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A B S T R A C T   

Background: Rare disease diagnoses are often delayed by years, including multiple doctor visits, and potential 
imprecise or incorrect diagnoses before receiving the correct one. Machine learning could solve this problem by 
flagging potential patients that doctors should examine more closely. 
Methods: Making the prediction situation as close as possible to real situation, we tested different masking sizes. 
In the masking phase, data was removed, and it was applied to all data points following the first rare disease 
diagnosis, including the day when the diagnosis was received, and in addition applied to selected number of days 
before initial diagnosis. Performance of machine learning models were compared with positive predictive value 
(PPV), negative predictive value (NPV), prevalence PPV (pPPV), prevalence NPV (pNPV), accuracy (ACC) and 
area under the receiver operation characteristics curve (AUC). 
Results: XGBoost had PPVs over 90 % in all masking settings, and InceptionVasGloMyotides had most of the PPVs 
over 90 %, but not as consistently. When the prevalence of the diseases was considered XGBoost achieved highest 
value of 8.8 % in binary classification with 30 days masking and InceptionVasGloMyotides achieved the best 
value of 6 % in the binary classification as well, but with 2160 days and 4320 days masking. ACC were varying 
between 89 % and 98 % with XGBoost and InceptionVasGloMyotides having variation between 79 % and 94 %. 
AUC on the other hand varied between 72.6 % and 94.5 % with InceptionVasGloMyotides and for XGBoost it 
varied between 69.9 % and 96.4 %. 
Conclusions: XGBoost and InceptionVasGloMyotides could successfully predict rare diseases for patients at least 
30 days prior to initial rare disease diagnose. In addition, we managed to build performative custom deep 
learning model.   

1. Introduction 

Classification tasks with machine learning (ML) are quite common in 
medical domain and their difficulty varies between applications. Prob-
lems arise when classification is done with partial data, and in the case of 
identification of rare diseases (RD) it means, that we are not using all the 
data available. RDs are difficult to detect, and diagnosis is often delayed 
which makes the classification task challenging. Early identification 
with ML has yielded quite good results earlier with dementia research by 
So et al. [1], and when researching early identification of diseases, we 
need to examine the question of how early it is possible to identify. This 
is crucial, because in some cases early identification is not early enough 
for patients. Early identification means also that we will need to work 

with partial data as it cannot be defined as early identification if we are 
using all the possible data including the disease diagnoses. Shen et al. 
[2] similarly studied accelerated RD diagnosis with a combination of ML 
and recommender systems by collaborative filtering (CF). They achieved 
promising results by using natural language processing (NLP) and CF with 
Tanimoto coefficient similarity (TANI) and k-nearest neighbor (KNN) al-
gorithm. Despite that, CF has weaknesses i.e., sparse data and scalabil-
ity. Since RD data is by definition sparse and there is a future need for 
scalable models that performs well with current diseases and can be 
expanded with other diseases, we decided to combine three somewhat 
related inflammatory disease groups not only into disease specific but 
also into a binary model. Binary model studies the likelihood of an in-
dividual to have any of the studied vasculitides, myositides and 
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glomerulonephritides diseases. 
RDs are commonly defined in Europe as diseases with population 

prevalence less than 5 individuals in 10 000, and they are frequently 
difficult to diagnose, severe, systemic or one organ diseases. They 
commonly lead to so-called diagnostic odysseys with multiple evalua-
tions, imaging studies and laboratory tests. In Australian adults, about 
21 % of respondents informed that they had to wait the diagnosis of a RD 
for 1–5 years, 22 % waited for 5–10 years and about 10 % had to wait for 
correct diagnosis more than 20 years. About 66 % underwent three or 
more doctor visits [3]. In an Australian survey on children, parents re-
ported that 42 % respondents had to visit 3–5, 17 % 6–10, and 11 % 
more than 10 different physicians. Of respondents, 60 % reported that 
after symptom onset, correct diagnosis was achieved within one year, 
32 % after 1–3 years, and 8 % for more than 3 years [4]. Similar results 
have been reported from the United States of America where on average 
receiving diagnosis took 7.6 years, while in the United Kingdom this 
took on average 5.6 years. During the diagnostic process, patients 
experienced 8 doctor visits, and received 2–3 misdiagnoses [5]. Diffi-
culties in diagnosing RD result in delayed and inadequate or even 
harmful clinical management. Shortening and ending such odysseys 
could potentially result in clinical, psychosocial, and economic benefits 
to patients, their families, healthcare, and society [6,7]. 

Vasculitides, myositides and glomerulonephritides, for most part 
non-familial inflammatory diseases affecting muscles, vessels, and kid-
neys, belong to RD. Common symptoms for myositides are muscle 
weakness and raised skeletal muscle enzymes. There are disease subsets 
for myositides, which are polymyositis (PM), sporadic inclusion body 
myositis (sIBM), dermatomyositis (DM) and immune-mediated necro-
tizing myopathy [8]. Prevalence rates for PM and DM ranges between 1 
and 9 in 100,000 and IBM is rarer and prevalence for it ranges 1–9 in 1, 
000,000 [9–11]. Vasculitides’ non-specific symptoms can be fever, 
weight loss and myalgia, and in addition there are specific symptoms or 
combination of symptoms that are specific for different subgroups. As 
subgroups there are large vessel vasculitis (LVV), medium vessel 
vasculitis (MVV) and small vessel vasculitis (SVV) [12]. Prevalence 
average of vasculitides is 1–9 in 100,000 people [13]. Glomerulone-
phritides’ common symptoms are fluid retention and hypertension, but 
there are some non-specific symptoms which are similar with vasculit-
ides such as fever and weight loss. There are few different etiological 
subgroups such as immune-complex glomerulonephritides and 
pausi-immune glomerulonephritides [12]. Prevalence of the glomeru-
lonephritides is 1.6 in 100,000 people, but this varies between countries 
[14]. 

In a pre-study assessment in Helsinki University Hospital (HUS), solely 
providing highly specialized tertiary care to over 1.6 million in-
habitants, these diseases appeared to be the most common RD groups 
with significant delay in reaching the diagnosis. In addition, during their 
disease courses, demand for resource-intensive supportive therapies 
increased significantly. Research of this magnitude has not been done 
earlier when comparing the amount of data that can be used and having 
an objective of early identification of these specific diseases. 

In healthcare systems with electronic patient records (EPR), ML and 
diagnosis decision support systems (DDSS) i.e., Rare Disease Auxiliar 
Diagnosis (RDAD) system introduced by Jia et al. [15] could potentially 
offer healthcare professionals an invaluable tool for early identification 
of RD. While using any ML applications in the healthcare is still un-
common, interest towards DDSS and other ML applications is increasing 
as capabilities of ML and artificial intelligence (AI) evolve. Residual neural 
networks (ResNet) were introduced by He et al. [16]. ResNet with the 
InceptionTime model showed very good results in the field of image 
classification problems and time series problems [17]. XGBoost is a 
state-of-the-art tree boosting method which has shown its capabilities 
with sparse data [18]. 

At an earlier stage, we developed InceptionVasGloMyotides model 
and transformed our dataset to be compatible with XGBoost. We 
established that the InceptionVasGloMyotides model was competitive 

against XGBoost in the early identification of RDs, especially in longer 
prediction periods. In addition to these, we did test ResNet and Incep-
tionTime models, but their resolution did not perform at sufficient 
levels, which was presumable caused by the sparseness of the data and 
pooling method [19]. Here, we novelly compare XBoost with an 
InceptionVasGloMyotides model customized for RD diagnostics. 

In Section 2, we describe InceptionVasGloMyotides and XGBoost. 
Then in Section 3, we will define the experimental setup. This includes 
description of data, preprocessing and used performance measures. 
Section 4 covers the results and in Section 5 we compare our paper 
against RD detection paper and paper with similar dataset format as 
ours. Finally, Section 6 concludes our paper. 

2. Methods 

2.1. InceptionVasGloMyotides 

InceptionVasGloMyotides is Inception type ResNet which is a type of 
convolution neural network (CNN) model. Difference between ResNets 
and conventional CNNs is that ResNet has skip connections that allows it 
to skip layers. Fig. 1 describes the architecture of InceptionVasGlo-
Myotides, where different layers and blocks are shown. Different blocks 
are opened in Figs. 2 and 3. 

Data normalization is done, because data sources are different and 
different bioinformatic tests present the results in different scale. 
Normalization is scaled between 0 and 1. For normalization we used 
normalization layer, because it uses mean and variance of individual 
features, and calculation of those is used only training set. 

For a normalization layer we calculate mean and variance of each 
feature in training data while preprocessing the data, which will be used 
to normalize data in training and validating. Normalization is scaled 
between − 1 and 1, making it 0 centered. Max pooling layer with pool 
size and strides of 10×1 reduces the patient timeline of 100 years to 10 
years where each row represents max value from 10-day interval. 
Reducing is done, because we are aware of the sparseness of the data and 
can assume that the same test is not done very often. Then there are 
convolution blocks and Inception residual Blocks and convolution layer. 
After these there is a max pooling layer to get max values of the features 
and a flattening layer makes it vector format with length of 3930, and as 
output layer we used Dense layer. Last layer is the dropout layer where 
rate is 0.01. 

Convolution block in Fig. 2 contains two convolution layers: 10×1 
and 1 × 10. Both convolution layers have four output filters, strides of 1 
× 1 and padding set to the same, which means that output size is the 
same as input size. As activation function, we used Hyperbolic Tangent 
(Tanh). Difference of convolution block and Inception residual block in 
Fig. 3 is that Inception residual block has skip connection that allows the 
skipping of two convolution layers. Comparing to conventional ResNet 
models, they use quite often global average pooling method and rectified 
linear unit (ReLU) as activation function. These were not suitable as we 
have so sparse data that most of the data points have 0 values, and the 
global average would be always affected by those. ReLU on the other 
hand would cause our negative values to get 0 value even though they 
might be as relevant as positive values and we would lose important 
information. 

We used as optimizer Adaptive moment estimation (Adam) and as a 
loss function, we used categorical cross entropy (CCE) and as other metrics 
accuracy (ACC). We chose to keep Adam’s hyperparameters in default 
values in learning rate, beta 1, beta 2 and epsilon. 

2.2. XGBoost 

Chen and Guestrin [18] introduced the tree boosting system called 
XGBoost which is a scalable and highly performative with sparse data. In 
addition to this, XGBoost does not consume resource as much as CNNs. 

XGBoost does not support a single patient’s data as matrix, we 
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calculated minimum, maximum, mean and count for each feature. This 
results to vector of 15,720 features. We changed default hyper-
parameters of maximum depth (10), learning rate (0.05), L1 regulari-
zation (0.1), number of parallel trees constructed during each iteration 
(3) and learning task (multi class softprob). L1 reqularization is called 
lasso regression which adds penalty to the loss function. Hyperparameters 
were chosen by testing with grid search. 

2.3. Research environment 

In our setup, where we utilized two NVIDIA Tesla V100s graphics 
processing units, XGBoost’s training required approximately one hour. 
InceptionVasGloMyotides model required approximately two hours for 
one epoch and maximum epochs we tested was 25 which took more than 
2 days to finish [19]. 

2.4. Data 

To secure enough data for ML approaches, we chose the above- 
mentioned, largest RD groups for further study, focusing on an imbal-
anced dataset of 114,897 patients, consisting of 100 000 randomly 
selected control objects, 2 919 vasculitiides (ICD-10: M30.0, M30.1, 
M31.3, M31.4, M31.7, D69.0, M36.4*D69.0 or N08.2*D69.0) patients, 
942 myositides (ICD-10: M60.0, M60.1, M60.2, M60.8, M33.0, M33.1, 
M33.2, J99.1*M33.9, J99.1*M33.9, G72.41) patients and 11 036 
glomerulonephritides (ICD-10: N0[0–9].*) patients. Then dataset is 
cleaned from null patients that do not have laboratory samples before 
structured RD diagnosis. This process can be seen in epidemical flow-
chart Fig. 4. Data for each patient and control include 1965 features of 
bioinformatics and 1965 features of numerical knowledge when bio-
informatic value is out of range. In total, there were 3930 overall fea-
tures from birth to current age or death. The most common features are 
blood hemoglobin, blood leukocyte counts, red blood cell counts and he-
matocrit. In the initial assessment, available data appeared sparse, but 
contained highly aberrant data on patient paths of studied patients 
versus controls. 

2.5. Preprocessing 

Data transformation follows the principles of tidy data, where col-
umns are variables, rows are observations and cells contain a single value 
[20]. Our raw data format is long, which means that it needs to be 
pivoted to the wide format. At this point we needed to change the 
timeline from dates to number of days in the individual patients’ life, e. 
g., date one is date of birth and as hard code the maximum day of 36, 
500, becoming an artificially produced death day, if the patient did not 
decease before that. 

Data masking happens in two ways in our research. The first masking 
technique is pseudonymization of sensitive information of patients. 
Pseudonymization process begins with a unique social security number 
(SSN). New SSNs are generated for patients, which makes it possible to 
combine data sources. The second technique is nulling, which removes 
the data completely and it is used, e.g., for first and last name, because 
we do not need that information, or to hide values to make predictions 
realistic with forced unavailability of the eventual correct RD diagnosis. 
Hiding values in this context means that we are nulling all the values 
after the timepoint of the day of correct disease resulting in variable 
mask sizes between 30 and 4320 days before the diagnoses. 

For InceptionVasGloMyotides data normalization was not performed 
during preprocessing. Only the mean and variance were calculated in 
this step. These values were used in the ResNet’s normalization layer. 
However, XGBoost did include a normalization step due to the different 
data format. We split the data into a separate training, validation, and 
test sets for ResNet, and for XGBoost we had a separate training and test 

Fig. 1. Architecture of InceptionVasGloMyotides.  

Fig. 2. Inception residual block of the InceptionVasGloMyotides.  

Fig. 3. Convolution block of the InceptionVasGloMyotides.  
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sets. In all cases, validation and test set sizes were 20 % of the full data 
set, and the rest of the data were for the training set. 

2.6. Performance measures 

Model performances were evaluated with multiple different metrics. 
Basic metrics True Positive (TP), False Positive (FP), True Negative (TN), 

Fig. 4. Flowchart of epidemical design.  
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and False Negative (FN) were used in every formula. True positive ratio 
(TPR) describes the ratio of TPs over positives and true negative rate 
(TNR) describes the ratio of TNs over negatives, and False positive ratio 
(FPR) describes the ratio of FPs over negatives and False negative ratio 
(FNR) describe FNs over positives (1)-(4). Area under the receiver oper-
ating characteristic curve (AUC) value should vary between 50 and 100 %, 
with higher values implicating better performance. This value was 
received from the Receiver Operating Characteristic (ROC) curve which 
described the ratio of TPR and FPR. ACC (5) simply describes the ratio of 
correct classification over all classified objects. 

TPR =
TP

TP + FN
× 100 % (1)  

FPR =
FP

FP + TN
× 100 % (2)  

TNR =
TN

TN + FP
× 100 % (3)  

FNR =
FN

FN + TP
× 100 % (4)  

ACC =
TP + TN

TP + TN + FP + FN
× 100 % (5) 

Positive predictive value (PPV) described the ratio of patients truly 
diagnosed as positive to all those who had a positive algorithm result 
(6). Negative predictive value (NPV) described the ratio of those truly 
negative to those who had a negative algorithm result (7). The formulas 
which considered disease prevalence for PPV and NPV were designed as 
pPPV (8) and pNPV (9). Considering population prevalence gives a more 
exact estimate of the likelihood of finding the correct diagnosis [19]. 
Threshold describes where the PPVs and NPVs were reached, and it 
informed us what should be used as the baseline of prediction certainty 
to classify patient with RD. 

PPV =
TP

TP + FP
× 100 % (6)  

NPV =
TN

TN + FN
× 100 % (7)  

pPPV =
TPR × prevalence

TPR × prevalence + (1 − TNR) × (1 − prevalence)
× 100 % (8)  

pNPV =
TNR × (1 − prevalence)

(1 − TPR) × prevalence + TNR × (1 − prevalence)
× 100 %

(9)  

3. Results 

With InceptionVasGloMyotides model the highest sensitivities for 
binary classification (i.e., patient had at least one of the studied dis-
eases), vasculitides and glomerulonephritides were reached in 30-days 
masking shown in Table 1. Myosisitides obtained their highest TPR 
when 4320-day masking was applied. Binary TNR achieved its highest 
value in 4320-day masking, as did vasculitides and glomerulonephrit-
ides. However, the highest TNR for myositides was reached with 2160- 
day masking. In addition to these masking sizes, there were tests with 0-, 
120-, 360-, 720-, 1440-, 2880-days masking. 

Table 2 lists various PPVs and corresponding NPVs versus specific 
thresholds. Notably, when prevalence was not considered, the highest 
PPVs in most cases were in 4230-days masking, where binary classifi-
cation had 99.7 %, vasculitides had 90.0 % and glomerulonephritides 
had 98.1 %. Myositides did not reach PPV above 90 %. The highest NPVs 
did not reach above 90 % in the most cases, but for myositides it was 
93.2 % in 2160-day masking, and vasculitides reached a decent 85.0 % 
in the 4320-days masking. Thresholds were lowest in the 30-days 

masking, excluding binary classification in the 4320-days masking. 
When the prevalence was considered for 2160 days, masking had the 
highest scores, where binary classification pPPV was 6 %, vasculitides 
was 0.2 % and myositides was 0.3 %, and for glomerulonephritides the 
highest pPPV was of 0.5 % in the 30-days masking [19]. 

Table 3 shows similar results for XGBoost as InceptionVasGloMyo-
tides reached. TPR had the highest probabilities for binary classification, 
and for mysitides and glomerulonephritides in the 30-days masking. The 
highest value for vasculitides was in the 2160-days masking. The highest 
TNR probabilities for binary classification, and for myositides and 
glomerulonephritides, were in the 30-days masking. Vasculitides had 
the highest value in the 2160-days masking. 

Table 4 shows that binary classification and individual disease 
classifications reached PPVs above 96 % in all high score cases. Vascu-
litides had 96.7 % and myositides 97.5 % in 4320-days masking. 
Glomerulonephritides had 97.1 % in 2160 days masking and binary 
classification with 99.8 % was in 30 days masking. Majority of NPVs 
were under 90 % except for myositides, reaching 96.5 % in 30-days 
masking. Vasculitis had reached a high value of 89.0 % in 2160-days 
masking. All the highest pPPVs and pNPVs calculated were in the 30- 
days masking. The highest pPPV for binary classification was 8.8 %, 
vasculitides had pPPV of 0.6 %, myositides reached 1 % and glomeru-
lonephritides had 0.5 %, and NPVS all over 99.98 % [19]. 

4. Related works 

Compared to other published DDSS and ML applications in single 
RDs, our binary approach was approximately comparable or better, 
potentially due to analysis of higher numbers of affected. Jia et al. [15] 
developed the RDAD system, an ML system to support phenotype-based 
RD diagnostics. They showed PPV values reaching 99 % with up to 95 % 
TPR. If for comparison our PPVs were calculated by using a 
non-prevalence-corrected version, we reached roughly equal PPV results 
to RDAD’s phenotype based rare diseases similarity (PICS) model for 
example when using the InceptionVasGloMyotides’s 4320 days masking 
model in glomerulonephritides (98.1 %). At the same time, our model 
reached a higher TPR (88% vs. 62 %). In addition, in the 30 days 
masking model, our approach reached roughly similarly high PPV (99.6 
%) and TPR (92.5 %) values [15]. Compared with other CNN models in 
clearly more common diseases with similar data construction, the re-
ported AUC scores average between 70 and 75 % in Chronic Obstructive 
Pulmonary Disease (COPD) and Congestive Heart Failure (CHF). AUC in 
our InceptionVasGloMyotides model averaged around 80 %, reaching 
92 % with binary classification [21]. Thus, when scanning for rare 
events, complex diseases may need lower numbers of known patients 
than if more common diseases were scanned. 

Compared to Yoo et al. [22] conjunctival melanoma detection, which 
is very different task than ours, but it is having the same objective of 

Table 1 
TPR, TNR, AUC, and ACC of the InceptionVasGloMyotides (%).   

TPR TNR AUC ACC 

30 days masking 
Binary 92.5 63.7 88.7 82 
Vasculitides 82.5 89.7 72.6 88 
Myositides 85.1 78.9 77.3 79 
Glomerulonephritides 89.4 84.3 84.7 86 
2160 days masking 
Binary 89.8 80.2 93.0 86 
Vasculitides 79.3 95.3 76.3 93 
Myositides 77.1 89.3 78.5 88 
Glomerulonephritides 86.9 92.8 87.1 90 
4320 days masking 
Binary 91.5 81.0 94.5 88 
Vasculitides 78.9 96.4 76.3 94 
Myositides 87.1 88.3 82.2 88 
Glomerulonephritides 88.0 94.0 87.1 91  
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improving early identification. They accomplished ACC of 81.0 % with 
MobileNetV2 multiclass classification which would compare to our in-
dividual disease ACCs varying from 79 % to 94 % and averaging in 82.6 
% across all the masking’s with InceptionVasGloMyotides deep learning 
model. XGBoost ACCs varies between 90 % and 98 %, and averages in 
94.3 %. AUC in the other hand falls behind in both our models compared 
to the MobileNetV2. Binary classification also falls behind with both 
models in all results that can be compared against MobileNetV2. 

5. Discussion & conclusions 

In this study, we demonstrated that our binary classification model 

outperformed all disease group specific classifications. Binary classifi-
cation strategy in related inflammatory diseases could thus potentially 
be used in expedited AI-assisted diagnostic consultations. Classification 
of individual diseases also reached competitive levels, as XGBoost 
reached PPVs over 90 %. Also, InceptionVasGloMyotides reached in 
most of the PPVs values above 90 %, but not as consistently as XGBoost. 
NPV results were similar and above binary classification NPVs regard-
less of whether XGBoost or InceptionVasGloMyotides was used. In 
conclusion, simultaneous scanning of complex, related inflammatory 
diseases for expedited assessment by devoted specialists seems poten-
tially feasible. 

A narrower masking (30 days) in general resulted in better TPR 
values than other retrospective masking strategies. TPR of glomerulo-
nephritides was higher than myositides and vasculitides suggesting that 
glomerulonephritides’ disease progression may be more disease specific 
and in the future easier to pinpoint by DDSS. The fact that all masking 
strategies, regardless of their lengths, reached surprisingly high sensi-
tivities suggests that the natural progression of all these diseases was 
slow and clinically insidious, while there may be differences between 
the disease groups in when they come clinically apparent by the used 
model. 

Interestingly, when we compared the state-of-the-art XGBoost to 
InceptionVasGloMyotides, the latter model performed better with more 
extensive data masking, while XGBoost was better with less masking. 
This suggests that InceptionVasGloMyotides could in future become 
more effective in earlier discovery of an ongoing disease process. 
However, any differences in results were judged to be rather marginal, 
while InceptionVasGloMyotides model appeared very competitive 
against XGBoost. The biggest known difference is the required training 
time: XGBoost does not require much computational power. 

A weakness in our work was to choose optimization of PPVs (over 

Table 2 
Highest PPV and pPPV, and NPV and pNPV in the same threshold received with InceptionVasGloMyotides (%).   

PPV NPV Threshold pPPV pNPV Threshold 

30 days masking 
Binary 99.6 37.9 83.7 4 99.985 99 
Vasculitides 76.7 77.9 82.2 0.1 99.99 86 
Myositides 50.0 92.5 89.6 0.2 99.998 90 
Glomerulonephritides 93.3 48.4 91.6 0.5 99.995 90 
2160 days masking 
Binary 99.6 39.1 95.5 6 99.987 99 
Vasculitides 78.8 84.6 92.6 0.2 99.99 97 
Myositides 80.0 93.2 98.9 0.3 99.998 94 
Glomerulonephritides 97.3 48.6 99.3 0.3 99.995 98 
4320 days masking 
Binary 99.7 39.8 77.4 6 99.986 99 
Vasculitides 90.0 85.0 99.5 0.1 99.99 72 
Myositides 50.0 92.5 96.4 0.05 99.998 77 
Glomerulonephritides 98.1 51.2 98.9 0.4 99.995 88  

Table 3 
TPR, TNR, AUC, and ACC of the XGBoost (%).   

TPR TNR AUC ACC 

30 days masking 
Binary 91.3 89.5 96.4 91 
Vasculitides 76.7 98.4 80.8 95 
Myositides 66.7 99.7 75.7 98 
Glomerulonephritides 91.6 91.0 89.6 91 
2160 days masking 
Binary 91.1 89.0 96.4 90 
Vasculitides 79.5 98.6 82.1 96 
Myositides 65.6 99.4 69.9 97 
Glomerulonephritides 91.2 90.6 90.0 91 
4320 days masking 
Binary 90.2 87.9 96.3 89 
Vasculitides 75.2 98.2 79.9 94 
Myositides 61.7 99.5 71.2 97 
Glomerulonephritides 91.0 89.8 89.5 90  

Table 4 
Highest PPV and pPPV, and NPV and pNPV in the same threshold received with XGBoost (%).   

PPV NPV Threshold pPPV pNPV Threshold 

30 days masking       
Binary 99.8 39.4 98.4 8.8 99.989 99 
Vasculitides 92.3 86.7 96.6 0.6 99.99 97 
Myositides 96.2 96.5 93.0 1 99.999 93 
Glomerulonephritides 94.7 44.9 99.6 0.5 99.996 99 
2160 days masking       
Binary 99.7 39.3 98.8 4 99.987 99 
Vasculitides 96.3 89.0 96.6 0.2 99.99 98 
Myositides 94.7 95.3 96.9 1 99.999 92 
Glomerulonephritides 97.1 47.3 99.3 0.2 99.995 99 
4320 days masking       
Binary 99.7 39.5 98.3 6 99.987 99 
Vasculitides 96.7 85.2 99.0 0.1 99.99 98 
Myositides 97.5 95.1 93.8 1 99.999 92 
Glomerulonephritides 96.2 46.6 99.8 0.2 99.995 99  

R. Ryyppö et al.                                                                                                                                                                                                                                 



Computer Methods and Programs in Biomedicine 243 (2024) 107917

7

NPVs), instead of selecting the best possible means for both variables. 
Such optimization by lowering PPVs would result in increasing NPVs, 
which here reached less satisfactory results. In designing DDSS during 
prospective studies, one will always have to balance TPR vs. TNR, i.e., in 
effect to decide ethically, which one is more desirable and causes less net 
inefficiency, false alerts, unnecessary clinical procedures while opti-
mizing the net decrease in disease-specific human suffering. In addition 
to this we have data limitations, where we are depending on structured 
diagnosis data that have some patients who have received the RD 
diagnosis before the source systems are taken to use. From these situa-
tions we have learned that patient journals can have in some cases in-
dications that RD disease has been diagnosed earlier than it is in 
structured data. Also, there are patients outside from HUS area, which 
means that they came with doctor’s referral and do not have sufficient 
data for prediction. These issues have been tackled with masking of the 
data because both cases have first RD diagnosis is very early and these 
patients do not have many laboratory results before that diagnosis date, 
therefore it cleans the most of these cases out of the data. 

Needed future studies include developing, configuring, and honing 
these models to reach performance improvements. The used 2-step 
classification (binary and disease specific) seems enticing to introduce 
into more widespread use, as here binary classification seemed very 
accurate, and could be employed as the first level to filter RD patients 
from other patients. In the second level, one could classify the most 
probable RD if other criteria will be met or give information of the 
likelihood of various RDs. Also, one possible research line in the future 
could be few-shot learning, which have been proven effective with 
ResNet-style network in the rare fungus disease diagnosis [23]. 
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[19] R. Ryyppö, Residual Neural Network in the Identification of Rare Diseases, 
Tampere University, 2021. 

[20] H. Wickham, Tidy data, J. Stat. Softw. 59 (2014) 1–23. 
[21] Y. Cheng, F. Wang, P. Zhang, J. Hu, Risk prediction with electronic health records: 

a deep learning approach, in: Proceedings of the 16th SIAM International 
Conference on Data Mining 2016, Society for Industrial and Applied Mathematics, 
2016, pp. 432–440, https://doi.org/10.1137/1.9781611974348.49. 

[22] T.K. Yoo, J.Y. Choi, H.K. Kim, I.H. Ryu, J.K. Kim, Adopting low-shot deep learning 
for the detection of conjunctival melanoma using ocular surface images, Comput. 
Methods Programs Biomed. 205 (2021), https://doi.org/10.1016/j. 
cmpb.2021.106086. 

[23] M. Gao, H. Jiang, L. Zhu, Z. Jiang, M. Geng, Q. Ren, Y. Lu, Discriminative ensemble 
meta-learning with co-regularization for rare fundus diseases diagnosis, Med. 
Image Anal. 89 (2023), https://doi.org/10.1016/j.media.2023.102884. 
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