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A B S T R A C T

The automation of processes that handle deformable materials, and in particular Deformable Linear Objects
(DLOs), such as cables, ropes, and sutures; is a challenging task. Due to their properties, it is very difficult to
predict the shape of these objects, making indispensable the use of perception systems for their manipulation.
However, the detection of a DLO is a non-trivial task, and it can be even more complicated when additional
considerations are made, such as detecting multiple DLOs, with small distances between them or even adjacent
to each other, and with occlusions and entanglements between them. In this paper, a novel machine vision
approach for estimating the shape of DLOs is proposed to address all these challenges. This approach processes
the different DLOs in the image sequentially, repeating the following procedure for each of them. First, the
DLO is segmented by examining the colors and edges in the image. Next, the remaining pixels are analyzed
using evaluation windows to identify a series of points along the DLO’s skeleton. These points are then
employed to model the DLO’s shape using a polynomial function. Finally, the output is evaluated by an
unsupervised self-critique module, which validates the results, or fine-tunes the system’s parameters and repeats
the process. The performance of the system was tested with several wiring harnesses, detecting all their cables
in homogeneous and complex backgrounds, with adjacent cables, and with occlusions. The results show an
outstanding performance, with a successful shape estimation rate of more than 90% for some of the system
configurations.
. Introduction

Deformable Linear Objects (DLOs) such as cables, hoses, ropes,
iring harnesses or sutures, are very present in our daily life and
re handled to perform many different tasks in industrial, medical,
r household applications, among others. The manipulation of these
bjects seems simple and intuitive for humans thanks to our per-
eption, dexterity, experience and knowledge about the environment.
owever, automating this task is very difficult and in most cases it is

till performed manually [1]. This extra complexity, with respect to
he manipulation of rigid objects, is due to the new challenges that
eformable materials introduce to robotic manipulation. This includes
he complication of sensing deformation, the high number of degrees
f freedom of the DLOs, the complexity of non-linearity in modeling
eformation [2], the dependency of the applied contact forces on the
bject deformation [3], etc.

✩ This paper was recommended for publication by Associate Editor Garrett M. Clayton.
∗ Corresponding author.
E-mail address: pablo.malvidofresnillo@tuni.fi (P. Malvido Fresnillo).

Yin et al. [4] broke down robotic manipulation of deformable mate-
rials into three simpler problems: modeling, sensing and manipulation.
A similar division was done by Zhu et al. [2], in which, besides the
previous three, two additional problems were considered: planning and
control. The approach presented in the current paper focuses on the
sensing problem, aiming at developing a robust solution for the shape
estimation of DLOs. Different sensing techniques can be used with this
purpose, such as tactile sensing [5], force sensing [6], or proximity
sensing [7], however machine vision is the most used technique as it
provides global information about shapes on a large scale and does not
require contact with the object. Within computer vision there is also
a wide variety of approaches and possibilities, e.g., using 2D or 3D
cameras, capturing colors or in grayscale, and a plethora of methods for
analyzing the images, which gives flexibility for adapting to the specific
requirements of the aim application.
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Fig. 1. Machine vision techniques used as initial step for the shape estimation of DLOs.
The objective of this paper is to develop a machine vision system
able to identify and estimate the shape of multiple DLOs in homoge-
neous (i.e., single color and texture, with no edges and no additional
objects) and complex backgrounds. The system must be able to detect
thin DLOs with small distances between them and must be robust
against the occlusions caused by entanglements between the DLOs.
Additionally, the parameters of the system must be adjusted automat-
ically to maximize its performance with different light conditions and
background colors.

The rest of the document is structured as follows: Section 2 includes
a review of the existing computer vision techniques for the shape
estimation of DLOs, identifying research gaps. Section 3 describes
the developed system and its different modules. Section 4 presents
the experimental evaluation of the developed system with different
DLOs specimens and discusses about the obtained results. Finally,
Section 5 reports the conclusions and some of the possible future lines
of research.

2. State of the art

Many authors have tried to solve the problem of estimating the
shape of DLOs using machine vision. Many different techniques, strate-
gies and types of images have been used, leading to very different
approaches that focus on different aspects depending on the require-
ments of the aim application. For instance, some of these approaches
have to work in cluttered environments, so they are more tailored for
being robust against occlusions of the DLOs [8] and complex back-
grounds [9], but others are developed for applications that deal with
small specimens or with small distances between them, requiring good
performance against very thin [10] or adjacent [11] DLOs respectively.
Another example are the tracking approaches [12], which need to
be really fast in order to operate in real time and, normally, they
use the configuration of the DLO in the previous time step as an
input for the DLO shape estimation process. To present an overview
of the state of the art, the reviewed approaches have been classified
according to the initial step of their algorithms, differentiating them
into four categories: background subtraction (or DLO segmentation),
edges detection, superpixel segmentation, and other techniques (see
Fig. 1).

Background subtraction: This technique, involves separating the
foreground objects from the background in an image. Some authors
refer to this operation as DLO segmentation, as its objective is to
remove the background or noise from the image and isolate the
objects of interest. One of the simplest background subtraction tech-
niques is image differencing, which involves subtracting a reference
or background image from the current image, which contains the
evaluated DLOs, to obtain an image containing only the differences
between the two. This technique is used in [13], taking an image
2

with and without the DLO with a stationary camera. Then, a contour
following algorithm is applied to the resultant binary image to iden-
tify the borders of the DLO. This algorithm examines the pixels of
the DLO in a particular direction that alternates between horizontal
and vertical upon detection of a boundary.

Another simple DLO segmentation method is color filtering, where
all colors except for those that correspond to the objects of interest
are filtered out. This technique is applied in [8] to segment a rope
placed over a green background. The resultant point cloud is then
discretized in nodes and, finally, the shape of the DLO is estimated
using Coherent Point Drift (CPD), which makes the approach robust
against occlusions. A very similar solution was presented in [12],
where the background is also subtracted with a color filter, and
the DLO is modeled using Constrained Deformable Coherent Point
Drift (CDCPD), which consists of an enhanced CPD with additional
constraints to ensure that the DLO never passes through itself and
is never inside an obstacle. Both these approaches work with point
clouds captured with 3D cameras.

Another example of color filtering is presented in [14]. In this
approach, the obtained binary image is processed by a Fully Convo-
lutional Network (FCN) to obtain keypoints of the DLO and, finally,
the position of these points is corrected using a geometric fine-
tuning. The geometric analysis of the segmented DLO is a common
practice, which can also be found in other approaches. For instance,
in [15], a geometric optimal control algorithm is utilized to estimate
the shape of a segmented elastic rod by evaluating the position of a
set of equidistant points along the rod.

These background subtraction methods are fast and simple to imple-
ment and work well in many situations. However, for more complex
or dynamic environments the use of more advanced methods such
as machine learning algorithms may be required. In particular,
Convolutional Neural Networks (CNNs) are a widely used technique
for object instance segmentation [16], and numerous approaches
take advantage of them, such as [17–19], and [20].

The approach proposed in [17] employs a CNN to segment wiring
harnesses, classifying the pixels of the image into eight different
classes, including the wire bundles, the background, and other
elements of the background platform. In [18], the authors presented
a methodology for identifying entangled ropes using two CNNs. The
first network was utilized for segmenting the rope from a complex
background, while the second CNN (a Yolov3 model [21]) was used
to determine its cross points in order to analyze which part of the
DLO is on top when there are entanglements. In [19], an approach
for identifying the pixels of power cables in 2D color images with
complex backgrounds is presented. This is achieved using a CNN
based model composed of an encoder–decoder block that extracts
features from the image, a prediction module for object classification
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and key points regression, and a DBSCAN clustering module, which
merges the results of the network and models each of the cables.
Finally, the approach proposed in [20] exploits CNNs to introduce
one of the fastest algorithms for identifying DLOs in the current
state-of-the-art, with a processing rate higher than 30 FPS (Frames
per Second). The employed methodology starts by subtracting the
background using a CNN. Then, a set of vertices are sampled from
the segmented image, characterizing their orientation with a second
CNN. After this, the relation between the vertices is evaluated,
creating a graph representation of the DLOs, which is finally used
to analyze the intersection areas and identify each DLO instance.

Although CNNs are the most popular machine learning method for
image segmentation, some authors have utilized other techniques
for this purpose. This is the case of the approach proposed in [22],
where a hierarchical Self-Organized Map (SOM) is used to classify
and segment fur tails based on texture properties. Then, the skeleton
of these furs is determined using a sequential thinning algorithm.
The adoption of skeleton thinning after image segmentation is a
usual strategy, which has been used in other approaches in the
literature, including [23,24]. Nevertheless, in [24], this strategy is
further enhanced by implementing additional operations that link
the identified DLO segments, making the algorithm robust against
occlusions.

In addition to the aforementioned approaches, various techniques
have been proposed for background subtraction in 3D images. One
of these techniques is Region of Interest (ROI) intensity filters,
which is used in [25] to remove the background from the point
cloud of a wiring harness. Then, the segmented point cloud, which
is modeled using a Gaussian Mixture Model (GMM), is processed
using an enhanced Structure Preserved Registration (SPR) method
to track the branched DLO. Similar to [8,12], this approach shows
excellent results tracking DLOs in the presence of occlusions. An-
other commonly employed method for subtracting the background
of 3D images is plane fitting, which leverages depth information.
This technique was utilized in the approach presented in [26],
which after isolating the DLO point cloud, employs a region-growing
method to over-segment it in a set of nodes. These nodes are then
sorted by minimizing a cost function that relies on some geometrical
features to reveal the structure of the DLO. An alternative way
to process the segmented 3D point cloud of a DLO is presented
in [27]. The approach involves sorting the points along the length
of the DLO, performing a linear regression skeletonization with the
sorted points, and finally, generating a kinematic multibody model
of the DLO by determining the joints of its skeleton in an iterative
procedure.

Edges detection: There is a wide variety within the approaches
that start the DLO identification process by detecting the edges in
the image. This diversity lies not only in the methods for extracting
the edges but also in the approaches for analyzing them. One of
the most popular algorithms for detecting the edges in an image
containing DLOs is the Canny edge detector. This is used in [28] to
extract the edges of an image containing an underwater cable with a
complex background. After that, the edges of the cable are identified
by classifying them with Multilayer Perceptron (MLP) and Support
Vector Machine (SVM) classifiers. Finally, a Hough transform is used
to locate the two border lines of the cable. Almost the same strategy
is followed in [29], where Canny and Hough Transform are used to
obtain first, the image edges and then, the cable lines. A Canny edges
detector is also used in [10] to model extremely thin DLOs, such as
sutures or tiny ribbons. This approach merges the edges detected in
images captured by different cameras. Subsequently, the potential
DLO configurations are represented with an energy function that
incorporates the error of projecting all the computed edges in each
3

image. The most likely DLO configuration is obtained by minimizing
this energy function. A similar approach is used in [30], where
in each of the two images taken by stereo vision, the edges are
extracted and used to calculate the skeleton line of a wire. The
resulting points from one image are projected onto the other, and
the results are merged to determine the actual DLO points.

An enhanced version of the Canny edges operator is presented
in [31], in which the spurious edges are removed by adding an Arti-
ficial Neural Network (ANN) that classifies the edges as spurious or
not. Then, the shape of the DLO is estimated by template matching,
using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [32]
to minimize the error between the detected edges and a deformable
template. This template uses the Boundary Element Method (BEM)
to model its deformation. Deformable template matching was also
used in [33] to detect non rigid objects, but in this case using
triangulated polygons as templates. This approach defines an energy
function that assigns a cost to each possible transformation of the
deformable template to match the detected shape. The template
shape that best fits the analyzed object is obtained by minimizing
this function.

The effectiveness of four different edge detection operators, namely
Difference, Roberts, Sobel and Laplacian-of-Gaussian operators, for
identifying the boundaries of a cable in a complex background was
evaluated in [34]. Results showed that the Sobel operator performed
the best. After this, the cable shape was analyzed using evaluation
windows, propagating the cable lines forward. This method starts
placing a window on a known point of the cable, and subsequent
windows are generated adjacent to the previous one and concentric
to the cable direction.

A distinct DLO edge detection approach was used in [35], which
involves the application of clustering. This methodology identifies
the regions with the higher gradient between clusters and desig-
nates them as edges. Two clustering algorithms were tested, namely
minimal-spanning tree and K-means clustering, obtaining better
results with the first one. After this, an eigenvector straight line
fitting method was used to reduce the noise caused by the complex
background and, finally, the actual cable borders were detected
by evaluating the parallelism between edges. Eigenvectors are a
powerful tool to determine the direction of the DLOs, and they have
also been used in various other approaches. For instance, in [36,37]
the eigenvalues of the Hessian of the image are utilized to detect
vessels in medical images.

Superpixel segmentation: There is another group of approaches
which, instead of starting with a background subtraction or edges
detection operation, perform a superpixel segmentation of the im-
age. This reduces the computation time of the following operations,
as they can focus on the analysis of meaningful regions (i.e., super-
pixels) instead of the whole set of pixels. This is the case of [9],
where a superpixel segmentation is performed to build Region Ad-
jacency Graph (RAG), and then, an iterative algorithm tries to find
the best path through the RAG for connecting the DLO endpoints.
A similar approach is followed in [11], where after a multi-scale
superpixel segmentation of the image, the most likely sequence of
superpixels is found by minimizing a cost function using dynamic
programming.

Other techniques: Although most of the vision-based DLO recog-
nition approaches can be classified into one of the three previous
categories, there are others that follow a different strategy and do
not start the image analysis with any of those operations. Some ex-
amples of this are [38,39]. In [38], a methology for identifying line
segments and circular and elliptical arcs in an image is presented.
Additionally, this algorithm was used in [9] to recognize wires with
good results. In this approach, the initial line and arc candidates are
identified through a process of region growing and curve growing.
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Table 1
Characteristics and capabilities of published vision-based DLO detection approaches (1/2). Ent.: Entanglements, Occ.: Occlusions, Adj.: Adjacent,
NT: Not tested.

Ref Test specimens DLOs number Size (D/L) DLOs color Background Ent. Occ. Adj.

Background subtraction

[13] Wires 1 Small Grayscale Homogeneous NT NT NT
[8] Rope 1 Big 1 Homogeneous ✓ ✓ NT
[12] Rope 1 Medium 1 Homogeneous ✓ ✓ NT
[14] Rope 1 Small 1 Homogeneous NT NT NT
[15] Elastic rod 1 Small 1 Homogeneous NT NT NT
[17] Wire harness Multiple Medium 1 Homogeneous NT ✓ NT
[18] Ropes 1 and 2 Medium 1 Complex ✓ NT NT
[19] Power cables Multiple Tiny 1 Complex NT NT NT
[20] Wires Multiple Small Multiple Complex ✓ NT ✗

[22] Furs Multiple Big 1 Complex ✗ ✗ ✗

[23] Ropes 1 Medium 1 Homogeneous ✓ NT NT
[24] Wires 1 Small 1 Complex ✓ ✓ ✗

[25] Wire harness Multiple Medium 1 Homogeneous NT ✓ NT
[26] Cables, ropes 1 Medium 1 Homogeneous ✓ NT NT
[27] Vacuum hose 1 Big 1 Complex NT NT NT

Edges detection

[28] Underwater cable 1 Medium 1 Complex NT NT NT
[29] Pipe 1 Big Grayscale Homogeneous NT NT NT
[10] Suture, ribbon 1 Tiny 1 Homogeneous NT NT NT
[30] Wires 1 Small Grayscale Homogeneous NT NT NT
[31] Deformable obj – – Grayscale Complex NT ✓ NT
[33] Deformable obj 1 Big Grayscale Complex NT ✓ ✓

[34] Cables 1 Small Grayscale Complex NT NT NT
[35] Underwater cable 1 Big Grayscale Complex NT ✓ NT
[36] Vessels, wiresa Multiple Small Multiple Homogeneous ✓ NT NT
[37] Vessels, wiresa Multiple Tiny Multiple Homogeneous ✓ NT NT

Superpixel segmentation

[9] Wires Multiple Small Multiple Complex ✓ NT ✗

[11] Curved objects Multiple Medium Multiple Complex NT ✗ ✓

Other techniques

[38] Curves, wiresa Multiple Small Multiple Homogeneous ✓ NT NT
[39] Vessels Multiple – Grayscale – NT ✓ NT

a The approaches have been also tested with wires in [9].
Then, a probabilistic method is applied to eliminate false detections
and, finally, a model is selected for the remaining candidates. Re-
garding [39], an energy function minimization technique is used to
determine the deformable contour of an object, based on the inten-
sity gradient of the pixels and the contour curvature. To speed up the
process, the contours are just evaluated inside successive evaluation
windows, whose positions and dimensions are determined based on
some reference points provided by the user.

The main characteristics and capabilities of the vision-based DLO
detection approaches reviewed in this section are summarized in Ta-
bles 1 and 2. Analyzing these tables, it can be seen that most of
these approaches focuses on tracking applications, prioritizing a fast
computation, but there is lack of solutions that can detect multiple
adjacent tiny DLOs, and that are robust against entanglements (or at
least that have demonstrated good performance in these situations).

3. DLO shape estimation system

3.1. Structure of the system

In this paper, a system for the identification and shape estimation
of DLOs from 2D RGB images is presented. This system is composed of
five modules, and its structure and workflow can be seen in the activity
diagram of Fig. 2. It receives as inputs the RGB image of the DLOs
to model and some predefined knowledge about the DLOs, like their
diameter and color; and returns the estimated shape of all the DLOs as
polynomial functions. The code of the system is publicly available.1

1 https://github.com/pablomalvido/DLO_shape_estimator_TAU
4

Fig. 2. DLO shape estimation system UML activity diagram.

https://github.com/pablomalvido/DLO_shape_estimator_TAU
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Table 2
Characteristics and capabilities of published vision-based DLO detection approaches (2/2).

Ref Approach Prev info Outcome Camera Speed

Background subtraction

[13] Image differencing + contour following algorithm None DLO base points 2D grayscale < 10 ms

[8] Color filtering + pointcloud discretization + CPD Prev state Skeleton points 3D stereo < 100 ms

[12] Color filtering + Enhanced GMM-EM regularization + enhanced
CDCPD

Prev state Skeleton points 3D RGBD < 100 ms

[14] Color filtering + FCN + geometric finetuning Training Skeleton points RGB + lidar –

[15] Background subtraction + geometric optimal control Endpoints 3D skeleton 2D RGB < 1 s

[17] CNN objects detection and segmentation Training Points of interest 2D RGB < 100 ms

[18] DLO segmentation (CNN) + cross points determination (CNN) None B-Splines 2D RGB –

[19] CNN pixel classification + DBSCAN clustering Training Linear segments 2D RGB < 100 ms

[20] DLO segmentation (CNN) + vertices sampling + edges sampling +
graph analysis

Training DLO points +
overlapping info

2D RGB < 100 ms

[22] Object classification and segmentation (SOM) + sequential thinning
skeleton function [40]

Training Skeleton points 2D RGB –

[23] Background subtraction + thinning skeletonization + graph
structure analysis + intersections analysis

DLO diameter Topological model 3D stereo –

[24] Background subtraction + skeletonization + contour extraction +
DLO fitting and pruning + merging

None DLO points 2D RGB < 1 s

[25] 3D background subtraction (ROI intensity filter) + enhanced SPR
method

WH info Linear segments 3D stereo < 10 s

[26] 3D background subtraction (plane fitting) + DLO discretization by
region-growing + cost function minimization to find the correct
segments order

Training cost function
weights

Linear segments 3D RGBD –

[27] 3D background subtraction + Pointcloud sorting + skeletonization
+ Joints estimation

None Multibody model 3D stereo –

Edges detection

[28] Edge detection (Canny) + classification (MLP and SVM) + lines
detection (Hough transform)

None Border lines 2D RGB < 100 ms

[29] Edge detection (Canny) + lines detection (Hough transform) None Border lines 2D RGB < 100 ms

[10] Edge detection (Canny) + local minimization of an energy function
of the DLO

Training + init config Vertices + edges
+ material frames

3D stereo –

[30] Edges detection + skeleton line calculation + stereo merging None 3D skeleton 3D stereo –

[31] Edge detection (Canny + NN) + Template-based tracking using the
BFGS method to minimize the error

BEM model Object template
(BEM)

2D grayscale < 1 s

[33] Deformable template matching + transformations energy function
minimization

Template Triangulated
polygons

2D grayscale > 1 min

[34] Edge detection (Sobel) + DLO borders intersection with adaptative
tracking windows

Thickness + prev
state

Borders + linear
regression

2D grayscale –

[35] Edges detection (clustering) + parallel contours evaluation None Axis line 2D grayscale < 100 ms

[36] Multi-scale filtering + Hessian eigenvalues analysis None Filter (visual) DSA, MSAa –

[37] Ridges detection and grouping by Hessian eigenvalues analysis None Segmentation 2D RGB –

Superpixel segmentation

[9] Superpixel segmentation + biased random walks Endpoints B-Splines 2D RGB < 1 s

[11] Multiscale superpixel segm + cost function to group them None Linear segments 2D RGB –

Other techniques

[38] Candidates selection (region growing), validation and modeling None Lines and arcs 2D grayscale –

[39] Cost function minimization by dynamic programming in successive
evaluation windows to determine the contour

Reference points Contour
segmentation

DSA, MRIa –

a The images taken by these cameras have been analyzed as 2D grayscale images.
p
(

The first module performs a preprocessing of the image, preparing it
for the following operations. In this preprocessing step, the resolution
of the image is adjusted to have a certain number of pixels per DLO
diameter (𝑝𝑥∕𝐷). In case there are DLOs of different diameters in the
mage, the smallest (𝐷) will be considered for the calculation, ensuring
lways a minimum number of pixels per DLO diameter. For resizing
he image it is necessary to know the pixels to millimeters conversion
actor (𝑚𝑚∕𝑝𝑥) in the plane of the DLOs. This information is obtained
y checking the number of pixels of a reference structure situated in
he same plane, for instance a connector in one of the cable ends.
5

he dimensions and location of this reference structure is part of the
redefined knowledge received by this module.

𝑤𝑖𝑑𝑡ℎ
ℎ𝑒𝑖𝑔ℎ𝑡

)

𝑟𝑒𝑠𝑖𝑧𝑒𝑑
=
(

𝑤𝑖𝑑𝑡ℎ
ℎ𝑒𝑖𝑔ℎ𝑡

)

⋅
𝐷

𝑚𝑚∕𝑝𝑥 ⋅ 𝑝𝑥∕𝐷

After this preprocessing, the image is ready to start recognizing the
shape of the DLOs. This is managed by a group of modules that analyzes
each DLO separately, thus, the process is repeated for all the DLOs of
the image. First, A binarization of the image is performed, segmenting
the DLOs of the required color (the color of the DLOs can be repeated).
The segmentation algorithm is composed by two main operations, an
enhanced color filter and a Canny edge detector, and finally their
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Algorithm 1 DLO segmentation algorithm
1: procedure rgbDif(R, G, B, c)
2: 𝑐_𝑑𝑖𝑓 ←

√

(𝑅 − 𝑐[0])2 + (𝐺 − 𝑐[1])2 + (𝐵 − 𝑐[2])2
3: return 𝑐_𝑑𝑖𝑓
4: procedure colorFilter(𝑖𝑚𝑔, 𝑐, 𝑐_𝑎𝑙𝑙, 𝑡ℎ𝑟1, 𝑡ℎ𝑟2)
5: 𝐵𝑖𝑛 ← Empty image of size [𝑖𝑚𝑔.𝑤𝑖𝑑𝑡ℎ, 𝑖𝑚𝑔.ℎ𝑒𝑖𝑔ℎ𝑡]
6: 𝑟, 𝑔, 𝑏 ← RGB channels of 𝑖𝑚𝑔
7: for 𝑥 ← 0 to 𝑖𝑚𝑔.𝑤𝑖𝑑𝑡ℎ do
8: for 𝑦 ← 0 to 𝑖𝑚𝑔.ℎ𝑒𝑖𝑔ℎ𝑡 do
9: 𝐵𝑖𝑛[𝑥, 𝑦] ← 0

10: 𝑟𝑖, 𝑔𝑖, 𝑏𝑖 ← 𝑟[𝑥, 𝑦], 𝑔[𝑥, 𝑦], 𝑏[𝑥, 𝑦]
11: if |𝑟𝑖 − 𝑐[0]| < 𝑡ℎ𝑟1 and |𝑔𝑖 − 𝑐[1]| < 𝑡ℎ𝑟1 and |𝑏𝑖 − 𝑐[2]| < 𝑡ℎ𝑟1

then
12: 𝑐𝑑 ← call 𝑟𝑔𝑏𝐷𝑖𝑓 (𝑟𝑖, 𝑔𝑖, 𝑏𝑖, 𝑐)
13: 𝑐_𝑝𝑖𝑥𝑒𝑙 ← True
14: for each 𝑐2 ∈ 𝑐_𝑎𝑙𝑙 do
15: if 𝑐2 ≠ 𝑐 then
16: 𝑐𝑑2 ← call 𝑟𝑔𝑏𝐷𝑖𝑓 (𝑟𝑖, 𝑔𝑖, 𝑏𝑖, 𝑐2)
17: if 𝑐𝑑2 ⋅ 𝑡ℎ𝑟2 < 𝑐𝑑 then
18: 𝑐_𝑝𝑖𝑥𝑒𝑙 ← False
19: break
20: if 𝑐_𝑝𝑖𝑥𝑒𝑙 then
21: 𝐵𝑖𝑛[𝑥, 𝑦] ← 1
22: return 𝐵𝑖𝑛
23: procedure Main(𝑖𝑚𝑔, 𝑐, 𝑐_𝑎𝑙𝑙, 𝑡ℎ𝑟1, 𝑡ℎ𝑟2, 𝑡ℎ𝑟3, 𝑝𝑥∕𝐷)
24: 𝐶𝑜𝑙𝐵𝑖𝑛 ← call 𝑐𝑜𝑙𝑜𝑟𝐹 𝑖𝑙𝑡𝑒𝑟(𝑖𝑚𝑔, 𝑐, 𝑐_𝑎𝑙𝑙, 𝑡ℎ𝑟1, 𝑡ℎ𝑟2)
25: 𝐸𝑑𝑔𝑒𝐵𝑖𝑛 ← CannyEdges(𝑖𝑚𝑔)
26: 𝐸𝑑𝑔𝑒𝐵𝑖𝑛𝐷𝑖𝑙 ← Dilate(𝐸𝑑𝑔𝑒𝐵𝑖𝑛, 𝑡ℎ𝑟3, 𝑝𝑥∕𝐷)
27: 𝑆𝑒𝑔𝑚 ← 𝐸𝑑𝑔𝑒𝐵𝑖𝑛𝐷𝑖𝑙 ∩ 𝐶𝑜𝑙𝐵𝑖𝑛
28: return Segm

results are merged. This algorithm is described in Algorithm 1, where
𝑐 is the RGB color code of the DLO to segment, 𝑐_𝑎𝑙𝑙 is a list with
he RGB color codes of all the DLOs, and 𝑡ℎ𝑟1, 𝑡ℎ𝑟2 and 𝑡ℎ𝑟3 are three
arameters that determine how permissive the segmentation filter is.
he RGB color codes are part of the predefined knowledge.

The color filter first splits the image into its color channels (red,
reen and blue). Then, for each pixel of the image, it checks if the
ifference between its color and the reference color 𝑐 is, for all its color
hannels, lower than a threshold value (𝑡ℎ𝑟1). Thus, if this threshold
s very low, just a few of the DLO pixels will be recognized, but if it
s too high, many similar colors will pass the filter, leading to a bad
egmentation where it is difficult to recognize the DLO. To overcome
his problem, a second filter is applied, which checks if the detected
olors are more similar to any of the other known colors of the image
𝑐_𝑎𝑙𝑙). This allows the first filter to be more permissive, capturing
ore pixels of the DLO in question, but at the same time avoiding

onfusions with other similar colors. Moreover, a second threshold
arameter (𝑡ℎ𝑟2) is used to dynamically modify how restrictive the filter
s with other colors.

On the other hand, the Canny edge detector is used to identify all
he edges of the original image. Then, a dilation operator is applied
o the resultant binary image, expanding the parallel border lines of
ach DLO until they get in contact, creating filled lines for all the DLOs
f the image. To achieve this, the dilation kernel size is determined
ased on the number of pixels per diameter of the DLOs (𝑝𝑥∕𝐷) and a
econfigurable value (𝑡ℎ𝑟3) that can slightly increase or decrease this
ize to refine the DLO segmentation. Both operators, the color filter
nd the edge detector, can work as standalone segmentation systems
or homogeneous backgrounds and not adjacent DLOs. However, when
heir results are merged and the intersection of both binary images is
elected, a more robust segmentation is achieved, effectively reducing
aptured noise. This approach enables the detection of adjacent DLOs
n complex backgrounds, even when the background and the DLO have
6

he same color.
Then, the segmented binary image is sent to the next module, which
nalyzes it and determines the pixels of the skeleton line of the DLO.
his can be done with two different algorithms, named Forward DLO
ropagation (FWP) and Backward DLO propagation (BWP), described
n Sections 3.2 and 3.3 respectively. After this, the skeleton points of the
LO are sent to the DLO shape estimation module, in which its shape

s modeled by polynomial regression. The order of the polynomial is
etermined by cross-validation, using 70% of the points for training
nd 30% for testing. The maximum possible order of the polynomial
as set as eight.

Finally, the last module evaluates the results obtained based on
everal indicators. This module can either validate the result or reject
t, providing a critique and fine-tuning the system parameters in the
econd case. In case of rejection, the DLO identification process is
epeated again, with the adjusted parameters, from the DLO segmenta-
ion module. This module, the evaluated indicators and the corrective
ctions, are explained in detail in Section 3.4.

.2. Forward DLO propagation (FWP)

The name of this algorithm comes from the principle followed
o determine the skeleton points of the DLO, shown in Fig. 3. The
lgorithm starts from the initial point of the DLO, whose position must
e known beforehand, and from there, it starts propagating the DLO
oints forward, following the DLO direction. The full process can be
een in Fig. 4.

The first step of this algorithm is determining the initial point of the
LO. The theoretical initial point is part of the predefined knowledge of

he system, and it is defined as a distance from the reference structure
entioned in Section 3.1. In the case of wiring harnesses, the reference

tructure would be the main connector, and the initial points of the
ables would be calculated with the distance between the corner of
he connector and the cables insertion points. However, in order to
orrect misalignments, the initial point considered by the algorithm is
he closest segmented pixel to the theoretical initial point.

Then, an iterative process starts, propagating the points until the
nd of the image or the end of the DLO. To calculate each new point
f the DLO skeleton, a rectangular window is created from the last
alculated point (the initial point in the first iteration), and the pixels
nside it are evaluated. The window size depends on the 𝑝𝑥∕𝐷 of the
LO, and it can be modified dynamically. All the segmented pixels

ocated in the window borders are stored as potential new points, and
he pixel in the intersection of the window border with the line that
oins the two previous points is stored as the direction point. Then, the
utcomes of the window evaluation are analyzed. If any potential new
oint was found in the window border, the selected one will be the
losest to the direction point (Fig. 3(b)). In case, no points are found
n the border, the segmented pixels inside the window are checked,
nd if any are detected, the one selected is again the closest one to
he direction point. Finally, if no segmented pixels are detected neither
n the border nor inside, the previously calculated direction point is
onsidered the new DLO point (Fig. 3(c)). This makes the algorithm
obust against small occlusions. This process continues, propagating the
LO points forward in each iteration, until the end of the image is

eached, or until more than a certain number (𝑚𝑝𝑚𝑎𝑥) of consecutive
terations have not detected any point in their evaluation windows,
hich would mean that the DLO has ended.

.3. Backward DLO propagation (BWP)

Unlike FWP, the BWP algorithm does not require to know the initial
LO points to start determining its points. Instead, it starts analyzing

he image from the side where the DLOs end, and their points are
ropagated backward until reaching the initial points, that are just
sed to identify the recognized DLOs. The full process is described in
lgorithm 2, and the working principle is shown graphically in Fig. 5.
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Fig. 3. FWP working principle in different scenarios. Green rectangles: pixel evaluation windows, yellow dashed lines: calculated points direction, red circles: skeleton points of
the DLO, yellow circles: DLO direction points, blue circles: non-selected potential skeleton points, gray circles: skeleton points selected during DLO occlusions.
Fig. 4. FWP UML activity diagram.

The algorithm is structured in four main steps, and it receives as
arguments the segmented binary image (𝑖𝑚𝑔), the amount of segmented
pixels in the binary image (𝑏𝑖𝑛_𝑝), the number of DLOs of the analyzed
color (𝑛), its theoretical initial point (𝑖𝑛𝑖𝑡), the size of the evaluation
window (𝑤𝑠), and the maximum number of consecutive windows with
no detected points (consecutive missed pixels, 𝑚𝑝𝑐𝑚𝑎𝑥). In the first
step, all the potential DLOs are calculated using the FWP algorithm.
However, the propagation, in this case, happens backward and it
starts from every segmented pixel that has not been captured by the
evaluation windows of any other potential line ([𝑥, 𝑦] ∉ 𝐶𝑃 ). Some
of these potential lines are composed of isolated pixels that passed the
segmentation filters by mistake. Therefore, to exclude these points from
the analysis, just the lines that capture more than 5% of the segmented
pixels are considered as potential lines (𝑃𝐿).
7

Fig. 5. BWP working principle. The figure shows six potential DLOs. The rectangles
represent the evaluation windows, they are green if the line is accepted and red if it
is discarded. The circles represent the potential DLO points and they have a different
color for every segment. Lines 2 and 3 are discarded because they capture less than
5% of the image detected pixels. Line 4 is discarded because more than 80% of their
pixels are also captured by line 3. Line 1 and 5 are joined into a single line. Finally,
the recognized DLOs are 1–5 and 3.

Then, in the second step, the repeated potential lines are removed.
It is considered that a line is repeated when it shares at least 80% of the
points captured by their evaluation windows with any other potential
line. In this case, the line with less points is eliminated, obtaining the
list of independent lines (𝐼𝐿).

Due, to occlusions and entanglements with other DLOs, segments of
the same DLO can be detected as different individual lines. The next
step of the algorithm addresses this issue by joining the independent
lines that belong to the same DLO. It is considered that two lines are
part of the same DLO when the 𝑥 coordinate of the last pixel of the
first line is smaller than the 𝑥 coordinate of the first pixel of the second
line, the distance between them is smaller than 50 mm, and the angles
difference between both lines is smaller than 35 degrees. If for a line
there is more than one candidate for joining, the closest one is selected.
The lines are then merged in a recursive way, so if a DLO is composed
by more than two independent lines, the successive lines will be added
to the already merged line until it is completed. At the end of this step,
a list with all the merged lines is obtained (𝑀𝐿).

Finally, the fourth step selects the 𝑛 final DLOs (𝐹𝐿) as the merged
lines that have captured a higher number of segmented pixels. If there is
more than one DLO of the analyzed color (𝑛 > 1), the retrieved line (𝐿)
will be the 𝐹𝐿 that is closer to the theoretical initial point. This distance
is computed at the 𝑥 coordinate of the initial point. Therefore, the shape
of each 𝐹𝐿 is estimated (regression lines 𝑅𝐿), and the 𝑦 coordinate
at this 𝑥 is calculated with the resultant polynomial function. Unlike,
the FWP algorithm, here the initial points are just used to identify the
detected DLOs, being able to work even when the initial points are
occluded.

3.4. Self-critique tuning module

There are many factors that can affect the DLO shape estimation
process, such as the lightning, the colors and sizes of the DLOs, the
distance between them, the background colors, entanglements between
DLOs, or partial occlusions of the DLOs. The influence of some of these
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Algorithm 2 BWP algorithm (Part 1)
1: procedure GetPotentialLines(𝑖𝑚𝑔, 𝑏𝑖𝑛_𝑝, 𝑛,𝑤𝑠, 𝑚)
2: 𝑖𝑚𝑔2 ← Mirror 𝑖𝑚𝑔
3: for 𝑥 ← 0 to 𝑖𝑚𝑔2.𝑤𝑖𝑑𝑡ℎ do
4: for 𝑦 ← 0 to 𝑖𝑚𝑔2.ℎ𝑒𝑖𝑔ℎ𝑡 do
5: if 𝑖𝑚𝑔2[𝑥, 𝑦] = 1 and [𝑥, 𝑦] ∉ 𝐶𝑃 then
6: 𝑏𝑝, 𝑐𝑝, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← call 𝐹𝑊 𝑃 (𝑖𝑚𝑔2, [𝑥, 𝑦], 𝑤𝑠, 𝑚)
7: 𝐶𝑃 ← append 𝑐𝑝
8: if 𝑙𝑒𝑛(𝑐𝑝)∕𝑏𝑖𝑛_𝑝 > 0.05∕𝑛 and 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 then
9: 𝑃𝐿 ← append {𝑏𝑝, 𝑐𝑝}

10: return 𝑃𝐿
11: procedure RemoveRepeatedLines(𝑃𝐿)
12: 𝑃𝐿 ← sort by 𝑙𝑒𝑛(𝑐𝑝)
13: 𝐼𝐿 ← 𝑃𝐿[0]
14: for each 𝑝𝑙 ∈ 𝑃𝐿[1 ∶] do
15: for each 𝑖𝑙 ∈ 𝐼𝐿 do
16: if 𝑙𝑒𝑛(𝑝𝑙.𝑐𝑝 ∩ 𝑖𝑙.𝑐𝑝)∕𝑙𝑒𝑛(𝑝𝑙.𝑐𝑝) ≥ 0.8 then
17: 𝑟𝑒𝑝 ← True
18: break
19: if not 𝑟𝑒𝑝 then
20: 𝐼𝐿 ← append 𝑝𝑙
21: return 𝐼𝐿
22: procedure JoinLines(𝐼𝐿, 𝑚𝑚∕𝑝𝑥)
23: 𝑖, 𝑗 ← 0
24: for each 𝑖𝑙 ∈ 𝐼𝐿 do
25: for each 𝑖𝑙2 ∈ 𝐼𝐿 do
6: 𝑑𝑝 ← 50∕𝑚𝑚∕𝑝𝑥

27: if 𝑖𝑙[−1].𝑥 > 𝑖𝑙2[0].𝑥 and |𝑖𝑙[−1], 𝑖𝑙2[0]| ≤ 𝑑𝑝 then
28: if 𝑎𝑛𝑔𝑙𝑒_𝑑𝑖𝑓 (𝑖𝑙, 𝑖𝑙2) < 35𝑑𝑒𝑔 then
29: 𝐽𝐿′[𝑖] ← append {𝑙2 ∶ 𝑗, 𝐷 ∶ |𝑖𝑙[−1], 𝑖𝑙2[0]|}
0: 𝑗 ← 𝑗 + 1
1: if 𝑖 ∈ 𝐽𝐿′ then
2: 𝐽𝐿[𝑖] ← 𝐽𝐿′[𝑖].𝑙2 with min 𝐽𝐿′[𝑖].𝐷
3: 𝑖 ← 𝑖 + 1
4: for 𝑙𝑖 ← 0 to 𝑙𝑒𝑛(𝐼𝐿) do
5: if 𝑙𝑖 ∈ 𝐽𝐿 and 𝑙𝑖 ∉ 𝐴𝐿 then
6: 𝐴𝐿 ← append 𝑙𝑖
7: 𝑙𝑗 ← 𝐽𝐿[𝑙𝑖]
8: 𝑏𝑝𝑗 ← 𝐼𝐿[𝑙𝑖].𝑏𝑝 + 𝐼𝐿[𝑙𝑗 ].𝑏𝑝
9: 𝑐𝑝𝑗 ← 𝑙𝑒𝑛(𝐼𝐿[𝑙𝑖].𝑐𝑝]) + 𝑙𝑒𝑛([𝐼𝐿[𝑙𝑗 ].𝑐𝑝)

40: while True do
41: 𝐴𝐿 ← append 𝑙𝑗
2: ⊳ Continue on the next page

factors on the system is very difficult to predict, which makes the shape
estimation of the DLO very challenging. Furthermore, the selection of
the correct system parameters when the conditions are not constant
increases the complexity of the prediction process. To address this issue
and to make the system more robust against unforeseen situations,
the self-critique and tuning module has been introduced. This module
evaluates the obtained results and, if they are not satisfactory, it
performs a corrective action, fine-tuning the system parameters for the
next iteration. The critiques can be applied with both the FWP and the
BWP algorithms, referring to them as FWP-C and BWP-C respectively.

This module defines different conditions that are used to identify
problems on the DLO estimation. Then, for each problem, the module
executes several tuning actions, as can be seen in Table 3. To see their
effect independently, just one tuning action is performed per iteration,
and their indices indicate their priority. If after a second iteration the
same problem is detected, the module executes the next corrective
action and, when all of them are finished, it starts again from the
beginning. In order to prevent long computation times, if the result is
not successful after six iterations the last estimation of the DLO shape
is returned.

As can be seen in Table 3, three possible DLO estimation problems
are considered. The first issue is the use of a very permissive filter for
8

the DLO segmentation. This problem is identified when the result of
Algorithm 2 BWP algorithm (Part 2)
43: if 𝑗𝑖 ∈ 𝐽𝐿 and 𝑙𝑖 ∉ 𝐴𝐿 then
44: 𝑙𝑗 ← 𝐽𝐿[𝑙𝑗 ]
45: 𝑏𝑝𝑗 ← 𝑎𝑝𝑝𝑒𝑛𝑑 𝐼𝐿[𝑙𝑗 ].𝑏𝑝
46: 𝑐𝑝𝑗 ← 𝑐𝑝𝑗 + 𝑙𝑒𝑛([𝐼𝐿[𝑙𝑗 ].𝑐𝑝)
47: else
48: 𝑀𝐿 ← append {𝑏𝑝 ∶ 𝑏𝑝𝑗 , 𝑐𝑝𝑙 ∶ 𝑐𝑝𝑗}
49: break
50: end if
51: end if
52: end for
53: for 𝑙𝑖 ← 0 to 𝑙𝑒𝑛(𝐼𝐿) do
54: if 𝑙𝑖 ∉ 𝐴𝐿 then
55: 𝑀𝐿 ← append {𝑏𝑝 ∶ 𝐼𝐿[𝑙𝑗 ].𝑏𝑝, 𝑐𝑝𝑙 ∶ 𝑙𝑒𝑛(𝐼𝐿[𝑙𝑗 ].𝑐𝑝)}
56: end if
57: end for
58: return 𝑀𝐿
59: end procedure
60: procedure Main(𝑖𝑚𝑔, 𝑏𝑖𝑛_𝑝, 𝑛, 𝑖𝑛𝑖𝑡, 𝑤𝑠, 𝑚𝑝𝑚𝑎𝑥)
61: 𝑃𝐿 ← call 𝐺𝑒𝑡𝑃 𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐿𝑖𝑛𝑒𝑠(𝑖𝑚𝑔, 𝑏𝑖𝑛_𝑝, 𝑛,𝑤𝑠, 𝑚𝑝𝑐𝑚𝑎𝑥)
62: 𝐼𝐿 ← call 𝑅𝑒𝑚𝑜𝑣𝑒𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑𝐿𝑖𝑛𝑒𝑠(𝑃𝐿)
63: 𝑀𝐿 ← call 𝐽𝑜𝑖𝑛𝐿𝑖𝑛𝑒𝑠(𝐼𝐿, 𝑚𝑚∕𝑝𝑥)
64: 𝐹𝐿 ← 𝑛 𝑀𝐿 with 𝑚𝑎𝑥(𝑀𝐿.𝑐𝑝𝑙)
65: 𝑅𝐿 ← 𝑓𝑖𝑡(𝐹𝐿)
66: 𝐿 ← 𝐹𝐿 with min |𝑅𝐿[𝑖𝑛𝑖𝑡.𝑥], 𝑖𝑛𝑖𝑡|
67: return 𝐿
68: end procedure

Table 3
DLO modeling problems detected by the self-critique and tuning module, and
corrective actions.

Problem Condition Action

P1: The
segmentation filter
is too permissive

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and
𝑐𝑝

𝑏𝑖𝑛_𝑝 ⋅ 𝑛 < 0.6
and 𝑙𝑖𝑛𝑒_𝑙𝑘ℎ
< 0.75

A1.1: 𝑡ℎ𝑟2 ⋅ 0.75
A1.2: 𝑡ℎ𝑟1 ⋅ 0.85
A1.3: 𝑡ℎ𝑟3 ⋅ 0.85
A1.4: 𝑤𝑠.𝑥 + 𝑝𝑥∕𝐷 ⋅ 0.5
𝑤𝑠.𝑦 + 𝑝𝑥∕𝐷 ⋅ 0.35

P2: The
segmentation
filter too restrictive

not 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and
(𝐵𝑊 𝑃 or (not
𝑖𝑛𝑖𝑡_𝑜𝑘 or
𝑚𝑝 > 𝑚𝑝𝑚𝑎𝑥))

A2.1: 𝑡ℎ𝑟2 ⋅ 1.2
A2.2: 𝑡ℎ𝑟1 ⋅ 1.2
A2.3: 𝑡ℎ𝑟3 ⋅ 1.2

P3: Occlusion or
DLO entanglement

not 𝑠𝑢𝑐𝑐𝑒𝑠𝑠
and 𝐹𝑊 𝑃 and
𝑖𝑛𝑖𝑡_𝑜𝑘 and
𝑚𝑝 < 𝑚𝑝𝑚𝑎𝑥

A3.1: 𝑤𝑠.𝑥 + 𝑝𝑥∕𝐷 ⋅ 0.5
𝑤𝑠.𝑦 + 𝑝𝑥∕𝐷 ⋅ 0.35
A3.2: 𝑚𝑝𝑐𝑚𝑎𝑥 + 1
A3.3: 𝑡ℎ𝑟2 ⋅ 1.2
𝑡ℎ𝑟1 ⋅ 1.2

the points propagation is considered successful, but the percentage of
segmented pixels captured by the evaluation windows ( 𝑐𝑝

𝑏𝑖𝑛_𝑝 ) is lower
than 60% (divided by the number of DLOs of the evaluated color (𝑛))
and the line likelihood (𝑙𝑖𝑛𝑒_𝑙𝑘ℎ) is lower than 0.75. The line likelihood
metric is calculated to evaluate if the estimation of the DLO shape could
have been altered by the noise that passed the segmentation filter. It
is defined as the ratio between the total number of segmented pixels
inside evaluation windows of height equal to the DLO diameter located
at the estimated DLO points, and the total number of segmented pixels
inside windows of double this height at the same points. In a perfectly
segmented DLO, with no noise, all the segmented pixels should be
within the DLO diameter, so this factor would be equal to one. The
detection of this circumstance (P1) means that the segmentation is
detecting a lot of noise and, although the resultant DLO shape is not
necessarily bad, there is no certainty that it is correct. To address this
issue, the corrective actions are aimed at making the segmentation filter
more restrictive by decreasing its threshold values. Moreover, a fourth
action tunes the evaluation window size (𝑤𝑠).

Opposite to the first issue, the second problem (P2) appears when
the segmentation filter is too restrictive, causing the loss of DLO infor-

mation (i.e., the number of false negative pixels is high), which, in turn,
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makes it impossible to reconstruct the DLO’s shape. This situation is
more difficult to detect than the previous one, as the loss of information
could be caused by occlusions or entanglements of the DLOs (i.e., P3)
and not by an incorrect segmentation. The failure of the DLO points
propagation is a common condition for detecting both problems (P2
and P3), but it is possible to differentiate them by evaluating the cause
of this failure. When the FWP algorithm is employed, if the points
propagation fails because the initial point of the DLO cannot be found
or because the total number of evaluation windows that do not contain
any segmented pixel (𝑚𝑝) is higher than the maximum, P2 is identified
s the problem. This consideration is done because the results indicate
hat there are many discontinuities in the segmented DLO. Whereas,
f the problem was caused by an occlusion (P3) there should be just
ne large gap and, in that case, the cause of failure would be that the
umber of consecutive evaluation windows without segmented pixels
𝑚𝑝𝑐) is higher than the maximum. On the other hand, when the BWP
lgorithm is used, P2 is always identified as the reason for failure, as
he algorithm is able to join the segments that belong to the same DLO
i.e., it is robust against occlusions).

Regarding the corrective actions of the previous two problems, if
highly restrictive segmentation is identified as the issue (P2), its

hreshold values are increased to make it more permissive. Conversely,
f the cause of incorrect estimation is deemed to be an occlusion
P3), three different measures can be applied: increasing the evaluation
indow size, increasing the maximum number of consecutive evalua-

ion windows without segmented pixels, and making the filter more
ermissive.

. Experimental evaluation

The performance of the different modules of the system, as well as
he performance of the system as a whole, has been tested with several
mages of a different number of deformable objects of different sizes
nd colors. In particular, the developed system was used to estimate
he shape of the cables composing three different wiring harnesses.
he first one (WH1) is composed by ten cables of six different colors
ith a diameter of 1.3 mm, the second one (WH2) counts with eleven

ables of eight different colors and also 1.3 mm diameter, and the third
one (WH3) is composed by six cables of five different colors and they
have a bigger diameter, 2.1 mm. Moreover, the connector of the third
wiring harness, from which their cables go out, has two rows, causing
occlusions in the initial points of the cables of the lower layer. The
three analyzed components are composed by relatively small cables, of
different colors, crossing each other, and with small distances between
them (around 1 mm between their starting points), which makes them
very appropriate specimens to test the system robustness.

Fig. 6 shows the results of the analysis of an image of WH1 with
the FWP algorithm for determining the DLO points. As can be seen in
the top left image (a), this wiring harness is composed by two green
cables, two yellow cables, two blue cables, two white cables, a red cable
and a black cable. The white cables were excluded from the analysis
as their color was very similar to the background and their diameter
was very small, making its detection difficult even for the human sight.
In the top center image (b), the system is used without the feedback
provided by the self-critique tuning module (FWP). The shape of the
green, yellow, red and black cables are determined correctly, even
when the lightning is not constant and when there are entanglements
and occlusions between them. However, the system fails for modeling
the blue cables due to a bad segmentation, with highly restrictive 𝑡ℎ𝑟1
nd 𝑡ℎ𝑟2 filter parameters, that cannot detect well the pixels of the
nitial points of the cable, as can be seen in the bottom center image
e). This problem is solved when using the self-critique module (FWP-
) that iterates optimizing the filter parameters, as can be seen in the
ottom right image (f). The result is the image in the top right (c),
9

here all the cables are modeled successfully. Additionally, the bottom
Table 4
Comparison of the accuracy and computation time of the different system algorithms
at different image resolutions. The accuracy and its standard error (SE) are presented
as percentages and the computation time is expressed as a multiple of the minimum
time.

px/D Parameter FWP FWP-C BWP BWP-C

2
Accuracy ± SE (%) 64 ± 8 65 ± 8 74 ± 9 77 ± 10

Computation time 1 2.0 1.7 5.9

3
Accuracy ± SE (%) 64 ± 8 69 ± 8 75 ± 9 80 ± 9

Computation time 1.7 3.7 3.1 8.4

4
Accuracy ± SE (%) 73 ± 3 77 ± 3 83 ± 3 91 ± 2

Computation time 3.1 7.1 6.7 12.2

left figure (d) shows another example of a bad segmentation of the blue
cables, but, in this case, due to highly permissive filter parameters.

The ability of the system to detect adjacent tiny cables is tested with
WH2, which has three branches of adjacent cables. Fig. 7 shows the
results of analyzing an image of this wiring harness using the FWP-C
algorithm. As can be seen in figures (b) and (c) ten out of eleven cables
are detected successfully, even with large self-occlusions.

The effect of occlusions in the initial points of the DLOs on the
FWP and BWP algorithms was tested with WH3 which, as described
previously, has two rows of cables, causing occlusions at the beginning
of the cables of the bottom layer. The results are shown in Fig. 8 and,
as expected, the FWP algorithm fails for calculating some of the bottom
cables, as it relies strongly on the cables initial point. This can be seen in
the center image (b), where even using the self-critique tuning module
(FWP-C), two of the bottom cables (gray and green) are detected wrong.
In order to distinguish them, the estimated cable shape of the bottom
cables is shown in green and the top cables in red. However, in the right
image (c), the BWP-C algorithm was used, obtaining successful results
for all the cables, as it analyzes all the potential DLOs of the image,
without considering any fixed starting point. This figure demonstrates
also the robustness against adjacent cables and self-occlusions of the
two DLO points detection algorithms presented in this paper (FWP and
BWP).

The performance of the system was also evaluated under chal-
lenging conditions, such as complex backgrounds and occlusions, as
depicted in Fig. 9. The experimental results demonstrated that the four
algorithms performed well, with a slight improvement when using the
tuning module, particularly in scenarios where objects in the back-
ground could be confused with the cables. Regarding occlusions, the
BWP algorithm works much better than the FWP one, as can be seen
in the last row of Fig. 9, detecting all the cables successfully. The
system also shows good performance for detecting DLOs whose color
is very similar to the background color. This is analyzed in detail in
Fig. 10, where all the steps followed for detecting a green cable on a
green complex background using the BWP algorithm are presented. The
color filter (b) alone is not good for segmenting the DLO as both the
background and the cable are green. The edge detector (c) alone is not
good either as the background is complex and many edges are detected.
The segmentation improves significantly when merging the results of
the two previous operators (d), reducing the noise substantially. Then,
the BWP algorithm determines all the possible DLOs in the segmented
image (e), and finally, it selects the most probable DLO candidate (f).
The last two images (g, h) show the results and, as can be seen, the
detection of the green cable is successful.

Table 4 presents a summary of the results obtained from the analysis
of several images of the three evaluated wiring harnesses in different
conditions, with both homogeneous and complex backgrounds, and
in the presence and absence of occlusions. The table compares the
average accuracy achieved and the average computation time spent by
using the different algorithms of the system, as well as different image
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Fig. 6. FWP and FWP-C comparison for the shape estimation of the cables of WH1.
Fig. 7. Shape estimation of the cables of WH2.
Fig. 8. Shape estimation of the cables of WH3. The bottom layer cables are modeled in green and the top ones in red.
resolutions. The accuracy is defined as the mean percentage of cables
in each image for which the shape estimation is correct. Due to the lack
of ground truth, the evaluation of the estimated DLO shapes was done
visually. To make this evaluation systematic, a strict measure was used,
considering the estimation successful only if it follows the cable shape
along its entire length accurately. The computation times are expressed
as a multiple of the fastest algorithm, i.e., FWP with 2 𝑝𝑥∕𝐷, emphasizing
the algorithms’ comparison. However, in order to have also an absolute
reference, the computation time of all the analyzed images, each of
them containing six to eleven cables, was between 1 s and 1 minute.
Regarding the image resolution, it is expressed as the number of pixels
of the smaller cable diameter (𝑝𝑥∕𝐷).

These results show that the accuracy of the system improves in
all the cases when using the feedback from the self-critique tuning
module, however, more iterations make the system slower. It can be
also seen that BWP presents better results than FWP, mainly due to its
better performance in the presence of occlusions (in the initial points
or in any part of the cables), but the computation time increases as the
initial cable points are unknown and more pixels need to be analyzed.
Regarding the resolution, as expected, when it increases the accuracy
10
increases, however, the time increases severely. Therefore, the selection
of the resolution and the algorithm will depend on the requirements of
the specific application, making a balance between speed and accuracy,
and the characteristics of the input images (the type of background, the
presence of occlusions, the DLOs size and distribution, etc.).

Finally, Fig. 11 shows a qualitative comparison of the developed
system against two of the most advanced DLO identification models
currently available in the state-of-the-art literature. Section 2 presents
these two approaches, which employ different strategies: a CNN-based
DLO segmentation was used in RT-DLO [20] and a superpixel seg-
mentation in Ariadne [9]. These two identification models target the
same problem as the one our model tries to solve, but from a different
viewpoint. RT-DLO and Ariadne emphasize the fast identification of
DLOs with arbitrary shapes, while our model targets the robust detec-
tion of multiple DLOs with minimum distance among those and small
sections, the typical scenario faced in wiring harnesses. While all three
approaches perform excellently in identifying medium-sized separated
cables, our method outperforms the others when the evaluated DLOs
are adjacent, very thin, and have constant overlapping.
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Fig. 9. Analysis of DLOs images with occlusions and complex backgrounds with the four algorithms of the system using 4 𝑝𝑥∕𝐷.

Fig. 10. BWP DLO detection process steps for recognizing the green cable.
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Fig. 11. Qualitative comparison of BWP-C with other state-of-the-art algorithms.
Table 5
Characteristics and capabilities of the developed vision-based DLO detection system. Ent.: Entanglements, Occ.: Occlusions, Adj.: Adjacent, NT:
Not tested.
Test specimens DLOs number Size (D/L) DLOs color Background Ent. Occ. Adj.

Wiring harness Multiple Tiny Multiple Complex ✓ ✓ ✓

Approach Prev info Outcome Camera Speed

DLO segmentation + points
propagation (FWP or BWP)
+ regression + unsupervised
critique

Init points, DLO
colors and diameters

Polynomial lines 2D RGB < 1 min
Moreover, the main characteristics and capabilities of the system
are summarized in Table 5, which can be used to compare it with the
rest of approaches reviewed in the paper ( Tables 1 and 2). As the table
shows, the main strengths of the proposed approach are its ability to
identify the shape of multiple adjacent thin DLOs of different colors,
and its robustness against entanglements of the DLOs, occlusions, and
complex backgrounds. However, its main drawback is its computation
time, not being adequate for real-time tracking applications.
12
5. Conclusions

The automatic manipulation of deformable materials is a challeng-
ing task, where perception plays a key role, as the shape of these
objects is not constant and is very difficult to predict. In this paper,
a novel vision-based system for the detection and shape estimation of
DLOs is presented. This system includes a DLO segmentation algorithm
that merges color and edge information to reduce the noise, two novel
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algorithms for detecting the DLO points, and an unsupervised critique
module that fine-tunes the system parameters. The system has been
tested with images of three wiring harnesses in different conditions,
demonstrating its ability to detect multiple adjacent tiny DLOs of
different colors in homogeneous and complex backgrounds, and with
entanglements between them. Additionally, the BWP algorithm has
been proved to be robust against occlusions, both in the initial points
and in any part of the DLOs.

The different operation modes of the system were compared during
the tests showing a systematic improvement in the performance when
using the critique module and the background propagation, reaching
an average DLO recognition of 91% with the BWP-C algorithm and
a resolution of 4 pixels per DLO diameter. However, all the changes
intended to improve the system performance, bring also an increase in
the computation time, therefore, there is not a perfect configuration
of resolution and algorithm, and the selection will depend on the
application requirements.

Despite the good results obtained by the developed system, it is
important to highlight its limitations in order to provide a more com-
prehensive view of its capabilities and potential applications. The
system models the DLOs using polynomial functions, which provide
a mathematical representation of their shape. This is useful in many
applications, for instance, to determine the maximum distance between
DLOs, however, it restricts its use to DLOs without self-intersections
and significant changes in direction. Additionally, the system is not
adequate for tracking applications as it cannot operate in real time.

While acknowledging these limitations, it should be noted that they
fall outside the intended scope of the developed approach and, there-
fore, addressing them is not one of the objectives of our future research.
Instead, the focus will be on enhancing the system’s performance,
in particular by increasing its accuracy and reducing its computation
time. Furthermore, our future work will aim to expand the system by
developing new functionalities to support robots in DLO manipulation
tasks, such as the determination of the optimal grasp points or the
verification of the correct position and configuration of the DLOs after
the manipulation.

CRediT authorship contribution statement

Pablo Malvido Fresnillo: Conceptualization, Methodology, Soft-
ware, Validation, Formal analysis, Investigation, Resources, Data cura-
tion, Writing – original draft, Writing – review & editing, Visualization,
Project administration. Saigopal Vasudevan: Formal analysis, Writing

original draft, Writing – review & editing. Wael M. Mohammed:
ormal analysis, Writing – review & editing. Jose L. Martinez Lastra:
onceptualization, Supervision, Funding acquisition. Jose A. Perez
arcia: Conceptualization, Supervision.

eclaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
ablo Malvido Fresnillo reports financial support was provided by Hori-
on 2020. Saigopal Vasudevan reports financial support was provided
y Horizon 2020. Jose L.Martinez Lastra reports financial support was
rovided by Horizon 2020.

ata availability

Data will be made available on request.

cknowledgments

The research leading to these results has received funding from
he European Union’s Horizon 2020 research and innovation program
nder grant agreement n◦ 870133, correspondent to the project entitled
EMODEL, Robotic tEchnologies for the Manipulation of cOmplex
eformablE Linear objects. All authors approved the final version of
13

anuscript to be published.
References

[1] Khalifa A, Palli G. New model-based manipulation technique for reshaping
deformable linear objects. Int J Adv Manuf Technol 2022;118(11–12):3575–83.

[2] Zhu J, Cherubini A, Dune C, Navarro-Alarcon D, Alambeigi F, Berenson D, et
al. Challenges and outlook in robotic manipulation of deformable objects. IEEE
Robot Autom Mag 2022;2–12. http://dx.doi.org/10.1109/MRA.2022.3147415.

[3] Sanchez J, Corrales J-A, Bouzgarrou B-C, Mezouar Y. Robotic manipulation and
sensing of deformable objects in domestic and industrial applications: A survey.
Int J Robot Res 2018;37(7):688–716, Publisher: SAGE Publications Ltd STM.

[4] Yin H, Varava A, Kragic D. Modeling, learning, perception, and control methods
for deformable object manipulation. Science Robotics 2021;6(54):eabd8803. http:
//dx.doi.org/10.1126/scirobotics.abd8803.

[5] Fresnillo PM, Vasudevan S, Mohammed WM, Martinez Lastra JL, Laudante G,
Pirozzi S, et al. Deformable objects grasping and shape detection with tactile
fingers and industrial grippers. In: 2021 4th IEEE international conference on
industrial cyber-physical systems. 2021, p. 525–30. http://dx.doi.org/10.1109/
ICPS49255.2021.9468151.

[6] Caldwell TM, Coleman D, Correll N. Optimal parameter identification for discrete
mechanical systems with application to flexible object manipulation. In: 2014
IEEE/RSJ international conference on intelligent robots and systems. 2014, p.
898–905. http://dx.doi.org/10.1109/IROS.2014.6942666.

[7] Cirillo A, Laudante G, Pirozzi S. Proximity sensor for thin wire recogni-
tion and manipulation. Machines 2021;9(9):188. http://dx.doi.org/10.3390/
machines9090188, Number: 9 Publisher: Multidisciplinary Digital Publishing
Institute.

[8] Tang T, Wang C, Tomizuka M. A framework for manipulating deformable linear
objects by coherent point drift. IEEE Robot Autom Lett 2018;3(4):3426–33.
http://dx.doi.org/10.1109/LRA.2018.2852770.

[9] De Gregorio D, Palli G, Di Stefano L. Let’s take a walk on superpixels graphs:
Deformable linear objects segmentation and model estimation. In: Computer
vision – ACCV 2018. Cham: Springer International Publishing; 2019, p. 662–77.
http://dx.doi.org/10.1007/978-3-030-20890-5_42.

[10] Javdani S, Tandon S, Tang J, O’Brien JF, Abbeel P. Modeling and perception
of deformable one-dimensional objects. In: 2011 IEEE international conference
on robotics and automation. 2011, p. 1607–14. http://dx.doi.org/10.1109/ICRA.
2011.5980431.

[11] Sie Ho Lee T, Fidler S, Dickinson S. Detecting curved symmetric parts using a
deformable disc model. In: Proceedings of the IEEE international conference on
computer vision. 2013, p. 1753–60.

[12] Wang Y, McConachie D, Berenson D. Tracking partially-occluded deformable
objects while enforcing geometric constraints. In: 2021 IEEE international
conference on robotics and automation. 2021, p. 14199–205.

[13] Abegg F, Henrich D, Wörn H. Manipulating deformable linear objects -
vision-based recognition of contact state transitions -. Technische Universitat
Kaiserslautern; 1999.

[14] Huo S, Duan A, Li C, Zhou P, Ma W, Wang H, et al. Keypoint-based planar
bimanual shaping of deformable linear objects under environmental constraints
with hierarchical action framework. IEEE Robot Autom Lett 2022;7(2):5222–9.

[15] Borum A, Matthews D, Bretl T. State estimation and tracking of deforming planar
elastic rods. In: 2014 IEEE international conference on robotics and automation.
2014, p. 4127–32.

[16] He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. In: Proceedings of the IEEE
international conference on computer vision. 2017, p. 2961–9.

[17] Nguyen HG, Franke J. Deep learning-based optical inspection of rigid and
deformable linear objects in wiring harnesses. Procedia CIRP 2021;104:1765–70.
http://dx.doi.org/10.1016/j.procir.2021.11.297.

[18] Song Y, Yang K, Jiang X, Liu Y. Vision based topological state recognition for
deformable linear object untangling conducted in unknown background. In: 2019
IEEE international conference on robotics and biomimetics. 2019, p. 790–5.
http://dx.doi.org/10.1109/ROBIO49542.2019.8961652.

[19] Dai Z, Yi J, Zhang Y, Zhou B, He L. Fast and accurate cable detection using
CNN. Appl Intell 2020;50(12):4688–707.

[20] Caporali A, Galassi K, Žagar BL, Zanella R, Palli G, Knoll AC. RT-DLO: Real-time
deformable linear objects instance segmentation. IEEE Trans Ind Inf 2023;1–10.
http://dx.doi.org/10.1109/TII.2023.3245641.

[21] Redmon J, Farhadi A. YOLOv3: An incremental improvement. 2018, arXiv
preprint arXiv:1804.02767.

[22] Foresti G, Pellegrino F. Automatic visual recognition of deformable objects for
grasping and manipulation. IEEE Trans Syst Man Cybern Part C (Appl Rev)
2004;34(3):325–33. http://dx.doi.org/10.1109/TSMCC.2003.819701.

[23] Matsuno T, Tamaki D, Arai F, Fukuda T. Manipulation of deformable linear
objects using knot invariants to classify the object condition based on image
sensor information. IEEE/ASME Trans Mechatronics 2006;11(4):401–8.

[24] Keipour A, Mousaei M, Bandari M, Schaal S, Scherer S. Detection and physical
interaction with deformable linear objects. 2023, http://dx.doi.org/10.48550/
arXiv.2205.08041, arXiv preprint arXiv:2205.08041.

[25] Wnuk M, Hinze C, Zürn M, Pan Q, Lechler A, Verl A. Tracking branched
deformable linear objects with structure preserved registration by branch-wise
probability modification. In: 2021 27th international conference on mechatronics

and machine vision in practice. 2021, p. 101–8.

http://refhub.elsevier.com/S0957-4158(23)00141-1/sb1
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb1
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb1
http://dx.doi.org/10.1109/MRA.2022.3147415
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb3
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb3
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb3
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb3
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb3
http://dx.doi.org/10.1126/scirobotics.abd8803
http://dx.doi.org/10.1126/scirobotics.abd8803
http://dx.doi.org/10.1126/scirobotics.abd8803
http://dx.doi.org/10.1109/ICPS49255.2021.9468151
http://dx.doi.org/10.1109/ICPS49255.2021.9468151
http://dx.doi.org/10.1109/ICPS49255.2021.9468151
http://dx.doi.org/10.1109/IROS.2014.6942666
http://dx.doi.org/10.3390/machines9090188
http://dx.doi.org/10.3390/machines9090188
http://dx.doi.org/10.3390/machines9090188
http://dx.doi.org/10.1109/LRA.2018.2852770
http://dx.doi.org/10.1007/978-3-030-20890-5_42
http://dx.doi.org/10.1109/ICRA.2011.5980431
http://dx.doi.org/10.1109/ICRA.2011.5980431
http://dx.doi.org/10.1109/ICRA.2011.5980431
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb11
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb11
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb11
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb11
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb11
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb12
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb12
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb12
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb12
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb12
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb13
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb13
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb13
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb13
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb13
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb14
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb14
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb14
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb14
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb14
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb15
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb15
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb15
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb15
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb15
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb16
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb16
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb16
http://dx.doi.org/10.1016/j.procir.2021.11.297
http://dx.doi.org/10.1109/ROBIO49542.2019.8961652
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb19
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb19
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb19
http://dx.doi.org/10.1109/TII.2023.3245641
http://arxiv.org/abs/1804.02767
http://dx.doi.org/10.1109/TSMCC.2003.819701
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb23
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb23
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb23
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb23
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb23
http://dx.doi.org/10.48550/arXiv.2205.08041
http://dx.doi.org/10.48550/arXiv.2205.08041
http://dx.doi.org/10.48550/arXiv.2205.08041
http://arxiv.org/abs/2205.08041
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb25
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb25
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb25
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb25
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb25
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb25
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb25


Mechatronics 96 (2023) 103085P. Malvido Fresnillo et al.
[26] Lui WH, Saxena A. Tangled: Learning to untangle ropes with RGB-D perception.
In: 2013 IEEE/RSJ international conference on intelligent robots and systems.
2013, p. 837–44. http://dx.doi.org/10.1109/IROS.2013.6696448.

[27] Wnuk M, Hinze C, Lechler A, Verl A. Kinematic multibody model generation
of deformable linear objects from point clouds. In: 2020 IEEE/RSJ international
conference on intelligent robots and systems. 2020, p. 9545–52.

[28] Fatan M, Daliri mr, Mohammad Shahri A. Underwater cable detection in the
images using edge classification based on texture information. Measurement
2016;91. http://dx.doi.org/10.1016/j.measurement.2016.05.030.

[29] Kuhn VN, Drews PLJ, Gomes SCP, Cunha MAB, Botelho SSdC. Automatic control
of a ROV for inspection of underwater structures using a low-cost sensing. J
Braz Soc Mech Sci Eng 2015;37(1):361–74. http://dx.doi.org/10.1007/s40430-
014-0153-z.

[30] Nakagaki H, Kitagi K, Ogasawara T, Tsukune H. Study of insertion task of a
flexible wire into a hole by using visual tracking observed by stereo vision. In:
Proceedings of IEEE international conference on robotics and automation. Vol.
4. 1996, p. 3209–14.

[31] Greminger MA, Nelson BJ. A deformable object tracking algorithm based on the
boundary element method that is robust to occlusions and spurious edges. Int J
Comput Vis 2008;78(1):29–45.

[32] Fletcher R. Practical methods of optimization. Chichester; New York: Wiley;
1987.

[33] Felzenszwalb P. Representation and detection of deformable shapes. IEEE Trans
Pattern Anal Mach Intell 2005;27(2):208–20.

[34] Abegg F, Engel D, Worn H. A robust algorithm for segmenting deformable
linear objects from video image sequences. In: Proceedings 15th international
conference on pattern recognition. Vol. 4. ICPR-2000, 2000, p. 756–9. http:
//dx.doi.org/10.1109/ICPR.2000.903027.

[35] Ortiz A, Simó M, Oliver G. A vision system for an underwater cable tracker.
Mach Vis Appl 2002;13(3):129–40. http://dx.doi.org/10.1007/s001380100065.

[36] Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel enhance-
ment filtering. In: Medical image computing and computer-assisted intervention.
Berlin, Heidelberg: Springer; 1998, p. 130–7.

[37] Staal J, Abramoff M, Niemeijer M, Viergever M, van Ginneken B. Ridge-based
vessel segmentation in color images of the retina. IEEE Trans Med Imaging
2004;23(4):501–9.

[38] Pătrăucean V, Gurdjos P, von Gioi RG. A parameterless line segment and elliptical
arc detector with enhanced ellipse fitting. In: Computer vision. Vol. 7573. Berlin,
Heidelberg: Springer Berlin Heidelberg; 2012, p. 572–85. http://dx.doi.org/10.
1007/978-3-642-33709-3_41.

[39] Geiger D, Gupta A, Costa L, Vlontzos J. Dynamic programming for detecting,
tracking, and matching deformable contours. IEEE Trans Pattern Anal Mach Intell
1995;17(3):294–302.

[40] Zhou RW, Quek C, Ng GS. A novel single-pass thinning algorithm and an
effective set of performance criteria. Pattern Recognit Lett 1995;16(12):1267–75.
http://dx.doi.org/10.1016/0167-8655(95)00078-X.

Pablo Malvido Fresnillo is a Doctoral Researcher at Tam-
pere University (Finland). He received a M.Sc. in Electronics
and Automation Engineering from University of Vigo (Spain)
in 2019 and a B.Sc. in Industrial Engineering from Univer-
sity of Vigo (Spain) in 2017. As he is pursuing a Doctoral
Degree in Engineering Sciences, Mr. Malvido’s research
interests include Robotics, Programming by Demonstration,
Robot Bimanual Manipulation, Knowledge Based Reasoning
Engines and Factory Automation. In addition, Mr. Malvido
is part of the FAST-Lab research group and, since 2020,
he is working in the project REMODEL, part of the EU
H2020 funding program, whose aim is the development
and implementation of hardware and software technologies
to manipulate complex Deformable Linear Objects (DLOs)
using robotic manipulators.
14
Saigopal Vasudevan is a Project Researcher for the FAST-
Lab research group, at Tampere University. He received
a M.Sc. in Factory Automation and Industrial Engineer-
ing from Tampere University, Finland in 2019 and a B.E
(bachelor’s degree) in Mechanical Engineering from Anna
University, India in 2016. Mr. Vasudevan has worked in
the automation industry as a Roboticist for a year, be-
tween 2016 and 2017. He is currently working in the
project REMODEL from the EU H2020 funding program,
since 2019; where the aim is to develop hardware and
software technologies to manipulate complex Deformable
Linear Objects (DLOs) using robotic manipulators. And since
2020, he is also working in the project AISOLA of the
INSO profiling action, which is funded by the academy
of Finland; whose objective is to assess social isolation
and to prevent the onset of perceived loneliness in older
adults, with a focus on developing and utilizing dedicated
AI systems. In addition to working as a researcher, he
also involved in collaborating for proposals, representing
Tampere University, for the Horizon funding program of
the EU with considerable success. Mr. Vasudevan’s interests
include Robotics, Bimanual Robot Manipulation, AI systems
and Industrial Informatics & Automation.

Wael M. Mohammed is a Doctoral Researcher at Tampere
University. He received a M.Sc. in Automation Engineering
from Tampere University of Technology in 2017 and a B.Sc.
in Mechatronics Engineering from university of Jordan in
2010. As he is pursuing a Doctoral Degree in Engineer-
ing Sciences, Mr. Mohammed’s research interests include
Robotics, Digital Twins, Knowledge Based Reasoning En-
gines and Factory Automation. In addition, Mr. Mohammed
has been involved in writing proposals for research and in-
novation project funded by the EU commission. In 2010, he
worked as a research assistant in the Production Engineering
Department at Tampere University of Technology. Then in
2011, Mr. Mohammed worked as a head of the technical
department in the Traffic Management System project at
Etihad Alafandi L.L.C. in Saudi Arabia.

Prof. Lastra joined Tampere University of Technology in
1997 and became University Full Professor in 2006. His
research interest is in applying Information and Communi-
cation Technologies to the field of Automation. He leads the
FAST-Lab. with the ultimate goal of seamlessly integrating
the knowledge of humans and machines in order to create
smart environments. Prof. Lastra has co/authored over 300
articles and holds a number of patents in the field of
Industrial Informatics and Automation. Prof. Lastra is an
active member within the international research scene with
a track record of 21 funded European Research projects.
He serves as Associate Editor of the IEEE Transactions on
Industrial Informatics, and He was a Technical Editor of the
IEEE/ASME Transactions on Mechatronics in 2015–2016.
Prof. Lastra served as Guest Editor for the MDPI Sensors
Journal, and is an editorial member of the MDPI Ma-
chines journal. Furthermore, Prof. Lastra served as Technical
Secretary for the IEEE Technical Committee on Industrial
Cyber-Physical Systems in 2017–2018. For the period 2019-
2022, He serves as a Co-Chair for the IEEE Technical
Committee on Industrial Cyber-Physical systems.

Dr. José A. Pérez García worked as a production engineer
for 6 years before he joined University of Vigo (Spain)
in 1998, where he became Associate Professor in 2009.
His research interest is on CAD/CAM and manufacturing
technologies, fields in which he has developed a number of
collaborations with several spanish companies. Dr. Perez has
taught CAM courses in several Universities, both in Europe
and America, and has co-authored around 40 scientific ar-
ticles and conference papers. He holds a M.Sc. in Industrial
Engineering, a M.Sc. in Labour Risk Prevention and a Ph.D.
in Design & Manufacturing, all of them from University of
Vigo.

http://dx.doi.org/10.1109/IROS.2013.6696448
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb27
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb27
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb27
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb27
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb27
http://dx.doi.org/10.1016/j.measurement.2016.05.030
http://dx.doi.org/10.1007/s40430-014-0153-z
http://dx.doi.org/10.1007/s40430-014-0153-z
http://dx.doi.org/10.1007/s40430-014-0153-z
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb30
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb30
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb30
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb30
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb30
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb30
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb30
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb31
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb31
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb31
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb31
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb31
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb32
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb32
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb32
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb33
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb33
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb33
http://dx.doi.org/10.1109/ICPR.2000.903027
http://dx.doi.org/10.1109/ICPR.2000.903027
http://dx.doi.org/10.1109/ICPR.2000.903027
http://dx.doi.org/10.1007/s001380100065
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb36
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb36
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb36
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb36
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb36
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb37
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb37
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb37
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb37
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb37
http://dx.doi.org/10.1007/978-3-642-33709-3_41
http://dx.doi.org/10.1007/978-3-642-33709-3_41
http://dx.doi.org/10.1007/978-3-642-33709-3_41
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb39
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb39
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb39
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb39
http://refhub.elsevier.com/S0957-4158(23)00141-1/sb39
http://dx.doi.org/10.1016/0167-8655(95)00078-X

	An approach based on machine vision for the identification and shape estimation of deformable linear objects
	Introduction
	State of the art
	DLO shape estimation system
	Structure of the system
	Forward DLO propagation (FWP)
	Backward DLO propagation (BWP)
	Self-critique tuning module

	Experimental evaluation
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


