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Nonlinear optics plays a critical role in various fields ranging from laser manufacturing to biomed-

ical imaging. However, due to the inherently weak nonlinear response of materials, achieving

substantial nonlinear responses often requires long interaction lengths and phase-matching tech-

niques. This presents a significant challenge when attempting to implement nonlinear optics in

small volumes. As a result, it is necessary to develop creative and specialized approaches to

overcome the constraints imposed by weak nonlinear effects.

One way to address the low nonlinear conversion efficiency in small dimensions is through the

use of artificial structures called metamaterials. Plasmonic metamaterials are of particular interest

in nanoscale nonlinear optics because they can exhibit collective responses called surface lattice

resonances (SLRs), which produce strong local fields that can enhance nonlinear effects. Unfortu-

nately, the conversion efficiencies of plasmonic metamaterials are not yet as high as those of con-

ventional nonlinear materials. To improve the performance of nonlinear optics at the nanoscale,

researchers need to explore new metamaterial designs and techniques.

Research on nonlinear plasmonic metamaterials in recent years has mainly centered on mate-

rials showcasing a single SLR at either the pump or signal wavelength of a nonlinear process.

Our work delves into enhancing the conversion efficiency of second harmonic generation (SHG)

through the use of multiresonant metamaterials that are resonant at both the signal and pump

wavelengths.

In this Thesis, a thorough investigation is conducted on two metasurfaces that demonstrate mul-

tiresonant behavior. These metasurfaces consist of a rectangular arrangement of aluminum

nanoparticles on a glass substrate. We first measured angle-resolved optical transmission spec-

tra to show the position and dispersion of the SLRs in our samples. This way, we are able to

extract information about the pump wavelengths and incident angles that allow for multiresonant

behavior. Next, we measured the variation in second-harmonic emission of the metasurfaces

with respect to both pump wavelength and incident angle. By comparing the results obtained un-

der multiresonant and non-multiresonant conditions, we can then understand how multiresonant

metasurfaces affect the emission of SHG.

The results presented in this work provide strong evidence for the effectiveness of multiresonant

metamaterials in nonlinear optics. Our preliminary linear experiments demonstrated that the SLRs

in our samples had an angle-dependent behavior that was in excellent agreement with different

modeling methods. Furthermore, the nonlinear experiments illustrated SHG that reached its max-

imum value when the sample exhibited multiresonant behavior. By tilting the samples, we were

able to obtain a roughly 10-fold enhancement of SHG at multiple wavelength-angle combinations.

This approach has provided a new way to tailor the properties of metamaterials and could lead to

the development of flat, tunable nonlinear devices.

Keywords: nonlinear optics, second-harmonic generation, surface lattice resonance, metasurface.
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1 INTRODUCTION

Nonlinear optics is a subfield of modern optics that studies a rich diversity of nonlinear

effects associated with the interaction between high-intensity light and matter [1]. In

nonlinear processes, light induces a material polarization that depends superlinearly on

the strength of the fundamental electric field, leading to exciting effects such as frequency

conversion and supercontinuum generation [2]. Achieving such a significant modification

from the typical linear optical properties of a material through nonlinear optics generally

requires the use of high-power laser light [3]. Consequently, many pioneering works in

nonlinear optics occurred in the early 1960s [4–7], following the invention of the first ruby

laser [8]. Since its experimental discovery, nonlinear optics has quickly become essential

for a wide range of applications, including spectroscopy [9, 10], telecommunications and

all-optical data processing [11] and quantum information technologies [12].

With the rise of integrated photonics, there has been a growing demand for nonlinear

components that are efficient, miniaturized, and cost-effective [13–15]. Continuous in-

novations in nanofabrication techniques are addressing this need, facilitating the mass

production of compact devices [16, 17]. Despite these technological advancements, the

inherent weakness of nonlinear processes presents hurdles in further downsizing nonlin-

ear devices. The attainment of practical conversion efficiencies often requires long inter-

action lengths and phase-matching techniques [3]. To meet these demands, nonlinear

materials of considerable size like bulky photonic crystals or elongated waveguides are

employed [1]. Although these materials excel in producing substantial nonlinear signals,

especially when situated within optical resonators [18], incorporating them into nanopho-

tonic systems, where the optical near-fields interact with nonlinear media over just a few

wavelengths or even at subwavelength scales, poses a significant challenge.

Plasmonic metasurfaces consisting of metallic nanostructures have emerged as a viable

option for achieving efficient nanoscale nonlinear optics [19]. When a metasurface con-

taining an array of coupled plasmonic nanoparticles is exposed to light, the resulting inter-

action can create collective resonances known as surface lattice resonances (SLRs) [20].

These SLRs are of broad scientific interest due to their considerably narrow linewidths,

which indicate strong local-field enhancements at the metasurface interface [21]. In the

context of nonlinear optics, where light–matter interactions are governed by higher pow-

ers of the fields, the potential to increase local fields by utilizing SLRs of metasurfaces is

particularly relevant [22, 23]. Despite their enormous potential, the conversion efficien-

cies of metamaterials still remain lower compared to conventional nonlinear materials. To
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enhance the performance of nonlinear optics at the nanoscale, it is crucial for researchers

to investigate novel metamaterial designs and methods.

Prior research of plasmonic metamaterials has predominantly focused on exploiting SLRs

at either the pump wavelength [24–26] or, in rare cases, the signal wavelength of a nonlin-

ear process [27]. However, to enhance the conversion efficiency of nonlinear plasmonic

metamaterials, we propose an alternative approach. Specifically, we propose the uti-

lization of multiresonant metasurfaces, which possess the capability of simultaneously

containing SLRs at both the pump and signal wavelengths. By doing so, we aim to am-

plify the overall nonlinear response of the metamaterial by increasing the intensity of the

local fields at two different wavelengths.

This Thesis investigates the impact of multiresonant operation of SLRs on second-

harmonic generation (SHG), a second-order nonlinear process. SHG occurs when two

photons, possessing the same frequency, combine to produce a single photon with twice

the original frequency [4]. The intensity of SHG is sensitive to variations in the local field

due to its fourth power dependence on the input field amplitude. Therefore, the use of

multiresonant samples is expected to significantly influence this process.

Our research methodology consists of two primary stages. The first stage is devoted

to acquiring a thorough understanding of the dispersive properties of our samples. To

achieve this, we obtain angle-resolved linear transmission spectra from the metamateri-

als. This is a crucial step since our samples may not demonstrate multiresonant behavior

under normal incidence. Furthermore, we aim to show multiple instances of multires-

onant behaviour under different conditions to ensure the reliability and consistency of

our research findings. By analyzing the spectra, we can identify the set of angles and

wavelengths that facilitate multiresonant behavior. In the second stage, we investigate

the impact of multiple SLRs on SHG, utilizing our recently acquired understanding of

the conditions that lead to multiresonant behavior. To accomplish this, we will measure

angle-resolved SHG emissions from the samples as a function of pump wavelength and

analyze the results by examining the differences in the nonlinear response of the samples

when the samples exhibit multiresonant behavior and when they do not.

This Thesis consists of five chapters that aim to provide an in-depth understanding of

multiresonant metamaterials in the context of nonlinear optics. Chapter 1 serves as an

introduction to this Thesis and it discusses the motivation behind the research and the

goals that are to be achieved. Chapter 2 presents a comprehensive overview of resonant

metasurfaces, with a special focus on SLRs and their associated dispersion. To study

the dispersion relation of SLRs, three different modeling tools are employed: the empty-

lattice approximation (ELA), the lattice-sum approach (LSA), and the finite-difference

time-domain method (FDTD). This Chapter also delves into second-order nonlinear pro-

cesses and discusses how SLRs can be leveraged to enhance their performance. Chap-

ter 3 describes the angle-resolved linear and nonlinear experimental setups used in the

study. This Chapter also provides detailed information on the samples used in the exper-

iments, including their fabrication process. Chapter 4 presents the experimental results
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from the linear and nonlinear setups. To conclude the Thesis, Chapter 5 provides a sum-

mary of the main findings and implications of the study. It also discusses future research

directions that could build on the work presented in this Thesis.
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2 THEORETICAL BACKGROUND OF PERIODIC

STRUCTURES

In the study of metasurfaces, assuming perfect periodicity and translational invariance

is necessary for the formulation of simplistic models. While these assumptions aid our

analysis and predictions, it’s important to note that actual metasurfaces comprise a large,

finite number of nanoparticles arranged in a regular pattern. This Chapter opens by in-

troducing the mathematical tools that are essential for describing the structure of lattices.

This foundational knowledge sets the stage for a more detailed exploration of metasur-

faces and the resonances they exhibit. In the section dedicated to SLRs, we offer an

in-depth explanation of determining their spectral location and dispersion, utilizing ELA,

LSA, and FDTD methods. As this Chapter progresses, the focus shifts to nonlinear optics,

specifically how the dispersive properties of SLRs can be leveraged to induce multireso-

nant behavior in metamaterials, thereby potentially enhancing nonlinear responses.

2.1 Bravais and Reciprocal Lattice

A Bravais lattice or direct lattice is a collection of regularly spaced points in 3D-space

whose positions are determined by multiples of three primitive lattice vectors a1, a2, and

a3 [28]. In mathematical terms, we can express the position vector R of any point in the

lattice as

R = oa1 + pa2 + qa3, o, p, q ∈ Z (2.1)

where Z is the set of integers. A simplified 2D-Bravais lattice is illustrated in Figure 2.1(a).

The fundamental building block of the Bravais lattice is the primitive unit cell, which is a

region of space that can be translated through all the vectors of the lattice without overlap-

ping or leaving gaps. A primitive unit cell is designed to hold only one lattice point, but if

there is more than one lattice point, the unit cell is considered non-primitive. A commonly

used primitive unit cell is the Wigner–Seitz cell, which includes all of the space closer to a

particular lattice point than to any other point in the lattice. The shaded-in areas in Figure

2.1 mark the Wigner–Seitz cells for each lattice.
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(a) (b)

Figure 2.1. Schematic representation of (a) a two-dimensional rectangular Bravais lattice

with primitive lattice vectors a1 and a2 and the (b) reciprocal lattice with primitive reciprocal

lattice vectors b1 and b2. The shaded areas in both lattices depict the Wigner–Seitz cells

for each space. In the reciprocal lattice, the Wigner–Seitz cell is shown with various points

of symmetry marked (Γ, X, Y ).

When we perform a Fourier transform of the Bravais lattice, we generate a reciprocal

lattice. This reciprocal lattice exists in the spatial frequency space referred to as k-space,

where k represents the wavevector. Figure 2.1(b) illustrates this transformation for a

rectangular Bravais lattice. Any point in the reciprocal lattice can be expressed with the

momentum vector G defined by

G = ib1 + jb2 + kb3, i, j, k ∈ Z (2.2)

where the vectors b1, b2 and b3 represent the primitive reciprocal lattice vectors. The

primitive reciprocal lattice vectors can be constructed based on the primitive Bravais lat-

tice vectors by

b1 = 2π
a2 × a3

a1 · (a2 × a3)
, (2.3)

b2 = 2π
a3 × a1

a1 · (a2 × a3)
, (2.4)

b3 = 2π
a1 × a2

a1 · (a2 × a3)
. (2.5)

From this, one can deduce the simple yet helpful property

al · bm = 2πδlm. (2.6)

Here, the Kronecker’s delta, denoted by δlm, takes a value of 1 when l = m, and a value

of 0 for all other cases. This result is derived from two different simplifications. First,

the cross product of two vectors produces another vector perpendicular to both original
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vectors. Thus, for l ̸= m, the dot product between this resultant vector and one of the

original vectors is zero. On the other hand, when l = m, the cyclic nature of the scalar

triple product, depicted by the equation a1 · (a2 × a3) = a2 · (a3 × a1) = a3 · (a1 × a2),

allows us to simplify the dot product in Equation 2.6 directly to 2π.

The reciprocal lattice is a powerful tool used to study diffraction from an ordered struc-

ture such as a periodical metasurface. It offers an accurate and straightforward way

to describe most structural properties by taking advantage of the material’s periodicity.

For instance, researchers typically focus on the First Brillouin Zone (FBZ), which is the

Wigner–Seitz cell in the reciprocal lattice closest to the origin (k=0), instead of analyzing

the entire reciprocal space [29]. The reason for this is that any value of k that lies outside

the FBZ has a corresponding value within the FBZ that differs by the momentum vector

G. As a result, many structural properties of the system can be understood by studying

only the FBZ [28].

2.2 Resonant Metasurfaces

Metamaterials are a unique class of artificial materials that demonstrate physical prop-

erties not commonly found in naturally occurring materials. In the field of optics, they

are engineered to control and manipulate light by arranging subwavelength structures,

such as metallic nanoantennas or dielectric nanopillars, in a carefully designed configu-

ration. Despite the complexity of their design, metamaterials behave as homogeneous

materials with effective material properties due to the subwavelength size of the individ-

ual building blocks. The effective properties of the metamaterials are determined not only

by the composition of the constituent materials but also by the shapes and arrangements

of the subwavelength structures. By controlling the design parameters, metamaterials

can exhibit remarkable responses to light, such as optical magnetism, nanoscale phase

engineering, and negative refractive index [30–32].

Plasmonic metasurfaces, composed of metallic nanostructures arranged on a flat surface,

have been gaining a significant amount of attention in the field of nonlinear optics in

recent years [19, 24]. This interest is driven by the fact that metals possess intrinsic

nonlinear optical constants that are significantly larger than those of dielectric materials

[3]. Moreover, metal nanoparticles exhibit collective oscillations of conduction electrons,

resulting in strong local electromagnetic fields around the nanoparticles. This inherently

enhances the interaction between light and matter, thereby offering an alternative for

phase-matching schemes in nonlinear experiments. Although losses are significant in

plasmonic structures, the far-field coupling among the metallic structures offers a strategic

avenue to harness robust and compelling responses [20].

In the sections that follow, we will examine in detail two different resonant modes inherent

to plasmonic metasurfaces. These resonant modes, visually depicted in the transmission

spectrum shown in Figure 2.2, assume a central role in shaping how light engages with

the metasurface structure. Our discussion will predominantly center around the LSPR,
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Figure 2.2. A typical transmission spectrum for a plasmonic metasurface exhibiting a

localized surface plasmon resonance (LSPR) and surface lattice resonance (SLR).

which pertains to the response of a single nanoparticle, and the SLR, which signifies the

collective response of a periodic array of metal nanoparticles. A thorough understand-

ing of these resonances and their properties is essential to fully realize the potential of

plasmonic metasurfaces in various applications.

2.2.1 Localized Surface Plasmon Resonance

Metals possess unique optical properties that arise from the movement of their conduc-

tion electrons. The movement of conduction electrons inside a metal is conventionally

described using the free electron model, which postulates that valence electrons of met-

als travel without restriction in relation to the stationary, positively charged lattice ions [28].

This freedom of movement enables the formation of a plasmon when metals interact with

an electric field. A plasmon is known as a quantum of collective free electron oscillation

with respect to the fixed positive ions in a bulk metal. To illustrate this concept further,

consider a solid metal object exposed to an external electric field that points downward.

The electrons will move upward, exposing positive ions at the bottom, until they neutralize

the field within the metal. When the electric field is removed, the electrons begin to move

back down, attracted to the unaccompanied positive ions due to long-range Coulomb

forces. However, instead of returning directly to their original positions, the electrons

continue to oscillate with respect to the positive-ion background at a specific frequency,

known as the plasmon frequency. The oscillation of the electrons continues until the en-

ergy is gradually lost through factors like resistance or damping. The plasmon frequency,

governing this oscillation, is determined by two essential factors: the concentration of free

electrons present in the metal and the effective mass of an electron.

Metal nanoparticles also have the capacity to host plasmons. Within these nanoparticles,

conduction electrons oscillate collectively in relation to their heavier ionic core. Owing to

the nanoparticle’s limited dimensions, the plasmons are confined to the surfaces of the

nanoparticle. When an oscillating electric field is applied, precisely matching the resonant
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frequency of the plasmon, it results in a highly coherent oscillation of the charge density

creating an oscillating dipolar mode, as shown in Figure 2.3. This, in turn, induces a

secondary electric near field around the structure and causes a substantial amplification

of the electric field in the vicinity of the nanoparticle [33]. Such specialized behavior is

classified as an LSPR. The confinement of irradiated light into subwavelength scales has

led to diverse practical applications of LSPRs, including the development of biosensors

[34], plasmon-enhanced photocatalysis [35] and nonlinear optics [27]. It is important to

note that the LSPR is produced at a distinct resonant wavelength and is not spatially

dispersive [36]. Moreover, for an LSPR to occur, the wavelength of the incident electric

field should be significantly larger than the dimensions of the metal nanoparticle, ensuring

that the dipole approximation holds and the electrons experience a relatively uniform

electric field simultaneously.

Figure 2.3. The temporal behavior of an LSPR, revealing the oscillation of charge density

and the resulting induced electric near field.

When designing metasurfaces for various applications, it is crucial to have control over the

spectral location of the LSPR. Fortunately, there are several well-established qualitative

factors that influence the spectral location. One such factor is the plasmon length, which

represents the distance over which the oscillations occur. Interestingly, while nanopar-

ticles can vary in shape, those constructed from the same material will present similar

LSPR spectra if their plasmon lengths are comparable [37]. The easiest way to modify

the plasmon length is by adjusting the size of nanoparticles [38]. The size of a particle

directly influences the oscillations, with larger particles causing the oscillations to span

a greater distance, consequently leading to a redshift in the wavelength of the LSPR.

The polarization of incident light can also influence the plasmon length, although this re-

lationship may not be immediately apparent. When the induced dipoles align with the

polarization direction of the incident light, the consequent electric current flows along a

path inside the nanoparticle, connecting the opposite charges of the induced dipole. The

path length of this current flow may vary for different polarizations, as demonstrated by the

black arrows in Figure 2.4, particularly in the case of V-shaped nanoparticles. In V-shaped

nanoparticles aligned with their symmetry axis parallel to the y-axis, x-polarized light has
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a longer LSPR wavelength than y-polarized light. This is because y-polarized light in-

duces oscillations along the arms, while x-polarized light causes oscillations across the

entire V-shaped structure. In addition to plasmon length, the composition of the nanos-

tructure and the refractive index of the surrounding medium are significant determinants

of the LSPR’s spectral location [39, 40].

(a) (b)

Figure 2.4. The charge distribution caused by an LSPR in a V-shaped metal nanopar-

ticle for (a) x-polarized and (b) y-polarized incident light. The resonance wavelength is

redshifted for x-polarized light compared to y-polarized light because the x-polarized in-

cident light couples with plasmons that are associated with a longer effective length.

Although LSPRs have advantages, their strong radiative damping typically leads to weak

resonances with a low-quality factor (Q-factor) of approximately 10, thereby restricting

their potential applications [20]. The Q-factor provides a measure of the oscillator’s ability

to sustain oscillations without significant decay over time and it is determined by the ratio

of the resonance wavelength λres to the width of the resonance ∆λ. Unfortunately, the

Q-factor of the LSPR is largely independent of the geometry of the nanostructure, and

little can be done to improve the sharpness of the plasmon resonance once the material

and resonance frequency are determined [41].

2.2.2 Surface Lattice Resonances

Fortunately, and at first sight rather surprisingly, the optical properties of nanoparticles

can be significantly influenced by the presence of other plasmonic materials in close

proximity. Through a strategic arrangement of nanostructures, it is possible to surpass

the limitations associated with weak LSPRs. This enhanced performance arises from

the way nanoparticles, when organized into a periodic array, behave much like a diffrac-

tion grating. At a particular incident angle or wavelength, the diffracted waves can move

parallel to the surface of the grating. If the metallic nanoparticles are organized into an

array with a spacing that matches the wavelength of a single particle resonance then the

diffractive modes of the array and the LSPRs can couple creating a collective resonance

called SLR. In contrast to the confined nature of LSPRs, these collective modes predom-

inantly propagate outside the metallic nanoparticles. Furthermore, SLRs display other
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unique characteristics, including spatial dispersion and notably high Q-factors, reaching

a peak value of 2340 [21].

One important property of SLRs is their strong dependence on polarization, which greatly

affects the extent of radiative coupling in different lattice directions. This dependence

arises from the nonuniform dipolar radiation pattern typically exhibited by LSPRs in a ho-

mogeneous environment. To elaborate, when a nanoparticle is illuminated by an electric

field with a polarization that aligns parallel to the metasurface plane, the nanoparticle ex-

hibits characteristics of an electric dipole emitting radiation primarily confined within the

metasurface plane but propagating orthogonally to the polarization direction [42]. This

leads to effective coupling between nanoparticles orthogonal to the polarization, result-

ing in the formation of in-plane perpendicular SLRs. While diagonal coupling can also

occur, it is worth highlighting that in dielectric media SLRs do not propagate in a direction

along the metasurface that is parallel to the polarization.

Figure 2.5 illustrates the coupling directions of nanoparticles with grating diffraction orders

denoted by i and j. In this context, it is established that the diffraction order i corresponds

to the direction along the x-axis, while the diffraction order j corresponds to the direction

along the y-axis. Therefore, if we consider a periodic metasurface that is illuminated with

y-polarized incident light, an in-plane y-polarized SLR forms as a result of the interparticle

coupling along the x-axis. This particular SLR is denoted as SLR(i,0). Similarly, when the

incident light is x-polarized, an in-plane x-polarized SLR, denoted as SLR(0,j), arises and

propagates along the y-axis. Moreover, by employing either or a combination of both of

these polarizations, it is possible to create an SLR that propagates diagonally when both

i and j are nonzero. This diagonal SLR is denoted as SLR(i,j).

Figure 2.5. The dipolar radiative couplings between metallic nanoparticles possess a

polarization dependency, meaning that the coupling usually takes place in a direction

that is perpendicular to the polarization that is responsible for generating in-plane SLRs.

Therefore, with y-polarized incident light, perpendicular SLRs moving along the x-axis

(yellow waves). For x-polarized light, the SLRs propagate along the y-axis (green waves).

Diagonal SLRs (blue waves) can be produced with both polarizations.
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It’s worth noting that at higher energy levels, metallic nanoparticles can also exhibit high-

order modes such as quadrupoles or octopoles. In these instances, the previously men-

tioned argument no longer applies as the higher-order modes possess different radiative

patterns as compared to the typical dipolar distribution [43, 44]. Another significant point

to highlight is that the dipolar radiation pattern can be changed in an asymmetrical en-

vironment, which in turn can lead to increased coupling capabilities in various directions

[45]. Consequently, to study in-plane perpendicular and diagonal SLRs, we need to study

nanoparticles in a homogeneous environment.

2.3 Methods for Determining Surface Lattice Resonance

Dispersions

To thoroughly understand the characteristics of waves traveling through periodic struc-

tures, energy–momentum or equivalently wavelength–wavevector dispersion relations

need to be studied. Within this section, we introduce three different methods for deter-

mining the dispersion curves, including one theoretical, one analytical, and one numerical

approach. By familiarizing oneself with various models and comparing them, the advan-

tages and disadvantages of each method can be evaluated, and an understanding of

when to apply each method most effectively can be gained.

2.3.1 Empty-Lattice Approximation

The ELA is the most simple theoretical model of photonic lattices where the dispersion

characteristics of the lattice are computed in the limit of vanishing nanoparticle volume.

While crude, it is still a powerful tool when studying the modes of the lattice. In the ELA

framework, a grating-related effect called the Rayleigh anomaly (RA) is utilized to compre-

hend the behaviour of SLRs. The RA describes the phenomenon wherein a metasurface

supports the propagation of a diffracted wave along its diffraction grating. Such propaga-

tion is contingent on the conservation of in-plane momentum, which can be expressed as

ksub = kinc +G, (2.7)

where kinc is the tangential wavevector component of the incident wave (i.e. parallel to

the metasurface), ksub is the wavevector of the diffracted wave propagating along the

metasurface and G is the momentum vector previously defined in Chapter 2.1. Because

the SLR can be interpreted as a form of Fano interaction between the discrete RA and

the broad LSPR [46], we can estimate the spectral position of in-plane SLRs using the

location of RAs. However, it’s worth noting that while SLRs usually appear close to RA

wavelengths, they don’t precisely coincide. Such discrepancies arise from phase shifts

introduced by resonant nanoparticles, a detail the ELA neglects.

As a special case, we apply Equation 2.7 to a light–matter interaction between a lin-

early polarized incident wave and a metasurface with a transparent dielectric surrounding,
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where nsup and nsub are the refractive indexes for the superstate and substrate materials,

respectively. Using the above conservation of momentum on the component form of the

substrate wavevector provides

∥ksub∥
2 = ∥ksub,x∥

2 + ∥ksub,y∥
2 = (∥kinc,x∥+ i∥b1∥)

2 + (∥kinc,y∥+ j∥b2∥)
2. (2.8)

If we assume that the incoming light of wavelength λ impinges the metasurface at an

incident angle θsup, we can take the tangential component of the wavevector to be of the

form kinc =
2π
λ nsup sin θsup. Because our experiments take place in air, we can simplify the

incident wavevector expression by using Snells law and simply write that kinc = 2π
λ sin θ,

where θ is now the angle of incidence in air. For nanoparticles arranged into a rectangular

lattice, Equation 2.8 then turns into

(

2πn

λ(i,j)

)2

=

(

2π

λ(i,j)
sin θ cosϕ+ i

2π

px

)2

+

(

2π

λ(i,j)
sin θ sinϕ+ j

2π

py

)2

, (2.9)

where λ(i,j) is the spectral wavelength of an SLR, i and j are the same diffraction orders

discussed in Chapter 2.2.2, ϕ is the azimuthal angle that defines the incident plane, n

is the refractive index of the substrate, and px and py are the lattice constants for the

metasurface. By canceling out the common factors and rearranging Equation 2.9, we

end up with a quadratic function of the form

λ2
(i,j)

(

i2

p2x
+

j2

p2y

)

+ λ(i,j)2 sin θ

(

cosϕ
i

px
+ sinϕ

j

py

)

+ sin2 θ − n2 = 0. (2.10)

This has a solution that is given by

λ(i,j) = −A+
√

A2 −B, (2.11)

if we choose A and B such that

A =
sin θ

(i/px)
2 + (j/py)

2

(

cosϕ
i

px
+ sinϕ

j

py

)

(2.12)

and

B =
sin2 θ − n2

(i/px)
2 + (j/py)

2 . (2.13)

Admittedly, the ELA does not address the linear polarization of light. Instead, it displays all

the possible resonances that can occur within the lattice. However, by taking into account

the type of SLR formed, a more comprehensive understanding of the dependence of

resonances on polarization and lattice geometry can be gained. Therefore, we proceed

with our analysis while limiting our examination to in-plane perpendicular SLRs, which

were briefly discussed in Chapter 2.2.2.

To investigate in-plane perpendicular SLRs, we will examine two linear polarizations of

light. We begin by using ELA to analyze x-polarized light impinging on our sample in the
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yz-incident plane. In this scenario, the azimuthal angle is ϕ = π
2 , and the polar angle is

θ = θy. Therefore, A and B become

A =
sin θy

(i/px)
2 + (j/py)

2

(

j

py

)

(2.14)

and

B =
sin2 θy − n2

(i/px)
2 + (j/py)

2 . (2.15)

Under the given conditions, the perpendicular SLR that emerges is x-polarized and prop-

agates in the y-direction with a diffraction order of i = 0 and j = j. Consequently, the

formulations for A and B are reduced to

A =
sin θy
j

py (2.16)

and

B =
sin2 θy − n2

j2
p2y. (2.17)

With this simplification, we can rewrite the spectral wavelength of the x-polarized SLR(0,j)

as

λ(0,j) = −
sin θy
y

py +

√

n2p2y
j2

= py

(

n

|j|
−

sin θy
j

)

. (2.18)

On the contrary, when light polarized in the y-direction hits the sample along the xz-

plane, the azimuthal and polar angles are defined as ϕ = 0 and θ = θx. In this case,

a y-polarized perpendicular SLR emerges that travels along the x-axis with a diffraction

order of i = i and j = 0. By following a method similar to the one used for x-polarized

incident light, we can express the spectral wavelength of the y-polarized SLR(i,0) as

λ(i,0) = −
sin θx

i
px +

√

n2p2x
i2

= px

(

n

|i|
−

sin θx
i

)

. (2.19)

For a rectangular lattice, Equations 2.18 and 2.19 suggest that the spectral position of an

in-plane perpendicular SLR is influenced by the spacing in the direction orthogonal to the

incident polarization. Additionally, the spectral position of an SLR is influenced by both

the diffraction order and the angle of incidence. Notably, the sign of the diffraction orders

becomes crucial when light strikes the sample at an oblique angle, given that diffraction

orders can be either positive or negative. At a normal incidence, two SLRs will overlap

if their i and j diffraction orders have the same absolute values, respectively. This will

manifest in a dispersion diagram as a singular, pronounced SLR peak, despite it rep-

resenting two diffraction orders. However, upon tilting the sample, these modes diverge,

with the dispersion diagram presenting an SLR peak that distinctively splits into two peaks

at oblique angles of incidence. The observed splitting and shifting of an SLR occurs ex-

clusively when the rotation is performed about the in-plane axis that is perpendicular to

the direction of the SLR propagation. This relationship allows for easy post-fabrication
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tuning of the wavelength of in-plane SLRs, as schematically depicted in Figure 2.6. Such

simple and sensitive tuning would not be achievable with single-particle responses such

as LSPRs.

Figure 2.6. By tilting the sample along a specific plane, it is possible to modify the

spectral location of perpendicular SLRs. When tilting the sample about the y-axis (altering

θx), the wavelength of an SLR(i,0) that is y-polarized can be adjusted. Similarly, tilting the

sample about the x-axis (altering θy) allows for tuning of the wavelength of an SLR(0,j)

that is x-polarized. Diagonal SLRs can be adjusted by a tilt in either direction.

Metasurfaces exhibit not only in-plane perpendicular SLRs but also in-plane diagonal

SLRs. Light polarized in the x- or y-direction can stimulate these diagonal SLRs, which

arise due to coupling along the lattice diagonals. Regardless of the linear incident po-

larization, the diagonal SLRs appear at the same wavelength when the metasurface is

illuminated at normal incidence. This wavelength is given by

λd = n
pxpy
pd

. (2.20)

Here, pd =
√

p2x + p2y represents the diagonal length of the unit cell of the metasurface.

The diagram in Figure 2.7 illustrates the ELA solutions, as light interacts with a metasur-

face with a rectangular lattice at different angles of incidence, θ. The lattice’s periodicities

were set to px = 398 nm and py = 813 nm, and the substrate was chosen to be a dielec-

tric with a refractive index of n = 1.51. The dispersion of the metasurface is shown along

the high-symmetry directions of the FBZ by altering the angle of incidence either in the

xz-plane (θx) or the yz-plane (θy). The dashed black lines and labeled high-symmetry

points in the reciprocal space illustrated in Figure 2.1(a) show the path taken in this dis-

persion relation. A total of four SLRs are visible at the Γ-point in the selected wavelength

range and the diffraction orders for these SLRs are listed in ascending order of energy:

(i,j) = (0,±1), (0,±2), (±1, 0), and (±1,±1). The computations for the complete disper-

sion relation only took a few seconds, indicating that ELA is a computationally efficient
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method.

Figure 2.7. Dispersion of a metasurface as determined by the ELA. The metasurface

is composed of nanoparticles that are considered to be negligible in size on a dielectric

substrate and they are organized into a rectangular lattice with a periodicity of px = 398

nm and py = 813 nm. The angle of incidence is separately adjusted in the xz-plane (θx)

and the yz-plane (θy) to reveal the dispersion along the high-symmetry directions of the

FBZ. The various diffraction orders are distinctly indicated by solid lines of different colors.

The influence of polarization on different SLRs can be readily observed by examining the

dispersion relation obtained by the ELA. The two SLRs with the lowest energy, specifi-

cally the x-polarized SLR(0,±1) and SLR(0,±2), exhibit a splitting and a significant change

in their spectral position when the sample is tilted about the x-axis and the angle θy is

modified. On the other hand, the most energetic diagonal SLR(±1,±1) splits and shifts its

spectral position when the sample is tilted about both the x-axis and the y-axis. Lastly, the

SLR(±1,0), which is polarized in the y-direction and is positioned between the x-polarized

and diagonal SLRs, experiences a dramatic alteration in its spectral location and a split-

ting when the sample is tilted about the y-axis with an angle θx.

2.3.2 Lattice-Sum Approach

The LSA is an effective method for semi-analytically modeling electrostatic interactions

in periodic systems. It uses point dipoles to represent nanoparticles and evaluates the

combined impact of an incident plane wave and scattered electric fields from neighboring

dipoles on a single dipole in the array. This information is then used to calculate the effec-

tive polarizability, which reflects the nanoparticles’ tendency to acquire an electric dipole
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moment when exposed to electric fields from various sources. The LSA method closely

resembles the discrete-dipole approximation (DDA) [47, 48], but it simplifies calculations

by assuming that all nanoparticles have the same dipole moment (pc = p for all c). This

is valid only when an array contains identical dipoles whose response closely mimics that

of nanoparticles located at only the center of the array. This assumption is not unfounded

as it has been proven to be quite accurate through a comparison of LSA with DDA and

FDTD simulations [49, 50].

To derive the necessary equations for the LSA, we begin by examining the total local

electric field at the position of the cth particle, represented by Ec. The total local field is a

sum of the incident field Einc,c and the scattered electric field from N nearby polarizable

nanoparticles which can be expressed as

Ec = Einc,c −
N
∑

d=1

Acdpd. (2.21)

Here, pd is the dipole moment of the neighboring dth dipole. The inclusion of a nega-

tive sign before the summation is a matter of convention and does not affect the overall

interpretation. The term Acd is an interaction matrix that depicts the optical coupling

strength between the dth and the cth particle. It is determined by evaluating the following

expression

Acd =
eikrcd

ϵ0rcd

[

k2(r̂cdr̂
⊺

cd − I3)−
1− ikrcd

r2cd
(3r̂cdr̂

⊺

cd − I3)

]

, c ̸= d (2.22)

where rcd is the distance between the coordinates rc and rd , and r̂cd denotes the unit

vector that points from rc to rd. The matrix I3 represents a 3×3 identity matrix and the

transpose of a matrix is denoted by writing the symbol ⊺ in superscript on the right side

of the matrix in question.

Next, we wish to express the right side of Equation 2.21 in terms of the dipole moment of

the cth particle in order to identify the terms that contribute to the effective polarizability

of a particle. By applying the Bloch theorem, we can describe the relationship between

dipole moments in a periodic array using the equation

pd = eik·Rdcpc, (2.23)

where k is the wave vector of the incident field, and Rdc is the lattice vector between the

dth and the cth particle. Additionally, we can express the incident field near the cth particle

in terms of its dipole moment, by using

Einc,c = (ϵ0αc)
−1

pc, (2.24)

where ϵ0 is the vacuum permittivity, and αc is the polarizability of the cth particle. Assum-

ing that the polarizability remains constant or static over time, the LSA remains valid for

particles with a size parameter approximately 100 times smaller than the incident wave-
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length or less. However, if we desire to study larger particles that are more relevant to

plasmonic experiments while still using the simple dipole approximation, we need to use

the modified long-wavelength approximation (MLWA). The MLWA takes into account two

important factors that become increasingly significant with an increase in particle size:

radiative damping due to spontaneous emission and dynamic depolarization due to re-

tardation [51]. The polarizability using MLWA is expressed as follows

αc(ω) =
αstatic(ω)

1− 2
3 ik

3αstatic(ω)−
k2

l αstatic(ω)
(2.25)

where l describes the effective length of the particle. The term αstatic(ω) is a static polar-

izability of a small lorentzian scatterer and is written as

αstatic(ω) =
A0

ωres − ω − iγ
. (2.26)

In the equation, A0 represents the resonance strength constant, ω denotes the angular

frequency, ωres is the resonant frequency, and γ corresponds to the damping rate. These

different parameters can be obtained experimentally, for example, by fitting curves to

numerical simulations.

Now by substituting Equation 2.23 and Equation 2.24 into Equation 2.21 and making the

assumption that all dipole moments, or equivalently polarizabilities, of all nanoparticles

are identical, we finally arrive at the following expression

Ec =

(

(ϵ0α)
−1 −

N
∑

d=1

Acde
ik·Rdc

)

pc ≡
(

(ϵ0α)
−1 − S′

)

pc, (2.27)

where S′ refers to the redefined lattice-summation term. From this formulation, it be-

comes straightforward to identify the effective particle polarizability as

α∗ =
1

α−1 − ϵ0S′
. (2.28)

Upon closer examination, we observe that when the real components of α−1 and ϵ0S
′ are

equal, the denominator in Equation 2.28 approaches zero, resulting in the polarizability

tending towards infinity. This condition signifies the excitation of an SLR. In the case

where the oscillations of the SLRs occur within the plane of the metasurface, we can

simplify the expression for S′ as

S′ =
N
∑

d=1

eik·Rdc
eikrcd

ϵ0rcd

[

k2 sin2 ϕd +
(1− ikrcd)(3 cos

2 ϕd − 1)

r2cd

]

(2.29)

where ϕd is the angle between rcd and the dipole moment pc.

Once the effective polarizability is established, the final step entails visualizing the disper-

sion of the supported SLR modes, which becomes apparent through an angle-resolved

transmission spectrum. To acquire this spectrum, we evaluate the extinction cross-
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section based on the values obtained from the LSA according to [52]

σ∗

ext = 4πkN Im(α∗). (2.30)

From the perspective of SLRs and their Q-factors, it is evident from this equation that the

depth of a resonance is directly proportional to the magnitude of the imaginary component

of the effective polarization, specifically Im
(

(α−1 − ϵ0S
′)−1)

)

.

We employed the LSA to compute the angle-resolved extinction spectra of a metasurface

illuminated with x-polarized incident light. The metasurface design, with lattice periodic-

ities of px = 398 nm and py = 813 nm, and a substrate refractive index of n = 1.51, was

consistent with the configuration used in the ELA. The calculations specifically focused on

the visible and near-infrared regions, which had been previously identified as susceptible

to SLRs according to the conclusions from the ELA analysis. Typically, the lattice sums in

LSA are computed for infinite lattices (N → ∞), and various techniques are available for

conducting such calculations [53]. However, in our specific calculations, a finite number

of particles were considered, precisely 62,500 particles arranged in a 200 × 100 µm2

array. With these parameters, each transmission spectrum in our simulations required a

few seconds to compute. Consequently, the execution time for this process was slightly

longer compared to the ELA analysis.

Figure 2.8 illustrates the dispersion relation obtained from the LSA analysis, revealing dis-

tinctive SLRs characterized by abrupt dips in transmission. Notably, only three SLRs can

be observed at normal incidence, which have the diffraction orders: (i,j) = (0,±1), (0,±2),

and (±1,±1). The absence of the y-polarized SLR corresponding to the diffraction order

(±1, 0) can be attributed to the polarization considerations of LSA and our deliberate use

of exclusively x-polarized light during the calculations. This result once again showcases

the significant influence of incident polarization on the behavior of SLRs.
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(a)

(b)

Figure 2.8. Dispersion diagram obtained from the LSA in the (a) near-infrared and (b)

visible wavelengths with x-polarized incident light. The contour plot illustrates the rela-

tionship between transmission, incident angle, and incident wavelength for a metasurface

made up of point dipole scatterers organized in a lattice with a periodicity of px = 398 nm

and py = 813 nm. The angle of incidence is altered in the xz-plane (θx) and the yz-plane

(θy).

Overall, when comparing the results obtained from the LSA and the ELA, there is a rel-

atively good agreement regarding the dispersive behavior of the three SLRs that existed

in both methods. The slight difference in resonance peak locations can be attributed to

the LSA’s consideration of coherent phase accumulation among neighboring particles.

However, these variations remain minimal, with the maximum observed redshift for the

same SLR at normal incidence reaching only 7 nm.

2.3.3 Finite-Difference Time-Domain Method

When dealing with nanoparticles of more intricate shapes, there are no analytical or

theoretical solutions available. Therefore, it is necessary to use numerical methods to

rigorously solve electromagnetic interactions. To accomplish this, a 3D FDTD solver
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was utilized as the final tool for modeling dispersion relations. The FDTD method is

a numerical technique that approximates the partial derivatives in Maxwell’s equations

as differences between adjacent points in space or time, allowing the solution of the

differential equations to be reduced to a set of finite-difference equations, which can be

efficiently computed [54]. The FDTD is especially well-suited for examining metamaterials

across a wide frequency range since it operates in the time domain and requires only one

simulation to determine the spectral response for all frequencies and the field evolution

around the nanoparticle.

In this Thesis, we employed the Ansys Lumerical FDTD 2021 R2.4 software to numer-

ically compute the dispersion relation of V-shaped aluminum nanoparticles. Similar to

other techniques, these nanoparticles were placed within a homogeneous medium char-

acterized by a refractive index of 1.51, while being arranged in a rectangular lattice with

periodicities of px = 398 nm and py = 813 nm. Each unit cell consisted of a single nanopar-

ticle with specific dimensions of arm length = 100 nm, arm width = 70 nm, and thickness =

30 nm. The symmetry axis of the nanoparticles was aligned along the y-axis, as depicted

in Figure 2.5.

To accurately simulate the behavior of the entire periodic metasurface, a white plane-

wave light source was utilized to illuminate a single unit cell. Periodic boundary condi-

tions were employed in the in-plane dimensions (x- and y-axes), while perfectly-matched

layers (PMLs) were utilized in the out-of-plane dimension (z-axis). In order to capture the

transmitted power across a wide wavelength range (400 nm–1300 nm), domain power

monitors were employed. To account for the changes in the angle of incidence, we op-

timized the PML design to minimize reflections at oblique angles. Additionally, when the

incident angle deviated from normal incidence, we employed a broadband fixed angle

source technique (BFAST) in the simulations to incorporate the incident angle’s influence

on the wavelength. For calculations, a non-uniform mesh was employed, featuring a finer

mesh specifically around the nanoparticle to improve accuracy. Within this region, the

mesh size peaked at 3 nm.

The dispersion relation obtained numerically with the FDTD method is depicted in Fig-

ure 2.9. Given the lengthy simulation time of approximately 24 hours per transmission

spectrum, we had to carefully choose the input polarization and plane of incidence. To

successfully accomplish the objectives of this Thesis with the generation of type-I SHG, it

is crucial to design a sample that allows for independent control of two SLRs with orthog-

onal polarizations. Therefore, we utilized two different input polarizations in the FDTD

simulations, but not across all wavelengths. We only needed to utilize x-polarized inci-

dent light in the near-infrared wavelength range to excite the x-polarized SLR(0,±1). For

the visible wavelength range, we only employed y-polarized light to induce the y-polarized

SLR(±1,0) and SLR(±1,±1).
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(a)

(b)

Figure 2.9. Dispersion diagram obtained with FDTD that displays transmission as a

function of incident angle and wavelength for a metasurface being illuminated with (a) x
and (b) y-input polarization in different spectral regions. The metasurface is composed of

aluminum V-shaped nanoparticles that are arranged in a lattice with a period of px = 398

nm and py = 813 nm. With y-polarized light, the angle of incidence is only adjusted in

the xz-plane (θx), and for x-polarized light, the angle of incidence is adjusted only in the

yz-plane (θy).

In selecting the plane of incidence for the simulated dispersion diagram, we specifically

focused on the plane that exhibited the greatest spatial dispersion, as predicted by the

relationships discussed in Chapter 2.3.1. In Equation 2.18, we observed that the wave-

length of SLR(0,±1) is solely dependent on θy. Therefore, we tilted the sample around

the x-axis to thoroughly investigate the behavior of the SLR at near-infrared wavelengths.

Similarly, according to Equation 2.19, the spectral location of SLR(±1,0) is determined

solely by θx, leading us to tilt the sample about the y-axis for visible wavelengths. While

the diagonal resonance SLR(±1,±1) in Figure 2.9(b) should exhibit sensitivity to tilting

both about the x-axis and y-axis regardless of the polarization used, our simulations only

demonstrated its dispersive behavior with tilts about the y-axis using y-polarized light.
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The FDTD simulations demonstrate a high degree of alignment with the ELA, with only a

minimal discrepancy of approximately 3 nm in the spectral locations of SLRs. While FDTD

offers a high level of precision, the significant duration required for each transmission

spectrum simulation can make it challenging to analyze trends and characteristics of

entire metasurfaces during the design process.

2.4 Nonlinear Optics

Having examined the capabilities of SLRs, we shall now delve into the fundamental prin-

ciples of nonlinear optics and investigate the potential applications of SLRs in this area.

To begin, we will examine the effects of a weak electric field on a medium. As is well-

known, the interaction of light with a medium induces electric dipoles within the material.

The cumulative effect of these induced dipole moments produces a time-varying electri-

cal polarization field P(t). This field is usually linearly proportional to the incident electric

field E (t′) and can be represented in the most general case by the integral

P(t) = ϵ0

∫

∞

−∞

χ(1)
(

t− t′
)

·E
(

t′
)

dt′ (2.31)

where ϵ0 is the dielectric constant, and χ(1) (t− t′) is the linear susceptibility tensor that

possesses a rank of two. The equation represents the polarization of the medium at a

given time, t, as a result of the electric field at all previous points in time t − t′. The

polarization is expressed through the response function χ(1) (t− t′), which encapsulates

all information regarding the material’s properties. It is important to note that χ(1) (t− t′)

must be zero for t′ ≥ t to ensure causality is maintained. This equation can be interpreted

as the convolution integral between the electric field and the linear susceptibility tensor. In

this particular context, our focus is specifically on the time domain, due to the utilization of

the electric dipole approximation, which remains applicable in the case of nanoparticles.

Given that the wavelengths employed are notably greater than the atomic length scale,

we can fairly assume that the electric fields and susceptibilities do not exhibit dependence

on spatial quantities such as r and k.

The transformation of Equation 2.31 into the frequency domain can be facilitated by uti-

lizing the definitions of the Fourier transform and its inverse with relevant variables. We

can define the Fourier transform over time and its inverse over angular frequency ω as

follows

F{f(t)} = f(ω) =

∫

∞

−∞

f(t)eiωtdt, (2.32)

and

F−1{f(ω)} = f(t) =
1

2π

∫

∞

−∞

f(ω)e−iωtdω. (2.33)

When we express the time-dependent variables χ(1) (t− t′) and P(t) in Equation 2.31 in

terms of their representations as inverse Fourier transforms over the frequency domain,
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as specified by Equation 2.33, we obtain with some rearranging

1

2π

∫

∞

−∞

P(ω)e−iωtdω = ϵ0

∫

∞

−∞

1

2π
χ(1) (ω) e−iωt

(
∫

∞

−∞

E
(

t′
)

eiωt
′

dt′
)

dω. (2.34)

The expression enclosed in brackets can be recognized as the Fourier transform of the

time-varying electric field, which can be equivalently written as E (ω). With some simpli-

fication, we end up with

∫

∞

−∞

P(ω)dω = ϵ0

∫

∞

−∞

χ(1) (ω) ·E (ω) dω. (2.35)

Recognizing that this equality must hold for every frequency leads us to the frequency

domain description of a linear response

P(ω) = ϵ0χ
(1) (ω) ·E (ω) . (2.36)

Examining the similarities between the electric field and induced polarization in the fre-

quency domain reveals that the material’s polarization follows oscillations that match the

frequency of the incident field. This description, however, accurately represents the ma-

terial’s behavior only when the incident fields have relatively low intensity. As the intensity

of the incoming light surpasses a certain threshold, the material’s response becomes

more complex and nonlinearity comes into play. In most cases, the nonlinear expression

for P(t), can be approximated as a power series of E(t), so that

P(t) =ϵ0

∫

∞

−∞

χ(1) (t− t1) ·E (t1) dt1.

+ϵ0

∫

∞

−∞

χ(2) (t− t1; t− t2) : E (t1)E (t2) dt1 dt2

+ϵ0

∫

∞

−∞

χ(3) (t− t1; t− t2; t− t3)
...E (t1)E (t2)E (t3) dt1 dt2 dt3 + · · · ,

(2.37)

where χ(n) represents the susceptibility tensor of the nth order, possessing a rank of (n +

1) and encompassing 3(n+1) components. In order for the material’s response to be phys-

ically meaningful within this approximation, the power series expansion must converge.

Nevertheless, there are situations where this series fails to converge, a situation known

as a non-perturbative process [3]. While these situations may require different methods

to understand nonlinear optical effects, the power series treatment is adequate for the

scope of this study.

Given that any electric field E (t) can be represented as a combination of monochromatic

plane waves, we have

E (t) =
∑

i

E (ωi) . (2.38)

From this, we can simplify the Fourier transform of Equation 2.37 to

P(ω) = P(1)(ω) +P(2)(ω) +P(3)(ω) + · · · , (2.39)
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where the nonlinear polarization is given by

P(n)(ω) = ϵoχ
(n)

(

ω =
∑

i

ωi

)

∏

i

E (ωi) . (2.40)

Our research focuses specifically on second-order nonlinear effects
(

P(2)
)

. These ef-

fects are widely utilized in traditional nonlinear applications due to their notable strength

compared to other higher-order nonlinear processes. While the other nonlinear effects

are worth investigating, we have chosen to leave their exploration for future research

endeavors.

2.4.1 Second-Order Nonlinear Processes

Second-order nonlinearity gives rise to the lowest-order nonlinear processes and it is

fundamental to a range of optical processes, including optical frequency conversion. To

understand the different types of second-order processes, we will begin by considering

two intense monochromatic plane waves of frequencies ω1 and ω2 interacting with a non-

linear medium. The resultant electric field is described by

E(t) = E1e
−iω1t +E2e

−iω2t + c.c. = E (ω1) +E (ω2) + c.c. . (2.41)

Here c.c. represents the complex conjugate of the previous terms. To simplify the anal-

ysis, we make the assumption that the medium instantaneously reacts to the incident

fields. As a result, rather than evaluating a convolution integral, the second-order nonlin-

ear polarization can be expressed as

P(2)(t) = ϵ0χ
(2)E2(t). (2.42)

By substituting the equation for the electric field as defined in Equation 2.41, we obtain

the following alternate expression for the second-order nonlinear polarization

P(2)(t) =ϵ0χ
(2)
[

E2
1e

−2iω1t +E2
2e

−2iω2t + 2E1E2e
−i(ω1+ω2)t

+2E1E
∗

2e
−i(ω1−ω2)t + c.c.

]

+ 2ϵ0χ
(2) [E1E

∗

1 +E2E
∗

2] .
(2.43)

Utilizing a more convenient notation, we can express this as

P(2)(t) =
∑

n

P (ωn) e
−iωnt, (2.44)

where the summation encompasses frequencies ωn that cover both positive and negative

values. Here, the explicit form for all of the complex amplitudes P (ωn) corresponding to



25

the different frequency components are

P(2) (2ω1) = ϵ0χ
(2) (2ω1;ω1, ω1)E

2
1, (2.45)

P(2) (2ω2) = ϵ0χ
(2) (2ω2;ω2, ω2)E

2
2, (2.46)

P(2) (ω1 + ω2) = 2ϵ0χ
(2) (ω1 + ω2;ω1, ω2)E1E2, (2.47)

P(2) (ω1 − ω2) = 2ϵ0χ
(2) (ω1 − ω2;ω1,−ω2)E1E

∗

2, (2.48)

P(2)(0) = 2ϵ0

(

χ(2) (0;ω1,−ω1)E1E
∗

1 + χ(2) (0;ω2,−ω2)E2E
∗

2

)

. (2.49)

In these equations, we establish a connection between the electric field frequency com-

ponents and complex conjugates, such that E∗(ω) = E(−ω). Consequently, we are able

to disregard the negative frequency equivalents of Equations 2.45–2.48, as they merely

represent the complex conjugates of the original expressions [3].

Each expression in Equations 2.45–2.49 describes a different second-order nonlinear

process. The last term, P(2)(0), is associated with optical rectification, which creates a

static electric field within the medium. The remaining polarization components described

in Equations 2.45–2.48 are associated with the phenomenon of three-wave frequency

mixing. In this process, new frequency components are generated through the combi-

nation of the sum and difference of the involved frequencies as summarized in Figure

2.10. In the subsequent discussion, each three-wave frequency mixing process will be

thoroughly explored.

The terms P(2) (2ω1) and P(2) (2ω2) represent second harmonic generation (SHG) at fre-

quencies 2ω1 and 2ω2, respectively. During the process of SHG, two photons of frequency

ω1 interact with the nonlinear medium, leading to the excitation of the system to a new

state that incorporates the combined energy of the incoming photons, as illustrated in

Figure 2.10(a). In second-order processes, the energy of photons does not match any

actual electronic states of the material. This results in the temporary nature of the excited

state, known as a virtual state, which is indicated by the dashed line in the energy level

diagrams. When the system relaxes to the ground state, depicted by a solid line, it emits a

coherent photon with twice the frequency of the incident photons. This form of frequency

doubling is used for practical applications, such as efficiently shifting the output frequency

of a laser. A notable example is the conversion of near-infrared output (at 1064 nm) from

a Nd:YAG laser to the visible spectrum (at 532 nm) [55]. This process is particularly sig-

nificant in the medical field, where a frequency-doubled Nd:YAG laser is commonly used

to restore visual clarity following cataract surgery [56].

The term P(2) (ω1 + ω2) corresponds to a more general version of SHG called sum-

frequency generation (SFG). The SFG process, illustrated in Figure 2.10(b), operates

similarly to SHG with the difference of having two incident photons with distinct frequen-

cies, ω1 and ω2. Hence, the generated photon has a frequency of ω1 + ω2. A common

application of SFG is to generate ultraviolet light by combining the 1064 nm output from

an Nd:YAG laser with its frequency-doubled light at 532 nm, producing 355 nm UV light

[57]. This UV light has various practical uses, including laser processing of materials,
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particularly those that are fragile and hard [58].

Lastly, we consider the term P(2) (ω1 − ω2), which corresponds to the process of difference-

frequency generation (DFG). The DFG process, depicted in Figure 2.10(c), involves the

interaction of two incident photons with frequencies, ω1 and ω2. The higher-frequency

photon, ω1, induces excitation of the system into a virtual state from where the system

relaxes to a lower virtual state through a stimulated emission at frequency ω2. During

the relaxation of the system, a photon with a frequency equal to the difference between

the two incident photons, ω1 − ω2, is emitted. Thus, DFG results in both the generation

of a new frequency and gain at the lower of the input frequencies. Techniques utilizing

DFG find widespread use in optical parametric oscillators (OPOs), where it is employed

to convert the output of a laser source to various frequency ranges, especially near and

mid-infrared ranges. Additionally, DFG is used in optical parametric amplification, where

the lower frequency photon is amplified [3].

(a) SHG (b) SFG (c) DFG

Figure 2.10. Energy level diagrams for (a) SHG, (b) SFG and (c) DFG. The ground

states are drawn with solid lines and virtual states with dashed lines. The excitation of

the system is shown by upward arrows, while the relaxation is depicted by downward

arrows.

In theory, in a lossless and dispersionless material, all second-order nonlinear processes

should be comparable in strength. However, due to the intrinsic low efficiencies of these

processes, phase-matching techniques are generally employed to enhance them to a

practical level. This approach, however, allows for the strengthening of only one fre-

quency component at a time to levels that can be detected. Consequently, it becomes

unfeasible to simultaneously observe multiple nonlinear effects within bulk media [3]. In

contrast, nonlinear metasurfaces offer a unique advantage. Their subwavelength scale

allows for the relaxation of these stringent phase-matching requirements, thereby en-

abling a wider range of frequency components to be generated while still maintaining a

robust signal strength [59].

2.4.2 Engineering Second-Harmonic Responses from

Metasurfaces

In order for a material, including metasurfaces, to exhibit a second-order nonlinear re-

sponse, certain symmetry constraints must be satisfied. In particular, if a material pos-
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sesses centrosymmetry, the second-order nonlinear polarization will be zero. This arises

from the fact that in a centrosymmetric structure, applying a field of −E leads to the non-

linear polarization vector following −P(2) = ϵ0χ
(2)[−E]2 due to spatial inversion. When

comparing this to Equation 2.42, we find that P(2) = −P(2), which implies that χ(2) has to

be zero. This result is of great significance because it explicitly prevents centrosymmetric

materials from displaying second-order nonlinear responses, irrespective of the applied

field’s intensity. For this reason, traditional second-order nonlinear crystals, like potas-

sium dihydrogen phosphate or barium borate, pertain to crystal point groups character-

ized by broken inversion symmetry. To break the symmetry in metasurfaces, plasmonic

nanostructures that possess broken inversion symmetry, such as V-shaped nanoparti-

cles, can be used.

Once suitable symmetry constraints are met, a strong nonlinear response can be ob-

tained by enhancing the light–matter interaction. According to the nonlinear scatter-

ing theory (NLST), the second-harmonic responses of metamaterials are influenced by

the local fields, which oscillate at the fundamental frequency Eloc(ω) and the second-

harmonic frequency Eloc(2ω), respectively. By using the Lorentz reciprocal theorem [60,

61], the relationship between the total scattered far-field of SHG from the nanoparticles

Enl(2ω) and the local electric fields can be quantified as

Enl(2ω) ∝

∫∫

χ(2)E2
loc(ω)Eloc(2ω) dS, (2.50)

where χ(2) represents the effective surface nonlinear susceptibility. In this relation, the

integration is conducted over the metal surface rather than the volume. This is because

the electric fields rapidly decay upon entering the metal, which causes the nonlinearity

to occur only at the surface. [62]. It can be seen from the integral that the nonlinear

polarization and the mode at second harmonic must exhibit substantial spatial near-field

overlap and constructive interference for optimal interaction to occur [63–65].

Assuming that the necessary overlap and constructive interference exist, it is possible

to further strengthen the far-field SHG by simply increasing the magnitude of the local

electric fields. The local fields described in Equation 2.50 arise from both the incident

laser and the field scattered by the nanoparticles within the metasurface (Eloc = Einc +

Escat). As a result, it is possible to significantly increase the local fields by either increas-

ing the incident laser field amplitude or by inducing resonant modes like LSPRs or SLRs

to increase the scattered fields. The latter technique highlights the compelling potential

for SHG to be enhanced from the presence of multiple simultaneous resonances.

Remarkably, experimental studies have already produced multiresonant metasurfaces

that utilize the single particle LSPRs [66]. Nevertheless, the broad linewidth of LSPRs,

caused by significant radiative damping, still limits their potential applications in optical

and electronic systems [19]. In contrast, our approach focuses on utilizing SLRs, which

naturally have narrower linewidths and lower losses compared to LSPRs. Numerical sim-

ulations have demonstrated promising results, indicating that the incorporation of multiple
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SLRs in nonlinear processes leads to a significant increase in conversion efficiency for

both second and third-order processes [67, 68]. Building on this line of work, this The-

sis goes a step further by conducting the first emprical study on how SLRs can improve

multiresonant SHG [69].

Designing samples to support nonlinear processes, such as SHG, can be seen as chal-

lenging due to the strict requirements for the polarization and wavelength of relevant

electric waves. In the case of type-I SHG, the multiresonant design necessitates the

presence of two in-plane SLRs with orthogonal polarizations. One of these SLRs needs

to be positioned in close spectral proximity to the fundamental wavelength of the nonlin-

ear process, while the other SLR should be located at the wavelength corresponding to

the SHG wavelength. Fortunately, the utilization of orthogonally polarized SLRs allows us

to exploit the spatial dispersion of these resonances to generate multiresonant behavior

more easily. In Chapter 2.3, the key points emphasize that by tilting the sample around

two rotation axes, it becomes possible to manipulate the spectral positions of the orthog-

onal SLRs individually until the desired multiresonant conditions are satisfied. This way

even if our samples may not demonstrate multiresonant behavior under normal incidence,

we can typically still find some set of angles and wavelengths that facilitate multiresonant

behavior.
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3 RESEARCH METHODS

This Chapter describes the experimental methodology for studying multiresonant behav-

ior in nonlinear optics. To begin, we present the materials and sample design parameters

studied in this work and we describe our motivation for studying them. Furthermore,

we explain in detail the top-down fabrication process employed to create the samples,

highlighting the various stages involved and the tools and techniques employed at each

stage. Lastly, we introduce the experimental setups used to determine the samples’

angle-resolved linear and nonlinear responses.

3.1 Nanoparticle Array Samples

Building upon the encouraging results obtained from our computational simulations, we

designed two metasurfaces, namely Sample S1 and Sample S2, to experimentally study

multiresonant behaviour. These metasurfaces, spanning an area of 300 × 300 µm2, were

carefully fabricated by arranging V-shaped aluminum nanoparticles on a glass substrate

with a refractive index of n = 1.51. The V-shaped nanoparticle design consisted of sym-

metrical arms measuring l = 100 nm in length, w = 70 nm in width, and d = 30 nm in

thickness.

For both Sample S1 and Sample S2, we utilized a rectangular lattice arrangement to

position the nanoparticles. The lattice constant py was aligned along the nanoparticle

symmetry axis, which coincided with the y-axis. Conversely, the lattice constant px was

oriented perpendicular to the nanoparticle symmetry axis, aligning with the x-axis. The

distinguishing characteristic between the two samples lies in their lattice periodicities.

Sample S1 exhibited periodicities of px = 410 nm and py = 813 nm, while Sample S2 had

periodicities of px = 398 nm and py = 813 nm. By introducing this deliberate variation

in the sample periodicities along the x-axis, we can systematically explore the system’s

response to multiresonant behavior under different experimental conditions. Figure 3.1

summarizes the geometry of the samples through schematic illustrations and also shows

a real image captured with a scanning-electron microscope (SEM). It is worth noting that

the SEM image in Figure 3.1(a) was obtained from a concurrently fabricated sample,

which had the same particle dimensions but slightly different lattice periodicities (px =

420 nm and py = 827 nm).

The nanoparticles in Sample S1 and Sample S2 possess a symmetry that enables certain

in-plane non-zero second-order susceptibility tensor components, specifically χ
(2)
yyy, χ

(2)
yxx,
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and χ
(2)
xyx = χ

(2)
xxy [70]. In our work, we focus on χ

(2)
yxx, which corresponds to SHG with

x-polarized pump and y-polarized signal. This allows us to use orthogonal SLRs at pump

and signal wavelength. Consequently, we can modify the resonant conditions at two

wavelengths independently from each other.

(a) (b) (c)

Figure 3.1. Illustration of the fabricated metamaterials through (a) a scanning-electron

micrograph image and a schematic representation of the (b) metamaterial side view and

(c) unit cell. Both metasurfaces comprised V-shaped aluminum nanoparticles with identi-

cal dimensions, including an arm length of 100 nm, arm width of 70 nm, and thickness of

30 nm. While the nanoparticles were arranged in a rectangular lattice, the lattice period-

icities differed between the two samples.

The samples were fabricated using a well-established procedure that combines electron-

beam lithography and lift-off techniques. This methodology offers precise control over the

shape, size, and interparticle spacing of metallic nanostructures bound to a surface. A

concise summary of the techniques utilized is visually presented in Figure 3.2. First, a

200 nm layer of PMMA-resist (MicroChem, 950k) was spin-coated on a clean glass slide

(Schott Nexterion, D263T), then baked on a hot plate at 180 °C for 3 minutes and covered

with a thin 10 nm aluminum layer for charge dissipation. Electron-beam lithography (Raith

EBPG 5000+ 100 kV) was next used to pattern the particles onto the positive resist.

The subsequent removal of the aluminum was performed using a 1% sodium hydroxide

solution. Then the resist underwent development by immersing the sample in a solution

consisting of a 1:3 ratio of methyl isobutyl ketone and isopropanol for a duration of 15

seconds, followed by a 30-second immersion in only isopropanol. After the resist was

thoroughly dried with nitrogen, 30 nm of aluminum was deposited through electron-beam

evaporation. The fabrication process continued with a lift-off process, which involved

soaking the sample in acetone to remove the resist and excess metal and then cleaning

the sample with sequential rinses of acetone and isopropanol. Afterward, the sample

underwent a final drying process using nitrogen.

Prior to conducting the experiments, certain additions were made to the samples. These

alterations included applying a thin layer of index-matching oil over the nanoparticles,

which served the purpose of creating a homogeneous environment and promoting effi-

cient diffractive coupling [71]. Furthermore, an anti-reflection (AR) coated coverslip was

carefully positioned on top of the oil. The AR coating was specifically designed to operate

within the wavelength range of 1000−1300 nm, effectively preventing undesired Fabry–
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Pérot resonances caused by multiple reflections across various interfaces.

Figure 3.2. Schematic overview of the sequential steps employed in the fabrication pro-

cess of our metasurfaces. These steps encompass: (1) spin-coating a PMMA-resist and

metal coating, (2) drawing particles with electron-beam lithography, (3) removing metal

and developing resist, (4) depositing aluminum and (5) performing lift-off using acetone.

(6) The sample was finished by adding index-matching oil onto the nanoparticles with a

coverslip placed on top, resulting in a homogeneous environment for the nanoparticles.

In our plasmonic research, we opted to work with aluminum instead of the more com-

monly used gold or silver for several reasons. Gold is unsuitable for our experiments due

to its intrinsic interband transitions, which have a step-like threshold so that photons with

wavelengths shorter than 500 nm are absorbed to create electron-hole pairs rather than

excite surface plasmons. The utilization of gold nanoparticles would have required the

displacement of LSPRs towards longer wavelengths, close to our targeted SHG wave-

lengths. This, in turn, would have posed a significant challenge in studying multiresonant

phenomena independent of the LSPRs. Aluminum, on the other hand, exhibits a narrow

interband transition occurring around 800 nm, allowing it to maintain its plasmonic prop-

erties at shorter wavelengths and enabling the existence of shorter wavelength LSPRs

[72]. The choice to use aluminum instead of silver was primarily influenced by their con-

trasting oxidization characteristics. While aluminum has a tendency for rapid oxidation,

it possesses a distinct advantage in that it naturally develops a self-limiting oxide layer.

This oxide layer serves as a protective barrier, effectively impeding further oxidation and

preventing the infiltration of contaminants over an extended period [73]. In contrast, silver

is more susceptible to bulk oxidation, making aluminum a preferred material for our ex-

periments. While slight oxidation may still impact the plasmonic properties of aluminum

nanoparticles, our focus lies primarily on the diffractive properties of plasmonic metasur-

faces, which are less affected by changes in LSPRs resulting from aluminum oxidation.

In addition to the aforementioned reasons, aluminum boasts several other advantageous

features that further contribute to its appeal, including its relatively low cost, abundance

in nature, excellent nonlinear optical properties, and compatibility with diverse processing
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techniques [74, 75].

3.2 Angle-Resolved Experimental Setups and Procedure

After the completion of sample design and fabrication, we are able to analyze the intrinsic

properties of the metamaterial samples through the process of characterization. In this

section, we will provide detailed explanations of the components and equipment utilized

in two angle-resolved experimental setups. The primary objective of the first setup is to

determine the linear transmission spectra of the metamaterial. In contrast, the second

setup is designed to measure the nonlinear second-harmonic emissions of the samples.

3.2.1 Linear Setup

Broadband transmission spectra measurements are the most widely used characteriza-

tion method for optical metamaterials. In plasmonics, the objective is to accurately iden-

tify the spectral positions of various resonances and assess their intensities. When the

experimental transmission spectra closely match the simulated data, it is often seen as

compelling evidence for the validity of the theoretical approach chosen and the success

of the fabrication methods employed. In this work, we not only measure the transmis-

sion spectra at normal incidence but also at oblique angles of incidence. By studying the

angle-dependent transmission spectra, we can establish the complete set of angles and

wavelengths at which multiresonant behaviour can take place in the desired wavelength

range for a nonlinear process to occur.

The angle-resolved extinction spectroscopy setup used in this work is depicted in Figure

3.3. In this setup, a 9 W broadband halogen lamp (SLS201 300–2600 nm, Thorlabs)

was utilized as the light source. Given the high anisotropy of our metamaterials, it was

imperative to have polarization control within the optical system. To achieve this, a broad-

band linear polarizer (LP) was positioned at the beginning of the illumination path to alter

the polarization. Before reaching the sample, the incident light was passed through two

achromatic lenses, AL1 (f = 40 mm) and AL2 (f = 18 mm), which reduced the size

of the beam. The sample was placed on a stage that allowed rotation along a specific

axis to achieve the desired tilt. After the sample, two more achromatic lenses, AL3 (f

= 19.5 mm) and AL4 (f = 75 mm) were used to expand the beam. An adjustable aper-

ture called an iris was employed to restrict the light, ensuring that only the light coming

straight along the optical axis and from the correct sample was collected. Finally, a flip

mirror (FM) was used to direct the light beam toward a complementary metal-oxide semi-

conductor (CMOS) camera for imaging the sample or toward the lens AL5 (f = 4.3 mm)

and fiber-optic cable (FC) for detection by a spectrometer (SM). For measurements in the

near-infrared and visible regions, we employed the NIR128L-1.7 (Control Development)

and AvaSpec-ULS-RS-TEC (Avantes) SMs, respectively.
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Figure 3.3. A schematic representation of the optical setup utilized for measuring linear

transmission. The following notations are used: LP - linear polarizer, AL - achromatic

lens (AL1, f = 19.5 mm; AL2, f = 18 mm; AL3, f = 19.5 mm; AL4, f = 75 mm; AL5, f =

4.3 mm), FM - flip mirror, FC - fiber-optic cable, SM - spectrometer.

In accordance with standard practices, the measurement of transmission spectra requires

the acquisition of appropriate dark and reference measurements. The dark spectrum

quantifies the influence of background light. To obtain the dark spectrum, a spectrum

is recorded while intentionally blocking the halogen optical beam path from reaching the

spectrometer. This is accomplished in our experimental setup by positioning the flip mir-

ror in front of the spectrometer so that the light is redirected toward the camera instead.

Conversely, the reference measurement entails the recording of a spectrum as the optical

beam path passes through a distinct region of the sample consisting solely of the sub-

strate. This allows us to exclusively evaluate the properties specific to the nanostructured

layer.

3.2.2 Nonlinear Setup

Having obtained data from transmission measurements that capture the specific angles

and wavelengths associated with multiresonant behavior, we can then proceed to inves-

tigate the influence of such behavior on SHG. The experimental setup for SHG charac-

terization is depicted in Figure 3.4. The setup includes a Ti:sapphire laser that produces

linearly polarized short pulses with a duration of 140 fs. The generated pulses feature a

repetition rate denoted as νrep, which is set at 80 MHz, and they operate at a wavelength

of 800 nm. The laser’s output serves as the pump source for an OPO. The primary role of

the OPO is to enable access to wavelengths in the range of 1000 - 1300 nm. Incidentally,

while achieving this, the OPO also modifies the pulse duration of the light, denoted as τp,

extending it to 200 fs.

To measure the input optical power indirectly, voltage is measured by a reference germa-

nium photodiode (PD). This voltage reading is then utilized to make small adjustments to

the rotation of a half-wave retardation plate (HWP1). By working together with a linear

polarizer (LP1), these two components act as an optical attenuator that ensures a safe

and constant input power is maintained across the entire range of wavelengths employed

in the experiment.
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Figure 3.4. The setup for measuring angle-resolved SHG emissions from a nonlinear

sample comprised the following components: a laser (Ti:Sapph), an optical parametric

oscillator (OPO), half-wave plates (HWP), linear polarizers (LP), an achromatic lens sys-

tem (AL1, f = 30 mm; AL2, f = 150 mm; AL3, f = 500 mm; AL4, f = 50 mm; AL5, f =

150 mm; AL6, f = 75 mm), an aperture (A), a photomultiplier tube (PMT), a long-pass

filter (LPF), a short-pass filter (SPF), a dichroic mirror (DM), and a photodiode (PD). The

fundamental beam is depicted by the solid red line, and the path of SHG emission is

indicated by the dashed green line.

After passing through the optical attenuator, the incident light undergoes expansion us-

ing the first and second achromatic lenses (AL), AL1 (f = 30 mm) and AL2 (f = 150

mm), respectively. Utilizing beam expansion is crucial as it serves two key purposes in

the setup. Firstly, it enables a wider field-of-view during sample imaging, allowing for

a broader coverage area. Secondly, it aids in the creation of a smaller laser focal spot

diameter at a later stage in the setup when the light hits the sample. Within the beam

expander, the pinhole serves as a low-pass spatial filter and consequently ensures a

high-quality beam profile for the pump beam. This spatially filtered and expanded light

is then directed to HWP2, which sets the orientation of the incident beam’s polarization

plane. Following this, lens AL3 (f = 500 mm) focuses the fundamental wavelength onto

the sample. Prior to reaching the sample, the incident light undergoes filtration using a

long-pass filter (LPF). This precautionary measure makes certain that the detected SHG

signal originates solely from the specific sample being studied, by filtering out residual

light from the original Ti:Sapphire laser and its harmonics. It also prevents the inclusion

of SHG signals that may be generated by earlier optical components in the setup.

To adjust the angle of incidence, the sample was set onto a motorized rotation stage.

This specialized stage incorporated a small single-axis goniometer, designed for fine-

tuning the sample’s angular orientation about one axis. This goniometer was strategically

placed on top of a 3-axis translational stage, which allowed for the movement of the

sample in three-dimensional space. Adding to the control of this setup, a motor-driven

rotating platform was positioned beneath the translational stage, granting an additional

axis for fine-tuning the angular orientation of the sample.
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The SHG signal is collected by lens AL4 (f = 50 mm), directed to the detection path

through a dichroic mirror (DM), and focused onto the active area of a photomultiplier tube

(PMT) module by lens AL5 (f = 150 mm). The signal is filtered by a short-pass filter

(SPF) and polarizer LP2 to ensure the correct wavelength and polarization state of SHG

before reaching the PMT. The fundamental light that is passed through the DM is uti-

lized in visualizing the sample plane with a CMOS camera in between measurements. To

transform the detected SHG signals to absolute powers, the PMT was calibrated against

a femtowatt power meter (RM9-PD, Ophir), and a copper(II) acetylacetonate crystal with

known nonlinear properties was used as a calibration material. The outcome of this cali-

bration revealed that in our experimental setup, one PMT count equates to 5.2×10−18W.

To reduce the likelihood of damage to Samples S1 and S2, we made the decision to use

an input power of 75 mW for our nonlinear experiments. Furthermore, as a protective

measure, we introduced a shutter to safeguard the samples when measurements were

not actively being conducted.

With knowledge of the experimental setup and average input power, we are able to esti-

mate the intensity of the fundamental laser beam, denoted as Iω = Pω/Ab. This param-

eter holds significant importance in nonlinear optical processes. To determine the peak

intensity of our setup, we have to first evaluate the beam diameter at the sample plane

using basic Gaussian optics. The beam diameter of a focused Gaussian beam can be

estimated using the equation d = 4λf
πd0

, where f is the focal length of the lens, d0 is the

beam diameter at the focusing lens and λ is the laser wavelength [76]. In our experiment,

the beam diameter ( 1
e2

of maximum intensity) at the OPO output was initially 2 mm, which

was then increased to 1 cm by lenses L1 and L2. By focusing the laser beam (λ = 1200

nm) with lens AL3 (f = 500 mm), the beam diameter at the sample plane was reduced

to 76 µm. We also used a CMOS camera to verify the beam size by comparing the laser

spot to the sample arrays which we already know to cover an area of 300×300 µm2, and

the resulting measurement was identical to our previous calculated estimate. With these

parameters in hand, we can estimate the peak intensity of a femtosecond laser pulse

(Pavg = 75 mW, τp = 200 fs, νrep = 80 MHz) as

Ipeak =
Ppeak

Ab
=

Pavg

1.763τpνrepAb
= 117 MW/cm2, (3.1)

where Ab =
π(d/2)2

2 ≈ 2268 µm2 is the area of the laser beam. Although the spatial

profile of laser beams commonly takes the form of a Gaussian profile, the temporal profile

observed in ultrashort pulses generated by mode-locked lasers typically takes the form of

a squared hyperbolic secant line profile [2]. For this reason, we include a factor of 1.763

to determine the full-width at half maximum pulse duration of a squared hyperbolic secant

pulse shape based on its pulse duration.
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4 RESULTS AND DISCUSSION

In this Chapter, we will reveal the results of the experiments outlined in the previous

section. We will first show the experimental findings of the transmission spectra under

both normal and oblique angles of incidence. This is followed by the presentation of

the SHG emissions. The nonlinear results will be rigorously analyzed and discussed in

conjunction with the linear results, in an effort to draw conclusive insights regarding the

influence of multiresonant behavior on nonlinear optics.

4.1 Transmission Measurements

The transmission spectra were evaluated at normal incidence for both Samples S1 and

S2 in the visible and near-infrared regions with two orthogonal polarizations of light, as

depicted in Figure 4.1. The transmission spectra reveal the presence of narrow reso-

nance peaks, attributed to the SLRs. We utilize a red line to denote the transmission

spectrum that occurs as a result of x-polarized incident light, while a blue line is em-

ployed to indicate the transmission of the sample when subjected to y-polarized light.

With the range of lattice periods and wavelengths covered in this experimental work, four

distinct resonant modes emerged that were identical to the modes observed in our previ-

ous simulations. We successfully excited two first-order perpendicular SLRs, namely the

y-polarized SLR(±1,0) and x-polarized SLR(0,±1), along with one second-order perpendic-

ular SLR(0,±2). We were also able to excite SLR(±1,±1) in a diagonal direction with both

polarizations.

When illuminated by x-polarized light, Samples S1 and S2, which share the same lattice

periodicity in the y-direction, exhibit the first and second-order x-polarized perpendicular

SLR at the same location. These resonances peak at wavelengths λ(0,±1) = 1220 nm and

λ(0,±2) = 628 nm. However, the different periodicity in the x-direction of the two samples

results in varying spectral locations for the other SLRs. For Sample S1, the y-polarized

perpendicular SLR is centered at λ(±1,0) = 626 nm and for Sample S2, it is at λ(±1,0) = 610

nm when the samples are illumated with y-polarized light. For both polarizations diagonal

SLRs occurs at λ(±1,±1) = 560 nm for S1 and λ(±1,±1) = 546 nm for S2.
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(a) (b)

(c) (d)

Figure 4.1. Transmission spectra measured from Sample S1 (a)–(b) and Sample S2 (c)–

(d) in the visible and near-infrared wavelengths at normal incidence. Utilizing x- (red) and

y- (blue) input polarizations led to the excitation of four resonant modes for both Sample

S1 and Sample S2.

We have carefully designed our experimental setup and chosen our samples with the

intention of achieving SHG via the tensor component χ
(2)
yxx. This process necessitates

the use of an x-polarized pump and a y-polarized signal. To transition to a multireso-

nant state, we must align the pump wavelength with the longer-wavelength, x-polarized

SLR(0,±1) and the signal with either the y-polarized SLR(±1,0) or the diagonal SLR(±1,±1)

that occur at shorter wavelengths. These alignments set forth the circumstances for

multiply-resonant operation, defined by the resonance wavelengths λx(θy) and λy(θx).

This condition can be expressed as

λx(θy) = 2λy(θx), (4.1)

where θx and θy highlight that the SLR wavelengths are adjusted by tilting the sample

appropriately. In practical terms, this means that we illuminate the sample at an angle θy,

while the SHG signal is collected at an angle θx with respect to the sample plane.

With this understanding, we proceeded to conduct extinction spectra measurements at

oblique incidence angles that vary from -4 degrees to 4 degrees with x-polarization, and

-14 degrees to 14 degrees with y-polarization. The results of this experiment for Samples

S1 and S2 are depicted in Figures 4.2 and 4.3, where the SLR extinction is plotted as a

function of both the angle of incidence and the wavelength of incident light. To validate

our experimental results, we superimposed solid dots on the dispersion diagrams. These

dots indicate the positions of the Rayleigh anomalies as computed through Equation

2.10, demonstrating a high degree of agreement between our experimental results and
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the ELA predictions. Additionally, as expected for both samples, the negative and positive

angles of incidence display a similar linear response within the limits of our experimental

precision.

(a)

(b)

Figure 4.2. Dispersion diagram for Sample S1 was obtained by measuring transmission

as a function of incident angle and wavelength for (a) x- and (b) y-polarized incident light.

At normal incidence, S1 exhibits first-order perpendicular SLRs, which are x-polarized

at 1220 nm (blue dots), and y-polarized at 626 nm (yellow dots). Additionally, first-order

diagonal SLRs occur at 560 nm (green dots). Deviation from their normal incidence

values occurs when the sample is tilted.

When examining the potential for multiresonant behavior, it’s noteworthy to highlight the

spectral positioning of the resonances. As required, the x-polarized resonance can be

found within a spectral window spanning 1000–1300 nm. This range demonstrates a

close alignment with the fundamental wavelength selected for use in our SHG measure-

ments. Simultaneously, the pair of y-polarized resonances are found near the spectral

window of 500–650 nm, which falls within the signal wavelength region.

In the case of Sample S1, it is not possible to meet the multiresonant conditions at a

normal incidence. Fortunately, we can utilize the dispersions of SLRs to achieve the
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conditions by tilting the sample appropriately. For instance, if we adjust the angle to

θy = ±3°, we notice that thex-polarized SLR(0,±1) is split into two peaks located at 1180

nm and 1252 nm within the fundamental wavelength range. This particular configuration

is highlighted with a solid blue ellipse in Figure 4.2(a). In such a setting, and with θx =

0°, we are conveniently able to meet the multi-resonant conditions with the y-polarized

SLR(±1,0) situated at the SHG wavelength of 626 nm and the fundamental beam at 1252

nm. Furthermore, we can construct a triply resonant metasurface at θx = ±5°. Here,

the y-polarized SLR(±1,0) overlaps with the diagonal SLR(±1,±1) at the SHG wavelength

of 590 nm while the pump is centered at 1180 nm 1. The regions signifying these two

resonant conditions are distinctly marked in Figure 4.2(b) with yellow and green ellipses,

respectively.

(a)

(b)

Figure 4.3. Dispersion diagram for Sample S2 with (a) x- and (b) y-polarized incident

light. At normal incidence, Sample S2 demonstrates first-order perpendicular SLRs which

are x-polarized at 1220 nm (blue dots) and y-polarized at 610 nm (yellow dots). First-

order diagonal SLRs also occur at 546 nm (green dots). The SLRs can move from their

normal incidence values by tilting the sample along a specific axis.

1It is assumed here that the modest θy shift has minimal impact on the spectral location of the diagonal

SLR. As inferred from Figure 2.8 in the LSA, the diagonal SLR’s splitting rate with respect to θy is slower

compared to θx. For a tilt of θy = 3°, the estimated spectral shift of the SLR is less than 8 nm.
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Unlike Sample S1, the multiresonant conditions can be achieved at normal incidence

(θx = θy =0°) for Sample S2. In this situation, the x-polarized SLR(0,±1) at the pump

wavelength of 1220 nm overlaps with the y-polarized SLR(±1,0) at the SHG wavelength

of 610 nm. Additionally, by tilting the sample about the y-axis and setting θx = ±11°, the

diagonal SLR(±1,±1) shifts to 610 nm, thereby also fulfilling the multiresonant condition.

These conditions are marked in Figure 4.3 with solid circles.

To ensure that our multiresonant conditions are driven exclusively by SLRs without any

interference from LSPRs, we estimated the location of individual LSPRs. When nanopar-

ticles are arranged randomly, the long-range interactions between particles effectively av-

erage out [77]. Consequently, in large arrays, the resonance accurately reflects the form

and location of the single particle resonance. To explore this for our samples, we created

a sample with the same nanoparticles as in Samples S1 and S2, but dispersed randomly

across the metasurface. To amplify the signal, we decreased the average unit cell size by

a factor of four in relation to the original samples. The linear transmission spectra of this

random lattice are showcased in Appendix’s Figure A.1. It reveals a prominent LSPR at

normal incidence, which varies based on the incident polarization. Specifically, the LSPR

peak was observed at 550 nm for x-polarized light and 475 nm for y-polarized light, with a

linewidth of approximately 100 nm. Though these resonances are close to our SHG sig-

nal wavelength, it’s important to note that the LSPR generated by y-polarized light does

not coincide with any of our chosen multiresonant wavelengths in the visible wavelength

region. Therefore, any potential enhancement in the SHG emissions would solely result

from the influence of SLRs.

4.2 Second-Harmonic Generation Measurements

In the previous section, we identified several feasible multiresonant angle-wavelength

combinations from the SLR dispersion graphs in Figure 4.2 and Figure 4.3. Naturally,

the next step is to experimentally validate these values by measuring the on-and-off

resonance second-harmonic enhancement. To exemplify multiply-resonant operation for

Sample S1, we adjusted θy = 3°and we measured the SHG (corresponding toχ
(2)
yxx) as a

function of incident angle θx and pump wavelength. The SHG emissions are presented

in Figure 4.4 and the results highlight a direct link between linear and nonlinear regimes.

The nonlinear emission pattern resembles the dispersion of y-polarized SLRs shown in

Figure 4.2 and it is equivalent for positive and negative angles. The signal reaches its

highest value when Sample S1 contains a triple resonance due to the presence of both

the diagonal and perpendicular y-polarized SLRs. In these specific positions, the SHG

emission is eight times greater compared to the off-resonance signal. The emission

peaks at a power of 5.7 fW, which corresponds to a 7.6× 10−14 conversion efficiency.

While overlapping SLRs create stronger resonance than separate ones, these results

can’t confirm that the strong signals are due to a multiresonant metasurface. If multires-

onant coupling is present, the SHG emissions at the two different pump wavelengths
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should be very prominent, regardless of changes in θx. However, the SLRs near the

pump wavelength of 1252 nm and 1180 nm are significantly weak when compared to the

normal incidence x-polarized SLR(0,±1), making it difficult to observe constant enhance-

ment from the two pump wavelengths at different angle of incidences in the xz-plane. The

SHG enhancement in Figure 4.4 could be interpreted as resulting only from the overlap

of y-polarized SLR(±1,0) and diagonal SLR(±1,±1) near the signal wavelength.

Figure 4.4. Contour plot of SHG emission as a function of incident angle and pump

wavelength for Sample S1. The sample was set to θy = 3°and then tilted with respect to

the x-axis by the amount θx. At three distinct combinations of wavelength and angle, the

emission of SHG is significantly enhanced. At θx = 0°(yellow circle), we have x-polarized

and y-polarized perpendicular SLRs enhancing the produced SHG at 1252 nm. We see

again at θx = ±5° SHG enhancement (green circles), but this time it is due to the x-

polarized perpendicular SLR occurring at 1180 nm and the diagonal SLR at 590 nm.

To demonstrate the multiply-resonant operation of our metasurfaces more clearly, we

measured the SHG emission of S2 by first tilting the sample to θy = 0°. Because we

stay at normal incidence with respect to the yz-plane, we have a stronger x-polarized

SLR(0,±1) as the peak is not split into two smaller ones, as in previous measurements.

Figure 4.5 shows the SHG emission of Sample S2 as a function of incident angle θx rang-

ing from -15°to 15°and pump wavelength ranging from 1100–1300 nm. In this Figure, a

constant increase in SHG efficiency is visible for all θx values at the 1220 nm fundamen-

tal wavelength. The distinct horizontal line of approximately 2.5 fW in SHG indicates the

impact of the pump wavelength and confirms multiresonant behavior. The SHG pattern

elsewhere conforms to the dispersion of y-polarized SLRs. Notably, the highest signal

was attained under multiresonant conditions at 1220 nm and θx = [0°,±11°], yielding a

10-fold increase in SHG and a peak emission power of 5.7 fW, equivalent to a conversion

efficiency of 7.7×10−14.
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Figure 4.5. SHG emission of Sample S2 as a function of incident angle and pump

wavelength. The sample was set to θy = 0°and then tilted with respect to thex-axis. As

a result, the SH emission is enhanced at 1220 nm at three different angles. Firstly, at θx
= 0°(yellow circle), the enhancement occurs due to the x- and y-polarized perpendicular

SLRs. Secondly, at θx = ±5°(green circles), the enhancement is a result of the x-

polarized perpendicular SLR and the diagonal SLR.

The SHG signal levels in this study appear modest when compared to prior research on

plasmonic nanostructures [22, 23]. One significant reason for this is the relatively low

Q-factor SLRs located at the pump wavelengths, which have an extinction below 5% and

a Q-factor close to 60 at normal incidence. In principle, enhancing the Q-factor could be

achieved by enlarging the nanoparticles to facilitate stronger inter-particle coupling in the

array. However, for this study, such an approach wasn’t viable. The increased size of

the nanoparticles would cause the LSPRs to move into the nonlinear signal wavelength

spectrum, preventing the exclusive use of SLRs to achieve multiresonant behavior. A

more tangible strategy for enhancing the low Q-factors becomes clear from analyzing the

SEM image shown in Figure 3.1. This image points towards non-uniform nanoparticle

geometries in our samples, likely due to the surface irregularities caused by the aluminum

evaporation process [78]. Although these variations in geometry don’t seem to negatively

influence the dispersion or spectral positioning of the SLRs, improving them could further

enhance inter-particle interactions [79]. Separately, it’s important to remember that SHG

is already highly sensitive to nanoparticle symmetry. Even slight structural changes in

the nanoparticles can lead to significant alterations in the SHG output, both in terms of its

nature and magnitude. Thus, the observed shape irregularities might have contributed to

reduced SHG emissions compared to potentially optimal shapes.

Once the Q-factors of the SLRs are optimized, further steps can be taken to enhance

the overall nonlinear signal in our transparent samples. One promising strategy is lay-

ering multiple metasurfaces. Although this method is not trivial, phase-matched stacked

metasurfaces offer a direct path for amplifying weaker nonlinear signals [31]. Additional

methods, such as employing multi-pass pumping schemes or crafting metasurfaces capa-
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ble of enduring higher-intensity pumping, could also be explored for signal enhancement

[80, 81].

Unfortunately, limited time and computational resources prevented us from simulating

nonlinear responses for comparison with our experimental SHG emissions. However,

these calculations could have been done using the help of FDTD or DDA. To estimate

the far-field SHG emission for periodic metasurfaces, one can simulate the field profiles

of a nanoparticle with FDTD and then calculate mode-overlap integrals [82]. Additionally,

the angle-dependent nonlinear responses could be estimated by employing a nonlinear

DDA method [68]. It is important to note that the latter method treats individual nanopar-

ticles as point-like scatterers, which unfortunately restricts the possibility of conducting

mode-overlap calculations. Nonetheless, this approach is computationally less demand-

ing compared to techniques based on full-wave simulations.
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5 CONCLUSION

Inspired by the trend of increasing miniaturization, we investigated the nonlinear re-

sponses of multiresonant plasmonic metasurfaces. This work brings novel contributions

to the field by utilizing the dispersion of relatively high Q-factor SLRs to spectrally shift the

SLRs to the pump and signal wavelengths of a nonlinear process, thereby creating mul-

tiresonant behavior. Successful implementation of our approach on two distinct samples

revealed that the presence of multiple SLRs led to a prominent enhancement of SHG

emission via the amplification of local electric fields.

Achieving these results involved the careful completion of multiple preparatory steps to

ensure appropriate experimentation and accurate analysis of the multiresonant behavior.

We approached the work, by first conducting a comprehensive study of the dispersion of

SLRs. We used a collection of the most relevant theoretical, analytical, and numerical

modeling techniques to model the linear optical response of nanoparticles. Our analysis

of nanoparticles arranged into a rectangular lattice revealed comparable SLR behavior

across all the models, which included ELA, LSA, and FDTD. The results clearly illustrate

that by rotating a sample about an axis, the spectral locations of SLRs can be changed

if the rotation happens about the axis that is orthogonal to the direction that the in-plane

perpendicular SLR travels. This allows us to independently control SLRs that are orthog-

onally polarized, enabling us to utilize this capability for the purpose of constructing a

tunable multiresonant sample that could potentially enhance nonlinear signals.

Drawing inspiration from the promising results of our simulations, we designed and fab-

ricated multiresonant metasurfaces. By employing electron-beam lithography and lift-off

processes, we deposited noncentrosymmetric V-shaped aluminum nanoparticles onto a

glass substrate, with the specific purpose of achieving type-I SHG. The nanoparticles

were arranged in a rectangular lattice pattern on both samples, albeit with varying lattice

periods. This deliberate manipulation of the lattice periodicity allowed us to systematically

assess the multiresonant behavior of the system under diverse experimental conditions,

with the ultimate goal of obtaining reliable and reproducible results in relation to the im-

pact of multiresonant behavior on nonlinear phenomena.

After completing the fabrication of the samples, we proceeded to thoroughly characterize

the linear properties of the metasurfaces. This involved conducting transmission spec-

tra measurements at normal incidence with varying polarizations to accurately identify

the resonances present in our samples. Through this process, we were able to identify

four distinct in-plane SLRs within the wavelength range accessible with our experimental
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setup. From these four options, we carefully selected three first-order SLRs for further

study due to their close spectral positioning to either the fundamental laser wavelength or

the corresponding SHG signal wavelength. The chosen SLRs offer the added advantage

of independent spectral location tuning by simply rotating the sample, providing us with

enhanced flexibility and control over the experimental setup to create desired multireso-

nant behavior.

Next, we conducted spatial dispersion measurements for the three selected in-plane

SLRs. This involved measuring the transmission as a function of pump wavelength and

angle of incidence. Since our samples were designed for type-I SHG, where they exhibit

a y-polarized SHG signal when pumped with an x-polarized input, we conducted disper-

sion measurements with orthogonal input polarizations for the two wavelength regions of

interest. By carefully analyzing the dispersion diagrams, we could easily identify several

potential multiresonant wavelength and incident angle combinations for both samples.

Finally, in the culmination of our research efforts, we experimentally tested the effec-

tiveness of our multiresonant conditions on SHG. This involved finely tuning the pump

wavelength and optimizing the angle of incidence to its optimal value, followed by mea-

suring the emissions of SHG. Our findings unveiled multiple instances where simulta-

neous SLRs at both the pump and signal wavelengths significantly amplified the SHG

response. Under multiresonant conditions, the SHG emissions reached their peak, ex-

hibiting a remarkable 10-fold enhancement compared to non-multiresonant conditions.

This enhancement resulted in a conversion efficiency of 7.7×10−14 with a peak emission

power of 5.7 fW.

In summary, we experimentally demonstrated the applicability of multiresonant metasur-

faces to enhance nonlinear effects. Despite the modest signal levels, our results unveil

a novel mechanism for achieving tunable SHG enhancement. By tilting the sample, we

are able to modulate the multiply-resonant wavelength, thereby fine-tuning the wave-

length at which the strongest SHG response is achieved. This post-fabrication tunability

presents a significant opportunity for improving a range of nonlinear effects, including

DFG, spontaneous parametric down-conversion (SPDC), four-wave mixing (FWM) and

third-harmonic generation (THG) without the need for phase-matching considerations.

This exciting prospect opens up new avenues for exploration and experimentation. Fur-

thermore, while our study focused on SHG from V-shaped aluminum nanoparticles on

a glass substrate, the concept of multiresonant behavior could be harnessed to amplify

light–matter interactions in different types of nonlinear metasurfaces and metamaterials.

In fact, the proposed approach may be particularly effective in enhancing the nonlinear re-

sponses of all-dielectric metasurfaces, which have the potential to support higher Q-factor

resonances compared to current metal–dielectric metasurfaces [83, 84]. Ultimately, we

believe that our methodology presents a general and transformative approach to signifi-

cantly enhance nonlinear effects in metasurfaces and it is a step forward in the journey

towards smaller, more efficient nonlinear devices.
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APPENDIX A: SPECTRAL LOCATION OF

LOCALIZED SURFACE PLASMON RESONANCES

In order to estimate the location of a single-particle LSPR for our metasurfaces, we fabri-

cated a new sample with randomly arranged V-shaped aluminum nanoparticles placed on

a dielectric substrate. The randomness guarantees that the particles don’t exhibit long-

range order and eliminates the possibility of coherent grating interference. To strengthen

the extinction spectra, we increased the particle density so that the sample possesses a

particle density similar to 300 × 300 nm2 square array. Figure A.1 shows the transmission

versus the wavelength at normal incidence for the randomly patterned array.

Figure A.1. When arranged on a random lattice, the metasurface exhibits only single-

particle LSPRs. For our samples, they occur at 550 nm and 475 nm for x- (red) and y-

polarized light.

The transmission spectra reveal a visible peak at the LSPR with a linewidth of approx-

imately 100 nm. For x-polarized light, the SLR occurs at 550 nm, while for y-polarized

light the SLR occurs at 475 nm.
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