, modify and integrate IPs into
SoCs [19] [20]. Internally, Kactus2 uses IP-XACT-format
which is an XML-based standard to create and exchange IPs in
computer-readable format [8]. IP-XACT can also contain the
memory map of the system with registers, their locations and
fields [8]. Kactus2 is used by the designers to create, modify
and view the memory map in a graphical user interface [20].
Kactus2 can also detect and warn the designer about overlap-
ping memory space assignments and verify that the MMIO-
registers presented in IP-XACT are physically reachable from
the other components. An example of a memory map of a
hypothetical system, presented using Kactus2, is depicted in
Figure 3.

The memory map is integrated to the SW stack as presented
in Figure 2. A Kactus2 plugin transforms IP-XACT into
CMSIS-SVD-format [20] which is also XML-based and sim-
ilar to IP-XACT but focuses on the programmer’s view of the
device [2] instead of the HW designer’s. The svd2rust [4] [21]
transforms the SVD-file into Rust-bindings, i.e., the PAC.

The HW evolves during the design process due to refine-
ment and optimization and when functionality and architecture
changes. Unfortunately, it is possible that the changes to the
HW do not always propagate to the memory map even if
quality assurance measures are taken in the process. The HW
team can accidentally forget to add the IPs to the memory
map, use the wrong IPs or IP configurations in the memory
map, assign IPs to wrong memory spaces or make mistakes in
the documentation of the assignments and the IP’s registers.
Possible sources of failure include following scenarios:

1) one or more of the registers of the peripheral are missing
from the memory map,

2) an address in the memory map to the wrong register,
e.g., the memory map claims that an address points to
register X of peripheral A, when it actually points to
register Y or peripheral B,

3) an address in the memory map points to a non-existent
register and

4) memory map has incorrect information about a register,
e.g., the memory map claims that an address is read-
write when it actually is read-only.

Using an incorrect memory map can compromise the sys-
tem’s ability to perform its intended task since the system
behaves unexpectedly. To avoid this situation, the memory map
should be verified.

Ballast was verified in a hierarchical manner where sub-
systems were verified as separate entities and top-level verifi-
cation focused on verifying the integration of the subsystems
and on verifying top-level functionality such as the global ad-

Fig. 1. Structure of the Ballast SoC [14].

Fig. 2. Overview of Ballast’s software stack.

dress map [14]. Verification methodologies included Universal
Verification Methodology (UVM) and HW-SW co-simulation.

Co-simulation was used to functionally verify the design by
first writing stimulus programs, executing these programs in
the system and comparing the system’s response to expected
response. The register-transfer level (RTL) code of Ballast

Fig. 3. An example memory map visualized in Kactus2.

and stimulus programs were simulated using Siemens’ Ques-
taSim [18]. Same co-simulation test cases could also be used
with FPGA prototyping and ASIC sample testing [14].

Often these stimulus programs test one or few functionali-
ties of the system. E.g., one program could test that UART’s
registers are accessible and that the UART behaves as expected
and another could test GPIO. Since not all functionalities use
all MMIO-registers, it is possible that a subset of the registers
are not tested at all. Writing multiple stimulus programs
manually to test all registers can be a tedious and error-prone
task. If the HW changes during the design process, then some
programs might need a rewrite. Misunderstanding the chang-
ing documentation about the memory map and peripheral’s
behavior can lead to errors in the test programs. Like Ballast,
a single system can contain multiple memory maps which all
must be tested. One way to avoid writing register test cases
manually is to generate them from the SVD’s memory map
as described more thoroughly in section V.

IV. RELATED WORK

Generation of software from IP representation formats is
not a new idea. Model-Driven Development (MDD) has been
popular with its idea that correct implementations are gen-
erated from models at higher abstraction levels. Ideally with
perfect code generators which produce code that is ”correct by
construction”, the need for verification is reduced. Instead of
comparing the implementation against the specification, more
attention is spent on the generators. However, an argument
against MDD is that the modeling effort is high and generator
flows are seldom bi-directional. In practice, verification is still
needed to make sure that specifications and implementations
match each others. Test generation is as relevant as the idea
of code generation. Ecker et al. described in 2009 generation
of HW/SW interface and behavioral code using IP-XACT and
behavioral models such as TLM with the goal of eliminating
manual implementation of low-level SW [23].

Hunsinger, Francois and Jerraya presented generation of
SW test programs from COLIF-format [3] for functional
verification of SoCs in 2003 [7]. Their approach comprises
generation of high-level test programs and the subsequent
refinement of these test programs to low-level test programs.
The high-level test programs are generated using a global test
plan, component specific test plans, expected test results from
behavioral simulation and the COLIF SoC representation. The
low-level test programs use a custom OS generator which is
able to generate API, OS and HAL layers. The OS provides an
API for high-level test programs which can enable reuse of the
test programs on different HW platforms and more complex
test scenarios involving parallelism and scheduled tasks.

Lins and Barros presented a HAL generator from IP-
XACT for SoC functional verification in 2010 [10]. This HAL
generator is able to create C-functions that manipulate registers
and their fields at a high abstraction level. They call this
method Processor Driven Testing (PDT). They applied the
generator to test functionality of a UART serial port of Leon2
processor architecture.

The scope of above related work is larger than ours, but
follows the similar pattern of taking some HW description
as the golden reference and performing defined operations
on it. However, we did not find publications or open source
tools exactly for our problem on systematic testing of MMIO-
registers by generating test cases from the IP representation
format.

V. METHODS

Based on the memory map we know what peripherals exist,
what registers exist, what memory address points to what
register and details about each register. These details include
register’s bit width, fields, reset values, access rights and so
on. We can test that a memory address:

1) is readable if it should be,
2) is writable if it should be,
3) contains an expected value, e.g., a specific value on reset,

called reset value and

4) the bit width of the address is as expected.

Testing is limited to these items since SVD can not express
how to interpret the register values. This kind of higher level
functional verification is thus left to other methods.

Checking the readability and the writability of a register
requires that the processor generates an exception when a
non-existent memory address is accessed. This requirement
is specified by, e.g., the RISC-V standard where physical
memory attributes are checked for all accesses to physical
memory and violations generate access fault exceptions [1].
If the access rights to memory addresses can be configured
during runtime, then they must be configured appropriately
before running the test cases. Some registers react to accesses
with side-effects, e.g., by clearing the register after it is read.
These side-effects can [2] and should be documented in the
SVD-file to properly generate the test cases.

A single test case is dedicated to test one MMIO-register
and can consist of reading a value from a memory address,
checking if the received value is expected value, writing
another value to the memory address and then writing back
the original value. This test case checks that the given memory
address is readable, contains the expected value and that it is
writable. Expected value can be, e.g., the reset value of the
register. The content of a test case depends on the information
parsed from the input as explained in Subsection V-B.

Overview of the SW components involved are presented
in Figure 4. The generator is executed through a command
line interface and is responsible for parsing the input and
generating the test cases from the internal model. The test
case executor is responsible for executing test cases on the
target hardware and is compiled with the test cases and a test
runtime. The test results are reported as Rust enumerations
and can be printed out in a platform dependent way, e.g., by
using the serial interface provided by the platform runtime.

Fig. 4. Overview of the test generator components.

Rust was chosen as the implementation technology because
it is already used internally by the SoC Hub SW team for
the development of composable hardware dependent software,
and because it offers convenient code generation facilities that
allow the production of Rust-language source files that can
be compiled directly to target assembly. This is in contrast to
more traditional C-based code generation flows which often
rely on a higher level language, such as Python, to generate
text that is then interpreted by a C-compiler to target assembly.

Additionally, the Rust compiler guarantees the program’s
memory-safety without garbage collection [16] which is not
provided by C. Thus, programs written in Rust have one risk
mitigated by design with little performance cost.

The generator itself in its current realization contains about
1 600 lines of code. The default executor without the runtime
contains about 160 lines of code. Ballast SoC for example con-
tains about 57 000 lines of RTL code including test benches.
For SysCtrl-processor, 984 read test cases were generated with
about 17 000 lines of code in about 3.3 seconds. The test
executable size with all test cases was about 4.5 MB with
optimizations enabled. The executable size can be controlled
by filtering testable subsystems and test types. The results for
other subsystems can be seen from Table I.

A. Input parsing and modeling

The first step is to parse the SVD-file using a XML parser
and transform its contents into an internal model which con-
tains all registers with their hierarchical locations and attributes
such as word sizes, access rights and fields. The generator
can validate the input’s conformance to SVD-format. It also
suggests potential improvements such as missing definitions
that could make the test case generation more accurate.

B. Test case generation

The generator iterates through the registers in the model
and decides how to test each register. Test case is built based
on given detailed information about the register. E.g., read-
write registers are read and written to, read-only registers are
only read, registers with reset values can be reset, read values
are compared to expected values and so on. Generated test
cases are finally written to an output file. An example of a
test case which reads a value from a register and compares it
to a expected value is presented in Listing 1.

pub fn test_register1_0x2000() -> Result<()> {
let reg_ptr: *mut u32 = 0x2000 as *mut u32;
let read_value = unsafe { ptr::read_volatile(reg_ptr) };
if read_value != 0x0u32 as u32 {

return Err(Error::ReadValueIsNotResetValue {
read_val: read_value as u64,
reset_val: 0x0u32,
reg_uid: "peripheral3-register1",
reg_addr: 0x2000,

});
}
Ok(())

}

Listing 1: Test case example.

C. Test case execution

The next steps are to compile the final binary, execute it
and process the results. Our solution has a test case executor
that includes the source file with the test cases. It is up to the
implementer of the executor to decide what subsystems are
tested, what registers are tested, in what order and what to do
with the test results. Our executor iterates through each test
case, executes it and provides the results via UART.

A possible problem has been found by the test, if is causes
an access fault exception or returns an error as a result value.

Access fault exception during register access can imply that the
register does not exist or that the access rights are implemented
or documented incorrectly. The user then documents the mem-
ory address, the expected register in that address and values
read from or written to the register. The overall behavior and
state of the system can also be documented, e.g., is the system
responding to external interrupts and states of the various
configuration registers. The HW team is then consulted and
if the problem is indeed related to the memory map or IPs,
the HW team can then proceed to correct the issue.

Continuous Integration [5] (CI) pipelines were used in the
SoC Hub project to provide automatic building and regression
testing of the hardware design with the test case generator
integrated to the workflow. After a change is pushed to the
remote repository, the CI-pipeline is activated. First it creates
a container with necessary configuration and source code and
compiles the RTL-files to be ready for an RTL-simulator.
Test cases are generated and built with the executor and
transformed into a bitstream which is then written to the RTL
memory. Finally, the test cases are executed in parallel and
the results are printed out. With Headsail, a typical time for
configuring and running the test cases took from 5 to 10
minutes for each job where a single job tested some part
of the processor subsystem’s full memory map. A successful
example output is presented in Listing 2. A failed example
output is presented in Listing 3. In this case, the test case
times out due to the hanging of the simulated AXI-bus, which
signals an error in register accessibility with regards to what
was expected. This timeout could be avoided if the platform
supported trapping PMA violations as precise access fault
exceptions as recommended by the RISC-V standard [1]. Since
the address of the violating instruction is known precisely,
the execution of test cases can continue starting from next
instruction after the address and access method that caused the
exception are recorded in the exception handler. Then. after all
of the test cases have been executed, the program sets a bit
in an agreed upon memory address to signal completion. The
test bench driver polls this memory address, notices the set
bit and proceeds to finish the simulation. HW team then gets
notified about the test results.

[STDOUT] All subsystems activated, test count: 2
[STDOUT] UART-test_register1-0x0
[STDOUT] > OK
[STDOUT] UART-test_register1-0x4
[STDOUT] > OK
[STDOUT] [ok]

Listing 2: CI-pipeline job output example.

[STDOUT] All subsystems activated, test count: 29
[STDOUT] DMA-test_register1-0x0
ERROR: Job failed: execution took longer than 15m0s seconds

Listing 3: Failed CI-pipeline job.

VI. RESULTS

The register test generator has been applied in the ver-
ification effort of SoC Hub’s Ballast and Headsail SoCs.

Multiple cases were detected where changes to the HW did
not propagate to the memory map. The results for Ballast and
Headsail SoCs and their subsystems are presented in Table I.

TABLE I
RESULTS

SoC
Processor
subsystem

#-of test
cases

Lines of code
generated (kLoC)

#-of actionable
issues found

Ballast SysCtrl 984a 16.8 20
MPC 984a 16.8 65
HPC 984a 16.8 25

Headsail SysCtrl 605 14.6 11
a Ballast’s SysCtrl, MPC and HPC subsystems have access to same peripherals.

Next we discuss some example problems found and fixed
using this tool during verification of the Headsail SoC. In one
case, the test cases detected that most of SysCtrl subsystem’s
registers’ reset values were incorrect. The source of the error
was determined to be that the subsystem’s base address was
assigned to a different address in the HW design compared
to what was claimed in the memory map. The HW team was
informed about the issue and the base address was corrected in
the IP-XACT model. In another case, deprecated µDMA [13]
registers were incorrectly left into the memory map while
the hardware IP was updated. When the test cases attempted
to access these registers, the processor generated an access
fault exception. The deprecated registers were removed from
the IP-XACT model. At one point of the design process,
no test cases were generated for SysCtrl subsystem. When
the reason was investigated, it was determined that SysCtrl’s
memory map had vanished. The hardware team was informed
and the memory map was restored. In another case, the test
cases detected that the processor could not access certain
subsystems, including both Headsail’s DMAs. The common
denominator with these issues was determined to be the AXI-
interconnect. The connection from AXI to these subsystems
was then restored.

VII. DISCUSSION

We present an MMIO-register test generator that generates
test cases from IP representation formats such as CMSIS-SVD.
Test cases are used to partially verify that given memory map
represents given system correctly and they can solve some of
the error scenarios listed in section III as presented in Table II.

TABLE II
ERROR SCENARIOS

Scenario Detected by the test cases?

1. A register is missing from the memory map. No.
2. An address points to the wrong register. Sometimes.
3. An address points to a non-existent register. Yes.
4. Incorrect register metadata. Yes.

Since the test cases are generated from a given memory
map, the test cases can not detect peripherals which are not
defined in the memory map and scenario 1 remains unsolved.
Scenario 2 can be solved if the wrong register has different
access rights or reset value compared to the correct register.

Even without the previous assumptions, the error can still be
detected at peripheral-level. Assume that the memory map
claims that a memory space A should belong to a peripheral
B with registers B1, B2, but it actually contains a peripheral
C with registers C1, C2. Even if the registers B1 and C1

behave identically, it is possible that the registers B2 and C2
or later behave differently. If this difference is detected, it can
be noticed that the memory map claims the memory space to
a wrong peripheral. If the processor generates an access fault
exception when accessing a non-existent memory address, then
the test cases can detect registers which are claimed to exist
by the memory map but do not exist in the hardware, solving
scenario 3. If the processor can also generate an access fault
exception when reading a write-only or writing a read-only
register, then the test cases can detect registers that are wrongly
defined in the memory map, solving scenario 4.

Presented method can be generalized to other platforms
where the HW can be presented with IP-XACT or SVD and
which are supported by the Rust-compiler, which are in-effect,
the targets supported by the LLVM compiler and toolchain
technologies. These constraints can change if more input and
output formats are to be supported. Due to dependence on the
information provided in the IP representation format, some
error sources are not eliminated. E.g., if the memory map
claims that a read-write register is read-only, then writing is
not tested. One solution is to test reading and writing with all
registers and check which registers behave as expected.

VIII. CONCUSIONS AND FUTURE WORK

Currently a subset of SVD’s features such as register arrays,
write constraints, read actions and access rights are supported.
Some registers or their features are not tested. The generator
can not distinguish if a register can only be written once, if
the original value of the register must be written back after
test write, and similar sequential events. Also the possible
side-effects of accesses are not utilized. Verification resolution
could be increased by enabling the test cases to e.g., check if
the value is set to zero after reading if it should.

Currently the test case generator utilizes only register-level
information. Since a single register can have multiple fields,
it is possible that different fields have e.g., different access
rights, read-only and read-write fields. If the test resolution
is the whole register, then writing to the whole register is
prohibited if one field does not allow it. Support for field-
level test cases is added in the future. More input and output
formats can be supported. Support for IP-XACT is underway.

The presented MMIO-register test generator has been suc-
cessfully used in SoC Hub chips, and it helped to detect
several critical errors before the manufacturing of the chips.
One future work idea is to try the tool with other platforms as
well. We learned that automatically generated MMIO-register
test cases can be used to partially check that given memory
maps represent the given MP-SoC correctly. The generator is
available as an open source tool [11] and it can be used with
any SoC design that inludes the IP-XACT HW description.

REFERENCES

[1] Andrew Waterman, Krste Asanović, and John Hauser, RISC-V Inter-
national. The RISC-V Instruction Set Manual, Volume II: Privileged
Architecture, Document Version 20211203. December 2021.

[2] Arm Ltd. CMSIS-SVD Description (*.svd) Format. https://www.
keil.com/pack/doc/CMSIS/SVD/html/svd Format pg.html. [Online, ac-
cessed 2023-04-12].

[3] Wander O Cesário, Gabriela Nicolescu, Lovic Gauthier, Damien Ly-
onnard, and Ahmed A Jerraya. Colif: A design representation for
application-specific multiprocessor SoCs. IEEE Design & Test of
Computers, 18(5):8–20, 2001.

[4] Embedded devices Working Group. svd2rust. https://github.com/
rust-embedded/svd2rust. [Online, accessed 2023-04-12].

[5] GitLab B.V. GitLab CI. https://about.gitlab.com/topics/ci-cd/. [Online,
accessed 2023-04-12].

[6] Soonhoi Ha and Jürgen Teich. Handbook of Hardware/Software Code-
sign. Springer, 2017.

[7] F Hunsinger, Sebastien Francois, and Ahmed Amine Jerraya. Definition
of a systematic method for the generation of software test programs
allowing the functional verification of system on chip (soc). In
Proceedings. 4th International Workshop on Microprocessor Test and
Verification-Common Challenges and Solutions, pages 11–16. IEEE,
2003.

[8] IEEE. IEEE Standard for IP-XACT, Standard Structure for Packaging,
Integrating, and Reusing IP within Tool Flows. IEEE Std 1685-2022
(Revision of IEEE Std 1685-2014), pages 1–750, 2023.

[9] Pekka Jääskeläinen, Timo Viitanen, Jarmo Takala, and Heikki Berg.
HW/SW Co-design Toolset for Customization of Exposed Datapath
Processors, pages 147–164. Springer International Publishing, 2017.

[10] Tiago Lins and Edna Barros. The development of a hardware abstraction
layer generator for system-on-chip functional verification. In 2010 VI
Southern Programmable Logic Conference (SPL), pages 41–46. IEEE,
2010.

[11] Henri Lunnikivi and Roni Hämäläinen. MMIO Test Generator. https:
//github.com/soc-hub-fi/mmio-test-generator. [Online, accessed 2023-
09-28].

[12] NVIDIA Corporation. The NVIDIA Deep Learning Accelerator. http:
//nvdla.org/. [Online, accessed 2023-08-23].

[13] Antonio Pullini, Davide Rossi, Germain Haugou, and Luca Benini.
µDMA: An autonomous I/O subsystem for IoT end-nodes. In 2017 27th
International Symposium on Power and Timing Modeling, Optimization
and Simulation (PATMOS), pages 1–8, 2017.

[14] Antti Rautakoura, Timo Hämäläinen, Ari Kulmala, Tero Lehtinen, Mehdi
Duman, and Mohamed Ibrahim. Ballast: Implementation of a large mp-
soc on 22nm asic technology. In 2022 25th Euromicro Conference on
Digital System Design (DSD), pages 276–283. IEEE, 2022.

[15] Antti Rautakoura and Timo Hämäläinen. Does soc hardware develop-
ment become agile by saying so: A literature review and mapping study.
ACM transactions on embedded computing systems, 22(3):1–27, 2023.

[16] Rust Foundation. Rust. https://www.rust-lang.org/. [Online, accessed
2023-04-12].

[17] RustSBI development team. RustSBI. https://github.com/rustsbi/rustsbi.
[Online, accessed 2023-08-23].

[18] Siemens. Questa advanced simulator. https://eda.sw.siemens.com/
en-US/ic/questa/simulation/advanced-simulator/. [Online, accessed
2023-08-24].

[19] SoC Hub. SoC Hub. https://sochub.fi/. [Online, accessed 2023-04-12].
[20] Tampere University System-on-Chip Research Group. Kactus2. https:

//github.com/kactus2/kactus2dev. [Online, accessed 2023-04-12].
[21] The resources team. Appendix A: Glossary. https://docs.rust-embedded.

org/book/appendix/glossary.html. [Online, accessed 2023-08-08].
[22] The U-Boot development community. The U-Boot Documentation.

https://u-boot.readthedocs.io/en/latest/. [Online, accessed 2023-08-23].
[23] Wolfgang Ecker and Wolfgang Müller and Rainer Dömer. Hardware-

dependent Software: Principles and Practice. Springer Science, 2009.

