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Abstract. Context: Software projects applying continuous integration
should run the tests very frequently, but often the number of test is huge
and their execution takes a long time. This delays the feedback to the
developer. Objective: Study if heuristic and especially incremental ma-
chine learning can help in finding an optimal test set that still finds the
errors. Method: Several methods for reducing the tests were tested. Each
method was applied to the example software its commit history, and the
performance of the methods were compared. Results: The test set size
can be radically reduced with automatic approaches. Furthermore, it was
found that the incremental machine learning based test selection tech-
niques eventually perform equally well or better than the best heuristic.
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1 Introduction

This paper documents research that has been inspired by a practical need in
a company. The research was originally conducted for a master thesis [13], and
this paper summarizes the research for an international audience.

Continuous Integration (CI) is a software engineering practice that automates
software integration and encourages developers to commit more often. Testing in
CI should be automatic [18] and extensive. Every change in the software should
be validated in the context of the whole software to maintain quality.

Test suites tend to grow large during the development and lead to long-
lasting test suites. In the context of the case company, Space Systems Finland1,
the problem culminates in validation tests, which exercise multiple end-to-end
tests, and even the execution of a single test can take a long time. Test case
selection and prioritization can be used in such situations to reduce the time for
developer feedback.

The case context was satellite instrument control software for the Meteosat
Third Generation Sounder (MTG-S) satellites. The instrument, namely Sentinel-
4/UVN, is a high-resolution spectrometer and will be used to monitor air quality
parameters over Europe, and the case of this paper was a command and control

1 http://www.ssf.fi/
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software for the Sentinel-4/UVN instrument. The software and its validation
tests are programmed in Ada.

Test case selection (TCS) selects a subset of the test suite for repeated testing.
Ideally, the selected subset of the tests finds the same number of faults with lesser
effort compared with the original test suite. However, the reduced test set may
not include all fault-revealing test cases, but TCS discards some of them. Finding
the optimal subset in TCS is a non-obvious task, especially in large systems with
a large number of test cases. Machine learning (ML) is an interesting approach
for this. Because each project is new and different from the others, incremental
ML may be more suitable than approaches with a separate learning phase.

The goal of this research was to evaluate different TCS techniques in order
to speed up the testing and facilitate continuous integration. Specifically, the
research question was How effective is incremental machine learning for test
case selection and how does it compare to heuristics-based methods?

Machine learning has become more popular in the domains of TCS [2,8,9,17].
These studies have shown promising results in using ML for TCS.

The paper is organized as follows. Section 2 introduces the background and
Section 3 summarizes the related research. The experiment is described in Sec-
tion 4 and the results are presented in Section 5. The results are discussed in
Section 6. Finally, Section 7 gives the conclusions.

2 Background

2.1 Dependency coverage

All heuristic methods used in this study rely on dependency coverage. A modi-
fication can break functionality in the modified module, but also in the modules
that depend on the modified module. This can be troublesome as faults can show
up in surprising components or sub-systems [19].

A rather safe way to reduce the number of tests, but to still reveal faults in
the dependent modules, is to recognize tests that target the modified modules
and their dependents and execute them. The aim is to recognize every test case
that could be transitively affected by a change. A test case is affected if the test
or any of its dependencies is modified [19].

2.2 Machine Learning

The gist of ML is a piece of software, that is capable of improving its performance
in a set of tasks, based on experience [12]. In this paper, incremental machine
learning means the application of machine learning algorithms so that the model
continuously learns from the new input while being used.

Before machine learning techniques can be applied to test cases, the problems
need to be coded to the ML algorithm, i.e., they have to be represented as feature
vectors. The values used in feature vectors are described below.

Seven features are used to represent test cases as feature vectors, namely
statement coverage, modification coverage, similarity score, duration, failure rate,
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latest pass and history length. The features are somewhat similar to features used
in a related study [2]. The following describes how these features are attained.

Statement coverage is a floating-point number with a closed interval between
0 and 1. It is the total percentage of statements (or lines) covered by a test
case. The statement coverage is updated every time the test case is executed
and remains unchanged until the test case is re-executed. Line coverage is used
instead of statement coverage, because that information was available.

Modification coverage is similar to statement coverage, but the coverage is
calculated over the modified lines of a commit instead of all software code lines.
More closely, the modification coverage is calculated as |Ct∩M |

|M | where Ct is the

coverage of the test case and M is the set of modified lines. The test coverage,
Ct, is produced by gcov -tool. Git diff command was used to find M . The full
coverage of previous test executions is needed to deduce coverage over the modi-
fied lines, e.g. |Ct∩M |. Therefore, the full coverage produced by gcov -tool needs
to be persisted and transferred between any two commits.

Similarity score is a similarity measure between a code change (git commit)
and a test case, where a higher value means that certain keywords occur more
often in both texts suggesting a higher similarity. The similarity score is calcu-
lated with TF-IDF transformation and cosine similarity [10]. A similarity score
is a floating-point number with a closed interval between -1 and 1.

Duration is the test execution time of the test case in seconds. Duration is
updated every time the test case is executed.

Failure rate is a floating-point number in a closed range between 0 and 1,
and it is calculated by

Tf

Tp+Tf
where Tf is the total number of failures and Tp

is the total number of passes of a single test case. Every test execution updates
this value because either Tf or Tp is incremented.

Latest pass is a left-closed and right-unbounded discrete value from 1 to
infinity. It is the number of failing test executions that precedes a passing test
execution. Every failing test execution increments this value by one and passing
execution resets the value back to 1. The initial value 1 is set because of the
assumption that initially, every test case is passing.

History length is a left-closed and right-unbounded discrete value from 1 to
infinity which denotes the number of executions for the test case. The initial
value is 1 and each test execution increments the value by one.

2.3 Test case selection

Test case selection techniques are a group of regression testing techniques where
a subset of the test suite is selected for execution. It reduces the execution time,
but at the same time risks neglecting fault-revealing test cases.

Test case selection techniques have been evaluated in the literature using
metrics such as test suite reduction (TSR) and reduction in fault detection ef-
fectiveness [4] [16] [3]. Test suite reduction is expressed as [16]

TSR = 1− |T ′|
|T |

(1)



4 Markus Mulkahainen, Kari Systä, and Hannu-Matti Järvinen

where T is the original test suite and T ′ is the reduced test suite. Reduction in
fault detection effectiveness (RFDE) is given as [16]

RFDE = 1− |FT ′ |
|FT |

(2)

where FT is the set of faults found by the original test suite T and FT ′ is the set
of faults found by the reduced test suite T ′. The test case selection techniques
should maximize the test suite reduction and minimize RFDE.

In this study, FT is unknown, e.g. the number of actual faults in the system
is not known. The failing test cases are known, but a failing test does not always
reveal one unique fault. One failing test can reveal any number of actual faults.
Because FT is not known, RFDE cannot be used to measure the performance of
TCS techniques. Instead, it is assumed that finding the failing test cases helps
to find the actual faults in the system. Therefore, TCS techniques are used to
find the failing test cases, fT , from T . The reduced test suite is not wanted to
contain anything else but the failing test cases. In addition to TSR, the objective
becomes to maximise the proportion of test failures in the reduced test suite T ′:

|fT ′ |
|fT |

(3)

where fT ′ is the set of failing tests in T ′, and fT is the set of failing tests in
the original test suite T . The expression 3 can be rewritten with true positives
(Tp), false positives (Fp), true negatives (Tn) and false negatives (Fn) by using
Knauss et al. [7] descriptions:

– Tp: Test cases that were correctly selected to the reduced test suite (predicted
to fail and failed).

– Fp: Test cases that were incorrectly selected to the reduced test suite (pre-
dicted to fail but passed).

– Tn: Test cases that were correctly omitted from the reduced test suite (pre-
dicted to pass and passed).

– Fn: Test cases that were incorrectly omitted from the reduced test suite
(predicted to pass but failed).

The expression 3 can be rewritten with Tp, Fp, Tn and Fn:

|fT ′ |
|fT |

=
|Tp|

|Tp|+ |Fn|
(4)

which is the same as recall in information retrieval theory [5] [15]. The same can
be done for test suite reduction, and rewrite it with Tp, Tn, Fn and Fp:

TSR = 1− |T ′|
|T |

=
|T | − |T ′|

|T |

=
(|Tn|+ |Fn|+ |Fp|+ |Tp|)− (|Tp|+ |Fp|)

|Tn|+ Fn + |Fp|+ |Tp|

=
|Tn|+ |Fn|

|Tn|+ |Fn|+ |Fp|+ |Tp|

(5)
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There are now two conflicting performance scores for TCS techniques: test
suite reduction and recall. The goal is to find a TCS technique that maximises
both of these scores. It is not trivial, because increasing one potentially decreases
the other and vice versa.

Thus, the Matthews correlation coefficient (MCC) is introduced. MCC was
found to be a good surrogate for a combination of test suite reduction and recall.
The MCC score is a single value and gives us a more robust way to compare the
performances of TCS techniques. B.W. Matthews introduced the MCC-score in
1975 [11] and defined it as:

MCC =
|Tp| × |Tn| − |Fp| × |Fn|√

(|Tp|+ |Fp|)(|Tp|+ |Fn|)(|Tn|+ |Fp|)(|Tn|+ |Fn|)
(6)

The highest possible MCC score is 1. It is achieved when Fp = 0, Fn = 0,
Tp ̸= 0 and Tn ̸= 0. In such a case, there are no incorrect predictions. Selecting
only the failing predictions, the ”perfect selection” is got. The perfect selection
never fully satisfies test suite reduction, e.g. TSR ̸= 1, but always results in the
maximum recall value of 1. In other words, MCC = 1 evaluates to the highest
possible test suite reduction for a recall of 1.

2.4 Evaluated algorithms for TCS

In the case study, there were three heuristic methods based on data coverage;
the fourth one is a random method.

Random. In the random technique, both the number of tests and the tests
themselves are selected randomly. This means that from |T | test cases n random
tests are selected. Hence, n (the size of the selected test suite) can have any
value between 0 and |T |.

Coverage. The coverage technique selects every test case that covers a modi-
fied statement as described in Section 2.1. The size of the selected test suite varies
between 0 to |T | as in the case of the Random technique.

Coverage(H). This technique includes all the cases of the Coverage tech-
nique and tests that have failed in the previous iteration. Naturally, the size of
the test suite is between 0 to |T |.

Coverage(PH). In this technique, the first step is to select the tests in
similarly to Coverage(H). Furthermore, if the selection size is greater than 2% of
|T |, the selected tests are prioritized and n top test cases are selected until the
2% limit is reached. The prioritization step calculates the average of test history
and coverage, sorts the test cases descending and selects n top test cases from
the sorted list. In this technique, the test suite size falls between 0 and 0.02×|T |.

The machine learning techniques apply binary classification over the test case
samples and categorize the samples into bins of passing and failing. The selected
techniques, except the unlimited version of RandomForest(U), guarantee 98%
test suite reduction.

RandomForest Select every test case that is predicted failing using random
forest classifier from scikit-learn toolkit [14]. The random forest implementation
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follows Breiman’s implementation [1]. Furthermore, if selection size is greater
than 2% or less than 2, prioritize the test suite T using class probabilities and
select 2% of the most promising tests. This means that the size of the test suite
is between 2 and 0.02× |T |.

RandomForest(U) As above, but the test suite size is not limited. Hence,
prioritisation is not needed and the size of the test suite is between 2 and |T |.

LogReg Select every test case that is predicted failing using logistic regres-
sion classifier from scikit-learn. If the selection size is greater than 2% or less
than 2, use the same prioritisation method as in RandomForest. This leads to
the test suite size of 2 to 0.02× |T |.

XGBoost Select every test case that is predicted failing using gradient boost-
ing technique (XGBClassifier) from xgboost-library. Also in this case, if the se-
lection size is greater than 2% or less than 2, prioritisation is done as in the case
of RandomForest resulting in the test suite size between 2 and 0.02× |T |.

3 Related work

Spieker et al. [17] used reinforced learning and multi-layer perceptron to predict
failing test cases based on test history. They actualized both test case selection
and prioritization in test suites. The idea was to 1) prioritize the test suite T, and
2) repeat selecting the topmost test from T as long as the summed duration of the
selected tests goes under a time threshold M. They used the normalized average
percentage of faults detected (NAPFD) to measure the performance of their
technique and concluded that approximately 60 CI cycles are needed to perform
equally or better than the reference techniques. The reference techniques were a
random technique, which ordered test cases randomly, a sorting technique, which
ordered recently failed test cases with higher priority, and a weighing technique,
which ordered test cases by a weighted sum of the test features. Spieker et al.
were the first to apply reinforcement learning in TCS.

Di Nardo et al. [11] applied TCS in an industrial system with real regression
faults. They measured reductions in test suite sizes and fault detection effec-
tiveness with their coverage-based TCS techniques. They were barely able to
reduce test suite sizes at all. The maximum reduction was 2%. Because of the
small reductions, fault detection was not compromised.Di Nardo et al. discussed,
that the small reductions in test suite sizes were likely due to modifications to
the core components of the software. Such parts are covered by a multitude of
test cases. Additionally, Di Nardo et al. examined only four different software
versions, and the modifications between versions were arguably large.

Beszédes et al. [6] used priority-based TCS to reduce test suite size in the
WebKit web browser engine. In their initial experiments, they selected every test
case that covered the modified procedures in the software, or that had failed
previously. Using this initial selection, they witnessed a test suite reduction of
79.43% with 95.08% recall on average. In their study, Beszédes et al. used the
term ”inclusiveness” instead of a recall, but both measures are the same.
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When Beszédes et al. applied their selection technique in an actual live system
they witnessed a test suite reduction of 51% with 75.38% recall on average.
Beszédes et al. extended their selection technique with an extra prioritization
step. The prioritization was based on coverage information. With this extra
step, Beszédes et al. were able to further reduce the selection size. With this
technique, they showed a test suite reduction of over 90% with half the recall
compared with the non-prioritized test suite. Thus, the recall was interpreted to
be approximately 38%. Comparing this result with the result by Busjaeger and
Xie [10], the ML-based TCS technique seems to have superior performance.

Harrold et al. [19] experienced fluctuating test suite reductions with their
code-based regression-test-selection technique. Their TCS technique relied on
code coverage information. Harrold et al. recorded test suite reductions from 0%
to almost 100%. They discussed, that the large reductions were due to small
modifications in the software, where only a few methods covered by a few tests
were changed. Harrold et al. did not analyze thoroughly the reasons behind the
small reductions but mentioned that the location of a change can affect test suite
reduction. As Harrold et al. applied their technique over four different software
with less than eleven software versions, it is possible that the modifications
between two consecutive versions were still quite large. Applying TCS in such
versions can bring no reduction in test suite size.

Gligoric et al. [17] used dynamic dependency tracking from tests to files to
reduce the number of tests. Their tool, ”Ekstazi”, can track any changes in files
that are dependent on the tests, and execute only part of the test suite that is
relevant for a set of file changes. The tool is capable of tracking source code files,
but also configuration files. The tool monitors the execution of tests running on
JVM and collects the accessed files using bytecode instrumentation and listening
to all standard Java library methods that might open a file. After the collection
of the dependent files is done, the tool can select a subset of tests to be executed
for any change made in the dependent files. Gligoric et al. report, that their tool
is capable to reduce end-to-end testing time by 32%.

Yoo et al. [45] used dependency coverage among other features to select and
prioritize tests. The optimization technique by Yoo et al. balanced three com-
peting objectives: dependency coverage maximization, historical fault detection
maximization and execution time minimization. Yoo et al. reported an average
test suite reduction of 68% with their technique.

4 The Experiment

4.1 Data Collection

The research is based on the version control history of an existing project (528
tests and 87 commits – for further details see [13]). The first phase collected data
about tests in each commit in the version control history. An essential part of
this data collection was re-executing tests for each version of the software. Then,
different test case selection algorithms were applied.
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Because data was collected by executing the tests, it took a long time. To
reduce the time, handling of source modifying commits and test modifying com-
mits were separated. When a commit modifies only test/ directory and not src/
directory at all, a transitive dependency selection includes only test cases that
are transitively affected by the modification. This reduced the number of tests to
execute. To further optimize the data collection, consecutive instances of test/*
modifying commits were merged. This was done as a preprocessing step before
running the data collection algorithm. Every commit that had no source or test
modifications was also removed since they had no effect on the functionality of
the software. The data collection algorithm used is the following:

1. Checkout newest commit
2. Repeat:

(a) If the current commit has src/* modifications:
i. Execute test suite

(b) Else if the current commit has test/* modifications:
i. Find modified tests through transitive dependency selection (see 2.1)
ii. Execute modified tests

(c) Save executed test verdicts, coverage and durations
(d) Checkout previous commit

The output of this algorithm is an ordered set of tuples D = {commit, tests},
where commit is a commit’s checksum (identification in Git) and tests is a set of
tuples {verdict, coverage, duration}. Verdict is the output: pass or fail, coverage
is the full gcov-coverage for the test, and duration is the length in seconds.

Step 2ai, test suite execution, lasted about 17 hours. The algorithm was
continuously being executed for approximately two months for the preprocessed
version control history. 87 commits ended up in the dataset, where 45 commits
had only source code modifications, 17 commits had both test and source code
modifications and 25 commits had only test modifications. Unfortunately, the
test suite contained many non-deterministic test cases due to differences in the
test environments. Those tests were removed from the dataset As a result, a
portion of the commits ended up having no faults. These commits were not
removed from the dataset.

The characteristics of the collected dataset are shown in Table 1. Note, that
the build or execution failures are test cases that had passed at least once before.
Every test case that was recently added and had build or execution failures were
removed because it was impossible to gather coverage information for them. As
soon as the removed tests passed again in the following commits, they were
added back to the test suite. The oldest commit in the dataset did not luckily
contain any failing tests after the non-deterministic tests were removed.

Surprisingly, many of the test cases failed because of build or execution errors.
The reason behind this was not thoroughly studied, but it could possibly relate
to differences between the test environments used in this research and the real
one. It is also possible that the developers were aware of these build failures all
along, and they had no intention to fix them.

More details about the data and its collection can be found in the original
thesis [13].
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Table 1. Charasteristics of the data used in this research.

Modifications Source code Source and Test code
test code

Commits 45 17 25
Commits with at
least one failing test case 36 14 11
Failing tests 142 124 119
Normal failures 32 66 39
Build or execution failures 110 58 80
Passing tests 22590 8513 7109

4.2 Test case selection

All test case selection algorithms were applied by iterating through the collected
data. The algorithm below presents the procedure. The algorithm was run for
every test case selection technique t and for every tuple d ∈ D:

1. If d.commit has test/* modifications:
(a) Let Ttmod be the tests selected with transitive dependency selection

2. If d.commit has src/* modifications:
(a) Let Tsmod be the tests selected with t according to current knowledge C

3. Let T ′ = Ttmod ∪ Tsmod

4. Simulate the execution of T ′

5. Update current knowledge C

C represents the current knowledge about the test cases. This includes the
coverage, duration, and test verdict histories (history of passes and fails) for every
test case. In the first commit, this information is not available, and therefore one
commit is needed to initialize the test case selection techniques. During the first
commit, the initial coverage, duration, and test verdicts were collected.

In the first step, a transitive dependency selection to the d.tests is applied, if
d.commit type is ”test” or ”source&test”. In the second step, the TCS technique
t to d.tests using the current knowledge C is applied. The selected tests were
saved in Tsmod. In the third step, the transitively affected tests Ttmod and the
selected tests Tsmod are combined. Ttmod is empty, if d.commit type is ”source”.
Tsmod is empty, if d.commit type is ”test”, respectively. If d.commit type is
”source&test”, both Ttmod and Tsmod can contain test cases, but not the same
test cases. In the fourth step, it is not necessary to execute the reduced test suite
T ′, because it was already done during the data collection phase. Instead, the
existing information of T ′ was used, and current knowledge was updated about
test histories.

The last step 5 is rather complex. The selection Tsmod is turned into feature
vectors, but only if d.commit type is ”source”. Using the coverage, duration and
verdict the feature vector {statement coverage, modification coverage, similarity
score, duration, failure rate, latest pass} is created for every test case. This is done
for all tests in Tsmod, and they are saved for the next iteration di+1. This idea is
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applied for every source commit, and eventually, the training data accumulates
and grows larger. The training dataset is a set of {Tsmod1

, ..., Tsmodn−1
, Tsmodn

},
where n is an index of a source commit. During every iteration, the machine
learning model is re-trained with this training dataset.

It is also necessary to calculate the MCC metric, recall and test suite re-
duction between the steps 4 and 5 if the d.commit is a source commit and the
commit has at least one failing test case. If there are no failing tests, the output
of MCC is undefined, recall is zero, and test suite reduction would be the only
indicator worth measuring. Therefore, measuring performances is skipped when
the commit has no failing tests. In addition to non-faulty commits, performances
in ”test&source” commits or ”test” commits were not measured either.

5 Results

Test case selection techniques were compared using Matthews correlation coef-
ficient (MCC) values. The boxplot in Figure 1 shows MCC-scores for each tech-
nique over 35 commits. The green triangle is the mean and the orange line is
the median. The box presents values from lower to upper quartile. The whiskers
display the range of the data, and the dots are outliers. Coverage(PH) technique
has the highest median and mean MCC-score, and Random technique the lowest.

RandomForest(U)
Random

Coverage(H)

RandomForest
XGBoost

Coverage(PH)
Coverage

LogReg

0.0

0.2

0.4

0.6

0.8

1.0

M
CC

Test case selection

Fig. 1. MCC of each test case selection method over 35 commits.

To examine the significance of the techniques, a Kruskal-Wallis test was done
for the MCC scores across 35 source-modifying commits with a failing test. The
result showed an H-statistic of 117.9 and the p-value of 2.07 · 10-22 allowing the
rejection of the null hypothesis (medians of the groups are equal). To find which
of the groups were different, a pairwise posthoc test was done using Dunn’s test
with Bonferroni adjustment. The pairwise comparison is shown in Figure 2.
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RandomForest(U
)
Random

Coverage(H)

RandomForest
XGBoost

Coverage(PH)

Coverage
LogReg

RandomForest(U)

Random

Coverage(H)

RandomForest

XGBoost

Coverage(PH)

Coverage

LogReg

4.2e-11 1 1 1 1 1.3e-08 1

4.2e-11 3.7e-08 2.3e-09 6.4e-08 2.8e-13 1 2.6e-07

1 3.7e-08 1 1 1 5e-06 1

1 2.3e-09 1 1 1 4.4e-07 1

1 6.4e-08 1 1 1 8e-06 1

1 2.8e-13 1 1 1 1.5e-10 1

1.3e-08 1 5e-06 4.4e-07 8e-06 1.5e-10 2.7e-05

1 2.6e-07 1 1 1 1 2.7e-05

Significance table

Not significant

Significant

Fig. 2. Pairwise significance analysis using Dunn’s test with Bonferroni adjustment.
Any value below 0.05 indicates a significant difference in MCC.

Figure 3 shows MCC-trend for each heuristic (top) and each machine learning
technique (bottom) across 35 source modifying commits. All machine learning
techniques have fairly low MCC values during the first 19 commits. Towards the
end, the machine learning techniques improve.

6 Discussion

6.1 Test case selection

This test case selection case study, compared the performance of eight test case
selection techniques. Four of the techniques were based on heuristics, and the
rest four were based on machine learning. For each technique three different
performance indicators were measured, namely test suite reduction, recall, and
Matthews correlation coefficient. The MCC-score was used to differentiate the
well and poorly performing techniques in a form of significance analysis using
Dunn’s test with Bonferroni adjustment (Figure 2).

Heuristics The significance analysis revealed, that Coverage and Random tech-
niques were outweighed by other techniques. Interestingly, Coverage and Random
techniques did not have a statistical difference in their performances.

The coverage based test case selection (Coverage) achieved test suite reduc-
tion of 64.7% while having a recall of 39.5% on average. The MCC scores had
no significant differences from Random technique.

The Coverage(H) technique was able to resolve part of the issues of Coverage,
providing significantly better results. It had an additional way to predict a test
failure, namely the latest pass. It selected every test case that either covered a
modification or failed in the previous commit.
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Fig. 3. MCC per method and commit. Trends for heuristics are shown in the top plot,
and for machine learning techniques in the bottom plot.

The Coverage(PH) technique was the most promising technique among the
heuristics of this paper. It used priority-based test case selection over modifica-
tion coverage and test history. It selected every test case that covered a change or
failed in the previous commit. If the selection size was still too large, it reduced
the selection by prioritizing the selected tests using failure rate, latest pass, and
modification coverage.

Machine learning The assumption was that the performance of the machine
learning models gradually increases as tests are being executed and new labeled
data samples are accumulated in the training dataset. It was interesting to know,
whether the machine learning techniques eventually reach the same performance
as the heuristics, and if so, then how long time does it take to reach a similar
performance? To investigate this, Figure 3 shows the performance of each tech-
nique over time. Indeed, every machine learning technique shows a positive trend
for the MCC scores, where the techniques performed better in the end than in
the beginning and towards the end they performed equally or better than the
heuristics. It looks like that at commit number 20 all techniques gained a positive
boost, and they perform better than in commit 19.

During the first 19 commits, the machine learning techniques had fairly low
MCC scores possibly due to the low amount of negative samples in the training
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data. Between commits 20 and 35 however, the machine learning techniques
seem to perform better. The Table 2 collects the recall and test suite reduction
values of each technique between the commits 20 and 35.

Table 2. Average recall, test suite reduction and Matthews correlation coefficient for
each test case selection technique.

Commits 1-19 Commits 20-35
Technique Recall TSR MCC Recall TSR MCC

Random 0.316 0.588 -0.010 0.489 0.528 0.003
Coverage 0.553 0.524 0.047 0.215 0.793 0.007
Coverage(H) 0.886 0.523 0.387 0.947 0.778 0.600
Coverage(PH) 0.781 0.988 0.515 0.790 0.986 0.736
LogReg 0.412 0.982 0.189 0.783 0.987 0.771
RandomForest 0.623 0.980 0.220 0.790 0.990 0.854
RandomForest(U) 0.702 0.980 0.255 0.871 0.983 0.881
XGBoost 0.570 0.980 0.203 0.755 0.990 0.798

Comparing the columns of commits 1-19 with columns of commits 20-35, the
machine learning techniques had increased their recall but also improved test
suite reduction a bit. RandomForest(U) technique outperformed Coverage(PH)
in recall with a slightly lesser test suite reduction. The rest of the techniques
also provided competitive results to Coverage(PH). Coverage(H) still remained
the technique with the highest recall.

The best performing machine learning model was an unlimited random forest
(RandomForest(U)), which achieved a test suite reduction of 98.2% and recall of
73.1% on average. Towards the end the recall was notably higher, rendering MCC
score also higher. This is a promising result for incremental learning-based test
case selection and shows that machine learning techniques have the capability
to outperform heuristics in a relatively small number of commits.

Spieker et al. [17] used reinforcement learning to select and prioritize test
cases, and their technique required 60 consecutive commits to perform equally
or better than comparison techniques. The test case selection results in this study
suggest, that approximately 20 source code modifying commits to provide sim-
ilar results with the comparison techniques. The machine learning techniques
provided similar or better MCC scores compared to the Coverage(PH) tech-
nique after 20 commits. This could indicate, that using a different model (e.g.
random forest classifier instead of multilayer perception), accumulating training
data and re-training the machine learning model in every iteration, and using
more features in addition to test histories, such as coverage information and
text similarity scores, can help to reach the saturation point faster. The results
achieved in this study, are not outright comparable to the results of Spieker et
al., because experimentation setups were different, the comparison methods were
different and the used measures were different, namely NAPFD and MCC. Also,
the results were not validated with other projects but the techniques were ap-
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plied to a single software project only. Therefore, more investigation is required
to compare results more reliably with Spieker et al. and this research.

Busjaeger and Xie [2] used supervised learning and pointwise ranking to
prioritize test cases. They were able to select 3% of the topmost test cases and
provide 75% recall. Such selection equals to 97% test suite reduction. The results
of this study are approximately similar, but the results were achieved with less
training data. The results in this study suggest, that even if initial training data
does not exist, incremental learning can eventually achieve similar performance
to supervised batch learning. The saturation point was at about 20th commit,
and then the performance was similar to [2].

In many cases, false positives and false negatives have different impacts. One
disadvantage of the MCC score is that it values false positives and false negatives
similarly, i.e. it is invariant to the changes in false positives and false negatives
when their sum is constant. Small amount of false negatives and a greater amount
of false positives is more beneficial than the contrary in test case selection. The
MCC score could be biased to penalize false negatives more than false positives,
but this is left to future research.

6.2 Threats to validity

There are many threats to validity. Firstly, all non-deterministic tests were
deleted from the test suite before the experiments. This arguably distorts the
results. However, the test history features, such as the latest pass and failure rate
described in section 2.2 are the key features to explain even the non-deterministic
test case failures.

A different test environment was used in the data collection (section 4.1)
than in the actual project. These two test environments are similar, but they
use a different amount of hardware simulation. This could have brought excessive
discrepancies in test verdicts between the test environments.

Because of separating how code (src/*) and test (test/*) commits are han-
dled, the experiment setup became complex. MCC, recall and test suite reduction
were calculated for source modifying commits only and ignored the values for
the test commit types. Using dependency coverage as a new machine learning
feature could have fixed this issue.

Code-coverage-based test case selection is not able to trace every kind of
change in the codebase. These are generally the non-instrumental parts of the
code repository, such as meta- or configuration files, but also source code. For
example, a global variable value change cannot be traced.

The coverage information produced by gcov -tool was not accurate when a
statement contains line breaks. In such situations, the first line is only detected
by gcov, and the rest of the lines are ignored. The software code contained
statements that split into multiple lines. Therefore, the coverage-based selection
techniques could have been affected.

Finally, the test case selection was applied to one software project only. This
suggests that external validity can be affected. The plan included another project
but there was not enough time.



Test Case Selection with Incremental ML 15

7 Conclusions

Because CI aims to provide rapid feedback for the developers, slow testing can
be harmful [6]. As software evolves, the test suites become large and at some
point, they can no longer be executed in a short time. The aim of this research
was to find ways to enhance or speed up testing in order to facilitate CI, and
that test case selection techniques can be used to reduce the time required for
testing. The incremental machine learning was found especially interesting for
its capability to eventually outperform comparison heuristics.

Incremental machine learning was used to predict failing tests out of the test
suite using information such as test history, code coverage, and modifications
introduced in a commit. With these predictions, the system effectively selected
a small number of test cases for execution when a new commit was made to the
software repository. The incremental machine learning-based test case selection
techniques eventually performed equally well or better than the best heuristic.
Similar results have already been suggested by Spieker et al. [17], who used
reinforcement learning and neural networks to select a subset of tests based on
test history. Their technique required 60 consecutive CI cycles to perform equally
well or better than the comparison techniques in NAPFD values. The research
reported in this pare was based on the MCC score, and the ML techniques
produced equal or better MCC scores than the best heuristic after 20 source code
modifying commits. The research supports the results of Spieker et al. and brings
in more evidence that when initial training data does not exist, machine learning
can be applied incrementally to eventually produce as good or better results as
comparison techniques. In addition to that, the results give a cautious hint that
accumulating training data and re-training the models in every iteration, using
more features such as code coverage and similarity score and using a different
classifier, e.g. random forest, can make the models learn faster and predict failing
tests correctly earlier.

Despite the positive results in favour of using machine learning in test case
selection, the results need further verification. There was a single software project
in the case study, and therefore external validity is risked. Secondly, the machine
learning models were fully trained in every commit, which can become infeasible
when the training data increases.
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