
Mikael Petäjä

NATURAL LANGUAGE PATHFINDING FOR

INDUSTRIAL APPLICATIONS ON A

COLLABORATIVE ROBOT

Application of CLIPort for OpenDR

Master’s Thesis

Faculty of Engineering and Natural Sciences

Examiners: Roel Pieters

Alexandre Angleraud

November 2023

i

ABSTRACT

Mikael Petäjä: Natural Language Pathfinding for Industrial Applications on a Collaborative Robot
Master’s Thesis
Tampere University
Master of Science (Technology), Degree Programme in Engineering Sciences, Master’s Pro-
gramme in Automation Engineering
November 2023

Robotics and automation are common in modern industry but is often limited to pre-known
workspaces and rigid tasks. With machine learning robotics can be made to derive task-relevant
context from the workspace and act without explicit directions. This could benefit task robustness
as well as allow for greater co-operation with humans in collaborative tasks.

Machine learning applications are particularly interesting in human-robot collaboration be-
cause of the difficulty of predicting the impact a human actor has on the workspace using tra-
ditional algorithms. The framework presented in this thesis attempts to react to changes in the
workspace but does not directly detect human behaviour or attempt to avoid human body parts by
identifying them in the workspace.

This thesis implements a CLIPort based natural language instruction tool for controlling a
Franka Panda robotic arm. A final dataset-model -pair introduced as well as two prototype dataset-
model -pairs for possible future improvements and development process explanation. A literature
review was done to briefly discuss similar systems and other applications of machine learning on
robotics. Backend systems, such as CLIP and CLIPort are briefly introduced as well along with
other relevant works.

Results show that the presented model can achieve a location accuracy of 90.42% in examined
industrial tasks. For certain object-task-environment configurations, this accuracy was observed
to be up to 100.00%, but the overall the framework was found to successfully execute a complete
pick & place task 75.07% of the time. The datasets with which the models were trained are
examined and future improvements are considered with suggestions based on scope.

The most important contribution of the thesis is the demonstration that the implemented frame-
work is suitable to industrial task execution. Other notable contributions include the identification
of error-producing situations, and format and quantity recommendations for demonstrations in
datasets.

Keywords: robotics, language instruction, industry, language, collaborative robotics, Franka Panda,
real-robot, engine assembly, machine learning, CLIPort, object manipulation, visual servoing, lan-
guage recognition, pose estimation, RGB-D, depth imaging, RGB-D object detection

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Mikael Petäjä: Luonnollisen kielen avulla tapahtuva polunmääritys teollisia sovelluksia varten yh-
teistoiminnallisella robotilla
Diplomityö
Tampereen yliopisto
Automaatiotekniikan DI-ohjelma
Marraskuu 2023

Robotiikka ja automaatio on tullut yleiseksi nykypäiväisessä teollisuudessa, mutta rajoittuu vie-
lä ennalta tunnettuihin työtiloihin ja suppeisiin tehtäviin. Koneoppimisen avulla robotin voi saada
päättelemään tehtävän kannalta oleellisen kontekstin työtilasta ja toimimaan ilman eksplisiittisiä
ohjeita. Tämä voi auttaa tehtävien toistettavuudessa tai suorituskestävyydessä ja mahdollistaa
paremman yhteistoiminnan tehtävissä ihmisten kanssa.

Koneoppimisen sovellukset ovat erityisen mielenkiintoisia ihmisen ja robotin välisessä yhteis-
työssä siksi, että ihmistoimijan vaikutusta työympäristöön on erittäin vaikeaa ennustaa perinteisil-
lä algoritmeilla. Tässä työssä esitelty järjestelmä pyrkii reagoimaan muutoksiin työympäristössä,
mutta ei suoraan tunnista ihmisen käyttäytymistä tai pyri välttämään ihmisen ruumiinosia tunnis-
tamalla niitä työympäristöstä.

Tässä työssä toteutetaan CLIPort-pohjainen puhutun kielen opastustyökalu Franka Panda -
robottikäsivarren ohjaamiseen. Tässä työssä esitellään toteutettu tietokanta-mallipari, sekä kehi-
tysprosessin selvennystä varten kaksi tutkintaan käytettyä tietokanta-malliparia. Työn kirjallises-
sa katsauksessa tarkastellaan samankaltaisia järjestelmiä ja muita nykyaikaisia koneoppimisen
sovelluksia robotiikassa. Jotkin työn kannalta oleelliset taustajärjestelmät, kuten CLIP ja CLIPort
esitellään muiden oleellisten töiden ohella.

Tuloksista nähdään, että esitelty malli voi saavuttaa 90.42% paikkatarkkuuden valituissa teol-
lisuustehtävissä. Joillain esine-tehtävä-ympäristökonfiguraatioilla, tämä tarkkuus oli jopa 100%,
mutta yleisesti ottaen toteutettu järjestelmä suorittaa kokonaisen poimimis- ja sijoitustehtävän
75.07% onnistumissuhteella. Mallien koulutukseen käytetyt tietokokonaisuudet esitellään ja tu-
levia parannuksia tarkastellaan toteutuslaajuuteen perustuvin ehdotuksin.

Työn tärkein tuotos on toteutetun järjestelmän soveltuvuuden osoittaminen teollisissa tehtävis-
sä. Muita oleellisia löydöksiä ovat esimerkiksi virheitä tuottavien tilanteiden tunnistaminen sekä
tietokokonaisuuksissa esiintyvien esimerkkien muoto- ja määräsuositukset.

Avainsanat: robotiikka, kielenopetus, teollisuus, kieli, yhteistoiminnallinen robotiikka, Franka Pan-
da, oikea robotti, moottorin kokoonpano, koneoppiminen, CLIPort, objektien manipulointi, visuaa-
linen servoilu, kielen tunnistaminen, asennon arviointi, RGB-D, syvyyskuvaus, RGB-D-objektien
tunnistus

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

PREFACE

This subject was given to me as a first assignment and orientation at the university which

contributed to its long writing time. Significant complications were faced before real work

ever began and I want to extend my thanks to my direct employer and supervisor, Roel

Pieters for being both patient and supportive even when results still seemed distant.

I learned quite a few new things in the process of writing this thesis and in the end I think

I achieved the results I hoped for even though the whole process took much longer than

anticipated. This was also my first time writing such a document in LATEX. I’d also like

to extend my thanks to Akif Ekrekli, Alexandre Angleraud, Eetu Airaksinen and Gaurang

Sharma for assisting me with setup related tasks where I had uncertainties. I also want to

thank Omar Hassan for his previous work and assistance without which this thesis would

not have been possible.

Tampere, 14th November 2023

Mikael Petäjä

iv

CONTENTS

1. Introduction . 1

1.1 Background . 1

1.2 Problem Statement . 2

1.3 Research scope and objectives 3

1.4 Thesis contribution . 3

1.5 Thesis organization . 3

2. Literature review . 5

2.1 Collaborative robots in industry 5

2.2 Machine learning applications in robotics 6

2.2.1 Computer Vision . 6

2.2.2 Natural Language Processing 7

2.3 Related Works . 8

2.3.1 Previous works . 8

2.3.2 CLIP . 9

2.3.3 CLIPort . 10

2.3.4 Other works related to machine learning in robotics 10

3. Experiment setup and changes to previous work 14

3.1 Framework overview . 14

3.2 Hardware setup . 14

3.2.1 Desktop computers . 14

3.2.2 Microphone . 15

3.2.3 Intel D435 Camera & recording 15

3.2.4 Robot . 15

3.3 Vision-Language Model . 16

3.4 Text Processing . 16

3.5 Speech recognition . 16

3.6 Multi-step workflow . 17

4. Dataset format and purposes . 19

4.1 The presentation of the format and purpose of the datasets 19

4.1.1 All objects present in the datasets 20

4.1.2 Final model dataset . 21

4.1.3 Multistep model dataset 22

4.1.4 Extension model dataset 23

4.1.5 Validation dataset . 24

v

4.2 Model successes criteria . 25

4.2.1 General example of a pick & place task on a bolt 25

4.2.2 Criteria for pick success verification 28

4.3 Dataset parameters . 30

5. Results . 33

5.1 Final model examples . 33

5.2 Final model success rate. 39

5.2.1 Final model quality criteria 41

5.3 Other models . 43

5.3.1 The multistep model . 43

5.3.2 The extension model 46

5.4 Other model success rates . 46

5.4.1 The multistep model success rate examination 47

5.4.2 The extension model success rate examination 49

5.5 Discussion on errors . 51

5.5.1 Factors contributing to errors 52

5.6 Future works and improvements 53

5.6.1 Framework re-write requiring improvements 53

5.6.2 Framework extension 54

5.6.3 Dataset improvements 55

6. Conclusions . 57

6.1 Discussion on Research Objectives 57

6.2 Summmary . 59

References . 60

vi

LIST OF SYMBOLS AND ABBREVIATIONS

ASR Automatic Speech Recognition

GPU Graphics Processing Unit

GUI Graphical User Interface

h Hour

HRC Human-Robot Collaboration

IL Imitation Learning

PC Personal Computer

RGB Red-Green-Blue

RGB-D RGB with depth

RGBD RGB with depth

TAMP Task and Motion Planning

USB Universal Serial Bus

VAD Voice Activity Detection

VLM Vision-and-Language Manipulation

VQA Visual-Question-Answering

1

1. INTRODUCTION

Robotics have been a component of modern manufacturing ever since the 1980s, but it

has proven to be dangerous and injurious when in close contact with humans. To better

protect the workers in a factory with a robotic component in the assembly line, the robots

are often separated from human workers. This has proven to be a successful solution to

the safety concerns, but research has shown that factories with robots have an increased

injury rate compared to non-robotic factories.

In modern robotics there exist potential solutions, such as using cobots. A cobot (com-

pound for "collaborative" and "robot") is a robot specifically designed to work in tasks

where human collaboration is necessary or desired, which can still include most man-

ufacturing tasks due to the limited autonomy and decision-making capacity of modern

computers. Cobots are designed to interact with the world in such a way that they pose

a decreased chance of injury for humans. This safety comes with some limitations to the

robot which can be detrimental to manufacturing, such as decreased movement velocity,

which is why their implementation in manufacturing is still not common. Hybrid tasks that

require both human problem solving, and the strength and repeatability of robotic assem-

bly are also not a common paradigm compared to the more traditional "dumb" robotics

assembly with separated human and robotic actors.

This thesis extends on a previous work done by Hassan O. [1], which introduced a CLIPort

[2] based solution for executing tasks on a cobot based on language instructions. The

main goal of this thesis is to show that this framework can be used for executing industrial

tasks with sufficient success rates. The industrial tasks considered in the thesis come

from engine assembly but are somewhat limited due to a focus on proving suitability

instead of demonstrating actual engine assembly. Future works with the framework could

be conducted on real engine assembly tasks with steps where human and robot actors

would be truly beneficial, such as in precision insertion of pistons.

1.1 Background

Robotics is not the only means by which digital instructions can manipulate items in phys-

ical space. Other actuators such as heating elements or other radiators can also cause

changes in the physical space, but these are often inaccurate or non-repeatable. Re-

2

peatability, strength, accuracy, and speed can be considered the most relevant traits to

industry in robotics. These traits have already made robotics commonplace in modern in-

dustry, but mobile robots are also making appearances outside of manufacturing, such as

mobile TUG delivery robots in hospitals [3] and in the streets of cities in Starship food de-

livery robots [4]. Traditional industrial robots usually only work with tasks that have a very

low variance between repetitions, which can limit their applications. Typical industrial so-

lutions usually can’t react to changes in the workspace, such as a displaced object. This

is why most robots in manufacturing utilize some sort of component feeding mechanism,

which places the task objects in the same position for every repeated action sequence.

With the advent of machine learning and image space object classification, robots can be

made to react to variances in their workspace. These solutions are still not commonplace

in manufacturing compared to the cheaper and more proven industrial robots and are

better suited for some tasks than others. Machine learning can also slow the process

since predictions are usually not instant, so the value proposition of perception has to

save time or money in some other form, such as ease of use, ease of installation or cost

of operation. In a closed workspace, the variance between tasks can be minimal since

the robots are the only actors and do not make mistakes except in accidents. When

collaborating with a human on a manufacturing task, the workspace can’t be closed off

and the task variance is higher since the human is an unpredictable actor. This makes

machine learning based solutions very suitable for collaborative robotics.

Speech is another problem with robots collaborating with humans. Robots can be pro-

grammed to collaborate with each other in manufacturing tasks, and they share data

with modern communication protocols. Humans communicate mainly using speech, ex-

pressions, and gestures, which can’t be directly transformed into machine-understood

language without specialized tools, and even then understanding the messages usually

relies heavily on environmental context and implied details. Natural language processing

is a machine learning paradigm focusing on transforming human language into machine-

understood language. Human reactions can also be relatively quick when compared with

the speed of language processing, which often makes language-integrated robotics often

seem slow to react. One of the aims of this thesis is to improve the natural language

processing capacity of the previously implemented framework.

1.2 Problem Statement

Given the prior pipeline for generating what & where pathways, assess suitability for in-

dustrial tasks in engine assembly and compare the results to other models.

3

1.3 Research scope and objectives

The primary scope of the thesis is to test, assess, and possibly improve a previously

developed solution (CLIPort nlihrc) and compare it to other solutions. This scope is then

further split into the following research goals:

• Assess the accuracy of the speech model in CLIPort nlihrc.

• Assess the prediction accuracy of CLIPort nlihrc using multiple models with different

samples and amount of training epochs.

• Generate dataset(s) and demonstrate suitability for industrial objects.

• potentially useful tasks for industrial applications using an existing solution back

end.

• Research similar systems

• Compare CLIPort nlihrc results with results from similar systems

1.4 Thesis contribution

This project is mostly about testing the previously developed solution, and thus won’t

consider the development of completely new solutions. To facilitate model testing, the

thesis work does include the extension of existing tools and possible development of

tertiary tools. In the planning phase, several new requirements were found, and the thesis

implements the following:

• A comparison pipeline for multiple trained models.

• General fixes to the existing solution without changing the prediction pipeline.

• Functional models that can be used to execute relevant tasks on industrial objects.

• Datasets that can be used to train the aforementioned functional models.

• Integration of existing solution with modern TensorFlow and CUDA (SM 8.6 com-

pute compatibility).

The last point listed above (integration) isn’t of interest to the thesis, regardless of its

necessity, and won’t be discussed further on the grounds of implementational irrelevance.

1.5 Thesis organization

This thesis is organized into 6 main chapters, the first of which being this introduction.

The chapters to follow are:

• Literature review: This chapter discusses similar solutions and necessary the-

ory. Because this thesis is based on the work in the thesis by O. Hassan [1], most

4

implementation-related theory will not be re-discussed, such as robotic manipula-

tion, machine learning, camera calibration, or neural networks.

• Experiment setup and changes to previous work: This chapter discusses im-

provements and changes compared to the previous implementation presented in

the thesis by O. Hassan [1]. This chapter also includes some theory verification,

such as motion mapping.

• Dataset format and purposes: This chapter discusses the parameters used to

collect the data sets. These data sets were used in training the models on which

the success of industrial tasks was measured. This chapter also discusses why

certain objects are present and their relative configurations.

• Results: This chapter discusses the success rates of the framework in relevant

tasks that were considered industrial. Future works and improvement possibilities

are also discussed.

• Conclusions: This chapter concludes the thesis and shows how research objec-

tives were fulfilled. A summary is given in conclusion.

5

2. LITERATURE REVIEW

This chapter discusses similar works and potential future options to CLIPort for backend

tests. The chapter also gives an overview of CLIP and CLIPort.

2.1 Collaborative robots in industry

Human-robot collaboration (HRC) in industry refers to an environment, where humans

can work with robots in the in close proximity according to Wang et. al. [5]. Some ben-

efits of HRC are increased quality of the product and increased manufacturing speed.

Collaborative robots can also be cheaper to implement in small- and medium-sized enter-

prises due to the reduced required expertise and lower installation expenses according to

Matheson et. al. [6]. The main purpose and the goal of HRC is to combine the accuracy,

strength and repeatability of robotic actions with the problem solving and solving skills of

humans [5]. According to [5] and [6], HRC implementations can be collapsed into four

different categories as follows:

• Coexistence, when a robot and human are in the same physical space but have

different workspaces. The work object or task might change workspaces so that

independent collaboration is possible.

• Interaction, when one party guides the other without any physical contact. The task

can be the same but is completed sequentially.

• Cooperation, when human and robot agents are autonomous in their tasks but

can share cognitive or computational resources to aid each other. They can work

independently, but sometimes have to wait for the availability of the other agents.

• Collaboration, when the human and the robot make a coordinated and joint effort

to complete a shared task. Physical contact is also allowed unlike in the previous

cases.

Figure 2.1 from the paper [6] presents these collaboration types in addition with the indus-

try standard separated robot work cell configuration. Along with these, there is also the

concept of symbiotic HRC, in which the human and robot co-exist and interact with each

other in order to solve difficult tasks. Together they form a symbiotic HRC system that pos-

sesses the capability to assess situations and have reasoning to solve tasks while having

6

Figure 2.1. Types of use of a collaborative robot. Taken from [6]. The leftmost image
titled "Cell" is the traditional industry way to implement robots that do not collaborate with
humans in any tasks.

to adapt to the environment. The HRC system is a complete entity that is contextually

slightly separate from the listed items and is an extension and full realization of collabora-

tion. Out of the items listed above, the most interesting case for industry is collaboration,

even though for some tasks the increased speed of spearated agents is preferable. In

this thesis, the human and robot do tasks in the same workspace, but the examples with

which the framework was trained do not contain examples of human body parts. With

the implemented framework, the human and the robot can act in the same workspace

and do collaborative tasks such as handover, but the robot might be confused if human

body parts are present in the examples. There was also no effort to implement avoidance

behaviour, since the used robot was considered to be generally safe even in close prox-

imity to humans and collision situations were generally considered to not be particularly

dangerous. The implemented framework does not move the robot at maximum speed.

2.2 Machine learning applications in robotics

Machine learning plays a big role in robotics where the tasks are not predictable in some

way. Machine learning is also commonly used with robotics to infer context from the

workspace and to extract task-relevant object locations. There are also vision-related

concepts in robotics that are not directly tied to machine learning but are useful to under-

stand. One such concept is the idea of eye-in-hand and eye-to-hand perception.

2.2.1 Computer Vision

In collaborative robotics, machine learning and neural networks can be used to further

improve safety and to facilitate the unpredictable nature of human actors. Environments

where humans act can also change and if the robot is mobile, it usually has to react

automatically to these changes to be efficient. The robots might also face completely

unknown situations, which makes traditional behaviours based on conditional arguments

7

prohibitively difficult to implement. Some robotics applications have been developed for

image classification frameworks, such as BLIP presented by Li et. al. [7] or the thesis-

relevant CLIP discussed by Radford et. al. in [8]. These frameworks mainly describe seen

items in images and more advanced models also give the option of drawing bounding

boxes around those detected items. Applying spatial transforms and correcting for cam-

era occlusion and distortion allows for 3D positioning of the image items in real space in

coordinates that are simple for robots to understand. The process computer vision prob-

lem of visually identifying items can also be reversed with multiple different approaches,

such as the modern approach of stable diffusion employed by frameworks such as BLIP-

Diffusion presented by Li et. al. in [9] or DALL-E2 presented by Radford et. al. in [10].

2.2.2 Natural Language Processing

Human actors also communicate with each other using speech both deliberately (sen-

tences) and instinctively (yelps, gasps), which makes natural language processing an

attractive option for coordinating collaboration with robotic actors.

Voice Activity Detection (VAD) is the first step of capturing speech, by using binary classi-

fication to detect speech being present in the a sound input signal. Various VAD methods

have been proposed and implemented that differ in terms of latency, accuracy, compu-

tational cost, and sensitivity. One current and popular method is WebRTC [11], which

processes 30ms audio chunks with a small latency of less than one millisecond. Another

method, Silero VAD [12], is based on a multi-head attention network and performs slightly

better in terms of accuracy likely due to the large language corpora it was trained on.

Automatic Speech Recognition (ASR) has also been a popular research topic in past

years and is another step needed when human speech needs to be detected, recognized,

and converted to text. Earlier works produced large ASR models due to the amount of

data used and the complexity of the models, which increased latency and reliability due

to network connectivity. More modern ASR implementations have moved towards offline

speech recognition with models such as Kaldi presented by Povey et. al. in [13] and

VOSK [14]. These models are typically comparatively small (i.e., <100MB), enabling real-

time streaming on mobile devices.

Natural Language Processing provides an understanding of language in text, for which

past efforts have utilized Recurrent Neural Networks (RNN) as stated in the paper by Yin

et. al. [15]. According to Vaswani et. al. [16], More recent attention mechanisms have

utilized a transformer architecture in approaches such as Devlin et. al. with BERT in [17]

and Reimers et. al. with SBERT in [18].

8

2.3 Related Works

This chapter discusses some of the most important relevant works and similar implemen-

tations to the implemented framework. The previous work from which this thesis continues

is also introduced along with relevant concepts. Some possibly relevant topics (such as

robotic manipulation or specifics on neural networks) are not discussed in this thesis due

to them being presented in the previous work.

2.3.1 Previous works

In the thesis [1] O. Hassan introduces a framework for transforming natural language in-

structions into robot instructions that are tied to the real world through observations. This

thesis can be considered a continuation and verification of that work. Some changes

to the overall framework were necessary but not in a significant way and the underly-

ing architecture was otherwise left untouched except for moving from a Wi-Fi-phone-

microphone -solution into using just a USB plugged microphone. This change did not

require any rewriting of functionality and did not appear to affect the framework execution.

Repeating the implementation details presented in the thesis [1] here is unnecessary, and

the information presented in my thesis tries to not repeat anything except when neces-

sary.

Some functionality was added to the framework. The speech recognition tool was edited

so that it can understand some numbers and it also received a new command. Speech

tool changes are discussed further in Chapter 3.4. The original robot moving tool fre-

quently stopped due to high acceleration values and was automatically configured to send

an "all clear" message so that execution of the task could continue. This behaviour was

removed to better adhere to the collaborative nature of the robot, and instead a "recover"

command was added so that the user could resume operation with the robot without

having to restart all the required tools. The acceleration values were also limited, and

maximum velocities were implemented so that the robot would not always try to move at

max speed. These velocities were also configured so that the robot moved slower when

approaching the object to pick and when moving it compared to moving the arm unladen.

A lot of effort was made in order to implement repeating tasks, and the details of this are

discussed in Chapter 3.6. The implemented solution is somewhat limited in that it can

only repeat known tasks and more complex tasks would still require manual writing of

relevant locations. More advanced tasks exhibited by frameworks such as CLIPort were

not implemented. Some complex, unimplemented, and industry relevant task examples

include aligning an object to some surface element, pushing objects around and sorting

objects by type.

9

Figure 2.2. Summary of the CLIP detection approach directly given in the GitHub page
[19] and the paper [8]

2.3.2 CLIP

CLIP is a framework that gives natural language context to content in pictures. According

to the CLIP GihHub page: "CLIP (Contrastive Language-Image Pre-Training) is a neural

network trained on a variety of (image, text) pairs. It can be instructed in natural language

to predict the most relevant text snippet, given an image, without directly optimizing for

the task" [19]. Radford et. al. introduce CLIP in the paper [8] and discuss the differ-

ences in recent image classification frameworks. The paper also studies the behaviours

of classification algorithms at scales in between the least example-rich cases and most

example-rich cases, but for this thesis the differences are not relevant and the approach

chosen by CLIPort is the only considered option.

The produced CLIP framework utilizes a zero-shot predictor, which in this case refers

to the capability of classifying unseen object categories in an image. Unseen objects

are objects that haven’t been present in examples during training. The images CLIP

categorizes as known objects were not found during the literature review, but it can be

assumed that the engine parts used as objects in this thesis are unknown due to their

relative obscurity. These objects are shown in Chapter 4.1.1. The example amount in

manufactured datasets presented in Chapter 4 were largely chosen based on the dataset

presented by Hassan O. [1] and CLIPort descriptions on physical test datasets. Neither

this thesis or the previous work [1] utilizes CLIP in its default form, but it is a core part of

CLIPort [2] (discussed in Chapter 2.3.3) is used extensively.

Figure 2.2 gives an overview on the CLIP architecture with the dual-encoder approach

visible. According to the paper [8], normal image classifiers jointly train the feature ex-

traction and linear classifiers while the approach by CLIP has an image encoder and a

text encoder be trained jointly. This allows for better scalability.

10

2.3.3 CLIPort

CLIPort introduced by Shridhar et. al. in the paper [2], available at [20] is an end-to-end

imitation-learning agent that can learn a single language-conditioned policy for various

tabletop tasks [20]. It is a solution to the problem of a human communicating tasks to

robots with natural language and can be trained with relatively few examples. CLIPort

has also been demonstrated to function with a real robot, which makes it a very good fit

for the framework implemented in [1]. CLIPort can be trained to utilize either multi-task

policies or single-task policies. A multi-task policy is capable of executing multiple steps

in a sequence to achieve more complicated behaviours where as single-task policies are

most applicable in tasks that can be collapsed to single task executions. During the work

for this thesis, a multi-task policy option was investigated but it was found to not provide

significant benefits over using single-task policies. This investigation is further inspected

in Chapter 4.1.3. The CLIPort GitHub page notes that multi-task policies can have better

or comparable performance to single-task policies [20].

2.3.4 Other works related to machine learning in robotics

This chapter lists other cobot-related works and natural language processing related

works in robotics which were examined during research, but do not tie directly to CLI-

Port. Related works with direct ties to CLIPort are discussed in subsections of Chapter

2.3.3

VLMbench

Zheng et. al. introduce VLMBench in [21] as a robotics benchmark for Vision-and-

Language Manipulation (VLM) in simulated 3D environments. To investigate the difficulty

of the benchmark, they utilize several partially modal solutions and a special CLIPort

modification, 6D-CLIPort. 6D-CLIPort differs from the unmodified implementation mainly

in that instead of utilizing just the pose generation for the 3D location, the output pose is

generated as a 6 Degree-of-Freedom (DOF) pose that also contains rotation data for the

tool. It an also output an arbitrary number of poses unlike the unmodified CLIPort, which

only outputs two positions representing the pick and place actions. These two factors

combined allow 6D-CLIPort to have greater control over the trajectory the robot takes in

task execution. This modification of CLIPort is stated to achieve an execution accuracy of

28.28% in the pick & place action, which can be considered to be comparable to the pick

& place actions executed in this thesis based on the task explanation noted in the VLM-

Bench paper appendix A.1 [21]. The performance is likely lower due to the benchmark

also utilizing unseen containers, unlike the tests in this thesis.

11

LEMMA

Gong et. al. introduce the LEMMA benchmark in [22]. The article considers 8 types of

tasks of varying complexity and makes comparisons to different robotics benchmarking

solutions such as VLMBench [21]. This work is particularly interesting since it uses CLI-

Port as the low-level planning solution in both multi-robot and single-robot tasks, although

they use a multimodal agent in contrast to the agents trained during this thesis. The fo-

cus of the paper considering CLIPort is to test the language processing portion which

they achieve by using both high-level instructions and human instructions, which differ by

the latter being more complicated. During this thesis work, human instructions are ac-

cepted only in some specific forms and are collapsed with sentence similarity matching

to known high-level instructions also in contrast to the testing approach pursued in the

LEMMA paper. As in this thesis, the LEMMA paper utilizes CLIPort to predict the pick and

place locations. They also introduce a modular version called M-CLIPort which won’t be

discussed further here. With high-level instructions, the single-step model achieves an

accuracy of 87±0.67% in the pass task, which can be considered a comparable task to

two of the pick & place tasks introduced later in this thesis in Chapter 4.

CALVIN

Mees et. al. introduce CALVIN in [23] as a benchmark for language-conditioned long-

horizon robot manipulation tasks. Long-horizon tasks in the context of robotics means

tasks, which require the successful execution of various sub-tasks for the greater goal

task to be considered successful or possible. The long-horizon tasks [23] considers has

these sub-tasks be completable in an arbitrary order, but this might not be possible in all

long-horizon tasks. Compared to the tasks executed in this thesis, the tasks evaluated by

CALVIN require much more contextual understanding of the environment and task. The

tasks are also comparatively more difficult to complete due to requiring multiple steps (up

to five).

VIOLA

Yifeng et. al. present VIOLA in [24] as an object-centric imitation learning approach to

learning closed-loop visuo-motor policies for robot manipulation. Imitation Learning (IL)

is a long-standing robotics paradigm for acquiring manipulation policies, which in turn are

used for task execution. VIOLA generates a transformer-based task policy from object-

centric representations, which in turn are extracted from workspace image features. This

allows the framework to be highly adaptable to tasks in the robotics context. The policies

are tested with the MAGICAL benchmark [25] where VIOLA outperforms similar state-of-

the-art competitors. VIOLA is also tested on real-world tasks where it also outperforms

the discussed competitors.

12

LATTE

Bucker et. al. introduce LATTE in [26]. It is a language-based trajectory transformer

model and is very comparable to the CLIPort implementation due to also utilizing CLIP

in extracting image features and BERT in inferring natural language. Unlike with CLIPort

path generation, the goal of LATTE is to modify an existing robot trajectory to obey an

user’s semantic commands and avoid trajectory obstacles. The implemented solution is

not limited to just robot arms and should theoretically work with any robot trajectory. The

paper proposes such trajectories executed with helicopter drone mobile robots. LATTE

is tested in the real world with a Franka PANDA [27] robot arm of the same model as

presented in a later chapter in this thesis with user validations. The LATTE paper notes

that during real-world testing, 48% of the used words were not present during training

making the implemented solution highly flexible since the model failed only in 24% of the

cases.

PALM-E

Driess et. al. introduce a single embodied multimodal machine learning model PaLM-E

[28] for solving sequential robotic manipulation planning and other reasoning tasks. One

main goal of PaLM-E is to represent images and text as multimodal sentences similarly to

VIMA and to show that this approach can achieve state-of-the-art performance in addition

to solving problem modern zero-shot solutions have with embodied reasoning problems.

Since the approach is multimodal, the model is capable of solving long-horizon tasks and

does not have to rely on task-specific fine-tuning to achieve comparable results to other

modern language-based policy generators. In visual-question-answering (VQA) tasks,

PaLM-E is shown to outperform other modern models such as ViT-4B [29] and OSRT [30]

in some cases. In the robotics domain, PaLM-E is tested in three robot environments

and tested on Task and Motion Planning (TAMP). In the environment PaLM-E plans and

executes pick-and-stack tasks, which are a slightly more advanced form of the pick-and-

place tasks the implemented framework is examined on in this thesis. Certain PaLM-E

configurations are shown to achieve a task planning success rate of 94.9% in the TAMP

environment.

RoboCAT

Aguinaldo et. al. introduce a robot interoperability framework called RoboCat in [31]. The

stated goal of RoboCat is to decrease the expertise required for developing robot task

policies by abstracting the policies behind conceptual templates which can be transformed

into production plans. Other benefits from the descriptive approach include the reduced

need for writing bespoke controllers for different robots, as the framework could translate

high-level instructions into individual process plans customized for each manufacturer.

13

The aim of RoboCat is to increase productivity by abstracting primitive robot behaviours

into goal-oriented programs. Modern industrial programming methods already include

graphical programming languages to increase productivity, such as with the graphical

user interface of Franka Emika [27].

VIMA

In the paper [32] Jiang et. al. introduce a transformer-based robot agent, VisuoMotorAttention

agent (VIMA), and a simulation benchmark which can represent a wide spectrum of robot

manipulation tasks with multimodal prompts called VIMA-Bench. The goal of VIMA is to

produce an agent which can execute any task which can be expressed by multimodal

prompts. The produced model is scalable and sample-efficient with the paper noting that

using certain language generalization levels, the model can match other solutions such

as Mask R-CNN while utilizing just 1% of the training data. The introduced benchmarking

tool is also extensible with both extra objects and textures to increase the amount of pos-

sible multimodal prompts and to generate a larger number of tasks. Some tasks, such as

Task 02 in [32] appendix B is comparable to the pick and place tasks examined later in

this thesis.

DALL-E-bot

Kapelyukh et. al. introduce DALL-E-Bot in [33] as a zero-shot, open-set and autonomous

scene rearranging engine with the goal of mimicking human behaviour in everyday actions

such as in setting the table with tableware. They succinctly state "... our system gives

web-scale diffusion models an embodiment to actualize the scenes that they imagine.".

The scenes are framed with a static workspace with all the desired objects present. The

rearranged scenes are rated with real human reviews showing that compared to random

non-colliding or geometric schemas, the DALL-E-Bot results are on average the most

preferred. DALL-E-Bot also includes a sample-and-filter approach to cull any unrealistic

generated images which are still common with diffusion models, such as DALL-E 2 [10].

14

3. EXPERIMENT SETUP AND CHANGES TO

PREVIOUS WORK

This chapter discusses the previous solution and the changes made to it. For a better

understanding of the system, one can familiarize themselves with the thesis by Hassan

O.[1].

3.1 Framework overview

No changes were made to the original Python nlihrc framework apart from moving from

a phone as a microphone to utilizing a USB connected microphone due to network limi-

tations. This does not change the framework function or flow in a relevant way, and the

framework can be told to use the old method with a configuration parameter.

3.2 Hardware setup

This chapter lists all the thesis-relevant hardware specifications for the components used

in the framework for real world task execution.

3.2.1 Desktop computers

There are 3 PCs which were utilized on the regular during this thesis, two for machine

learning and heavy GPU loads and one real-time capable PC. CLIPort predictions were

done with a Ubuntu 20.04 machine equipped with an Nvidia GeForce RTX 3080 [34]

GPU and an AMD Ryzen 7 5845 [35] 8-core CPU (PC 1). Due to memory limitations, the

models were trained on a different computer equipped with an Nvidia GeForce RTX 4090

[36] GPU and an Intel Core i9-13900k [37] 24-core CPU (PC 2).

A two-computer approach was used for controlling the robot due to real-time processing

requirements present in robotic commands and the general difficulty of processing ma-

chine learning with time gates necessitated by real-time instructions. On the real-time PC,

the GPU was not utilized in command processing and the CPU was an 8-core Intel Core

i7-4770 [38] (PC 3). The RTX 3080-equipped PC mentioned earlier in this chapter (PC 1)

was also configured so that it could be launched in a real-time mode in order to facilitate

15

dataset capturing. All presented and produced dataset samples were captured in that

configuration, apart from the data from the pre-existing dataset which was extended.

3.2.2 Microphone

The previous project used a smartphone application-based speech capture solution but

transferring the WiFi-dongle based solution caused problems during the new computer

installation. This is why during this thesis work the voice was captured with a USB-

connected microphone instead. The microphone used was the microphone on a Jabra

EVOLVE 20 MS Stereo headsets [39]. Using the microphone changes nothing in the

workflow for Python nlihrc, except that no WiFi communication is necessary.

3.2.3 Intel D435 Camera & recording

The camera used for capturing both the RGB and depth information was an Intel D435

camera [40]. Experiments were also done with an Intel D435i camera [41], but this was

observed to not improve detection and caused calibration issues which is why its integra-

tion was abandoned and won’t be discussed further in this thesis. The camera was used

with the same calibration parameters as discussed in the thesis [1]. The camera was

not used at its maximum resolution of 1920x1080 for RGB and 1280x270 for depth, but

instead in a 640x480 mode which synced colour and depth so that the image elements

and depth elements have a correlation in every pixel. This was done also in the thesis [1]

for better depth perception accuracy and ease of implementation.

3.2.4 Robot

The robot used in this thesis is a Franka Emika Research 3 [42] robot arm equipped with

a fully integrated 2-finger parallel gripper as an end effector. The Franka Emika robot arm

is a cobot, which makes it comparatively safe to work around. It has force/torque sensors

in all its seven links of the arm body, which are used to detect collisions. The signals the

robot monitors are joint position, velocity, torque cartesian position and force. The arm

can be fitted with either a vacuum gripper or the 2-finger gripper, which was used in this

thesis. The robot itself is controlled with a real-time kernel desktop PC. The goal locations

are not calculated on this real-time computer, but are received from a prediction PC, as

described in Chapter 3.2.1. All communications happen via a local Ethernet connection

both to the robot and between computers.

16

3.3 Vision-Language Model

The framework utilizes CLIPort [2] to execute tasks specified with spoken language on a

perceived image. CLIPort is examined more thoroughly in Chapter 2.3.3. Natural spoken

language is turned to text via a previuously implemented framework tool, which utilizes

SBERT [18] in transcribing the spoken sentences. Sentence similarity is used to further

increase the precision of the detection model for relevant sentences. The CLIPort-nlihrc

implementation however uses the similarity on a word-by-word basis, and thus has a

slightly worse performance collapsing whole sentences, but in turn also functions for sin-

gle words.

3.4 Text Processing

Some task-specific improvements were made to the text processing capability of the

framework as well as some new tasks were introduced, such as handover and repeat.

One conscious limitation with the implementation of the repeat task is that only the first

number present in each sentence is considered. Due to limitations with implementation

time and low prioritization, this number is presented in a command separate from the

command that has the framework repeat some task. Further discussion on the repeat

task is found in Chapter 3.6. In addition to the added tasks, the framework has received

the capability to understand certain aliases for numbers such as "once", "twice", "thrice"

etc. New objects and related sentences were implemented to the framework to support

the added industrial tasks. The frameworks vocabulary was also extended to include

these words when doing sentence similarity.

3.5 Speech recognition

One concern raised during the implementation of the previous work [1] was the belief that

the speech recognition portion of the framework would not recognize other users’ speech

well enough for smooth operation. This was not perceived to be a significant problem

with the framework due to the implemented functions that improve speech recognition,

such as sentence similarity matching. In addition to sentence similarity, the framework

attempts to collapse heard wave forms to a pre-defined vocabulary of words, which limits

the possible sentences the system understands while increasing prediction accuracy for

relevant sentences. The system was only tested with male speakers and is yet untested

with female voices. The framework has also not been tested with children, who share a

higher pitch in vocal tones with female speakers. Doing robust tests on the framework

would also have required voice profiling and along with the added scheduling complexity,

this recognition verification was not considered to be a significantly relevant portion of

this thesis even when it was one of the original research goals. The verification leans

17

into verifying the function of the backend BERT models referenced by Devlin et. al. in

the paper [17] and whose performance is discussed by Turc et. al. in the paper [43].

Anecdotally, the speech recognition was not observed to be detrimentally deficient for

robot operation except with some particular words, such as "panda" which was used in

one of the voice interface commands.

3.6 Multi-step workflow

A possibility to execute multiple successive tasks was added into the framework. Origi-

nally this functionality was intended to be achieved using multiple confidence peaks from

a single prediction, but this approach was not used due to unpredictable confidences. Ex-

amples of this unpredictability are presented and further discussed in Chapter 5. Finding

a good criterion was deemed too difficult and multi-step functionality was instead achieved

by repeating single tasks a predetermined number of times, which also has some benefits

with the cost of increased execution times.

The framework can repeat any command it knows by the number of times the user has

specified before issuing the command to repeat. This allows for picking up multiple ob-

jects in a consecutive fashion but forces the user to identify how many objects are in the

workspace. The machine will also take longer to execute this type of consecutive flow

compared to a hypothetical multi-peak solution, since a new prediction is made after ev-

ery pick & place task. A multi-peak solution would theoretically have needed only a single

prediction. The framework was tested with repeat tasks that included no more than ten

repeat cycles, even though there is theoretical support for thousands of repetitions.

One benefit of the implemented repeating prediction and execution has, is the increased

resistance to changes in the workspace. Since a new prediction is done after every

pick and place action from the same pose, the framework can correct mistakes it might

have made in just a single multi-peak prediction. In testing done on the real robot it was

perceived that in very difficult and cluttered workspaces, the robot task execution could

cause changes in the locations of objects. This is due to realities such as object collisions

and object movement, which is in no way predicted by the framework even though these

are simulated by the ravens simulator used for training CLIPort originally. CLIPort also

makes its predictions based on a single image and reacting to changes in the workspace

would require making auto-corrective predictions during task execution from a video-like

stream, which is not supported. Examples of workspace changes perceived during testing

include the conditions that cause errors presented in Chapter 5.5.

One particular problem is raised in Chapter 5.5, namely "object collides with target con-

tainer". This error happened more often than other discussed errors during the testing

due to the path step design. The robot was also perceived to sometimes collide with its

own frame with the carried object, usually causing the task to stop. Similar task-stalling

18

errors are also discussed in Chapter 5.5. In tests done with a real robot it was observed

that most of the changes done to the workspace during task execution did not inhibit a

successful completion of a new consecutive task, if the object was still perceivable from

the home position the robot used for making position predictions.

19

4. DATASET FORMAT AND PURPOSES

The chosen models and their dataset makeups are discussed in this chapter. The used

objects are also discussed along with presenting the template images later used in Chap-

ter 5 to discuss model successes and failures. Test presumptions are also given for what

results were expected prior to carrying out accuracy tests on the real robot or simulations.

One important aspect to understand about the data collection process is, that all the data

was collected with a previously implemented demonstration tool. The training process

also did not use image augmentation available in CLIPort. Using the demonstration tool

guarantees that the location examples present in the dataset are recorded from positions

the robot went to, so every example and saved task is a user-verified valid task from that

location. Situations where the task was blocked or otherwise interrupted during the task

execution resulted in states in which the robot position could not be correctly saved and

there was no functionality implemented for editing the currently executed tasks. Task-

stalling errors are discussed in Chapter 5.5 along with change-causing errors. The latter

of these is not considered in the dataset as they were not execution-critical and can’t be

properly predicted by the single-task approach pursued in the framework.

4.1 The presentation of the format and purpose of the datasets

This chapter goes into further detail on the three trained datasets as well as presents the

used objects. All dataset sample examinations later in Chapter 5 follow the four views

presented and discussed in detail in Chapter 4.2.1. The images are later presented in

a four-image grid in order to save space configured so that the top-left corner image

is equivalent to the RGB view as presented in Figure 4.4 along with the success criteria

boxes and actual pick & place positions as demonstrated in Figure 4.8. Notably the colour

schema for pick and place used in Chapter 5 examples follow Figure 4.8 colours. The

top-right view is the shape-conformed height-map data equivalent to the data presented

in Figure 4.7. The two bottom views correspond to the pick and place confidence maps

so that the bottom-left view is equivalent to the pick confidence produced by CLIPort

as exhibited by Figure 4.5. The bottom-right view is similarly equivalent to the place

confidence exhibited by Figure 4.6.

20

(a) Bolt (b) Push rod (c) Rocker arm

Figure 4.1. General examples of the main industrial parts. The bolt uses the alias "long
screw" in some models.

(a) Brown box (b) Red box
(c) Brown box with several
bolts inside

(d) Red box with a
bolt inside

Figure 4.2. General examples of the goal boxes (a,b) and cluttered boxes (c,d).

4.1.1 All objects present in the datasets

This chapter presents every object present in the training data with image examples re-

gardless of whether they were classified in examples or not.

Figure 4.1 presents the three main industrial objects that were trained for the system.

They were selected mainly due to available duplicates and especially due to the similarity

in shape and texture when viewed from above. In a depth map such as shown in Figure

4.7, the bolt and push rod especially seem similar. The objects presented in Figure 4.1

are not to scale and are cut from camera captures from the home position, so the pixel

resolution is the same as seen by the camera.

Figure 4.2 presents the two goal objects in Figure 4.2a and Figure 4.2b and two aug-

mented variations in Figure 4.2c and Figure 4.2d. In the presented models, the red box

goals were only present for the final model, but the red box featured heavily in other

trained models for the framework. To adequately compare the final model to the older

21

(a) Piston
(b) Upright pis-
ton (c) Green lego (d) Black lego (e) Scissors

(f) White box (g) Paper tape (h) White tape (i) Gray tape (j) Bolt rack (k) Pencil

(l) Screwdriver (m) Clutter

Figure 4.3. General examples of the obstructions present in the validation dataset. Note
that green lego was a known goal object for model 3.

models, the brown box was kept as a goal object. The presented cluttered examples in

Figure 4.2c and Figure 4.2d are taken from the final model training dataset.

Figure 4.3 presents every clutter object present in every dataset except for distracting

objects. Distracting objects are objects in the workspace that are duplicates of the pick

task goal object, that in some ways are unfavourable to the actual goal object. In some

datasets, these objects were inside the place task goal object and in some others, they

were too clustered for the claw to accurately pick up. An example of clutter created with

goal objects, namely bolts and pushrods, can be seen in Figure 4.3m. Most of the clutter

objects presented in Figure 4.3, namely Figure 4.3c, Figure 4.3d, Figure 4.3e, Figure 4.3f,

Figure 4.3g, and Figure 4.3i were present as clutter only in the model 3 dataset. Some

objects, such as the black lego shown in Figure 4.3d, were omitted from later datasets

since they were considered to not normally appear in an industrial context.

4.1.2 Final model dataset

The final model (model 1) is the best performing model and final one trained during the

thesis. Its main purpose is to demonstrate sufficiently that the extension on the previously

made CLIPort framework can discern between industrial objects of similar shape and

texture. In addition to this, it was expected that the model could function sufficiently with

the selected tasks (pick & place) even when significant debris is either fully or partially

present in the workspace. The model is also expected to function well if multiple valid

choices or duplicates of the target object are present. One interesting facet of inspection

22

Task name Amount

put bolt in brown box 16

put bolt in red box 22

put pushrod in brown box 11

put pushrod in red box 25

put rocker arm in brown box 11

put rocker arm in red box 25

Total tasks 110

Table 4.1. Data-set tasks for the final model.

was also how well the system handles objects on unseen backgrounds, as all data-set

examples were collected with the same background and at the same height (comparative

to the camera). The model performance is examined more thoroughly with examples in

Chapter 5.2.

The data-set for this model consists of a roughly equal number of demonstrations for the

bolt, the push-rod, and the rocker arm. The general makeup of this data-set is presented

in Table 4.1 and its more specific task-object makeup is presented in Table 4.7 for clean

tasks and Table 4.8 for cluttered tasks. Clean tasks in the context of the datasets referst

to tasks which have only one object, the goal object, present. Across all datasets, all

industrial objects have examples with both only one object & multiple duplicate objects,

but emphasis was placed on recognizing single objects since CLIP, on which CLIPort and

by extension this framework is built on, is a general image classifier and should recognize

objects from cluttered images if it understands them. The dataset also contains examples

with all task items present or a choice between two of the chosen objects (bolt & pushrod,

for example). In addition to these, the dataset also has some demonstrations with various

clutter items that are not labelled or relevant for the task. There are also tasks present

with two different target boxes. From the overall datasets, this set was the fifth assembled

during this thesis.

4.1.3 Multistep model dataset

One aspect that was discussed in the previous paper but was not implemented was the

possibility of using the multi-step tasks for which support exists ready-built in the CLI-

Port framework. Initial steps were taken to bring this into reality, but the work was later

abandoned due to timeline difficulties and performance-related irrelevance as discussed

in Chapter 3.6 and later examined in Chapter 5. The training done with the initial multi-

step model did not yield observable benefits to the pick & place task in the examined

demonstrations. Instead, multi-step tasks were achieved in the framework by repeating

23

Task name Amount

put all long screws in brown box 30

put all push rods in brown box 17

Total tasks 47

Table 4.2. Data-set tasks for the multistep model.

single pick & place tasks with the operator specifying the number of repetitions prior to

execution, as discussed in Chapter 3.6. This approach was observed to be successful for

five consecutive repetitions, which was deemed sufficient for the purposes of this thesis.

One sought difference with this model was a difference in the confidence maps. It was

presumed that the multi-model would detect multiple valid confidence peaks when dupli-

cate multiple variations of the goal object are present in the task. This behaviour was not

observed to increase sufficiently compared to the single model which was discussed in

Chapter 4.1.2, and some supporting evidence is presented also in Chapter 5.

The second model dataset only consists of examples between multiples of both the bolt

and the push-rod. There are also demonstrations of just a single object in a task. There

are also examples where both objects are both present in various relative quantities (all

the way to singles). The generic makeup of the dataset tasks can be seen in Table 4.2.

Due to this model being mainly used for development insights and testing, its data was

captured with slight negligence, which results in the datasets asymmetric dimension. One

task with multiple pushrods was not captured, but this was deemed irrelevant since the

pushrods were added as a proof-of-concept and the focus of the model was on multiple

bolt detection. One additional thing to note about this database is that the recorded

examples use the old moniker, "long screw", for the bolt. This trait is shared with the

dataset for the extension model, which was the first dataset assembled in this thesis with

this being the third.

4.1.4 Extension model dataset

The first dataset and model created for the industrial object manipulation during this the-

sis was done as a direct extension to the model trained in the previous thesis done on this

subject, [1]. This model was partially used as a baseline and tested due to the possibility

of extending existing datasets. One issue overlooked in the data-set collection process

was that the camera used in the original dataset (prior to the newly recorded extensions)

was captured with a camera that was later deemed missing. In addition to this, the used

robot was in a different location with different lighting conditions & background elements.

The impact of these could have been inspected had data been collected for both environ-

ments, but that was deemed to go beyond the thesis subject.

24

Task name Amount

put white box in brown box 30

put white tape in brown box 30

put red screwdriver in brown box 30

put black lego in brown box 15

put green lego in brown box 15

put long screw in brown box 13

Total tasks 133

Table 4.3. Data-set tasks for the extension model.

Task name Amount

put bolt in brown box 19

put push rod brown box 19

put rocker arm in brown box 16

put bolt in red box 12

put push rod in red box 12

put rocker arm in red box 12

put green lego in brown box 4

Total tasks 94

Table 4.4. Tasks in the validation dataset.

In addition to what was present in the original dataset, this data-set was extended with 13

examples of the bolt (with the alias “long screw”). Three of these examples were made

into validation points. The general makeup of the model dataset tasks can be seen in

Figure 4.3.

4.1.5 Validation dataset

All of the models presented in this thesis were validated using the same dataset with a

focus on industrial tasks. This causes the extension to perform dis-proportionally badly,

since only the bolt was presented to it and the framework has no examples for red box

goal tasks. This is taken into account in the weighted average success rates in Chapter

5.4. The multistep model and the extension model datasets also used older aliases for

the bolt (long screw), which was considered in the implemented model comparison tool.

The validation dataset was collected separately after all models had been trained and the

models intended to be presented in the thesis were selected so that it could represent all

of the models at least in some respects.

Table 4.4 presents the task split in the validation dataset. Since the 2nd and 3rd model

25

only understood the brown box as a task model, an emphasis was put on tasks with

that place task goal object. The brown box tasks also include tasks with many objects’

multiples, whereas the red box task were either single object tasks or tasks with a single

distracting object.

4.2 Model successes criteria

This chapter discusses the model criteria and verification process for the created models,

which are presented later in Chapter 5. Due to the long time a move takes to execute

on a real robot, the models are verified on simulated pick & place actions. The handover

task was not separately rated, since its success rate is the same as the pick success

for a model. Note that all figures in this chapter are taken using the final model, model

1, and the data displayed is from a different tool used to examine data during real robot

task execution. The one exception in this chapter is Figure 4.8, which is a special capture

demonstrating the success policy in a greater resolution than similar demonstrations in

Chapter 5. The figures in Chapter 5 are taken from a simulated environment, where the

real robot is unnecessary but the points are predicted by the same framework.

4.2.1 General example of a pick & place task on a bolt

Figure 4.4 displays both goal objects, the brown box (top left) and the red box (bottom

left). It also displays two of the industrial objects, the bolt (middle object close to a green

dot) and the pushrod (far right). Note that in the green dot signifying the pick position for

the bolt is clearly banking left from the actual bolt, but this is only due to a quirk in the

position visualization software. No significant leftward positional error was observed in the

actual task execution process and the correctly placed example points are similarly offset

as can exhibited by later examples such as in Figure 4.8. A similar error is present also in

the blue dot signifying the place position even though that spot is still inside the goal. The

same observation stated earlier about the correct example point also holds for the place

point, the example is similarly offset compared to the predicted position. Note that the

object is not grasped in the geometric middle due to a conscious choice to pick the bolt

at the rough centre of gravity for the object in the training examples. This was observed

to increase grip the robot had on certain objects, but with the bolt there is a small risk of

getting an error lengthwise along the bolt in such a way that the bolt is grasped instead

at the rim visible just below the tightening surfaces in Figure 4.4. This can cause the

grip to be point-like instead of giving full surface contact to the gripper fingers, which in

turn allows the bolt to turn after it is grasped. This can cause collisions with objects and

especially the goal objects.

Figure 4.5 gives us the confidence map from which CLIPort makes its pick pose predic-

26

Figure 4.4. RGB image view for “put bolt in brown box” with pick position (green dot) and
place position (blue dot) from the left lens of the D435 camera.

Figure 4.5. CLIPort confidence for the pick goal of the same task present in Figure 4.4

27

Figure 4.6. CLIPort confidence for the place goal of the same task present in Figures 4.4
and 4.5

tion. The location is chosen based on the highest peak value, denoted by a brighter color.

Note that in the Figure, both the pixel count and aspect ratio are different compared to

the RGB equivalent picture given in Figure 4.4 that was examined earlier. This might

be due to the mapping done to correct for occlusion and geometry. Prior to execution

it was expected that the model would exhibit significant confusion between the bolt and

the pushrod, but this was not perceived in a significant capacity. In a typical case where

the framework mis-classified an image where both a bolt and a pushrod were present the

pick task goal generally was for the pushrod.

Figure 4.6 gives us the confidence map from which CLIPort makes its place pose predic-

tion. Note that the action confidence the figure gives two significant peaks due to similarity

in the box objects’ shape. The framework was generally not observed to have confusion

with these objects if they were placed sufficiently far away from each other, such as on

opposing corners or sides of the perceived workspace. This confusion is likely at least

partially synthetic due to a large portion of the examples which exhibit both goal boxes

choosing to locate them either very close to each other or directly side-by-side. This

fact combined with an overall low epoch count comparative to the CLIPort suggestions

or other comparable frameworks suggests that this behaviour might be solved with a mix

of longer training and a larger more varied dataset. One additional noteworthy obser-

vation on this image is that the chosen plasma colour-map exaggerates features in the

data. With a different colour-map, the purple bridge between the two yellow peaks is not

necessarily as apparent.

28

Figure 4.7. Geometry-corrected height-map for the same task present in Figures 4.4, 4.5
and 4.6

Figure 4.7 gives us a visual on the height-map image data cast on a two-dimensional

image plane. Note that the black sections in the image especially around where the

two boxes can be observed in Figure 4.4 are areas that the camera occlusion hides.

They should not be mistaken for shadows, even though their function and placement are

directly tied to being blocked by task space geometry as light would. The framework was

not tested with objects that are transparent in both visible and infrared light, which could

cause confusion in geometry detection.

4.2.2 Criteria for pick success verification

Fig 4.8 gives us an example of the RGB based success criterion that is later used to

evaluate the success of the model in all pick & place tasks. Figure 4.8 is presented

because it presents both the idea behind the policy and an example case where the policy

fails. This failure was observed often and thus the framework success was also evaluated

by hand. The idea behind using a box around the predicted value was that often the

objects were perceived to be picked up even when the predicted position was far from the

actual recorded position, which made using strict direction-based criteria unreliable. The

box is shaped so that the pick position is accepted if the actual pick position is horizontally

(laterally in Figure 4.8) closer than half of the maximal possible width of the claw. This way,

the robot could have picked up the object up at either extreme. The height (longitudinally

in Figure 4.8) of the box is longer due to the shape of the chosen industrial objects. The

29

Figure 4.8. RGB image view for "put push rod in brown box" with the predicted pick po-
sition (red dot), predicted pick angle (red line), pick success criterion (red box), predicted
place position (pink dot), predicted place angle (pink line), place success criterion (pink
box), actual pick position (blue dot), actual pick rotation (blue line), actual place position
(cyan dot) and actual place rotation (cyan line)

prediction criterion does not consider the angle of the picked up object in a relevant way

since the final trained model did not seem to ever predict a different angle from the one

presented in Figure 4.8. Due to these policy Future improvements should look into either

separating the rotation module from the location predictor or fixing it so that it does predict

other angles as well. Future improvements of this work should also consider having the

criterion box shape conform to the object being picked, since Figure 4.8 presents a valid

pick position that would be correct if a taller criterion box was chosen. The current shape

is based on the dimensions of the bolt and the width of the used claw. Another conceptual

improvement would be to instead predict the criterion box around the known and correct

place position since this position also contains the correct rotation data. Currently the

predicted position could hit a falsely good position based on the criterion but be in such

an angle that the object would not be picked up. Such a situation could happen, for

example, with an object that is perpendicular to the predicted angle.

30

task 1 ’put bolt in red box’

task 2 ’put bolt in brown box

task 3 ’put push rod in red box’

task 4 ’put push rod in brown box’

task 5 ’put rocker arm in red box’

task 6 ’put rocker arm in brown box’

task 7 ’put green lego in brown box’

task 8 ’put all long screws in brown box’

task 9 ’put all push rods in brown box’

model 1 The final model

model 2 The multistep model

model 3 The extension model

tot. avg. average success of all tasks

wgt. avg. weighted average success of tasks

Table 4.5. List of aliases used in tables

4.3 Dataset parameters

This section lists the parameters and aliases used in the dataset. Note that some tasks

changed names between models and tasks are presented only with the newer name even

though the datasets contain different names. Table 4.5 gives the complete breakdown of

abbreviations used in other tables in this chapter and Chapter 5 such as Table 4.1, Table

4.2, Table 4.3, Table 5.1, Table 5.2, and Table 5.3.

Table 4.6 presents a breakdown of the differences between the presented datasets with

all relevant parameters. The differences between the training times between the models

is mainly due to the criterion for stopping training. In general the lab computer (PC1) or

the training computer (PC2) presented in Chapter 3.2.1 were left to process the dataset

for the duration of a single weekend. The training was considered complete if the model

was perceived to successfully execute tasks on the real robot and when this was not the

case, the training was extended for an additional day. Note that the object breakdowns

under "known objects" represent the maximum duplicates of objects in any task, there

was no task in the final model dataset that contained 9 bolts, 4 pushrods and 3 rocker

arms. Note that multitasks have multiple tasks per example which is why "Total" in Table

4.6 is higher for the Multistep model compared to the Final model.

Table 4.7 and Table 4.8 present the exact makeup and split of the tasks on which the first

model was trained and validated on. Cluttered tasks in the table mean tasks that had

some other objects than the goal object, while clean tasks are tasks with only the goal

object present. Tasks with only duplicates of the goal object are considered clean in the

31

Demonstrations Demonstrated tasks Pick-and-place targets

Training Validation Total
Single-object

tasks

Multi-object

tasks

known

objects

unkown

objects
Goals

Training

time [h]

The Final model dataset 88 22 110 60 50

9 bolts

4 pushrods

3 rocker arms

6
brown box

red box
89

The Multitask model dataset 39 8 132 0 47
3 bolts

2 pushrods
0 brown box 26

The Extension model dataset 119 14 133 133 0

bolt

white box

green lego

black lego

screwdriver

paper tape

1 brown box 107.5

Table 4.6. Data-set Parameters for the three presented models.

Task type Amount

bolt to red box 10

bolt to brown box 10

pushrod to red bx 10

pushrod to brown box 10

rocker arm to red box 10

rocker arm to brown box 10

Table 4.7. Final model clean task breakup

tables. The training validation dataset samples were taken from the different task types

roughly equally, but there were more bolt tasks in the end than the other items, which

might have contributed to the slight bolt bias present in the Final model discussed later in

Chapter 5.2. Unknown objects represent the number of objects that were not labelled in

the tasks, but were present as clutter. Note that all success rates were measured using

the validation dataset, which was discussed in Chapter 4.1.5.

32

Task type Workspace objects Amount

bolt to box bolt, pushrod 2

bolt to box bolt, rocker arm 2

bolt to box all 3 objects 2

bolt to box multiples of all 3 objects 2

bolt to box multiples of all and unseen objects 2

pushrod to box bolt, pushrod 2

pushrod to box pushrod, rocker arm 2

pushrod to box all 3 objects 2

pushrod to box multiples of all 3 objects 2

pushrod to box multiples of all and unseen objects 2

rocker arm to box bolt, rocker arm 2

rocker arm to box pushrod, rocker arm 2

rocker arm to box all 3 objects 2

rocker arm to box multiples of all 3 objects 2

rocker arm to box multiples of all, unseen objects 2

bolt to specific box bolt, both goal boxes 4

pushrod to specific box pushrod, both goal boxes 3

rocker arm to specific box rocker arm, both goal boxes 3

sequential item moving 4 bolts, 3 rocker arms, 3 pushrods, 3 goal boxes 10

Table 4.8. Final model cluttered task breakup

33

5. RESULTS

This chapter discusses the accuracy of the final model with examples taken during task

execution. The model success is also compared to two prototype models and their pur-

pose in making the final model is explained. Other prototype models are also briefly

discussed. Each of the images are captures from the python library matplotlib, and inad-

vertently include a text over the image: "prediction cast pick/place (blue/cyan) vs. actual

(red/pink)". This text is there to clarify image context during the data collection phase

and signifies that the world-space coordinates predicted by the CLIPort framework have

been transformed back into image-space coordinates and drawn over the presented RGB

image. The bounding boxes follow the schema discussed in Chapter 4.2 and in general

the four views presented by figures such as Figure 5.1 are the same views as in Chapter

4 but follow a different colour scheme and pixel scale. Sections of this chapter aim to:

• Present & discuss the final model

• Present & discuss the prototype models

• Present & discuss the success criteria & shortfalls

• Present & discuss notable common errors

• Present & discuss factors contributing to common errors

• Present & discuss discovered possibilities for improvement

• Present & discuss success rates for all models

5.1 Final model examples

This chapter discusses examples of typical pick & place situations with four-view exam-

ples following the schema outlaid in Chapter 4. Every example in presented here in

Chapter 5 is faulty in some unique way, but the faults are mostly presented as a case

for reinforcing the decision to not follow the multi-peak solution for multi-step workflow

in Chapter 3.6. Similar faults generally do not cause the whole task to fail, but some

systematic failures were observed.

Figure 5.1 presents the RGB-, heightmap-, pick confidence-, and place confidence views

in order from top-left to bottom-right as outlaid in Chapter 4.2.1 for a generic bolt place

34

Figure 5.1. An RGB image with classification points (top left), height-map (top right),
pick confidence (bottom left) and place confidence (bottom right) scenario showcasing a
missing bolt in the pick confidence map for a "put bolt in brown box"-task

task with the final model, where the pick position can be considered optimal compared

to the recorded position. The recorded correct pick position is marked with the blue dot

representing position and a blue line representing the correct pick angle, and the predicted

pick position is similarly marked with red along with a red box denoting the mathematical

policy to gauge success. Note that unlike in later examples, the position is so accurate

that most of the red colour for the position and angle in the predicted pick is not visible.

The recorded place position is marked with a cyan dot and line also representing position

and angle respectively, and the predicted place position is denoted by a pink dot, line and

square for place, angle, and policy respectively.

The place position is not as successful and the presented policy (pink square) considers

the task failed even though with manual inspection we can tell that the place position is

within the goal box, even when considering the leftward bias exhibited by the pick posi-

tion. The task presented by Figure 5.1 also demonstrates why the leftward bias was not

considered to be detrimental in Chapter 4.2.1 or to inhibit the function of the framework.

The only relevant success metric has the prediction be close to the recorded position and

all of the recorded positions were successful action executions on the real robot. Having

the real robot move to a prediction close to the position demonstrated by the recorded

35

data and being in correct orientation should result in an action which closely resembles

the recorded and successful action. It is unclear how the position bias affects CLIPort

predictions though, it could be argued that the predictions would be more accurate if they

were made to the middle of the object (center of detection) instead of somewhere left of

it, but the effect of this was not measured. Also, during the thesis work and implemen-

tation process it was postulated that the positional error is caused due to bad camera

transformations, since actual pick positions were generally not observed to differ much

from a perceived central line of the object. In other words, the object pick positions looked

correct, and the object didn’t roll or move significantly when the claw fingers closed which

signifies centrality in the prediction process.

Another noteworthy aspect demonstrated in Figure 5.1 is that in the pick confidence win-

dow (on the bottom left) does not contain a confidence peak for all the bolts that are

present in the workspace. The three bolts are visible and unobstructed so in an optimal

case, the framework would have produced three confidence peaks with a bias toward the

closest bolt. As discussed in Chapter 4.1.2, the dataset was made to always prefer the

closest valid object except in some cases as will be seen in Figure 5.2. The lack of all

peaks in Figure 5.1 is also supporting evidence for the choice to not continue develop-

ing the multi-peak confidence culling approach and instead opt for the repeated single

predictions approach when developing the multitask functionality, which was discussed in

Chapter 3.6.

Figure 5.2 presents the RGB-, heightmap-, pick confidence-, and place confidence views

in order from top-left to bottom-right as outlaid in Chapter 4.2.1 for a task, where the

framework behavior was investigated on tasks where there were two roughly equal choices.

The dataset contains an example for a similar case where the bolt to the right of the box

would’ve been the demonstrated and recorded bolt position. Likely due to carelessness,

the bolt that is further a way from the box is considered correct which goes in direct op-

position to the intended structure of the dataset, as it was intended that the correct option

would’ve always been the bolt closest to the box. In this case, however, the bolt is so close

to the box that it’s likely that the claw and by extension the robot couldn’t actually reach

the goal object and would instead collide with the brown box presenting an example for

a task-stalling error which are further discussed in Chapter 5.5. In considering prediction

success, object collisions were not considered and this task would count as a success-

ful execution in the accuracy prediction and the values presented in Table 5.1. Unlike in

Figure 5.1, the place policy correctly identifies the place prediction to be successful.

Figure 5.3 presents the RGB-, heightmap-, pick confidence-, and place confidence views

in order from top-left to bottom-right as outlaid in Chapter 4.2.1 for a task, where the

framework behaviour is investigated again in a task where there are multiple equally valid

goal objects. The pick confidence does not exhibit all the valid bolts, as one bolt is partial

and thus not detected. The prediction also favours a wrong bolt, even though we can see

36

Figure 5.2. The 4 views presented in Chapter 4.2 showcasing a scenario where a wrong
bolt is picked and is falsely classified as a fail in a "put bolt in brown box"-task.

from the pick confidence image that the correct bolt was an option as well. The policy

incorrectly fails the task even though in a real-world execution, the task goal of "put bolt

in brown box" would be successful since it does not strictly define that the leftmost bolt

should be moved. The place policy also fails to detect a successful placement much like

previously in Figure 5.1. A bolt is also present inside the goal object which is correctly not

detected, as the framework should never move a bolt from inside the box back into itself,

even though this is also not strictly forbidden by the language goal.

Figure 5.4 presents the RGB-, heightmap-, pick confidence-, and place confidence views

in order from top-left to bottom-right as outlaid in Chapter 4.2.1 for a task, where the

framework behaviour is investigated in a task where the object was not taught in any

demonstration. The place goal is a known goal, and since the pick & place predictions are

done separately, these actions are largely successful. For the pick task, it was postulated

that CLIPort could infer the colour green from the image and have a partially accurate

prediction from just that information, since CLIPort itself has been demonstrated to be

able to discern between different colours. We see something similar to this behaviour

from the left-side prediction bias exhibited by the bottom-left image in Figure 5.4, but

this is by no means conclusive and can’t be considered supportive evidence. In general,

when the prediction network was confused, it was observed to have a very significant

37

Figure 5.3. The 4 views presented in Chapter 4.2 showcasing a scenario where a wrong
bolt is picked and is falsely classified as a fail in a "put bolt in brown box"-task. One bolt
is not given as an option.

bias to the top edge of the image. Please note as well that this behaviour is very much

exaggerated by the chosen colour map, and the fact that every similar view presented with

normalized data to see peaks with the best clarity. When these random data predictions

were observed during the thesis work, they contained no significant peaks but rather a

mat of very small peaks, many orders of magnitude smaller than the prediction peaks

seen in previous figures such as Figure 5.1 or Figure 5.2.

Figure 5.5 presents the RGB-, heightmap-, pick confidence-, and place confidence views,

in order from top-left to bottom-right as outlaid in Chapter 4.2.1 for a persistent error with

"put push rod in red box"-tasks. There are examples of "put push rod in red box" in the

final model dataset, as seen in Table 4.1, but the place prediction was observed to be

consistently wrong and relatively in the same position, outside the bottom-right corner of

the workspace. This is also interesting because the place prediction is done irrespective

of the picked item and the place tasks concerning the red box were successful with dif-

ferent objects. The cause of this error was not discovered during the thesis work due to

time restraints, but the behaviour was not observed in real-robot test runs. These errors

were not omitted from the weighted average success rates in the final model success

discussion. The place task success for task 3 can be seen as 0% in the success table

38

Figure 5.4. The 4 views presented in Chapter 4.2 showcasing a scenario where the
framework is asked to do a pick prediction on an object it hasn’t seen before. The pick
confidence is random while the place object is normal since it is known.

later due to none of these tasks being successful, which artificially brought the accuracy

of the model down.

Figure 5.6 presents presents the RGB-, heightmap-, pick confidence-, and place confi-

dence views, in order from top-left to bottom-right as outlaid in Chapter 4.2.1 for a generic

and very successful "put rocker arm in red box" task. The case is also presented as fur-

ther supporting evidence to the decision to not pursue the previously discussed multi-step

workflow in Chapter 3.6. Trying to do peak-culling to the pick-confidence map presented

in the bottom-left image in Figure 5.6 would result in many peaks being created for the

same rocker arm before the one on the left side would be found. There is also noise that

creates the colour illusion of a rocker arm present right of the chosen rocker arm, which

might be detected. In a badly chosen peak selection, all of these four positions would

be considered valid locations, and the framework would command the robot to execute

unnecessary moves. Trying to create a more sophisticated policy which would do things

such as peak cluster detection was considered too difficult due to some objects being

presented in clusters in some examples.

39

Figure 5.5. The 4 views presented in Chapter 4.2 showcasing a typical scenario of a task
the framework failed repeatedly in the same spot for a "put push rod in red box"-task.

5.2 Final model success rate

This section displays the success rates for the final trained model in success tables along

with some other quality criteria presented in box plots. The quality criteria presented in

the box plots were intended to be utilized in selecting the final model, but due to imple-

mentation difficulties did not provide useful information in a timely fashion. The criteria

are presented anyways since they give context to the thought process behind validating

which samples were successful and which were not.

The final model success rates per task are listed in Table 5.1, where policy pick and policy

place are the success rates evaluated with the policy that was introduced in Chapter 4.2.2,

and actual pick and actual place being the success rates as evaluated by a human actor.

The tasks under task use the same aliases as presented earlier in Chapter 4.3 Table

4.5. The total average percentage (tot. avg.) is the average success percentage of all

measured tasks and the final percentage (wgt. avg.) represents the average success for

the tasks that contain objects the model was trained to recognize.

The weighted average for actual pick & actual place are the numbers which best repre-

sent the real-world accuracy of the framework. We can see that the policy is not very

successful in evaluating the actual framework success rate, being too strict and having a

40

Figure 5.6. The 4 views presented in Chapter 4.2 showcasing a scenario where the table
texture is confusing the pick prediction for a "put rocker arm in red box"-task.

The final model

task policy pick policy place actual pick actual place

task 1 66.67% 91.67% 100.00% 100.00%

task 2 63.16% 68.42% 89.47% 89.47%

task 3 50.00% 0.00% 100.00% 0.00%

task 4 26.32% 89.67% 73.68% 100.00%

task 5 91.67% 91.67% 100.00% 91.67%

task 6 50.00% 87.50% 81.25% 100.00%

task 7 0.00% 50.00% 0.00% 100.00%

tot. avg. 49.69% 68.39% 77.78% 83.02%

wgt. avg. 57.67% 67.71% 90.42% 83.02%

Table 5.1. The final model task successes

41

success difference of up to 32.72%. This difference is mostly due to the dataset emphasis

on multiple goal object presentation in the same image and the rigidness of the success

policy evaluation around a single correct option among equals as exhibited by examples

seen in previous figures, such as Figure 5.2.

The final model achieves a combined task success rate of 86.72% for every taught task,

with a 75.07% rate for flawless task execution.

For pick items, the model exhibited a combined task success rate of 94.74% for bolt tasks,

a combined task success rate of 68.42% for push rod tasks, and a combined task success

rate of 93.23% for rocker arm tasks.

For goals, the model exhibited a combined task success rate of 81.95% for red box tasks

and a combined task success rate of 88.91% for brown box tasks.

The most successful task for the final model was "put bolt in red box" with a combined

task accuracy of 100.00%. It is noteworthy that this might not hold if the dataset contained

more examples, and the model was perceived to sometimes fail in this task in real world

executions due to reasons discussed in Chapter 5.5.

Compared to comparable models that were found during the literature review and re-

search portion of the thesis work, a success rate of 86.72% seems comparable to exist-

ing solutions but is slightly lower than expected. For the handover task, which does not

consider the place prediction, this accuracy goes up to 90.42%. For reference, LEMMA

[22] was reported to have an accuracy of 87±0.67 (%) in comparable tasks and PALM-

E [28] was reported to have an accuracy of 94.9% in comparable tasks. Both of these

accuracies were from simulated executions with thousands of more repetitions than the

real-world data predictions presented in this thesis.

5.2.1 Final model quality criteria

Some additional quality-assessing measurements were also done on the models. These

were done on a task basis and two are presented.

Figure 5.7 presents the box plots for the measured delta values for the task "put bolt

in red box" in units that are inconclusively presumed to be meters. The measurements

are based on the absolute Pythagorean distance delta values from the predicted position

to the recorded position as reported by CLIPort compared to the recorded datapoint X-,

Y-, and Z-position. As a task, "put bolt in red box" is known and should represent very

successful distance measurements. From Table 5.1 on task 1 we see, that 100% of these

tasks were considered successful for both the pick & place actions. In the chart, values

closer to 0 are considered better as this implies better prediction accuracy.

Figure 5.8 presents the box plots of location delta values for the task "put green lego in

42

Figure 5.7. Box plot of all "put bolt in red box"-task accuracies measured in task-space
units for the final model.

Figure 5.8. Box plot of all "put green lego in brown box"-task accuracies measured in
task-space units for the final model.

43

brown box" in the same units as in Figure 5.7. This task is unknown and represents the

untrained behavior of CLIPort. From Table 5.1 task 7 we see, that 0% of these tasks were

considered successful for the pick action, while 100% of the place actions would’ve been

successful.

From both box plot figures discussed for the final model we can see that the Z-dimension

prediction is by far the most accurate for the pick action, while it seems to lose a lot of

quality with the place action. This is probably since the place actions varied in height in

the demonstration data due to the different shapes of the boxes, while the objects-to-be-

moved were always picked up from the workspace desk surface. In Figure 5.7 we see

that all average distance errors except place-z-error fall under the 0.1 line on average,

which is still quite far compared to the object dimensions.

As stated before, Figure 5.8 data from the "put green lego in brown box" task represents

random location data, and we can see that the pick action suffers and exhibits much

worse distances than in the properly functioning "put bolt in red box" task data. Curiously,

the pick z height is still largely accurate, and the place action seems comparable to the

red box place distances in Figure 5.7. One noteworthy aspect is that the brown box is

larger than the red box, which contributes to the greater distances CLIPort could predict

from the demonstration point while still being inside the goal object.

5.3 Other models

This chapter discusses some model-related details and errors for the two selected proto-

type models. Performance discussion and comparison is done in Chapter 5.4

5.3.1 The multistep model

This section discusses an older model that was used in investigating the multitask func-

tionality in CLIPort. The tests ultimately proved inadequate for the desired functionality

and no significant increase in detection accuracy was observed. Two examples are ex-

amined, one for poor performance and another for desired performance. These are pre-

sented in Figures 5.9 and Figure 5.10. As can be seen from Table 4.6, this dataset was

trained for the shortest duration of time and its function might have improved with longer

training times. However, other prototype models, that were discarded during the thesis

work, and which are not presented, showed faster rates of improvement. The prediction

portion of the multistep model also seemed to not work in the test set tasks, manifesting

as a 0% placement accuracy in Table 5.2.

As discussed in Chapter 4.1.3, this model (the multistep model) is different from the final

model and the extension model in that the recorded data points had multiple demonstra-

tions marked in a single demonstration image. The idea was that the training model would

44

Figure 5.9. The 4 views presented in Chapter 4.2 showcasing a prediction done with the
model discussed in Chapter 4.1.3 for a "put all bolts in brown box"-task. The place fails in
a way typical for the model and there are too many options for the bolts.

better understand the shape of a given goal object when they are in clusters if all of them

had a training demonstration at some point. The previously discussed policy in Chapter

4.2.2 would also be more suitable to a demonstration set where all of the options would

have been marked. To facilitate multiple sample training, the functionality of the previously

implemented framework was extended, but since the multistep model results exhibited no

proof of desired functionality, these changes were deemed irrelevant and won’t be further

discussed in the thesis.

Figure 5.9 presents presents the RGB-, heightmap-, pick confidence-, and place confi-

dence views, in order from top-left to bottom-right as outlaid in Chapter 4.2.1 for a "put all

bolts in brown box"-task. The example image is the from the validation set as presented

earlier in Figure 5.2 but the scale of the RGB image is changed due to the pink placement

prediction being outside of the workspace image coordinates. This image serves as an

example of two failures for the second model, first being the persistent failure of the place-

ment module and the second being unpredictable confidence noise. The pick confidence

image on the bottom left displays 9 confidence peaks of which a decently good prediction

is selected because the pick can be visually considered successful. Pursuing a policy

which would have utilized peak selection from the confidence map would be impossible

45

Figure 5.10. The 4 views presented in Chapter 4.2 showcasing a prediction done with the
model discussed in Chapter 4.1.3 for a "put all bolts in brown box"-task. The place fails in
a way typical for the model but there are a right amount of options for the bolts. Note that
this correct behavior was perceived much less commonly than the incorrect behavior.

with this image if the goal was to move both bolts into the brown box, since the other bolt

is just barely detected. It’s difficult to say where exactly the three rightmost confidence

peaks land on the actual image due to the scale changes caused by the out-of-bounds

place prediction, but it could be argued that executing 9 moves for two bolts would seem

faulty to a collaborative human operator and they would terminate the operation due to

fears of malfunction. Due to time constraints and the scarcity of training time allocated to

the used computers, this model was not trained further, and it remains unclear whether

this performance would approach the desired functionality of producing two roughly equal

peaks.

Figure 5.10 presents presents the RGB-, heightmap-, pick confidence-, and place confi-

dence views, in order from top-left to bottom-right as outlaid in Chapter 4.2.1 for a "put

all bolts in brown box"-task, which was considered to be a successful from a policy-

implementing perspective and could be considered an example of the model functioning

as hoped and intended during the thesis research and implementation process. The func-

tion of the place module is irrelevant for multistep model since it was not changed from

the extension model or the final model which might indicate that the training time was

46

underutilized. The pick confidence view on the bottom-left corner displays two confidence

peaks roughly where we would expect the two bolts from the RGB view on the top-left to

appear. These sort of contained peaks could be detected with a confidence cutoff value

to create multiple consecutive tasks that would have the robot go to the centre of these

points. This type of behaviour was very rare with the examples from the validation dataset

and can not be considered typical for the model.

5.3.2 The extension model

The extension model was the first model trained during this thesis. It was trained on a

dataset which was extended from the dataset manufactured during the prior work, [1].

After this dataset was successfully extended and a model was sufficiently functional, this

approach was left as it was more of an implementation guideline for future models. The

objects present in the old dataset were not considered relevant enough to the overall

goal of engine assembly and thus new example recording was deemed wasted effort.

The previously recorded examples could not be included in future datasets due to the

camera issues mentioned in Chapter 4.1.4. This model does not have any example figure

presenting the four views for a template task but will still be compared to the other models

presented in the thesis.

The key discovery for work on this model’s performance and dataset was the importance

of having a largely balanced dataset in regards to sample object amounts. The added

bolt tasks did not feature the other objects in the old dataset, and the performance of the

model seemed to have decreased compared to the one implemented in the prior work, [1].

The old dataset also used a very structured form of data in experiment complexity varia-

tion with most examples being largely similar, in opposition to the datasets implemented

during this work which had a focus on variety outside examples with just single objects.

Another possibility for the poor performance of the model is that the bolt examples always

featured just a single bolt and the goal, and thus the prediction was confused if any other

object was present in the workspace. This possibility is however not supported by the

collected data as can be seen from Table 5.3, where the pick task fails totally.

5.4 Other model success rates

Since both of the other presented models were mainly used for furthering the implemen-

tation of the framework as well as testing, their performance discussion will be largely

superficial with a focus on comparisons with the function of the final model. Table 5.2 and

Table 5.3 display the success rates for two other models used during investigation and

noted in this thesis. They use the same parameter aliases as the success table for the

final model, Table 5.1 in Chapter 5.2, and the alias list can be found in Table 4.5. Table 5.2

47

The multistep model

task policy pick policy place actual pick actual place

task 4 0.00% 0.00% 6.25% 0.00%

task 5 8.33% 0.00% 16.67% 0.00%

task 7 0.00% 0.00% 0.00% 0.00%

task 8 26.32% 0.00% 47.37% 0.00%

task 9 52.63% 0.00% 78.95% 0.00%

tot. avg. 17.46% 0.00% 29.85% 0.00%

wgt. avg. 39.47% 0.00% 63.16% 0.00%

Table 5.2. The multistep model task successes

presents the success rates for the multistep model and Table 5.3 presents the success

rates for the extension model. Note that some models use different task names for the

same object due to unifying object names with other projects between models.

5.4.1 The multistep model success rate examination

Following the pattern in Chapter 5.2, the multistep model success rates per task are listed

in Table 5.2, where policy pick and policy place are the policy success rates, and actual

pick and actual place are the success rates evaluated by a human actor. The tasks

under task use the same aliases as presented earlier in Chapter 4.3 Table 4.5. The total

average percentage (tot. avg.) is the average success percentage of all measured tasks

and the final percentage (wgt. avg.) represents the average success for the tasks that

contain objects the model was trained to recognize. The pick module worked surprisingly

often for tasks 4 and 5 even though the rocker arm was not a trained object as exhibited

by Table 4.2. These success rates are likely due to random chance, but in the extension

model performance discussion we will see that random actions typically resulted in a 0%

success rate.

The multistep model achieves a combined task success rate of 31.78%. None of the

place tasks were successful as the place module was completely nonfunctional with the

validation dataset even though it was observed to function on the real robot after train-

ing. Since the place task never succeeded in validation, the multistep model achieves a

flawless task execution rate of 0%.

For tasks that the framework understood, it achieves a pick accuracy of 63.16% with the

pick portion of the task "put all push rods in brown box" being 78.95% accurate. Note that

even though the language goal has the words "put all", framework execution would only

move one push rod due to the multi-step workflow followed in the thesis and this sort of

multi-step functionality being abandoned in implementation. Thus, the pick module could

48

Figure 5.11. Box plot of all "put all push rods in brown box"-task accuracies measured in
task-space units for the multistep model.

be used for single object handover tasks, with the same accuracy as the average pick

tasks.

Compared to the final model, we see that even when omitting the non-functional place

module, the final model achieves a better performance in known pick tasks. For the

final model, only its two worst performing tasks, task 4 and task 6, are comparable in

performance to the best performing task of the multistep model, task 9. The comparatively

low training time of the multistep model is likely a large factor in this, but during the thesis

work models with a similarly short training time provided better or comparable results.

This coupled with the fact that multi-step datasets were much more laborious to collect

was also a factor in deeming the approach irrelevant and to pursue the multistep workflow

discussed in Chapter 3.6. There were also other benefits to the chosen implementation

which are also discussed in Chapter 3.6.

Figure 5.11 presents the box plot of location delta values for the task "put all push rods in

brown box" in the same units as in Figure 5.7. This task is the best performing out of the

tasks done on the multistep model and represents the optimal behaviour of the model.

From Table 5.2 task 9 we see, that 78.95% of these tasks were considered successful for

the pick action, while 0% of the place actions were. Compared to the untrained behaviour

discussed in Chapter 5.2 with Figure 5.8, we can see that the place errors of Figure

5.11 follow a similar pattern to the random pick errors in Figure 5.8 with much higher

inaccuracies in the random portion. For the multistep model, since the predictions were

always outside of the workspace, the difference between the working pick portion and the

random place portion are especially large. Even though it is difficult to see from the figure,

the pick location accuracies largely resemble the location accuracies of properly working

tasks in the final model, such as in Figure 5.11 and actually exhibit smaller extremes with

49

The extension model

task policy pick policy place actual pick actual place

task 1 0.00% 0,00% 0.00% 0.00%

task 2 0.00% 15.79% 0.00% 52.63%

task 3 0.00% 0.00% 0.00% 0.00%

task 4 0.00% 10.53% 0.00% 52.63%

task 5 0.00% 0.00% 0.00% 0.00%

task 6 0.00% 25.00% 0.00% 56.25%

task 7 0.00% 25.00% 0.00% 25.00%

tot. avg. 0.00% 10.90% 0.00% 26.64%

wgt. avg. 0.00% 15.26% 0.00% 46.63%

Table 5.3. The extension model task successes

a slightly better total pick error. Note as well that all models were validated with the same

unseen dataset, so there should be no preferential bias over any of the datasets used for

training. As discussed in Chapter 4.1.5, the dataset was separately collected after the

training process was complete for all models.

5.4.2 The extension model success rate examination

Following the formula of the two previously discussed success rate tables in Chapter

4.1.2 and Chapter 4.1.3, the extension model success rates per task are listed in Table

5.3, where policy pick and policy place are the policy success rates, and actual pick and

actual place are the success rates evaluated by a human actor. The tasks under task

use the same aliases as presented earlier in Chapter 4.3 Table 4.5. The total average

percentage (tot. avg.) is the average success percentage of all measured tasks and the

final percentage (wgt. avg.) represents the average success for the tasks that contain

objects the model was trained to recognize.

One of the most surprising aspects of the validation process was that the original model

worked so poorly with the validation data, since it was deemed a successful model on the

real robot. The red box as a goal object was not present in any of the training data so

it being at 0% was expected, but the long screw tasks (aliased tasks 1 and 2) failed. In

addition to this, the green lego task was also not functional even though it utilized data

from the older dataset and should have achieved comparable performance to the known

tasks with the final model in Table 5.1.

Compared to the final model this model does not seem functional, but it’s main purpose

for the thesis was to aid in investigating the function of the work done in the past. The

place module seems to function in some capacity and achieves a place task success

50

Figure 5.12. Box plot of all "put green lego in brown box"-task accuracies measured in
task-space units for the extension model.

rate of 46.63%. As a whole, the extension model achieves a combined task success

rate of 18.65% and a flawless task execution rate of 0%, since the pick module was not

perceived to function on the validation dataset. The best understood task was "put rocker

arm in brown box" with the place portion of the task being 78.95% accurate. Curiously

the rocker arm was not present in the model training dataset, but the goal object, brown

box, was present. This is possible since the place prediction was done simultaneously

but separately from the pick prediction, and irrespective of what object the robot would be

carrying.

Figure 5.12 presents the box plot values for the location deltas on the task "put green

lego in brown box" in the same units as in Figure 5.7. The location errors seem to be

worse than in the previously discussed box plot figures either for the multistep model or

the final model. Compared to the values presented in the box plot figures in Chapter 5.2,

even the somewhat functional place positions seem quite bad. The green lego task for

this model represents a known task, unlike with the other models, so it was expected that

this performance would resemble the accuracy of task 1 for the final model.

Figure 5.13 presents the box plot values for the location deltas on the task "put long screw

in brown box" in the same units as in Figure 5.7. Note that "long screw" is an old alias for

the bolt object. This chart was intended as a location accuracy comparison to the green

lego accuracy Figure 5.12, with the intent to discuss the impact of a smaller example set

on the prediction accuracy. For the pick portion, we can see that the two tasks exhibit

very similar total pick errors, which is to be expected given the lack of function displayed

in Table 5.3. The place accuracies exhibit a smaller variance compared to the green lego

task, which is reflected in the 27.63% increase in rate of success when comparing task 7

to task 2.

51

Figure 5.13. Box plot of all "put long screw in brown box"-task accuracies measured in
task-space units for the extension model.

5.5 Discussion on errors

Multiple things in the workspace can cause the task to fail, and during the thesis work it

was observed that operator error was the most common. The most disruptive errors for

the framework are referred to in this paper as task-stalling errors. These errors cause

the collaborative robot to stop for some reason and often mandate a full restart of some

modules which makes them especially disruptive to any workflow. The other type of

errors presented in this chapter are workspace change causing errors, which were of

special interest during the multistep workflow discussion in Chapter 3.6. These errors do

not cause the task to stall or stop, but instead may fail due to other factors which are not

predicted by the framework due to copious complexity which would necessitate a different

approach, such as incorporating path-altering solutions like LATTE [26].

Most of the task-stalling errors can be categorized as follows:

• The robot collides with the object when trying to pick it up causing large unexpected

forces and activating the cobot stop signal.

• The robot tries to move too fast causing swings and burst-like movement or vibra-

tions which cause large forces and activate the cobot stop signal.

• An object the robot has picked up collides with some other solid object causing

large forces. Such objects include the robot frame, other heavy task-space objects,

human limbs, and the workspace desk surface.

• The predicted path has the robot assume a position which is possible in the MoveIt

[44] control interface, but can’t be realized by the real robot. Joint limits are reached,

and the robot stops to allow continued use.

52

All of these situations cause the robot to stall due to it conforming to the collaborative

robot requirement of user safety. The robot must then be brought back online by the

user cycling the emergency stop which necessitates restarting the robot control interface.

To expedite this process and to lessen the required workload, an additional command,

"recover", was added to the speech interface which will attempt to send the robot an "all

clear" signal after which the robot might be able to move without additional user input. In

the case where robot joint limits were reached, this signal will often not work, but in other

cases it was perceived to be useful. All of the tasks which were interrupted by any of

the states described above would count as fails in real-robot execution, but they are not

considered in the simulated success rates for the robot. In general, most of these errors

have little to do with the created framework and are often the result of user error in object

placement or errors caused by components in the framework which were not developed

during the thesis work, such as MoveIt [44]. Also like mentioned in Chapter 4.

The task execution process was observed to cause changes in the workspace in some

common ways, which include:

• The robot successfully picks up a long item in the wrong orientation, causing it to

turn and collide with another object. The workspace is changed due to the other

object moving from this collision.

• The robot successfully picks up multiple sleek-profile objects that are closer to-

gether than the robot tool can open. The workspace is changed due to missing

target objects. Additionally, the decreased grip the robot has on the objects due

to unpredictable slippage can cause them to drop causing further changes in the

workspace.

• The robot or an item it carries collides with the target container or another object

during the place task. Since the model doesn’t take the object shape into consider-

ation, it is possible that the generated path goes either through the target object or

has the picked-up object collide with the target, causing it to move. The workspace

is changed due to the collided object being displaced from the predicted position.

These changes were also factors in the decision to pursue the discussed multi-step work-

flow discussed earlier in Chapter 3.6. In the cases where the collided objects moved away

from the workspace, user input is required to bring them back if the task was concern-

ing multi-step execution. In cases where just a single action was being executed, these

collisions were perceived to only affect the task success a little.

5.5.1 Factors contributing to errors

Common factors contributing to errors during execution include:

• Poor lighting conditions, causing the goal object to mask with the surface material

53

• Wrong material in the background, causing confusion to the framework

• Distracting objects too close causing identification to fail

• Multiple equally valid goal objects being present in the workspace, causing the

wrong to receive the strongest classification

Note that physical problems such as objects being too close to pick are not measured in

the simulation on which the framework was benchmarked on, due to such interactions not

being simulated from the images. Common problems relating to the physical space are

discussed in Chapter 3.6, and such factors contribute to the errors in real-world execution.

In the dataset examples, the goal objects were always placed in such a way that the object

was possible to pick up and the goal was reached. These two conditions are guaranteed

to be true in a successful task recording by the demonstration capture tool implemented

by O. Hassan [1]. One physical problem-causing aspect that was not discussed previously

is the fact that different materials or covers slightly raise the height of the items in the

workspace. Due to how limits were implemented in the framework, if the table surface

rises significantly compared to the robot base, the robot tool could collide with the surface

before stopping and cause a stalled task. The height limits given to the position are

hardcoded to go only to a certain depth due to unpredictability in the CLIPort z-dimension

prediction.

5.6 Future works and improvements

This chapter discusses some possibilities for future improvements first with significant

overhauls requiring rewrites. Possibilities for extending the current framework are pre-

sented with discussion, and finally dataset improvements are discussed. Note that the

dataset changes would directly lead into model changes, which is why the models and

datasets are considered in the same space instead of dedicating sections to both.

5.6.1 Framework re-write requiring improvements

The first and possibly the most interesting change to the framework would consider swap-

ping the CLIPort prediction and training pipeline with some other state-of-the-art solution,

such as VIMA or PALM-E. This along with the tools and pre-existing datasets could make

for an interesting facet of examination especially in the context of training time compared

to achieved quality. Pursuing either solution would likely require very significant changes

to the existing solution and in the worst case would also require the recording of new

datasets, which would also necessitate the changing of the data collection tool. Another

major future improvement could attempt to better utilize the human in true collaboration

and better-defined collaboration tasks. The presence of an actual engine with a manu-

facturing expert could be worth investigating since the goal of collaborative robotics is to

54

make manufacturing more efficient and the expert likely would need time to adjust to a

different workflow. The framework might also be extended to multiple robots of the same

model.

Another relevant improvement that could be made for the framework considers moving

the camera solution from camera-in-hand to a camera-to-hand problem so that the whole

robot body and workspace are perceived from a third-party perspective. Implementing

this perspective change could have beneficial effects on task success rates as well as

allowing the robot to react to moving humans without requiring physical contact. Imple-

menting this approach would pose new problems such as having to place the camera in

a known position every time, or implementing an auto-scaling locator tool for the camera

that would run every time the framework was used.

5.6.2 Framework extension

Some deficiencies still exist with the user experience with the framework, and one pos-

sible extension could consider the implementation of a graphical user interface (GUI) to

ease this. Significant problems and a major portion of the thesis work was also spent on

just finding the correct launch parameters and -commands, to which a proper GUI could

prove to be workload-reducing. In addition to these, future extensions might want to con-

sider containerizing the whole application so that its development is quick and easy. In

an optimal case, the framework would only have two shortcuts, one on each PC that are

required for the prediction and robot moving.

Object avoidance is a relevant problem in collaborative robotics since human actors are

often unpredictable and in the best cases, contact could be easily avoided as far as space

limitations go. Introducing a path conforming pipeline, such as LEMMA, might improve

the performance of the model as it would not collide with itself so often. Creating a

well constrained MoveIt restriction would also serve to these purposes but only for static

assets.

The language goals in the thesis were quite limited and do not really follow natural English

language speech patterns by missing things such as articles before words. New more

natural and ambiguous language goals could also be taught along with gestures allowing

tasks such as "give that to me" etc.

The last thing to improve and the most obvious in the test examples would see the im-

provement of the success policy. The success policy in this thesis did not prove to be

useful in deciding whether a task was a success or not. In its idealized implementa-

tion, the policy would have been completely automatic and so reliable, that laborious eye

confirmation would not have had to be necessary.

55

5.6.3 Dataset improvements

The most obvious improvement to both the training and validation datasets would be to

increase the demonstration amount. Also, a more careful selection process to the exhib-

ited objects could lead to better results especially with multi-object demonstrations. If a

theoretical future model would want to handle many more different objects, such as man-

ifolds, gaskets, and different bolts to name a few, the dataset should obviously contain

examples where just those items are present. In this thesis, better results were achieved

when presenting goal objects with multiple instances of similar clutter or just single dis-

tracting objects. It could be argued that due to the only a single object being considered

the "correct" one in single action tasks, a dataset should not contain examples with multi-

ple goal objects like in this thesis except in the verification phase (where possible). In this

model, every time multiple goal objects were present, the one closer to the goal object

was demonstrated as the correct one which might also have contributed to the error rate

in unmeasured ways.

Some clutter examples especially in the training dataset were probably too difficult for the

used model and less cluttered tasks would probably have been more useful for training.

The choice to also include multiple images of a sequential task was also not grounded in

any previous observation and its impact on the validity of the model remains unverified. As

single demonstrations the sequential tasks are not worse than any other demonstration

with the notable exception of containing multiples of the goal objects which leads to the

same classification problem mentioned before with only one option among equals being

considered valid.

The current model was also trained with a dataset with a semi-random number of objects

already present inside the goal box. Future models might want to consider patterning

these and including multiple examples with the goal box partially covered by both the

goal objects and unrelated objects. While CLIP has been demonstrated to include the

capability to classify objects within objects, it is unclear whether the CLIP used in CLIPort

can detect such recursive details, such as with a box containing bolts when both are

unseen data. Such classifications could also be made to improve the language fluidity

by allowing tasks such as "put the bolt in the correct box" or "put the bolt in the box with

bolts" or "put the bolt in the bolt box" instead of requiring the user to specify the colour box

after identifying. One another goal-related improvement could consider dataset examples

with directional inference, such as with the inclusion of tasks such as "put the bolt in the

box on the left" etc.

CLIPort was demonstrated in simulations to be capable of sorting tasks. Such behaviours

might be implemented with industrial objects and could be modified to include the pick &

place type task flow instead of the CLIPort demonstrated pushing. Another industry-

relevant capability in CLIPort is the align task, where an object is pushed to align with a

56

surface element. Such tasks could be useful in robot-to-robot collaboration. Collecting

real-world data for these tasks could prove to be very difficult, especially since many

industrial objects can roll for long distances even with minute forces.

Lastly, one clear improvement over the current model would include multiple backgrounds

and utilize more interesting goal containers over the presented boxes. The implemented

framework can be quite accurate with the pick tasks, so having a stricter place position

should be possible if the goal position is clearly classifiable from the image. CLIP is also

likely capable of classifying human anatomy such as hands, but demonstrations were not

recorded with human limbs visible. For collaboration, tasks such as following a human

hand or going to a position pointed by a human finger could be useful by allowing such

tasks as: "give that (specific) bolt to me" or "put it here".

57

6. CONCLUSIONS

This chapter gives a conclusion to the thesis by discussing the success of the thesis

goals, and postulation on future improvements. A short summary is given at the end.

6.1 Discussion on Research Objectives

Chapter 1.3 presented the research objectives for the thesis and this chapter discusses

their success in separate sections.

Assess the accuracy of the speech model in CLIPort nlihrc

One concern raised in the previous work considered the possibility that the implemented

speech recognition tool would not properly work with different voices. Further discussion

on why this research objective omitted can be found in Chapter 3.5.

Assess the prediction accuracy of CLIPort nlihrc using multiple models with

different samples and amount of training epochs

A significant portion of the thesis, namely Chapter 5, considers the accuracies of the man-

ufactured models, but only one presented model can be considered successful. Most of

the developed datasets and trained models were used for issue discovery and furthering

development, and comparison with partially trained models with low epochs was consid-

ered banal since longer trained models performed better as one would expect in machine

learning in general. One noteworthy factor in the training improvement over time is that

the used epoch counts were very low compared to the CLIPort simulation suggestions.

No model was trained to the CLIPort suggested epoch count due to time constraints, and

thus the exhibited models had likely not yet plateaued in prediction accuracy. For training

loss examination, the models were perceived to train much as in the previous thesis on

which this extends. This makes the similarly efficient training cost expected behaviour,

since there were no changes made to the prediction pipeline. For these reasons the

training loss charts were not presented in the thesis. The best-case location prediction

accuracy of CLIPort was 100.0% in the validation tests, where just one portion of the over-

all task is considered manifesting as a single prediction. The implemented framework with

58

the best model can be expected to flawlessly execute a given task roughly 75.07% of the

time.

Generate dataset(s) and demonstrate suitability for industrial objects

A significant portion of the thesis, namely Chapter 4, considers the structure of the uti-

lized and assembled datasets. Function with real industrial objects was demonstrated

with some example objects taken from a real engine. The used objects were selected

due to their similar shape and texture. Most of the other engine assembly related objects

were either too heavy or too large to properly act as goal objects with the implemented

framework. Possible ways to subvert these limitations are briefly discussed in Chapter

5.6. The datasets featured similarly shaped objects of the same colour in different con-

figurations and could successfully coax the implemented models to have a distinction

between similar objects in the workspace.

Demonstrate potentially useful tasks for industrial applications using an existing

solution back end

The thesis utilized the backend mainly to execute pick & place tasks whose role in industry

is significant, but which are not necessarily crucial in collaborative engine assembly. The

framework pick module can be utilized in handover tasks, which are very relevant for col-

laborative robotics, but the implemented handover position was hardcoded. These types

of handover tasks and the framework as a whole can be categorized to be Interaction,

which is an approach in collaborative robotics in general.

Research similar systems

The thesis presents 9 relevant papers and implementations albeit superficially. There

were more discovered frameworks which are not presented due to their age and for the

sake of brevity. Special emphasis was also placed on solutions that utilized CLIPort in

some way. The research field was found to be relatively new and highly active, as many

implemented solutions are newer than CLIPort. Even though CLIPort was introduced in

2020, it can be considered an old approach already in some contexts.

Compare CLIPort nlihrc results with results from similar systems

The thesis compared the implemented framework model validation results with some

other solutions and found that the performance of the implemented framework was slightly

worse than the numbers presented by state-of-the-art solutions. The other models were

only compared with tasks that were similar to the framework validation dataset pick &

place tasks.

59

6.2 Summmary

This thesis presents a modification to a previously done CLIPort framework that allows for

collaborative tasks using industrial objects. A model for working and detecting these ob-

jects was manufactured and tested on real-world data. The thesis goes through relevant

research topics and discusses the previous work. There is a large emphasis on dataset

collection and makeup as well as model performance and discussion on found and pos-

tulated error sources. Supportive evidence is also provided to give insight on discovered

errors and chosen improvement directions, such as with the multi-step workflow. The con-

clusion chapter discusses future improvements on the subject with emphasis based on

model- and dataset improvements. The code used for this project is available in GitHub

[45], [46], and [47].

60

REFERENCES

[1] Hassan, O. Natural Language Instructions for Human Robot Collaboration. eng.

Informaatioteknologian ja viestinnän tiedekunta - Faculty of Information Technology

and Communication Sciences, 2023.

[2] Shridhar, M., Manuelli, L. and Fox, D. CLIPort: What and Where Pathways for

Robotic Manipulation. 2021. arXiv: 2109.12098 [cs.RO].

[3] TUG Autonomous Mobile Robots. Oct. 25, 2023. URL: https://aethon.com/products/

(visited on 10/25/2023).

[4] Starship Technologies: Autonomous robot delivery. Oct. 25, 2023. URL: https : / /

starship.co/ (visited on 10/25/2023).

[5] Wang, L., Gao, R., Váncza, J., Krüger, J., Wang, X., Makris, S. and Chryssolouris,

G. “Symbiotic human-robot collaborative assembly”. eng. CIRP annals 68.2 (2019),

pp. 701–726. ISSN: 0007-8506.

[6] Matheson, E., Minto, R., Zampieri, E. G. G., Faccio, M. and Rosati, G. “Human–Robot

Collaboration in Manufacturing Applications: A Review”. eng. Robotics (Basel) 8.4

(2019), pp. 100–. ISSN: 2218-6581.

[7] Li, J., Li, D., Xiong, C. and Hoi, S. “Blip: Bootstrapping language-image pre-training

for unified vision-language understanding and generation”. International Confer-

ence on Machine Learning. 2022, pp. 12888–12900.

[8] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,

Askell, A., Mishkin, P., Clark, J., Krueger, G. and Sutskever, I. Learning Transfer-

able Visual Models From Natural Language Supervision. 2021. arXiv: 2103.00020

[cs.CV].

[9] Li, D., Li, J. and Hoi, S. C. H. BLIP-Diffusion: Pre-trained Subject Representation

for Controllable Text-to-Image Generation and Editing. 2023. arXiv: 2305 . 14720

[cs.CV].

[10] OpenAI page for DALL-E 2. Oct. 23, 2023. URL: https://openai.com/dall-e-2 (visited

on 10/23/2023).

[11] Google. WebRTC Voice Activity Detector. Available: https://webrtc.org/.

[12] Silero Team. Silero VAD: pre-trained enterprise-grade Voice Activity Detector (VAD),

Number Detector and Language Classifier. https://github.com/snakers4/silero-vad.

2021.

[13] Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hanne-

mann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G. and Vesely,

https://arxiv.org/abs/2109.12098
https://aethon.com/products/
https://starship.co/
https://starship.co/
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2305.14720
https://arxiv.org/abs/2305.14720
https://openai.com/dall-e-2
https://webrtc.org/
https://github.com/snakers4/silero-vad

61

K. “The Kaldi Speech Recognition Toolkit”. IEEE Workshop on Automatic Speech

Recognition and Understanding. 2011.

[14] Alpha Cephei. Vosk Speech Recognition Toolkit. https://github.com/alphacep/vosk-

api. 2023.

[15] Yin, W., Kann, K., Yu, M. and Schütze, H. “Comparative study of CNN and RNN for

natural language processing”. arXiv preprint arXiv:1702.01923 (2017).

[16] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,

Ł. and Polosukhin, I. “Attention is all you need”. Advances in neural information

processing systems 30 (2017).

[17] Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. “Bert: Pre-training of deep bidi-

rectional transformers for language understanding”. arXiv preprint arXiv:1810.04805

(2018).

[18] Reimers, N. and Gurevych, I. “Sentence-bert: Sentence embeddings using siamese

bert-networks”. arXiv preprint arXiv:1908.10084 (2019).

[19] CLIP github page. Oct. 9, 2023. URL: https://github.com/openai/CLIP (visited on

10/09/2023).

[20] CLIPort github page. Oct. 10, 2023. URL: https : / / cliport . github . io/ (visited on

10/10/2023).

[21] Zheng, K., Chen, X., Jenkins, O. C. and Wang, X. E. “VLMbench: A Compositional

Benchmark for Vision-and-Language Manipulation”. eng. arXiv.org (2022). ISSN:

2331-8422.

[22] Gong, R., Gao, X., Gao, Q., Shakiah, S., Thattai, G. and Sukhatme, G. S. “LEMMA:

Learning Language-Conditioned Multi-Robot Manipulation”. eng. IEEE robotics and

automation letters 8.10 (2023), pp. 6835–6842. ISSN: 2377-3766.

[23] Mees, O., Hermann, L., Rosete-Beas, E. and Burgard, W. B. “CALVIN: A Bench-

mark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipula-

tion Tasks”. eng. IEEE robotics and automation letters 7.3 (2022), pp. 7327–7334.

ISSN: 2377-3766.

[24] Zhu, Y., Joshi, A., Stone, P. and Zhu, Y. “VIOLA: Imitation Learning for Vision-Based

Manipulation with Object Proposal Priors”. eng. arXiv.org (2023). ISSN: 2331-8422.

[25] Toyer, S., Shah, R., Critch, A. and Russell, S. “The MAGICAL Benchmark for Ro-

bust Imitation”. eng. arXiv.org (2020). ISSN: 2331-8422.

[26] Bucker, A., Figueredo, L., Haddadin, S., Kapoor, A., Ma, S., Vemprala, S. and Bon-

atti, R. “LATTE: LAnguage Trajectory TransformEr”. eng. 2023 IEEE International

Conference on Robotics and Automation (ICRA). Vol. 2023-. IEEE, 2023, pp. 7287–

7294. ISBN: 9798350323658.

[27] Franka Emika robot arm information page. Oct. 10, 2023. URL: https://www.franka.

de/ (visited on 10/10/2023).

[28] Driess, D., Xia, F., Sajjadi, M. S. M., Lynch, C., Chowdhery, A., Ichter, B., Wahid, A.,

Tompson, J., Vuong, Q., Yu, T., Huang, W., Chebotar, Y., Sermanet, P., Duckworth,

https://github.com/alphacep/vosk-api
https://github.com/alphacep/vosk-api
https://github.com/openai/CLIP
https://cliport.github.io/
https://www.franka.de/
https://www.franka.de/

62

D., Levine, S., Vanhoucke, V., Hausman, K., Toussaint, M., Greff, K., Zeng, A.,

Mordatch, I. and Florence, P. PaLM-E: An Embodied Multimodal Language Model.

2023. arXiv: 2303.03378 [cs.LG].

[29] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,

Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J. and Houlsby, N.

“An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”.

eng. arXiv.org (2021). ISSN: 2331-8422.

[30] Sajjadi, M. S. M., Duckworth, D., Mahendran, A., Steenkiste, S. van, Pavetić, F.,

Lučić, M., Guibas, L. J., Greff, K. and Kipf, T. “Object Scene Representation Trans-

former”. NeurIPS (2022).

[31] Aguinaldo, A., Bunker, J., Pollard, B., Shukla, A., Canedo, A., Quiros, G. and Regli,

W. “RoboCat: A Category Theoretic Framework for Robotic Interoperability Using

Goal-Oriented Programming”. eng. IEEE transactions on automation science and

engineering 19.3 (2022), pp. 1–9. ISSN: 1545-5955.

[32] Jiang, Y., Gupta, A., Zhang, Z., Wang, G., Dou, Y., Chen, Y., Li, F.-F., Anandku-

mar, A., Zhu, Y. and Fan, L. “VIMA: General Robot Manipulation with Multimodal

Prompts”. eng. arXiv.org (2023). ISSN: 2331-8422.

[33] Kapelyukh, I., Vosylius, V. and Johns, E. “DALL-E-Bot: Introducing Web-Scale Dif-

fusion Models to Robotics”. eng. IEEE robotics and automation letters 8.7 (2023),

pp. 3956–3963. ISSN: 2377-3766.

[34] Nvidia’s marketing page for the RTX 3080 GPU. Sept. 28, 2023. URL: https://www.

nvidia.com/us-en/geforce/graphics-cards/30-series/rtx-3080-3080ti/ (visited on

09/28/2023).

[35] Technical specifications for the AMD Ryzen 7 5845. Oct. 2, 2023. URL: https://www.

amd.com/en/products/apu/amd-ryzen-7-pro-5845 (visited on 10/02/2023).

[36] Nvidia’s marketing page for the RTX 4090 GPU. Sept. 28, 2023. URL: https : / /

www.nvidia.com/us- en/geforce/graphics- cards/40- series/rtx- 4090/ (visited on

09/28/2023).

[37] Technical specifications for the Intel Core i9-13900k. Oct. 2, 2023. URL: https : / /

www.intel .com/content/www/us/en/products/sku/230496/ intel- core- i913900k-

processor-36m-cache-up-to-5-80-ghz/specifications.html (visited on 10/02/2023).

[38] Technical specifications for the Intel Core i7-4770. Oct. 2, 2023. URL: https://ark.

intel.com/content/www/us/en/ark/products/75122/intel-core-i74770-processor-8m-

cache-up-to-3-90-ghz.html (visited on 10/02/2023).

[39] Jabra’s support page for the Jabra EVOLVE 20 headset family. Oct. 2, 2023. URL:

https://www.jabra.com/supportpages/jabra-evolve-20#/#4999-823-109 (visited on

10/02/2023).

[40] Intel’s marketing page for the D435 camera. Sept. 28, 2023. URL: https : / /www.

intelrealsense.com/depth-camera-d435/ (visited on 09/28/2023).

https://arxiv.org/abs/2303.03378
https://www.nvidia.com/us-en/geforce/graphics-cards/30-series/rtx-3080-3080ti/
https://www.nvidia.com/us-en/geforce/graphics-cards/30-series/rtx-3080-3080ti/
https://www.amd.com/en/products/apu/amd-ryzen-7-pro-5845
https://www.amd.com/en/products/apu/amd-ryzen-7-pro-5845
https://www.nvidia.com/us-en/geforce/graphics-cards/40-series/rtx-4090/
https://www.nvidia.com/us-en/geforce/graphics-cards/40-series/rtx-4090/
https://www.intel.com/content/www/us/en/products/sku/230496/intel-core-i913900k-processor-36m-cache-up-to-5-80-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/230496/intel-core-i913900k-processor-36m-cache-up-to-5-80-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/230496/intel-core-i913900k-processor-36m-cache-up-to-5-80-ghz/specifications.html
https://ark.intel.com/content/www/us/en/ark/products/75122/intel-core-i74770-processor-8m-cache-up-to-3-90-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/75122/intel-core-i74770-processor-8m-cache-up-to-3-90-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/75122/intel-core-i74770-processor-8m-cache-up-to-3-90-ghz.html
https://www.jabra.com/supportpages/jabra-evolve-20#/#4999-823-109
https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/

63

[41] Intel’s marketing page for the D435i camera. Sept. 28, 2023. URL: https : / /www.

intelrealsense.com/depth-camera-d435i/ (visited on 09/28/2023).

[42] GmbH, F. E. franka hw. Available: https://frankaemika.github.io/docs/franka_ros.

html#franka-hw.

[43] Turc, I., Chang, M.-W., Lee, K. and Toutanova, K. Well-Read Students Learn Bet-

ter: On the Importance of Pre-training Compact Models. 2019. arXiv: 1908.08962

[cs.CL].

[44] Robotics, P. MoveIt Motion Planning Framework for ROS. Available: https://github.

com/ros-planning/moveit.

[45] GitHub page for the edited CLIPort modification used in the thesis. Oct. 31, 2023.

URL: https://github.com/petajam117/cliport (visited on 10/31/2023).

[46] GitHub page for the edited data collection tool used in the thesis. Oct. 31, 2023.

URL: https://github.com/petajam117/cliport_label (visited on 10/31/2023).

[47] GitHub page for the edited language processing tool used in the thesis. Oct. 31,

2023. URL: https://github.com/petajam117/python-nlihrc (visited on 10/31/2023).

https://www.intelrealsense.com/depth-camera-d435i/
https://www.intelrealsense.com/depth-camera-d435i/
https://frankaemika.github.io/docs/franka_ros.html#franka-hw
https://frankaemika.github.io/docs/franka_ros.html#franka-hw
https://arxiv.org/abs/1908.08962
https://arxiv.org/abs/1908.08962
https://github.com/ros-planning/moveit
https://github.com/ros-planning/moveit
https://github.com/petajam117/cliport
https://github.com/petajam117/cliport_label
https://github.com/petajam117/python-nlihrc

	Introduction
	Background
	Problem Statement
	Research scope and objectives
	Thesis contribution
	Thesis organization

	Literature review
	Collaborative robots in industry
	Machine learning applications in robotics
	Computer Vision
	Natural Language Processing

	Related Works
	Previous works
	CLIP
	CLIPort
	Other works related to machine learning in robotics

	Experiment setup and changes to previous work
	Framework overview
	Hardware setup
	Desktop computers
	Microphone
	Intel D435 Camera & recording
	Robot

	Vision-Language Model
	Text Processing
	Speech recognition
	Multi-step workflow

	Dataset format and purposes
	The presentation of the format and purpose of the datasets
	All objects present in the datasets
	Final model dataset
	Multistep model dataset
	Extension model dataset
	Validation dataset

	Model successes criteria
	General example of a pick & place task on a bolt
	Criteria for pick success verification

	Dataset parameters

	Results
	Final model examples
	Final model success rate
	Final model quality criteria

	Other models
	The multistep model
	The extension model

	Other model success rates
	The multistep model success rate examination
	The extension model success rate examination

	Discussion on errors
	Factors contributing to errors

	Future works and improvements
	Framework re-write requiring improvements
	Framework extension
	Dataset improvements

	Conclusions
	Discussion on Research Objectives
	Summmary

	References

