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Summary1

The pathway to a thriving newborn begins pre-conception and continues in utero with a2

healthy placenta and the right balance of nutrients and growth factors that are timed and3

sequenced alongside hormonal suppression of labour until a mature infant is ready for birth.4

Optimal nutrition that includes adequate quantities of quality protein, energy, essential fats5

and an extensive range of vitamins and minerals not only supports fetal growth but may also6

prevent preterm birth by supporting the immune system and alleviating oxidative stress.7

Infection, illness, undernourishment, and harmful environmental exposures can alter this8

trajectory leading to an infant who is too small due to either poor growth during pregnancy or9

preterm birth. Systemic inflammation suppresses fetal growth by interfering with growth10

hormone and its regulation of insulin-like growth factors. Evidence supports the prevention11

and treatment of several maternal infections during pregnancy to improve newborn health.12

However, microbes, such as Ureaplasma species, that are able to ascend the cervix and cause13

membrane rupture and chorioamnionitis require new strategies for detection and treatment.14

The surge in fetal cortisol late in pregnancy is essential to parturition at the right time, but15

acute or chronically high maternal cortisol levels caused by psychological or physical stress16

may also trigger labour onset prematurely. In every pathway to the small vulnerable newborn,17

there is a possibility to change direction by supporting improved nutrition, protection against18

infection, holistic maternal wellness, and healthy environments.19

Keywords20

Preterm birth, fetal growth restriction, small for gestational age, small vulnerable newborn,21

pregnancy, nutrition, infection22

23

24
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Key messages25

1. Factors that influence fetal growth change over course of pregnancy, from the direct26

exposure to nutrients in maternal fluids during conception, to the formation and27

function of the placenta, to the timing of bone elongation and fat deposition. Thus, the28

timing and regulation of nutrient availability is critical in achieving fetal growth29

potential.30

31

2. Pregnancy is maintained by the active suppression of labour mechanisms by32

progesterone and other factors and by a long, closed cervix. Thus, there are physical33

and chemical “barriers” to the initiation of labour and birth that are overcome by34

signals that the infant is ready to be born. The barriers can be modulated by35

progesterone insufficiency, diet and environmental contaminants. In addition, high36

levels of maternal cortisol and severe inflammation can override the barrier leading to37

preterm labour and birth.38

39

3. Preterm birth and fetal growth restriction may be the endpoints of different pathways40

but infection, undernourishment, psychological stress and environmental exposures41

have the potential to act on both pathways through intermediates of oxidative stress,42

inflammation, inadequate immune protection and placental dysfunction.43

44
4. New knowledge about the mechanisms of pregnancy continues to emerge providing a45

better understanding of ways to support optimal fetal growth and duration of gestation46

targeted to those with the greatest ability to benefit, thus affording opportunities for47

comprehensive, personalised support for pregnant women globally.48
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Embedded in the United Nations’ Sustainable Development Goals is a roadmap to break the49

cycle of poverty and disadvantage perpetuated by vulnerable childhood and adolescence50

giving rise to vulnerable pregnancy and infancy. In this series, we examine the vulnerability51

conferred by small size at birth resulting from growth restriction and/or preterm birth. We52

cover the prevalence, causes, consequences and possible routes to prevention, either by53

accelerating existing strategies or considering new approaches. Approximately one in four54

infants worldwide is born either preterm, small-for-gestational-age or both.1 Forty per cent of55

global neonatal mortality occurs in preterm infants and 28% occurs in small-for-gestational-56

age infants born at term.157

58

Despite global attention and targets set for reducing the prevalence of the small vulnerable59

newborn, there has been little change over the last 10 years.1 The slow progress can be60

attributed in part to gaps in our common understanding of the mechanisms controlling fetal61

growth and gestational duration. Multiple, often interacting, risk factors contribute to poor62

health in women both before and during pregnancy (Panel 1). However, connecting risk63

factors to the biological processes leading to preterm birth and growth restriction remains a64

challenge. For some of the most prevalent risk factors, the relationship with causal65

mechanisms may be indirect. For example, maternal iron deficiency anaemia is the largest66

global population-attributable risk factor for spontaneous preterm and small-for-gestational-67

age births,40,41 however iron supplementation (which reduces maternal anaemia by 70%) has68

not reduced he prevalence of these outcomes in most contexts.42 A similar conundrum is the69

global prevalence of bacterial vaginosis and its association with spontaneous preterm birth;70

25 years of trials with antibiotics during pregnancy show that treatment can reduce the71

prevalence of bacterial vaginosis but not the risk of spontaneous preterm birth.43,4472

73
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Within the series, this article reviews the pathway to the birth of a healthy thriving newborn74

in order to provide a framework to describe what can go wrong. Knowledge of these75

mechanisms is incomplete, however new information is constantly emerging, often from76

disciplines outside of mammalian reproduction and development. Novel concepts emerging77

from randomised controlled trials, animal models, observational studies and laboratory work78

that recapitulates mechanisms in vitro have enabled connections to be made with biological79

mechanisms in order to explain why some strategies for prevention are effective and some80

require new approaches. This article will demonstrate that it is useful to consider preterm81

birth and growth restriction together because many risk factors can contribute to both, albeit82

through different pathways. Context-specific, targeted and even personalised intervention83

strategies to prevent preterm and small-for-gestational-age births are possible and likely to84

bring better health to the next generation.85

86

Born at the right size but how?87

Factors influencing the growth and development of the fetus change over the course of88

pregnancy. The first critical period begins around the time of conception and ends at89

implantation. At this stage, the embryo can sense the concentrations of nutrients in the90

surrounding fluids and calibrate of metabolic processes to compensate for overabundance, in91

the case of maternal obesity, or paucity, in the case of undernutrition.45 The subsequent92

adaptations in embryonic gene expression and regulation can become “fixed” in the form of93

heritable chromatin changes that can lead to dysregulated fetal growth and obesity and94

metabolic disease in adulthood.4695

The next critical period begins with implantation, which triggers a hormonal surge leading to96

changes in maternal physiology to support placental development and the increased97

metabolic demands of pregnancy.  Fetal trophoblast cells invade the maternal endometrial98
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spiral arteries, displacing the vascular endothelium and directing larger, stronger versions to99

be rebuilt on the same tissue scaffold.47 Proliferating trophoblasts elaborate the basic100

placental structure, which consists of finger-like villi that float in compartments of maternal101

blood (Figure 1). Peak placental growth occurs at the end of the first trimester but102

remodelling of the maternal vasculature continues for the duration of pregnancy (Figure 2).103

As the placenta develops, it takes over the production of hormones that maintain pregnancy104

and direct the production of growth factors (Figure 3). Thus, a physiological dialog ensues105

between the placenta and fetus, and the placenta and pregnant woman. For example,106

placentally produced hormones create a transient state of mild insulin resistance at the107

cellular level in the woman, presumably to free up more glucose for the infant.48 Excess108

glucose is taken up and stored as glycogen by the placenta, possibly to buffer the effects of109

transient moderate undernourishment or to prepare for accelerated weight gain later in110

gestation.49111

The second trimester is the critical period of peak fetal length gain, largely driven by insulin-112

like growth factors (IGFs) and regulated by growth hormone and a system of six binding113

proteins and their proteases.50 IGF-1 is involved in bone elongation and skeletal growth.51114

IGF-2 drives placental growth as well as the synthesis of other placentally-derived115

hormones.52 The last trimester sees peak fetal weight gain with the enlarging of muscle and116

laying down of fat under the skin and around the organs. Fat deposition is controlled and117

regulated by insulin, leptin, adiponectin and other adipokines.53 Undernutrition during the118

third trimester leads to an infant that is too thin at birth whereas mid trimester undernutrition119

leads to an infant that is overall too small.54 Due to resource allocation to head and brain120

development (so-called “brain sparing”) head growth can follow a normal growth trajectory121

even when the growth of the fetal body is faltering.55 Since maternal weight gain is steadier122

than that of the infant, it should be possible to identify women who are not gaining adequate123
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weight and intervene to support nutrient intake ahead of peak fetal weight gain in the third124

trimester.125

126

Born at the right time127

Pregnancy is maintained by progesterone-mediated suppression of the processes of labour128

and by an impenetrable cervix (Figure 2). Progesterone inhibits the production of components129

involved in receiving signals to prepare the uterus for labour such as the estrogen and130

oxytocin receptors. In most mammals, plasma progesterone concentrations decrease towards131

the end of pregnancy. In contrast, levels remain high throughout human pregnancy, even132

during labour. Activation of labour systems is brought about instead by the functional133

inhibition of progesterone, possibly by a soluble “A” form of the progesterone receptor (PR-134

A).56135

136

The uterine cervix remains long and closed for the duration of pregnancy due to its rigid137

structure bestowed by the high collagen content of the extracellular matrix. Compared with138

many other mammals, the human cervix needs to be strong enough to counteract the139

downward pressure of weight attributable to the growing fetus during the time the woman140

spends in the upright position.57 Additionally, the cervix needs to be kept free of bacteria141

ascending from the vagina. Cervical mucus provides a scaffold for immunoglobulins and142

antimicrobial peptides as it accumulates and forms the mucus plug.58,59 The cellular defence143

of the cervix is mainly provided by neutrophils that populate the mucus having exited the144

maternal circulation.60145

146

Events leading to labour and birth of humans are not fully understood. However, there are147

pathways observed in other mammals that are likely to operate similarly in humans. A148
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common view is that signals from the infant indicating that key late developmental149

milestones have been achieved are also able to start the processes leading to labour and birth.150

For example, one of the final steps in lung development is the release of surfactant to the151

surface of the lung alveoli so that when they fill with air at birth, the surface tension will be152

kept low. Since the lungs are full of amniotic fluid and the infant is performing breathing153

movements in the womb, the surfactant diffuses throughout the amniotic fluid around the154

infant. In rodents, the accumulation of surfactant in amniotic fluid acts as a trigger to start the155

birth process.61,62156

A similar process occurs with fetal cortisol and corticosteroids. Towards the end of157

pregnancy, the fetal brain signals to increase production of corticotropin releasing hormone158

which leads to an increase in cortisol and corticosteroids in the fetal circulation (Figure 2).63159

As the main steroid involved in the stress response, cortisol directs the release of glucose into160

the fetal bloodstream and increases blood flow to the brain. It may have the dual function of161

bringing new alertness and awareness to the infant as well as signalling that the infant is162

ready for parturition to begin.163

164

The first committed step toward labour occurs when cortisol and corticosteroids in the fetal165

circulation reach the threshold for the activation of the production of the cyclooxygenase 2166

(COX2) in the fetal membranes (figure 2). COX2 converts long chain polyunsaturated fatty167

acids (LCPUFAs) into prostaglandins. The essential LCPUFA for labour is arachidonic acid,168

which selectively accumulates in the myometrium, cervix and fetal membranes over the169

course of pregnancy.64 COX2 converts arachidonic acid into prostaglandins E2 and F2,170

which trigger a gene and protein expression cascade, leading to the functional inhibition of171

progesterone, the production of contraction-associated proteins and the recruitment of172

monocytes and neutrophils to the uterus and cervix.65 These cells produce matrix173
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metalloproteinases which dissolve the extracellular collagen matrix of the myometrium and174

cervix causing the cervix to soften.66 Tight gap junctions form between the cells of the175

myometrium, which then takes on the appearance and function of smooth muscle.176

177

Omega-3 LCPUFAs are also substrates of COX2 and may act as competitive inhibitors of178

prostaglandin E2 and F2 production thus contributing to the maintenance of pregnancy and179

the inhibition of labour.67 Women with lower circulating concentration of omega-3180

LCPUFAs are at increased risk of preterm birth,68 suggesting that these compounds, like181

progesterone, act to raise the threshold for the activation of labour processes. One of the182

unintended consequences of supplementation with omega-3 LCPUFAs is an increase in the183

rate of post term birth69 suggesting that if the threshold is too high, signals from the fetus184

can’t overcome the inhibitory mechanisms and the pregnancy is prolonged.185

186

Good nutrition supports more than just growth187

The impact of maternal nutrition before and during pregnancy is now understood to extend188

well beyond birth and childhood into the life courses of future generations.45,70 Physiological189

changes in pregnancy enable women to meet the increased demand for energy, nutrients, and190

oxygen to supply to the growing fetus (Table 1). However, women who begin a pregnancy191

before having reached their own biological growth potential due to chronic192

undernourishment, young age, or both, are at increased risk of being unable to meet these193

demands. Among underweight women, partitioning of energy and nutrients may result in194

limited provision to the fetus in favour of maternal requirements for her survival. Thus, it is195

not surprising that underweight women, who may also have inadequate gestational weight196

gain, are at higher risk of delivering a small-for-gestational-age infant.7,77197
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Anaemia is a highly prevalent risk factor linked to a wide range of adverse pregnancy198

outcomes.78 There are many causes of anaemia unrelated to nutrition including malaria and199

other infectious/inflammatory conditions. However, iron supplementation during pregnancy200

independently reduces the prevalence of anaemia, suggesting that iron deficiency is a key201

contributor.42 Anaemia, as a measurable risk factor, may also identify women with a wider202

range of micronutrient deficiencies. Supplementation with a broad range of micronutrients is203

able to lower the risk of small-for-gestational age births,79,80 particularly among underweight204

and anaemic women,80 in comparison to iron and folic acid alone. This positive effect on205

growth without the provision of energy is likely conferred by the efficiency gained when206

multiple metabolic processes are supported simultaneously. Provision of micronutrients may207

also lower the risk of preterm birth in underweight women.81 There are many mechanisms208

that might contribute to this effect listed in Table 2. We will expand on the ability of good209

nutrition to enhance immune responses and reduce damage caused by oxidative stress.210

Damage to tissue caused by the accumulation of reactive oxygen species is both a threat to211

pregnancy and a natural consequence of oxygen regulation in the placenta.85 Micronutrients212

with antioxidant properties including vitamins C and E, carotenoids and long-chain213

polyunsaturated fatty acids (LCPUFAs) can reduce oxidative stress. The body can dismantle214

reactive oxygen species using enzymes such as superoxide dismutase, glutathione reductase215

and various peroxidases that can catalyse their binding to antioxidant molecules. However,216

once an antioxidant is peroxidated, it is removed from tissue leading to increased turnover217

and reduced bioavailability.86 The pathway to spontaneous preterm birth caused by oxidative218

stress may involve the increased turnover of LCPUFAs, particularly docosahexaenoic acid,219

which, as previously discussed, may act as a natural inhibitor of labour. People who smoke220

cigarettes carry a higher burden of oxidative damage compared with non-smokers,87 and have221

lower levels of endogenous omega-3 LCPUFAs.88 Thus, it is unsurprising that a trial222
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comparing omega-3 LCPUFA supplementation with placebo in pregnant women found223

spontaneous preterm birth reduced by almost one-half in smokers, whereas there was no224

benefit in non-smokers.89225

Zinc is an essential co-factor for superoxide dismutase and a wide range of enzymes and226

transcription factors, and its deficiency is associated with immune dysfunction and increased227

susceptibility to infection.90 White blood cells require tenfold more zinc in comparison to red228

blood cells.91 In a healthy pregnancy, there is an increase in white blood cell counts, largely229

due to the 50% increase in neutrophils.74 As one of the first lines of defence against230

pathogens, neutrophils are ubiquitous at points of entry into the body. In pregnancy, they are231

crucial to defending the cervix against ascending infection.60 Recent evidence supports232

previously unknown roles for neutrophils in vascular and tissue remodelling.92 The secretion233

of matrix metalloproteinases, for which zinc is a cofactor, by neutrophils is likely to be234

essential for this latter role. Blocking neutrophils,93 knocking out matrix metalloproteinases,94235

and reducing bioavailable zinc,95 all have detrimental effects on placentation in mice leading236

to fetal demise. The roles of neutrophils and zinc in placentation and protection against237

pathways leading to preterm birth are only just beginning to be understood and represent a238

new frontier in reproductive biology.239

240

Infectious threats to the fetus241

Microbial infections in pregnant women are major contributors to preterm birth, growth242

restriction, stillbirth and infection in newborns. Screening for and treating infections in243

pregnant women has well-established positive effects and there is a need for wider coverage244

for syphilis, chlamydia, gonorrhoea, HIV, and malaria. However, even in parts of the world245

where the prevalence of these infections is low, the majority of spontaneous preterm birth –246

that is, preterm birth preceded by labour or preterm pre-labour rupture of membranes – is also247
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likely to be caused by microbial infection given the high prevalence of chorioamnionitis248

found in membrane and placenta tissue on histopathological examination.96-98249

250

Chorioamnionitis refers to infiltration of the fetal membranes by maternal neutrophils. It is251

usually asymptomatic during pregnancy and the diagnosis is made after the birth of the252

infant. Whilst it is presumed to be caused by colonisation by bacteria that ascended the cervix253

from the vagina, identification of microbes in these tissues is seldom undertaken. When254

molecular methods are used to detect microbes in fetal membranes, the most common species255

identified are members of the Ureaplasma genus of bacteria.99-101 Some species of256

Ureaplasma are able to break down antimicrobial defences and exploit natural weaknesses in257

the immune system that are unmasked by pregnancy in some women. This may explain the258

association between spontaneous preterm birth and both periodontal disease and urinary tract259

infections.13,102 The mouth, the vagina, and the urinary tract are dependent on the same260

mechanisms (antibodies, antimicrobial peptides and neutrophils) to protect against microbial261

invasion.262

263

There are three general pathways through which infection could lead to spontaneous preterm264

birth. First, there are likely unique features of certain bacterial species, as opposed to viruses265

or parasites, that trigger the expression of COX2 on their invasion of the placenta, fetal266

membranes or amniotic fluid. Injecting bacteria or bacterial products into the uteri of267

pregnant mice is the most widely-used method of modelling preterm birth.103 It could be that268

COX2 can be upregulated by signalling through molecules, such as toll-like receptors 2 and269

4, that specifically recognize certain types of bacteria and bacterial products.104 Secondly,270

microbes that are able to ascend the cervix from the vagina could simply damage the fetal271

membranes causing rupture (Figure 5). In this scenario, there may not be inflammation or the272
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activation of mechanisms that lead to labour. In many cases of preterm pre-labour rupture of273

membranes, labour does not occur after a sufficient period of time and the infant must be274

delivered by labour induction or Caesarean section due to loss of amniotic fluid and the275

concerns regarding the potential for systemic spread of the infection. Finally, high levels of276

inflammatory cytokines in the placenta and may be able to activate COX2 and the pathways277

that culminate in labour.105 This may be an evolutionary adaptation to delivery the infant from278

an unfavourable environment where the mother’s life is under threat.279

280

Inflammation likely suppresses fetal growth by inhibiting the growth hormone/insulin-like281

growth factor (GH/IGF) axis (Figure 4). In a study comparing maternal plasma, placental,282

and cord blood levels of IGF-1 and its inhibitory binding proteins in pregnancies with and283

without placental malaria, IGF-1 levels were reduced by 28% in plasma samples from women284

with placental malaria and by 25% in their neonates compared with samples from uninfected285

women.106 The inhibitory IGF binding protein-1 was elevated in cord blood of neonates with286

placental malaria.106287

288

Clues to the molecular interactions between inflammation and growth factors come from the289

observation of poor growth in children with systemic inflammation,107 and elevated290

inflammation in children with poor growth.108 A surprising result of treating children with291

anti-tumour necrosis factor alpha and other anti-cytokine therapeutics for inflammatory292

conditions was the restoration of normal growth trajectory.107 Studies in mice indicate that293

interleukin-6, a key inflammatory cytokine that is elevated in response to infection, may have294

the ability to directly suppress IGF-1 and growth hormone.109 The slowing of growth in295

response to inflammation may be an evolutionary adaptation to promote successful vaginal296
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birth. As the mother’s body prepares for labour, the increase in systemic inflammatory297

cytokines may contribute to the observed slowing of head growth at the end of pregnancy.298

Cervical shortening and preterm birth299

When a woman’s cervix shortens in the course of pregnancy, there is an increased risk of300

preterm birth. It is not known why this occurs in some women, but it is associated with the301

premature expression of proteins involved in the recruitment of monocytes and neutrophils302

which could lead to the premature destruction of collagen and loss of integrity.110 As a key303

hormone responsible for maintaining pregnancy, progesterone may be able to disrupt this304

process. Progesterone delivered directly to the cervix in soluble capsules, injected305

intramuscularly (IM) or taken as tablets has been tested in randomized controlled trials to306

determine its effect on preterm birth. A recent individual patient data meta-analysis revealed307

that both vaginal (9 trials, 3769 women) and oral (2 trials, 183 women) progesterone308

supplementation are effective at reducing preterm birth before 34 weeks of gestation in high309

risk women, namely those with a previous preterm birth or a short cervix (< 25 mm).111310

The evidence of benefit in reducing birth before 34 weeks is less certain for IM progesterone311

(5 trials, 3053 women).111 Furthermore, there have been recent concerns about the maternal312

and neonatal safety of the synthetic version of progesterone (17-hydroxyprogesterone313

caproate) used for IM administration.112 In light of this data, vaginal progesterone remains the314

most promising treatment to prolong gestation for women with a short cervix.315

Serial ultrasound surveillance of cervical length is required to reliably detect cervical316

shortening, which may preclude the use of cervical monitoring in resource-poor settings.317

Analysis of soluble factors in amniotic and vaginal fluids have identified macrophage318

chemoattractant protein as a biomarker with the strongest association with cervical319

shortening.110,113,114 Macrophage chemoattractant protein 1 is easy to detect in mucus from320
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the vaginal end of the cervix and holds potential to report cervical shortening with minimal321

equipment.322

Pre-eclampsia, fetal growth restriction and preterm birth323

Major problems arising during implantation and early placental development result in324

miscarriage. However, minor issues often remain silent until around mid-gestation when the325

fetus overtakes the placenta in size. At this time, minor inadequacies in placental size,326

patterning or maternal blood supply can result in an inability to meet the requirements for the327

growth and development of the fetus. For reasons that are not completely understood, one of328

the most common signs that there are supply-and-demand issues with a pregnancy is the329

elevation of the pregnant woman’s blood pressure. The clinical definition of pre-eclampsia330

has recently been expanded to include the development of high blood pressure during331

pregnancy along with any related problem, not only elevated protein in the urine.115 Five332

percent of pregnancies worldwide are affected by pre-eclampsia with 76,000 attributable333

maternal deaths per year, second only to post-partum haemorrhage as a cause of maternal334

death. Around 500,000 fetal and newborn deaths each year are attributed to pre-eclampsia335

and eclampsia.115 Approximately 9% of all preterm birth is by induction of labour or336

Caesarean section to treat severe pre-eclampsia and eclampsia.19337

338

Pre-existing maternal cardiovascular vulnerability and poor cardiovascular adaptation to339

pregnancy are increasingly recognised as important to the development of pre-eclampsia.116340

Pregnancy has even been described as a stress-test that reveals women who have poor341

cardiovascular reserve or dysfunction.117 It is therefore unsurprising that well-established342

treatments for cardiovascular disease such as low-dose aspirin, when given during pregnancy,343

also reduce the risk of preterm pre-eclampsia,118 and new treatments (statins) are under344

investigation.119345
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346

A calcium-rich diet or calcium supplementation during pregnancy are also able to reduce the347

risk of pre-eclampsia and associated morbidity and mortality in the newborn.4 It is likely that348

both aspirin and calcium are able to prevent the establishment of a systemic vasoconstrictive349

environment. In chronic, sustained high blood pressure, the ratio of the vasoconstrictive350

thromboxane to the vasodilator prostacyclin is skewed towards vasoconstriction. Both351

molecules are synthesized by cyclooxygenases 1 and 2 (COX1/2). At low doses, aspirin352

appears to be able selectively and irreversibly to inactivate COX1 in platelets, thus reducing353

thromboxane production and restoring this ratio to normotensive levels.120 However, aspirin354

has been shown to be most effective at preventing preterm pre-eclampsia when commenced355

early in pregnancy (< 16 weeks) suggesting a supportive effect on early placentation.121356

357

Changing social and environmental contexts358

Some subgroups of pregnant women, such as smokers, primi- and secundigravidae,359

teenagers, and women with low body mass index scores, tend to respond more favourably to360

nutrient supplementation or preventive treatment of infections, reducing the risk of delivering361

small and vulnerable newborns.  However, this does not justify the exclusive use of these362

interventions strategies to reduce the prevalence of small vulnerable newborns. Increased363

antenatal contacts afford opportunities to address the wellbeing of pregnant women in a more364

holistic way.  Depression, anxiety, lack of agency, chronic illness, physical workload and365

intimate partner abuse can all be exacerbated by pregnancy. High levels of psychological and366

physical stress during pregnancy are associated with growth restriction and shorter pregnancy367

duration.122-124 Cortisol entering the placenta from the fetal circulation is an important step in368

the preparation of mother and child for birth. Although increases in cortisol and corticotropin369

releasing hormone in the mother’s circulation are normal during pregnancy, it is possible that370
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prolonged elevated or acute bursts of cortisol may be able to trigger preterm labour.371

Furthermore, elevated cortisol has also been associated with higher concentrations of372

proinflammatory cytokines,125,126 that can negatively affect fetal growth as previously373

described (Figure 4).374

375

Creation of energy from oxygen combined with glucose and other monosaccharides is the376

final step in the pathway that powers fetal growth. The pathway starts with clean air that is377

free of pollutants that interfere with oxygen binding by maternal hemoglobin. In addition to378

increasing the burden of oxidative stress, smoking and cooking over biomass fuels can limit379

oxygen delivery to the placenta (Figure 4).127 Exposure to air pollution and living at high380

altitude have also been linked to fetal growth restriction.128,129 Interventions that help women381

to quit or reduce smoking during pregnancy reduce the risk of giving birth to a small382

infant.130 Countries that have banned smoking in indoor public spaces have experienced a383

dramatic reduction in the prevalence of preterm and low birth weight newborns.131-133 Low-384

and middle-income countries have higher outdoor pollution levels and indoor pollution due to385

a reliance on solid biomass (usually wood) fuels and chimneyless stoves for cooking and386

heating.134 Because women are more exposed to indoor pollution from cookstoves and387

heating due to a greater amount of time spent in the home, the World Health Organization388

considers indoor pollution as a “silent killer” of women in low-resource settings.135 Trials of389

liquid fuel cookstoves have so far failed to demonstrate their ability to lower the risk of low390

birth weight, preterm birth or small-for-gestational-age births, possibly because they are391

unable to sufficiently reduce airborne particulate matter to have an observable effect.136,137392

393

New evidence is emerging on the effect extra heat on pregnancy outcomes, with a 5% (95%394

CI 3% - 7%) increase in the odds of having a preterm birth every one degrees above seasonal395
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average.38,138 Further epidemiological evidence suggests that conception and early first396

trimester are particularly vulnerable to heat stress, increasing the risk of stillbirth and preterm397

birth.139 In animals, transient elevated temperatures lead to reduced feeding and overall food398

intake resulting in growth restriction in the fetus.140 However, the damage may run deeper399

with loss of intestinal barrier function, changes to intestinal epithelial morphology.141400

401

Food and water-borne pollutants are also likely to contribute to the prevalence of small402

vulnerable newborns. Components of Aspergillus fungal spores collectively known as403

aflatoxins are common contaminants of food production in under-resourced settings.142 High404

concentrations of aflatoxins in maternal and cord blood are associated with low birthweight,405

likely mediated through growth restriction, although the exact mechanism is not known.34 In406

addition to known teratogenic and carcinogenic effects of aflatoxins, they may also interfere407

with hormone secretion and signaling and thus are part of a wider group of both natural and408

artificial toxicants known as endocrine disruptors, which include bisphenol A, phthalates,409

pesticides, polychlorinated biphenyls, polybrominated diethyl ethers and dioxins.35 Of410

particular concern is the high levels of phthalate metabolites that contaminate food and water411

globally. In keeping with their role in modulating estrogen levels, different phthalate412

compounds can increase or reduce gestational length and are therefore associated with both413

pre- and post-term birth.143 Governments have sought to ban the use of phthalates in plastics414

production, however the toxicity of potential replacements is uncertain.35415

416

What can be done? The foreground and the horizon417

Knowledge of the mechanisms that lead to the birth of a small vulnerable newborn continues418

to grow as well as our understanding of how to intervene to reduce or prevent this outcome.419

In the short term, increasing the quantity and quality of antenatal contacts with healthcare420
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providers affords the opportunity to monitor and support physical (weight gain, fetal growth,421

prevention and treatment of pregnancy complications) and psychological (mental health,422

agency) wellbeing. Reductions in preterm birth and growth restriction can be achieved with423

broader implementation of proven antenatal interventions, including multiple micronutrient424

supplements, balanced protein energy supplements, aspirin, treatment of syphilis, education425

for smoking cessation, prevention of malaria in pregnancy, treatment of asymptomatic426

bacteriuria, and progesterone provided vaginally as presented with this series.144  In addition,427

the specific vulnerability of those in utero to poor air quality, heat waves and toxins in food428

and water should contribute the urgency of global efforts to reduce harmful environmental429

exposures and the impact of climate change.430

431

In the longer term, new knowledge can be used to improve our understanding of the432

molecular and cellular biology underlying risk factors that inform interventions for433

populations with the greatest ability to benefit. Risk stratification tools and algorithms that434

incorporate individual risk profiles, together with biomarkers, can identify individuals who435

might benefit from pre-emptive care and early pathway-specific interventions. For example, a436

test that predicts future cervical shortening would identify women who are most likely to437

benefit from progesterone supplementation without the need for serial ultrasound monitoring.438

Progesterone supplementation itself is also evolving with new analogues that are resistant to439

inhibition by the mechanisms that lead to labour.145 Tests that can be performed and440

interpreted in the timescale of an antenatal care visit (point-of-care tests) will improve uptake441

of treatment for infections; treatment can be issued on the same day removing the need to442

return to clinic for follow-up. Point-of-care tests should fulfil the WHO ASSURED443

(Affordable, Sensitive, Specific, User-friendly, Rapid, and Equipment-free, and Deliverable)444

criteria for use in low resource settings.146445
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446

Placental histopathology is underutilized as a means to diagnose chorioamnionitis and other447

placental conditions leading to birth of small vulnerable newborns.  In cases of preterm pre-448

labour rupture of membranes, the rupture site is the “scene of the crime” and should be fully449

investigated. If Ureaplasma species are the leading cause of spontaneous preterm birth,450

prevalence and virulence factors need to be resolved at the level of species. It will be451

important to demonstrate a causal relationship between species and spontaneous labour and452

membrane rupture so that antibiotics that can “cure” the individual and prevent these453

outcomes are not overused.454

455

There are also new opportunities to understand placental health in situ. A particularly456

promising development is the discovery of extracellular vesicles which are small particles457

consisting of a lipid bilayer containing the proteins, metabolites, RNA, and DNA that have458

budded off from a parent cell. In pregnancy, extracellular vesicles in the maternal circulation459

mainly come from fetal trophoblasts of the placenta.147 Extracellular vesicles in a peripheral460

blood may reveal key aspects of the placental environment including oxygen tension, glucose461

concentration, inflammation, and vascular dysfunction. In abnormal states such as gestational462

diabetes and pre-eclampsia, numbers of extracellular vesicles are elevated and contain463

molecular signatures of these conditions.148464

465

Every woman’s journey through pregnancy and childbirth is unique and the ultimate goal466

should be individually tailored care for all with an eye towards optimizing both mother and467

infant health and wellbeing.  Personalized antenatal care does not need to be complex or468

expensive but the barriers may be higher in low- and middle income settings in comparison469

with a pragmatic public health approach. Interventions can span from the bedside (e.g., better470
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gestational age assessment) to the clinic (e.g. pre-eclampsia screening) to the operating room471

(e.g. safer anaesthesia for Caesarean sections) and to society generally (e.g. limiting tobacco472

or pollution exposure).  A more precise deployment of the existing toolkit of interventions is473

likely to be more cost effective. However, many aspects of even healthy pregnancy remain474

poorly understood, and it is only with continuous discovery that we move forward.475
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Table 1. Changes to organ systems in women during pregnancy.

Organ system Change
Heart Cardiac output increases by 50%.71

Lungs Ventilation (volume/minute) increases by 50%.72

Vasculature Vascular resistance decreases by 30 – 50%.71

Red blood cells Early 10% decrease in RBC and hemoglobin per volume
due to increase in plasma volume. 73

White blood cells Circulating neutrophil counts increase by 50%.74

T cells become less responsive to antigenic stimulation.75

Gastro-intestinal tract Transit time slows down, possibly to allow longer time
for absorption of nutrients.76

Pancreas Small increase in insulin production in response to mild
insulin resistance in maternal tissues.48
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Table 2. Nutritional factors related to the small vulnerable newborn

Maternal nutritional factor Potential mechanistic pathways Outcomes
Nutrient supply (energy and
macronutrients:
carbohydrates, proteins,
lipids)

Energy and nutrient delivery to the
placenta and fetus.81

Growth
restriction

Body composition
(underweight, overweight);
gestational weight gain
(GWG)

Underweight or low GWG: low energy
supply.81

Overweight or excess GWG: metabolic
and hormonal dysregulation, gestational
diabetes, hypertension, inflammation.82

Growth
restriction

Dietary quality Metabolic and hormonal dysregulation,
gestational diabetes, hypertension,
inflammation, oxidative stress.

Growth
restriction,
preterm birth

Stature Small “container effect” on uterine and
placental size.83

Growth
restriction

Micronutrients related to
cardiac function, anaemia
and oxygen supply (e.g.,
iron, riboflavin, folic acid,
vitamin B12, vitamin C)

Oxygen supply to placenta and fetus. Growth
restriction,
preterm birth

Nutrients that support
immune function (e.g., zinc,
fatty acids, vitamin D, iron)

Ability to fight infection and control
inflammation.

Fetal growth
restriction,
preterm birth

Antioxidants and cofactors
of antioxidant enzymes (e.g.,
vitamins C, E, carotenoids,
copper, zinc, fatty acids)

Ability to reduce and repair damage
caused by oxidative stress.

Fetal growth
restriction,
preterm birth

Nutrients related to cortisol
metabolism (e.g., fatty acids,
zinc, magnesium)

Control of inflammation, prevention of
preterm COX2 activation and
prostaglandin production.

Fetal growth
restriction,
preterm birth

Nutrients related to
mitochondrial function (e.g.,
vitamins C and E, zinc,
copper, iodine, selenium)

Mitochondrial efficiency and protection
against oxidative stress.84

Fetal growth
restriction

Nutrients related to
production of prostaglandins
(e.g., long chain poly-
unsaturated fatty acids)

Omega-3 fatty acids: competitive
inhibition of preterm production of
prostaglandins E2 and F2 from
arachidonic acid.67

Preterm birth
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Panel 1. Risk factors for the birth of a small vulnerable newborn
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Figure 1. Developing fetus and fully developed placenta. The basic body plan with

rudimentary organs are in place by 5 weeks post fertilization. The umbilical artery carries

deoxygenated, waste-replete, nutrient-depleted fetal blood to the placental villi where waste

is exchanged for nutrients and carbon dioxide is exchanged for oxygen from maternal blood.
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Figure 2. Conceptual model of key determinants of gestational length. When the fetus is

ready to be born, cortisol enters the placenta and circulation and activates cyclooxygenase-2

to generate prostaglandin E2, which directs cervical and uterine remodelling. Estrogens

override the suppressive effects of progesterone and oxytocins trigger uterine contractions.

CRH – corticotropin releasing hormone.
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Figure 3. Conceptual model of key determinants of fetal growth. Hormones, nutrients and

oxygen from the mother are taken up by the placenta and transferred to the fetal circulation to

support synthesis of fetal tissue.
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1

2

Figure 4. Examples of exposures that are able to contribute to both preterm birth and growth restriction via different pathways and ways to3
intervene toward prevention. Zinc deficiency (A), psychological and physical stress (B) and poor air quality/tobacco smoke (C) contribute to the4
birth of a small vulnerable newborn. MMS – multiple micronutrient supplements, COX2 - cyclooxygenase 2, LCPUFA – long chain5
polyunsaturated fatty acids, IGF – insulin-like growth factor, ROS – reactive oxygen species.6

7
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8

9

Figure 5. Immune defence of the cervix. The cervix remains long and closed for the duration10

of pregnancy. It is defended by antimicrobial chemicals including peptides, antibodies and11

enzymes. Neutrophils are also present in the mucus and are able to destroy invading12

microbes. In the absence of adequate immune defence, bacteria are able to colonize and13

damage the membranes leading to rupture or chorioamnionitis.14

15

16


