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A B S T R A C T

Robots are flexible machines, where the flexibility is achieved, mainly, by the re-programming of the robotic
system. To fully exploit the potential of robotic systems, an easy, fast, and intuitive programming methodology
is desired. By applying such methodology, robots will be open to a wider audience of potential users (i.e. SMEs,
etc.) since the need for a robotic expert in charge of programming the robot will not be needed anymore. This
paper presents a Programming by Demonstration approach dealing with high-level tasks taking advantage of
the ROS standard. The system identifies the different processes associated to a single-arm human manipulation
activity and generates an action plan for future interpretation by the robot. The system is composed of five
modules, all of them containerized and interconnected by ROS. Three of these modules are in charge of
processing the manipulation data gathered by the sensors system, and converting it from the lowest level to the
highest manipulation processes. In order to do this transformation, a module is used to train the system. This
module generates, for each operation, an Optimized Multiorder Multivariate Markov Model, that later will be
used for the operations recognition and process segmentation. Finally, the fifth module is used to interface and
calibrate the system. The system was implemented and tested using a dataglove and a hand position tracker
to capture the operator’s data during the manipulation. Four users and five different object types were used to
train and test the system both for operations recognition and process segmentation and classification, including
also the detection of the locations where the operations are performed.
1. Introduction

Humans have always attempted to find substitutes that would be
able to mimic their behavior for performing certain tasks and interact-
ing with the environment. This desire motivated the development of
robots. The first industrial robots, which were introduced to the indus-
try in the 1960s, were very bulky, and they were intended for the mass
manufacturing of products of the same type [1]. Since then, the robotics
field has experienced huge advances, such as better sensors [2], more
advanced controllers, improvements in design and reduction of weight
and size [1]; and, as a result, nowadays robots are present in almost
every industrial sector [3,4]. Thanks to these advances robots have
become significantly more versatile, with the ability to perform a
wide array of tasks, unlike traditional/dedicated machinery like lath-
ing or packaging machines. Consequently, robots can be repurposed
for different processes and product models by simply adjusting their
programs, saving on new machinery and allowing for quick adaptation
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to industry changes. However, to take full advantage of this versatility,
some aspects must be considered: The reconfiguration of the robotic
system should not require robotic expertise, as in most domains the
end-users are not robotic engineers or software developers [5]; and its
cost and time must be minimized. As a result, the development of new
tools and systems that allow the easy, intuitive, and fast programming
and reconfiguration of the robot has become remarkably important.

There are many different techniques for programming robots. Vil-
lani et al. classified them in four categories and compared them in
terms of intuitiveness and ease of use, as well as thoroughness of
possible operations [6]. The study concludes that, as the intuitiveness of
the approach increases, the completeness of the performed operations
decreases. These categories, from least to most intuitive are: traditional
lead through programming, which entails moving the robot online
through the desired trajectory using the teach pendant and recording
waypoints; offline programming, in which the robot’s task is remotely
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programmed and simulated in a 3D model of the work cell; walk-
through programming, similar to lead through but, instead of using
the pendant, the operator grasps the end effector and moves it man-
ually; and finally Programming by Demonstration (PbD), in which the
teacher provides a set of demonstrations of the desired behavior to the
robot and this generates a policy based on them. PbD techniques are
therefore the most intuitive ones, as once the system is developed, no
manual programming is required, which allows for the rapid and easy
programming of the robot without the need of a robotic expert.

The PbD technique comprises of many possible approaches. Zhou
et al. classified them in two groups: PbD for low-level motion and PbD
for high-level task [7]. While the first group focuses on learning robot
trajectories or force controllers from human demonstrations, the latter
focuses on understanding the goal of the demonstration by extracting
the semantics of human operations accurately. Chitnis et al. in [8]
and Szynkiewicz in [9] consider that, in the case of manipulation
processes, it is more interesting to focus on the tasks to be performed,
rather than on the motions. This involves the extraction of a high-level
plan of the sequence of steps to be executed, and then, the robot can
optimize the trajectories to be followed within these steps by utilizing
the information provided about the workbench layout and the manipu-
lated object properties. Additionally, PbD approaches, and in particular,
those working with manipulation applications in the task space, can
implement different strategies to provide demonstrations to the robot
(e.g., using wearable sensors [10,11] or a vision system [12,13]) and
to analyze and understand these demonstrations, where Artificial Intel-
ligence (AI) techniques such as Markov Models [11,14–16] or Neural
Networks [17] stand out.

The aim of this paper is to develop a PbD system which is able to
understand and digitize the manipulation activities performed by an
operator, allowing the intuitive and easy reconfiguration of a robotic
system by just providing a few demonstrations of the new task. There-
fore, instead of merely copying the movements of the operator, the
objective is to understand his intention and generate a high-level action
plan with the operations to be performed, the objects to be used,
and the positions where to execute them. Furthermore, the system
must be hardware-agnostic, meaning that it can work, with better or
worse performance, with any sensory device (or any combination of
them) that captures information about the operator’s movements or
interactions with the manipulated objects; and that produces a high-
level action plan that can be executed by any robot and gripper, if the
morphology and structure is not a limitation.

The rest of the document is structured as follows: Section 2 pro-
vides a literature review on robot task-level PbD for manipulation
applications, as well as methods for recognizing manipulation oper-
ations (with a focus on Markov Models) and devices for capturing
manipulation information. Section 3 describes the developed system,
starting with an introduction to the semantics used in the system that
distinguishes between four manipulation levels. It then presents the
conceptual approach, which can be implemented with any sensor that
captures the user’s movements and object interactions, focusing on
how the system manages and processes this information to achieve its
diverse functionalities. The section also includes a description of the
implementation of this approach using a dataglove and a hand motion
tracker. Section 4 presents the experiments conducted to evaluate the
performance of the system and discusses the obtained results. Finally,
Section 5 presents the conclusions drawn from the study and suggests
possible future research directions.

2. Literature review

2.1. Task-level Robot Programming by Demonstration

Lozano-Pérez classified programming systems into three categories
[18]: guiding systems, in which the robot is moved to each desired po-
sition and the joint positions recorded; robot-level systems, specifying
2

motion and sensing in a programming language; and task-level systems,
where just the goals to be achieved are specified (e.g., the operations
to perform on an object or its final position). According to these
definitions, both guiding and task-level systems require intuitive inputs.
However, the latter is more suited for building end-user programming
systems, as the user just needs to specify the goal and does not need to
worry about how this is achieved. Additionally, these systems are more
robust against deviations as the trajectory is optimized by the system
instead of being fixed by the user.

Task-level systems (also called high-level systems by other au-
thors [19]) allow the generation of complex robot behaviors based on a
set of predefined skills. Thanks to this, the programming responsibilities
can be separated between the robot programmer (who develops the
robot skills), and the task specialist (who combines the existing skills to
achieve the goal of the task) [20]. This can be seen in [21], where the
user just needs to specify a set of goal conditions to generate the robot’s
program. This is possible because all the knowledge about the objects in
the environment, the robot’s hardware, and the robot’s capabilities (a
set of predefined skills), is organized in an ontology. Each of these skills
requires a set of preconditions and produces a set of postconditions
(i.e., the expected output state). Thus, the system is able to determine
the optimal sequence of skills to reach a certain goal.

Another advantage of these skill-based systems is the easier vertical
integration with the production system of the enterprise. An example
of this is presented in [22], where the program of all the robots of
the factory is updated automatically just by modifying the Standard
Operating Procedures (SOPs) issued by the Enterprise Resource Planner
(ERP). These SOPs are decomposed into a set of tasks by the Pro-
duction Manager (which is a ROS package), and it determines which
robot/resource has to execute each of them based on their skills.
Finally, a ROS-based task-level programming module running inside
each robot defines its behavior as a combination of its pre-programmed
set of skills. Due to all this, task-level programming systems are, in
most cases, intuitive and easy to use. However, in some applications,
with a lot of similar skills (e.g., complex manipulation activities that
might require different grasp types) or with a lot of labeled tools and
locations which might be used to configure the skills, it can become
tricky. In these cases, it would be more intuitive for the task specialist
to program the robot just by demonstrating how to perform the task,
which is known as Programming by Demonstration (PbD).

PbD is an online robot programming method in which a policy for
the robot is derived based on the demonstration of its desired behav-
ior [23]. Once this policy is learned, it will tell the robot what to do
based on the state captured by its sensors. The main interest of PbD lies
in the fact that, once the teaching system is developed, programming
a new task is very intuitive and does not require advanced knowledge
in robotics. There is a wide variety of PbD methods, ranging from the
first approaches using symbolic reasoning and manual control [24] to
advanced task-level systems using more user-friendly interfaces and
machine learning techniques to generalize across demonstrations [12,
25]. Argall et al. classified PbD methods into four categories based on
how and where demonstrations are captured [23]. When the demon-
stration is recorded directly in the robot or a morphologically identical
platform, the method is classified either as teleoperation (when the
teacher operates the robot ) or as shadowing (when the robot mimics
the teacher’s motion). On the other hand, when the demonstrations are
not captured directly in the robot, they are classified as either sensors
on teacher (when the sensors record the teaching data directly, e.g.,
data gloves or motion trackers [10]), or as external observation (when
the information needs to be extracted in a post-processing phase, e.g.,
vision system recording the operator actions [25]).

Programming systems in the first two categories focus on teaching
the robot trajectories and different commands, like opening and closing
the gripper [26]. The development of these approaches is simpler as the
demonstrations are recorded in the robot hence, they do not need to

solve the correspondence mapping between the human and the robot’s
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body. However, the extra complexity in the approaches of the last two
categories makes them more intuitive, allowing users to demonstrate
tasks by just performing them, regardless of the robot’s morphology.
Additionally, these approaches have the advantage of being appropriate
for both collaborative and industrial robots, as they do not require
physical contact. Like the first two categories, sensors on the teacher
and external observation systems can be used to teach trajectories
to the robot [10]. However, they can also be used to understand
and digitize the demonstrations performed by the user, creating a
high-level action plan that the robot can execute. This is known as
task-level PbD, and it combines the strengths of the PbD and task-level
programming paradigms, resulting in a very intuitive, robust, and easily
reconfigurable system.

The main application of task-level PbD systems is understanding
manipulation processes and subsequently transfer this knowledge to
the robot. These systems normally focus either on identifying the
performed grasp types or on digitizing the demonstrated processes.
For grasp type identification, most approaches analyze and compare
the manipulation data captured during the demonstration with the
different grasp types of a human grasp taxonomy (an extensive review
on human grasp taxonomies can be found in [27]) using techniques like
trajectory analysis or HMM [11,15]. Regarding the digitization of ma-
nipulation processes, most authors agree on defining complex processes
as a sequence of skills or simpler operations [12,28]. Therefore, these
approaches have to solve two problems: the segmentation of the process
into simpler operations and the recognition of each of these operations
among a set of pre-programmed parameterized robot operations.

Temporal process segmentation is required to determine when one
operation finishes, so the recognition system can be restarted and start
identifying the next operation. Different solutions have been proposed
for this problem. Aksoy et al. differentiated three groups of approaches:
boundary detection, sliding window and high-level grammars [12].
Boundary detection approaches study the start and end points of the
operations based on temporal discontinuities or changes in velocity
and acceleration [29]. Sliding window methods look for coincidences
between the operation features and the manipulation segment analyzed
within the sliding window, like in [17]. Finally, high-level grammars
build a large network from individually modeled actions. An example
of this is proposed in [28], where gesture segmentation is done by
monitoring the operation’s model with the maximum probability. When
its likelihood drops, it is considered that the action has finished. The
methods used to recognize the segmented operations are discussed in
detail in the next subsection.

Finally, it can be highlighted that most of the referenced approaches
just focus on determining the processes and operations performed by
the user, and little attention is paid to other important aspects that
can be used to parameterize the predefined skills (e.g., how much to
twist, or where to grasp), which has high relevance for the quality of
the resulting robot’s program.

2.2. Methods to recognize manipulation operations

As stated in the previous subsection, the most popular way of
identifying and digitizing manipulation processes is by segmenting
them into a sequence of simpler operations. The recognition of these
operations is a challenging task. Different solutions have been proposed
for addressing this problem, most of them using AI techniques. In [17],
Neto et al. used an artificial neural network (ANN) for static, dynamic
and composed gesture classification. In a different approach, Ramirez
et al. were able to recognize human manipulation activities by using
a Support Vector Machine (SVM) algorithm to classify the low-level
features extracted from videos by using the Independent Subspace
Analysis (ISA) [13]. In [30], Gutzeit et al. were able to recognize
pick-and-place and ball-throwing movements using k-Nearest Neighbor
(kNN), with one neighbor (𝑘 = 1), to classify the segmented movements
3

n a list of known operations. There are also many approaches based
on discriminative (e.g. Conditional Random Fields (CRF) [31]) and
generative (e.g. Hidden Markov Models (HMM) [11,14–16]) temporal-
space models. Markov Models are a very powerful mathematical tool
to model noisy temporal signals of variable length. In general, they
consider the transition probabilities between all the possible discrete
states of the analyzed data, thus, the model only depends on the
sequence of the states and is independent of their transition speed.

Due to the previous characteristics, Markov Models are an appro-
priate method for modeling and recognizing manipulation operations,
and many authors have used them for this purpose. In [28], Aarno et al.
implemented a Layered HMM (LHMM), consisting of two layers: a first
level for gestures recognition and a second level, whose input is the
output of the first layer, for task recognition. In [16], Ogawara et al.
modeled different action primitives by HMM hierarchical clustering,
identifying later the demonstrated action by comparing it with all the
existing models. A different approach was used by Vicente et al. in [14],
where instead of defining a model for each operation, a unique HMM
is built with the training set, representing the whole set of actions, so
that different paths through the HMM correspond to different actions.
Therefore, the most probable path or sequence, considering this model
and the observations, determines the executed action.

As can be seen in the previous examples, there are many possibilities
and ways to implement Markov Models depending on the input data
and the desired functionality. One of the decisions when working with
Markov Models is the topology of the models, that will depend on
the application and the nature of the modeled data. The two main
topologies are the ergodic models, in which every state of the model can
be reached from every other state; and the left–right or Bakis model,
in which as time increases, the state index increases or remains the
same [32]. Another important decision is the order of the model. In
some applications, the probability of an observation at time 𝑛 does
not depend just on the previous observation (at time 𝑛 − 1), but also
n the observations at 𝑛 − 2, 𝑛 − 3... In this case, we would talk
bout a second, third. . . order Markov Model, depending on the number
f previous states considered for the transitions [33]. There are also
ther possibilities with these models that can be interesting in some
ituations, like the multivariate Markov Models [34], when the input
ata is composed of multiple dependent variables, or the Continuous
ensity HMM (CDHMM), in which, instead of quantizing a continuous

nput signal in discrete symbols, a Gaussian Distribution is associated
ith each state [35]. Due to all their possibilities, there are plenty
f applications for this kind of models, not only for motion pattern
ecognition, but also in fields like: speech [35], writing [36] and
iological sequences recognition, and robot navigation [37,38].

Additionally, in most cases, the states of the modeled data are
ot directly observable, but there is a relation between them and
he observable events that are captured by the sensors. To deal with
hese situations, Hidden Markov Models (HMM) are used, which not
nly consider the transition probabilities between states (𝐴) and the

probability of starting in a certain state (𝜋), but also the probability
of seeing each of the observable events when the data is in a certain
state (𝐵). These models (𝜆 = (𝐴,𝐵, 𝜋)) can be used to solve three main
problems [32]: What is the probability of certain observation sequence,
given the model? Given the model and the observation sequence, which
is the most probable sequence of states? How can we adjust the model
parameters to best account for the observed sequence of states?

In this paper, one of the objectives is to develop a hardware-agnostic
system, meaning that it can work with any sensor (or any combination
of them) that provides information about the manipulation activity.
These sensors will provide dependent data to the system (e.g. the
hand position, the fingers’ bending, hand contact. . . ), thus multivariate
Markov Models could be used to integrate all this information. Addi-
tionally, the optimal order for each of these variables will be analyzed,

resulting in an Optimized Multivariate Multiorder Markov Model.
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2.3. Techniques to capture manipulation information

Capturing human motion and being able to continuously track it,
is an important aspect to consider for implementing PbD applications
in robotics. In general, the prevalence of tracking technology has
increased in recent days due to advances in computing power; with
improved tracking algorithms and enhanced post processors which
minimize measurement errors [39]. The spatio-temporal information
of the measured entity or body part (its continuous deviation from
an initial point of reference) is determined by tracking its real-time
position and orientation with high sampling rates. Moreover, different
aspects of human physiology, motion, and gestures (which is essentially
a combination of several basic motions) can be monitored to get useful
information by dynamically measuring the following metrics: change
in position, speed, joint angles, heartbeat rate, contact pressure, muscle
contraction/ relaxation, eye tracking, etc.

With the current advances in technology, there are several different
techniques to track human physiological and motion metrics, by using
various sensing techniques and mechanisms [40]. These human motion
sensing techniques could be widely classified as (i) Vision-based sensing
(ii) wearable sensing and (iii) multimodal sensing. This section briefly
expands on these categories and highlights the devices used, their
principle of operation and respective applications.

Vision-Based Sensing utilizes optical cameras (marker-less sensing
systems) or Infrared (IR) cameras (marker-based sensing systems) to
track the elements of the human body and are most suitable for
determining the position/location information than recognizing ges-
tures. Cameras utilized for motion capture include RGB cameras and
RGB-Depth or RGB-D cameras, and they are predominantly suitable
for capturing human motions at a low cost with stability [41,42].
RGB cameras (without depth perception) face challenges to effectively
capture the dynamics of human motion as occlusions can take place
due to perspective projection, and it is difficult to extract accurate
information from a single camera setup. This can be overcome by
using a multi-camera setup at different angles to observe the motion
in 3D [43]. However, this limits the sensing area, requires the cameras
to be pre-calibrated, and is expensive to set up. RGB-D overcomes
the above-mentioned issues of the RGB camera, as it captures the
depth information for each pixel in the frame along with the RGB
data. This allows improved recognition of human body motions, hand
gestures, and facial features [44], enabling their applications in gaming,
augmented reality, human motion analysis etc. These belong to the
sub-category of marker-less sensing systems, where the human body
is tracked without wearing any distinct-trackable markers; and the
location, orientation and change in posture is identified through im-
age segmentation and processing which can be matched to a human
template [45]. Whereas, in marker-based sensing systems, special IR
cameras are only used to track the specialized visual markers placed
on the human body/limb instead of capturing and processing RGB or
RGB-D images. Since the markers are specifically made to be tracked by
the IR camera, these systems could provide accurate position/location
data in real-time; and are unaffected by varying light conditions, object
occlusions, and disturbances in the scene [46]. These advantages over-
come the requirement of specialized cameras and inconvenient markers
to be utilized for specialized applications (i.e., gait analysis, animation,
robot programming and interaction, etc. [47]).

The previously described vision-based sensing systems are more
suited for capturing information pertaining to the joint angles of human
body/limb or their location and orientation, however, they are not
suited to capture the minute gestures and movements of the human’s
fingers nor can they sense the forces exhibited by the human while
performing the motions. This is made possible by utilizing wearable
sensors, to effectively capture these types of information. Wearable
sensors can be easily integrated with regular apparels such as clothes,
gloves, watches, neck tags, eyeglasses, etc. There are numerous wear-
4

able sensor technologies available in the market [48–50], but for
the relevance of this paper, this section would briefly elaborate on
electromyographic sensors and datagloves. Electromyography (EMG)
is the method of tracing and capturing the minute electrical signals
generated by the muscles of the human body when they are expanding
or contracting. An EMG sensor is the transducer which is used to
measure these signals, and they have gained a lot of interest in recent
times for examining human manipulation and movement. There are a
few approaches where the EMG sensors are placed at different layers
of the human body, however, the most popular approach is the surface
Electromyography. Its popularity is due to the fact that this approach is
non-invasive, as the sensor arrays are placed on the skin overlaying the
muscle to be studied. This is the most suitable approach for capturing
and analyzing human motion and actions [51]. The other approach
is intramuscular Electromyography, and it involves the placement of
electrodes into the required muscle fibers (invasively), for acquiring
accurate signal data without too much noise and crosstalk, and is
predominantly used in the clinical neurophysiology field for the propor-
tional control of prosthetic devices [52]. On the other hand, datagloves
have emerged as one of the most important devices for tracking and
studying human hand configuration and finger movements. The ad-
vances in sensor technologies have led to the integration of inertial
sensors, accelerometers, bend sensors, touch sensors, etc. to determine
the angle and position of the hands and fingers, the finger abductions
and adductions, pressure applied, and to provide haptic feedback to
the user [53]. This makes the datagloves suitable for providing a wide
range of information that could be input to the system, which could
be processed to extract various commands to create an interface with a
wide range of applications in gaming, controlling mobile and industrial
robotics, etc.

All of the above-mentioned devices are suitable to serve their func-
tions as standalone setups, but for more comprehensible and versatile
applications, where reliable information about human motion is re-
quired, simultaneously implementing two or more of these technologies
and combining their outcomes yield significantly improved results. This
is multimodal sensing, in which the shortcomings of a particular type
of sensor could be supplemented by the addition of a secondary sensor
system. An illustration for this is a teaching application for an industrial
robot by using gestures and visual hand movements [10], where the
teacher provides hand gestures (for determining the operation mode)
as signals through a data glove and uses an RGB-depth camera for pro-
viding trajectory data to the manipulator. Though multimodal sensing
systems capture more versatile information as opposed to standalone
sensor systems, they have complex system architectures and require
high computational capabilities to synchronize data and extract useful
information. This manuscript deals with a multimodal sensor system
implementation, where it combines the functionality of a data glove
with a marker-based visual motion capture system.

3. Proposed approach

This section provides a detailed examination of the approach pro-
posed in this paper. To enhance its clarity and comprehension, an
accompanying video1 has been prepared. This video visually explains
all the steps and techniques of the approach and demonstrates how
it works in practice. We encourage readers to consider watching this
video before beginning this section, as it can serve as a helpful intro-
duction and preparation for the more technical content that follows.

3.1. Levels of the manipulation activities and associated semantics

The goal of this paper is understanding and digitizing single-arm
manipulation processes performed by humans, based on the data cap-
tured by different kind of sensors. The presented approach does not

1 https://www.youtube.com/watch?v=nPZHHYW00rE
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Fig. 1. Levels of the manipulation activities.
depend on any specific type of sensor, but all of them must provide
raw information about the user’s movements and/or interactions with
the manipulated objects. The data obtained from these sensors is simple
and does not depend on other sensors’ readings, nor on time, nor on its
sequence. Therefore, the sensor data must be analyzed, processed, and
integrated, increasing its complexity level until it can be compared with
manipulation processes.

In order to do this, the first step is to understand what a manip-
ulation process is and what it is composed of. In [12], Aksoy et al.
suggest a three level hierarchical manipulation structure. Manipulation
sequences or activities (e.g. making a sandwich) are composed of
atomic manipulations (e.g. taking a slide of bread or cutting a cu-
cumber), and these, in turn, are composed of manipulation primitives,
that are the smallest basic components of a manipulation (e.g., cutting
or lifting). Szynkiewicz uses a similar approach in [9], decomposing
manipulation tasks (e.g. solving a Rubik’s cube) into manipulation
skills (e.g. turning a single face of the Rubik’s cube), and these into
basic skills (e.g. concrete grasping and releasing strategies). Aarno
et al. [28] also proposes three manipulation levels. The simplest level
consists of the motion data captured by the sensors; the next level are
the gestemes, that are any arbitrary motion in 2D or 3D; and finally
the tasks, such as: move, align, insert... In this paper, a new single-
arm manipulation structure is proposed, differentiating four levels of
complexity (Fig. 1). These levels are described below, from simplest to
most complex.

• Sensor’s data - Raw data captured by the sensors. It depends on
the type of sensors utilized and their resolution. Some examples
of this manipulation level could be the bending angle of a finger,
the pressure of a contact point or the position and orientation of
the hand.

• Primitive - Discretized sensor’s data with a semantic meaning. The
number of discrete levels into which the sensor’s data is classified
is critical. Having many levels could reduce the robustness of
5

the approach, resulting in more deviations and less consistency
between demonstrations of the same operation, thus hindering
its recognition. However, having few could lead into confusions
between similar operations due to the low resolution of the primi-
tive. Hence, a balanced optimization must be made. Additionally,
primitives can be classified into different primitive’s variables
depending on the type of information they provide. Examples
of primitive’s variables are: the hand motions in the world axes
(e.g., +X hand motion, -Z hand motion ...), derived from the
sequence of hand positions, or the hand gestures (e.g., open,
half-closed, closed), calculated by discretizing and combining the
fingers’ bending angles captured by the sensors.

• Operation - Simplest manipulation action that can be performed
on an object. An operation can be described and identified as
the sequence and combination of multiple primitives’ variables.
Examples of operations could be grasp, place, or insert.

• Process - Combination of discrete operations performed with/on
an object, in sequence, to achieve the desired manipulation goal.
An example of process could be grasping a bottle, pouring water
in a glass, and placing it again, whose common goal is serving
water.

The life cycle of the data, since its acquisition until its transition
to a process manipulation level, is managed by three of the system
modules. The first one is Discretizing, that is in charge of the acquisition
of the sensor data, its transition to the primitives level and its storage.
The next stage is Understanding, that manages the transition of the
primitives to the operations level, as well as the segmentation of a
full manipulation process in individual operations. After this step, the
manipulation is understood and can be digitized as a sequence of
operations. However, the robustness can be increased substantially with
a third module, Sequencing, that manages the transition of the data to
the process level, identifying the joint goal of the manipulation, based
on the recognized sequence of operations.
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Fig. 2. UML class diagram of the Information system’s model.
3.2. Conceptual definition of the approach

The developed system is independent of the sensor technology
utilized, with the only requirement being that they must provide infor-
mation about the operator’s movements or interactions with the manip-
ulated objects. This subsection, therefore, presents the approach from a
conceptual point of view, without considering its implementation with
any sensor in particular.

3.2.1. Information system
In order to recognize manipulation operations, the recorded ma-

nipulation data have to be compared with all the possible operations,
thus, a model is needed for each of them. The developed system should
be able to work with multiple objects, and each object needs to have
models for all its operations. Training all these models to be generic and
robust requires a large amount of training data. Additionally, all the
files required for the system and sensor’s calibration and configuration
have to be stored somewhere. Therefore, to manage all this data and
make the system scalable, it is important to have a structured and
well-organized information system.

The adopted information model can be seen in Fig. 2. The first
level organizes the data by object. This initial division by object is
because the actions for executing the same operation vary depending
on the manipulated object, due to its differences in weight, size, shape,
surface friction or deformability, as reported in [54]. This can be clearly
observed in a grasp operation. When this operation is performed with
a bottle, normally a cylindrical grasp is done, with all the fingers
surrounding the bottle, however, when the grasped object is a cable,
a tip pinch or palmar pinch grasp [55] are the most common ones.
The pattern of a grasp operation for each of these objects is completely
different and, therefore, every object requires their own operation’s
models.

In the second level of this information system, every object contains
a directory for each of its possible operations, a directory for the
processes recorded using that object, and another directory for storing
two configuration files, required for the operations recognition and
process classification with that object. One level deeper, each operation
contains a set of demonstrations recorded to train its models, a set of
models that compose the Multiorder Multivariate Markov Model of the
operation, and a configuration file used to calibrate the system for the
6

object dimensions.
Each demonstration is stored as a set of files, each of them con-
taining the detected sequence of primitives of a certain variable. For
instance, one file contains the sequence of primitives of cartesian hand
movements (e.g., +z movement, -x movement...), another file contains
the sequence of fingers positions primitives (e.g., 5 fingers open 0
closed, 3 fingers open 2 closed...), etc. Additionally, the sequence of
all primitive’s variables is also stored in a single file (e.g., -z move-
ment, roll hand rotation, hand closing...) to consider the chronological
dependency between primitives of different variables. The reason for
this is that in most manipulation operations, only the sequences of
primitives of some variables follow a pattern, while others do not
provide useful information. Therefore, storing the sequence of all the
primitives captured during a demonstration in a single file could hinder
the recognition of the operation.

Regarding the models, an Optimized Multiorder Multivariate
Markov Model is created for each operation. To define these models,
the information system must store the first, second, and third order
Markov Models of all the primitive variables. This is possible because,
as explained previously, the demonstrations store the sequence of
primitives of each variable in different files, which allows to train
the model of each variable individually. Then, all these models have
to be integrated. To do this, an order is selected for the model of
each variable (first, second, or third, in this case) and a weight is
assigned to it according to their importance for recognizing the op-
eration pattern (similar to [11]). These weights are optimized by an
iterative algorithm that maximizes the recognition accuracy. Regarding
the order of the models, when it increases, the similarity between the
recorded operation and its model normally decreases, as it becomes
more sensitive to deviations. However, this also produces an increment
in the similarity ratio between the most similar operation and the rest of
the operations, helping in differentiating between similar operations. As
a consequence, for some variables it would be more interesting to use
a higher order model, while for others a lower order model would give
better results. Therefore, the order of each variable’s model is tuned
experimentally to maximize the system performance.

Finally, each process is stored in a folder whose name indicates the
sequence of operations and their locations, providing ground truth for
testing the system. As for the operations, each process is stored in differ-
ent files, each of them containing the sequence of primitives of different
a variable, but now including also the time at which every primitive
was observed, so the primitives of all variables can be considered in a
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Fig. 3. System overview. The square shapes represent the actions performed by the modules, and the oval shapes represent the results of these actions. The arrows show the intra
and inter module communication, and the colors represent the manipulation level of the information.
common timeline for the operations segmentation. Additionally, each
process folder contains a file with the cartesian coordinates of the hand
at each timestep, which is used for the recognition of the location of
each segmented operation.

3.2.2. System functionalities
The developed system is composed of five main modules, integrated

in a ROS-based architecture. Three of these modules were introduced in
Section 3.1: Discretizing, Understanding, Sequencing. These are in charge
of the transition of the data to higher complexity manipulation levels.
The fourth module is called Training and, as its name indicates, it is
responsible for generating the operations models. Finally, the last mod-
ule, called Interface & Calibration, manages the communication of the
user with the system, for recording new demonstrations and calibrating
the sensors. Fig. 3 shows, with a schematic representation, the main
functionalities of these modules and the communication between them.
Intra and inter module communication takes place through txt files and
ROS topics.

All the system functionalities are initialized from the Interface &
Calibration module. This module allows the user to calibrate the sensors
and to start the desired system functionality: Record a new demonstra-
tion, train the system, calibrate the system or recognize an operation
or a process.

In order to be able to use the rest of the system functionalities,
first it is necessary to populate the information system. Therefore, the
first functionality of the system is recording demonstrations (Fig. 4).
This is the only functionality that requires the use of the Discretizing
module, as it is the only one in which user’s data has to be captured.
This module establishes a socket communication with the SDKs of all
the sensors, introducing the captured raw sensor’s data in the ROS
system. Then, a calibration of the sensors is performed before starting
the recording. The sensor’s data is then sent to different ROS nodes,
tailored for the specific sensors utilized, that process and discretize it,
converting the data to the primitive manipulation level. Finally, the
recorded sequence of primitives of each variable is saved in a different
txt file, according to the information structure presented in Fig. 2. Both
the calibration of the sensors and the discretization of the captured data
depend on the sensors used. Therefore, this is explained for the specific
implementation of the system in Section 3.3.

Once the information system is populated with the users’ demon-
strations, the system can be trained (Fig. 5). For this functionality, the
Training module is called, generating or updating the models of each
operation, generalizing across all the recorded demonstrations. First,
second and third order Markov models of every primitive’s variable are
generated for every operation.
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After training the system, it is necessary to the perform system
calibration before it can be used to recognize processes (Fig. 6). Two
calibration files are needed for the processes recognition, one with the
confusion matrix of the object’s operations recognition and the other
with the weight assigned to each variable’s model, and both are cal-
culated using the Understanding module. For computing the confusion
matrix, a cross-validation with all the demonstrations of operations of
an object is made. This means that for every demonstration, the models
of that operation are recalculated excluding the evaluated demo, then
the demo is compared with the models of all the operations, selecting
the one with the highest similarity. This is repeated for all the demos,
populating a confusion matrix, which indicates how many operations
were recognized correctly and how many were recognized as other
operations.

Regarding the calculation of the optimal weight of the variables’
models, an iterative optimization algorithm is used. In every iteration,
all the recorded processes of an object are segmented, and the results
are compared with the ground truth calculating the overall perfor-
mance with a metric called performance, described in Section 4. This is
automated, as the name of the folder in which each process demon-
stration is stored indicates the sequence of operations and locations
(i.e., the ground truth). After each iteration, the weight of the model
of one variable is modified in one direction (increasing or decreasing a
certain step value). If the performance improves, the weight is modified
in the same direction in the next iteration. If not, the opposite direction
is evaluated. When this weight of the variable is adjusted, the same
process is repeated for the next variable until all the weights are
determined.

Finally, the last and main functionality of the system is the operation
and process recognition (Fig. 7), for which the Understanding and
Sequencing modules are required, as well as the models and calibra-
tion files generated during the system training and calibration. The
Understanding module is used to convert the demonstrations, stored as
sequences of primitives, to the operation level. This can be an operation
or, in the case of processes recognition, a sequence of operations,
obtained by performing a segmentation. In order to do this, the ana-
lyzed demonstration is compared with all the possible operation models
of that object, using the optimized variables’ weights. After this, the
Sequencing module increases the data complexity an additional level,
reaching the process level. This is done by comparing the segmented
sequence of operations with all the possible processes for that object,
using the confusion matrix results to consider the probabilities of wrong
operations identification. Finally, the selected process is the one that
presents the highest similarity.
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Fig. 4. UML sequence diagram of the recording functionality.

Fig. 5. UML sequence diagram of the training functionality.

Fig. 6. UML sequence diagram of the calibration functionality.

Fig. 7. UML sequence diagram of the operation and process recognition functionality.
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Algorithm 1 Automatic process segmentation
1: procedure GetModels(object)
2: 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ← get the operations of the 𝑜𝑏𝑗𝑒𝑐𝑡
3: for 𝑜𝑝 in 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
4: for 𝑓𝑖𝑙𝑒 in 𝑚𝑜𝑑𝑒𝑙_𝑓𝑖𝑙𝑒𝑠 do
5: 𝑓1 ← open 𝑜𝑏𝑗𝑒𝑐𝑡/𝑜𝑝/𝑚𝑜𝑑𝑒𝑙𝑠1/𝑓𝑖𝑙𝑒.txt
6: 𝑚𝑜𝑑𝑒𝑙𝑠1[𝑜𝑝][𝑓𝑖𝑙𝑒] ← read and store 𝑓1
7: Same to populate 𝑚𝑜𝑑𝑒𝑙𝑠2 and 𝑚𝑜𝑑𝑒𝑙𝑠3
8: procedure Compare(𝑑𝑒𝑚𝑜)
9: for 𝑓𝑖𝑙𝑒 in 𝑚𝑜𝑑𝑒𝑙_𝑓𝑖𝑙𝑒𝑠 do

10: 𝑓 ← open 𝑑𝑒𝑚𝑜/𝑓𝑖𝑙𝑒.txt file
11: for 𝑙𝑖𝑛𝑒 in 𝑓 do
12: 𝑡𝑖𝑚𝑒[𝑓𝑖𝑙𝑒] ← append time from 𝑙𝑖𝑛𝑒
13: for 𝑜𝑝 in 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
14: 𝑖_𝑝𝑟𝑜𝑏 ← compare 𝑙𝑖𝑛𝑒 with 𝑚𝑜𝑑𝑒𝑙𝑠[𝑜𝑝][𝑓𝑖𝑙𝑒] starting

probability
5: 𝑡𝑟_𝑝𝑟𝑜𝑏 ← compare 𝑙𝑖𝑛𝑒 with 𝑚𝑜𝑑𝑒𝑙𝑠[𝑜𝑝][𝑓𝑖𝑙𝑒] transition

probability
6: 𝑡 ← join and sort 𝑡𝑖𝑚𝑒[𝑓𝑖𝑙𝑒] lists
7: for 𝑜𝑝 in 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
8: for 𝑓𝑖𝑙𝑒 in 𝑚𝑜𝑑𝑒𝑙_𝑓𝑖𝑙𝑒𝑠 do
9: 𝑖_𝑝𝑟𝑜𝑏 ← interpolate 𝑖_𝑝𝑟𝑜𝑏 for time in 𝑡
0: 𝑖_𝑝𝑟𝑜𝑏[𝑓𝑖𝑙𝑒] ← 𝑖_𝑝𝑟𝑜𝑏[𝑓𝑖𝑙𝑒] ⋅𝑤𝑒𝑖𝑔ℎ𝑡[𝑓𝑖𝑙𝑒]
1: 𝑡𝑟_𝑝𝑟𝑜𝑏 ←interpolate 𝑡𝑟_𝑝𝑟𝑜𝑏 for time in 𝑡
2: 𝑡𝑟_𝑝𝑟𝑜𝑏[𝑓𝑖𝑙𝑒] ← 𝑡𝑟_𝑝𝑟𝑜𝑏[𝑓𝑖𝑙𝑒] ⋅𝑤𝑒𝑖𝑔ℎ𝑡[𝑓𝑖𝑙𝑒]
3: 𝑖𝑛𝑖𝑡_𝑝𝑟𝑜𝑏[𝑜𝑝] ← 𝑠𝑢𝑚(𝑖_𝑝𝑟𝑜𝑏[𝑜𝑝])
4: 𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑏[𝑜𝑝] ← 𝑠𝑢𝑚(𝑡𝑟_𝑝𝑟𝑜𝑏[𝑜𝑝])
5: return 𝑡, 𝑖𝑛𝑖𝑡_𝑝𝑟𝑜𝑏, 𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑏
6: procedure Segment(𝑡, 𝑖𝑛𝑖𝑡_𝑝𝑟𝑜𝑏, 𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑏)
7: 𝑜𝑟𝑑𝑒𝑟 ← get optimal polynomial regression order
8: for 𝑜𝑝 in 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
9: 𝑖𝑛𝑖𝑡_𝑓𝑖𝑡[𝑜𝑝] ← 𝑓𝑖𝑡(𝑡, 𝑖𝑛𝑖𝑡_𝑝𝑟𝑜𝑏, 𝑜𝑟𝑑𝑒𝑟)
0: 𝑡𝑟𝑎𝑛𝑠_𝑓𝑖𝑡[𝑜𝑝] ← 𝑓𝑖𝑡(𝑡, 𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑏, 𝑜𝑟𝑑𝑒𝑟)
1: 𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑𝑒𝑥[𝑜𝑝] ← get 𝑖𝑛𝑖𝑡_𝑓𝑖𝑡[𝑜𝑝] max values
2: for 𝑜𝑝 in 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
3: for 𝑖 in 𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑𝑒𝑥[𝑜𝑝] do
4: if 𝑡𝑟𝑎𝑛𝑠_𝑓𝑖𝑡[𝑜𝑝][𝑖] ⩾ 𝑡𝑟𝑎𝑛𝑠_𝑓𝑖𝑡[𝑖] and 𝑡𝑟𝑎𝑛𝑠_𝑓𝑖𝑡[𝑜𝑝][𝑖] > 30% then

35: 𝑐𝑜𝑜𝑟𝑑 ← get coordinates at 𝑡[𝑖]
36: 𝑙𝑜𝑐 ← get location of 𝑐𝑜𝑜𝑟𝑑
37: 𝑠𝑒𝑔𝑚 ← append {𝑡[𝑖] ∶ [𝑜𝑝, 𝑙𝑜𝑐]}
38: 𝑜𝑝_𝑠𝑒𝑞 ← sort 𝑠𝑒𝑔𝑚 by time
39: return 𝑜𝑝_𝑠𝑒𝑞
40: procedure Main(𝑜𝑏𝑗𝑒𝑐𝑡, 𝑑𝑒𝑚𝑜)
41: call 𝐺𝑒𝑡𝑀𝑜𝑑𝑒𝑙𝑠(𝑜𝑏𝑗𝑒𝑐𝑡)
42: 𝑡, 𝑖𝑛𝑖𝑡_𝑝𝑟𝑜𝑏, 𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑏 ← call 𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑑𝑒𝑚𝑜)
43: 𝑜𝑝_𝑠𝑒𝑞 ← call 𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑡, 𝑖𝑛𝑖𝑡_𝑝𝑟𝑜𝑏, 𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑏)
44: 𝑝𝑙𝑜𝑡(𝑡, 𝑖𝑛𝑖𝑡_𝑝𝑟𝑜𝑏, 𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑏)

3.2.3. Understanding module
The name of this module comes from its ability to understand

a manipulation process, determining which operations the operator
is doing, where he/she is doing them and when; presenting it as a
decomposed high-level action plan. This module is composed of two
main nodes, that allow the recognition of operations, isolated or in a
sequence. Additionally, these nodes can be used to calculate two system
parameters: the operation confusion matrix and the variables’ models
optimized weights (Fig. 6).

For the single operation recognition, the probability of the observed
sequences of primitives (𝑜𝑏𝑠𝑗) is calculated with all the models of
all the operations, and the operation with the highest likelihood is
selected (𝑜𝑝). Each operation is defined by a Multiorder Multivariate
Markov Model (𝜆𝑖), composed of several models (𝜆𝑖,𝑗), one for each
primitive’s variable, and each one with an associated weight (𝑊𝑗)
(where 𝑖 represents the index of the operation and 𝑗 the index of the
variable). Additionally, each variable’s model can be a 1st, 2nd, or 3rd
order Markov Model, and the order used for each of them is determined
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empirically. Considering all this, the following formula is applied for
the single operation recognition is done:

𝑜𝑝 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖

(
𝑙𝑒𝑛(𝑓𝑖𝑙𝑒𝑠)
∑

𝑗=0
𝑊𝑗 ⋅ 𝑃 (𝑜𝑏𝑠𝑗 ∣ 𝜆𝑖,𝑗 ))

However, the complexity increases when recognizing operations
within a process, as there is no information regarding when each
operation starts and finishes, and the models cannot be applied directly.
The procedure followed for the process segmentation is presented in Al-
gorithm 1 and it was inspired by [28], that monitors the most probable
model seeking a sharp drop in its probability, and [17], where a sliding
window approach is adopted to evaluate and segment a sequence of
observations.

The procedure followed starts by calculating the starting (or initial
state) and transition probabilities of all the operations in the timeline of
the observation. For this, the probabilities of every variable’s sequence
of primitives are merged in the same timeline. Then, these probability
timelines are fitted with a polynomial regression, which smooths the
curve and removes the outliers. Next, the resultant regression curves
are analyzed. For every operation, when a maximum is detected in
its initial state probability curve, a window composed of the values
of the transition probability curve during the next four timesteps is
calculated for all the operations. If the maximum average value of this
window corresponds to the operation with a maximum in its initial
state function and it is higher than 30%, the operation is added to
the segmented sequence of operations. Additionally, the coordinates
of the hand during this timestep are compared with all the known
locations and, if there is any coincidence, this location is added to the
segmentation too.

3.2.4. Sequencing module
After processing the process observation with the Understanding

module, the operator actions are understood and an action plan to
perform the demonstrated manipulation is produced, specifying the
sequence of operations that have to be executed and in which locations.
However, in some cases, not all the operations of the generated action
plan are contributing to reach the final goal of the manipulation. This
is in most of the cases due to segmentation errors (normally because of
confusion between similar operations), but can be also caused by the
sensors’ inaccuracy, lack of data, and/or by the inefficient execution of
the process (i.e.,performing unnecessary operations). A clear example
of this last point is when the object grasping is not correct and a
regrasping is needed, resulting in the detection of two consecutive
grasp operations in the segmentation. Therefore, a final Sequencing
processing module can increase considerably the performance of the
system, making it more robust against disturbances.

The Sequencing module, as it name indicates, recognizes the per-
formed process based on the sequence of operations segmented from
the observation. The procedure followed for this is presented in Al-
gorithm 2. In this procedure, all the possible combinations of the
segmented sequence of operations (without altering their order) are
compared with the sequences of operations of all the possible pro-
cesses for the manipulated object. Finally, the process with the highest
similarity is selected.

This procedure is explained with an example. Let us suppose that the
performed process was pouring water with a bottle, that is composed
of the operations: Grasp (𝐺) - PourWater (𝑃𝑊 ) - Place (𝑃 ); but the
segmentation result was the sequence: GraspTop (𝐺𝑇 ) - Place (𝑃 ) -
PourWater (𝑃𝑊 ) - Place (𝑃 ), where GraspTop refers to grasping the
ottle from the top instead of in the cylindrical face. In order to
lassify this observation, the segmented sequence is compared with all
he possible processes; as an example, this is shown for the case of
he 𝐺 − 𝑃𝑊 − 𝑃 process. In order to compare the process and the
egmentation, both must have the same length, the one of the process.
hus, all the three-operation sequences that can be extracted from the
egmentation (𝐺𝑇 − 𝑃 − 𝑃𝑊 − 𝑃 ), with a maximum of two positions
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𝑞])
Algorithm 2 Process classification
1: procedure Classify(𝑠𝑒𝑔𝑚, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑙𝑖𝑠𝑡)
2: 𝑠𝑒𝑔𝑚_𝑙𝑒𝑛 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑒𝑔𝑚)
3: for 𝑝𝑟𝑜𝑐 in 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑙𝑖𝑠𝑡 do
4: 𝑠𝑒𝑞_𝑙𝑒𝑛 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝑟𝑜𝑐)
5: 𝑖𝑛𝑑𝑒𝑥_𝑐ℎ𝑒𝑐𝑘_𝑙𝑖𝑠𝑡 ← get all the possible index combinations for 𝑠𝑒𝑔𝑚,

with a length of 𝑠𝑒𝑞_𝑙𝑒𝑛 and without changing their order
6: for 𝑠𝑒𝑔𝑚_𝑖𝑛𝑑𝑒𝑥 in 𝑖𝑛𝑑𝑒𝑥_𝑐ℎ𝑒𝑐𝑘_𝑙𝑖𝑠𝑡 do
7: for 𝑖 ← 0 to 𝑠𝑒𝑞_𝑙𝑒𝑛 do
8: if 𝑠𝑒𝑔𝑚_𝑖𝑛𝑑𝑒𝑥[𝑖] < 0 then
9: 𝑝𝑟𝑜𝑏_𝑐𝑎𝑙𝑐 ← append 0

10: if 𝑠𝑒𝑔𝑚_𝑖𝑛𝑑𝑒𝑥[𝑖] >= 𝑠𝑒𝑔𝑚_𝑙𝑒𝑛 then
11: 𝑝𝑟𝑜𝑏_𝑐𝑎𝑙𝑐 ← append 0
12: else
13: 𝑜𝑝_𝑠𝑒𝑞 ← [𝑝𝑟𝑜𝑐[𝑖]]
14: 𝑜𝑝_𝑠𝑒𝑔𝑚 ← [𝑠𝑒𝑔𝑚[𝑠𝑒𝑔𝑚_𝑖𝑛𝑑𝑒𝑥[𝑖]]
15: 𝑝𝑟𝑜𝑏_𝑐𝑎𝑙𝑐 ← append 𝑐𝑜𝑛𝑓 [𝑜𝑝_𝑠𝑒𝑞][𝑜𝑝_𝑠𝑒𝑔𝑚]∕𝑚𝑎𝑥(𝑐𝑜𝑛𝑓 [𝑜𝑝_𝑠𝑒

16: for 𝑖 ← 0 to 𝑠𝑒𝑔𝑚_𝑙𝑒𝑛 do
17: if 𝑖 not in 𝑠𝑒𝑔𝑚_𝑖𝑛𝑑𝑒𝑥 then
18: 𝑝𝑟𝑜𝑏_𝑐𝑎𝑙𝑐 ← append 0
19: 𝑝𝑟𝑜𝑏_𝑎𝑣𝑔 ← 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑝𝑟𝑜𝑏_𝑐𝑎𝑙𝑐)
20: if 𝑝𝑟𝑜𝑏_𝑎𝑣𝑔 > 𝑚𝑎𝑥_𝑝𝑟𝑜𝑏 then
21: 𝑚𝑎𝑥_𝑠𝑒𝑞[𝑝𝑟𝑜𝑐] ← 𝑠𝑒𝑔𝑚_𝑖𝑛𝑑𝑒𝑥
22: 𝑚𝑎𝑥_𝑠𝑒𝑞[𝑝𝑟𝑜𝑐] ← 𝑝𝑟𝑜𝑏_𝑎𝑣𝑔
23: 𝑝𝑟𝑜𝑐, 𝑚𝑎𝑥_𝑠𝑒𝑞, 𝑚𝑎𝑥_𝑝𝑟𝑜𝑏 ← 𝑚𝑎𝑥(𝑚𝑎𝑥_𝑠𝑒𝑞)
24: if 𝑚𝑎𝑥_𝑝𝑟𝑜𝑏 < 30% then
25: 𝑝𝑟𝑜𝑐 ← None
26: 𝑙𝑜𝑐 ← 𝑠𝑒𝑔𝑚[𝑚𝑎𝑥_𝑠𝑒𝑞][𝑙𝑜𝑐]
27: return 𝑝𝑟𝑜𝑐, 𝑙𝑜𝑐
28: procedure Main(𝑜𝑏𝑗𝑒𝑐𝑡, 𝑜𝑝_𝑠𝑒𝑔𝑚)
29: 𝑐𝑜𝑛𝑓 ← read and store confusion matrix of 𝑜𝑏𝑗𝑒𝑐𝑡
30: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑙𝑖𝑠𝑡 ← possible processes with 𝑜𝑏𝑗𝑒𝑐𝑡
31: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝑙𝑜𝑐 ← 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑜𝑝_𝑠𝑒𝑔𝑚, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑙𝑖𝑠𝑡)

between consecutive operations, are compared with the process. Some
examples of this are: 𝐺𝑇 − 𝑃 − 𝑃𝑊 , 𝐺𝑇 − 𝑃𝑊 − 𝑃 , 𝐺𝑇 − 𝑃 − 𝑃
or 𝑃 − 𝑃𝑊 − 𝑃 , but also others, considering the case when the first
(𝑋−𝐺𝑇 −𝑃 ) or the last (𝑃𝑊 −𝑃 −𝑋) operations are not detected (the
𝑋 represents no operation, because it is before the first operation of the
segmentation or after the last one). As an example, this comparison is
shown for the most similar three-operation sequence: 𝐺𝑇 −𝑃𝑊 −𝑃 . The
sequences are compared operation by operation, using the formula in
Line 15. First, 𝐺𝑇 is compared with 𝐺, these are similar operations,
so the result based on the confusion matrix values, is, for instance,
0.3. Then, 𝑃𝑊 is compared with 𝑃𝑊 and 𝑃 with 𝑃 , resulting in 1.0
probability in both cases. Additionally, a 0.0 is also considered for
the calculation of the similarity according to Line 18, as the second
operation of the segmentation (𝑃 ) was excluded from this comparison.
Finally, the average of all these values is calculated, obtaining the sim-
ilarity between the sequences, 57.5%. After checking all the sequences
and all the processes, no higher similarities are found, and therefore,
the observation is classified as a pouring water process. Thus, even with
a wrong segmentation, the overall goal of the manipulation (i.e., the
process) is recognized, thanks to this last module.

This classification is also applied to the recognition of the locations
where the operations were performed. Therefore, the final locations
considered, are the ones corresponding to the operations sequence with
the highest similarity with the process.

Additionally, to increase even more the robustness and the accuracy
of system, this module offers the possibility of performing several
demonstrations of the same process. In this case, initially every demon-
stration is processed individually as already presented in this section,
calculating the maximum similarity with each process. Then, when all
the demonstrations are processed, the system takes all the individual
results and calculates with them the similarity average for each process.
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Fig. 8. Sensors used for the implementation of the system: CaptoGlove and HTC VIVE
Tracker 2.0.

Finally, the selected process will be the one with the highest similarity
average with the demonstrations. This is also applied for the locations
recognition following the same principle. The advantage of this method
is that, even if one or two demonstrations were not recognized cor-
rectly, if most of them are classified precisely, the outliers effect will
be reduced and the process will be successfully identified. Thus, the
more demonstrations, the more accurate the result should be, but the
more time would be spent recording them.

3.3. Implementation

The system was implemented using two wearable devices to record
the user’s demonstrations, a dataglove and a motion tracker, as can
be seen in Fig. 8. The dataglove is a CaptoGlove, equipped with: five
finger sensors able to perceive finger movement on the bending axis,
five pressure sensors for fingertips able to perceive pressure from 100 g
to 10 kg, a triple-axis gyro, a triple-axis accelerometer, a triple-axis
magnetometer, and a barometer. The motion tracker system consists
of a HTC VIVE Tracker 2.0 attached to the user’s wrist, and two HTC
VIVE Base stations 1.0 that detect the tracker position in an area of
approximately 3.5 m × 3.5 m.

Both devices communicate with a Windows computer using Blue-
tooth. In order to communicate with the ROS system, running on a
Linux computer, the SDK of both sensors is modified, creating a socket
client in each of them, to send the captured raw data to a socket server
integrated in the Discretizing module of the ROS system, with a period
of 0.15 s. Then, this node distributes the sensor’s data to a net of nodes
(see Fig. 9) that discretize it into primitives and store their transitions.
This net is composed of three nodes specialized for different kinds of
information: fingers’ data, hand orientation, and hand position.

The Fingers Analysis node receives the raw glove values, including
fingers’ bending (𝑓𝑝) and fingertips pressure (𝑓𝑝), and discretizes them
into a set of primitives’ variables. In particular, fingers’ bending data
is converted into two different primitive variables (hand gesture and
fingers’ bending) and fingers’ pressure data is converted into another
two (hand contact and fingers contact). Threshold values were empir-
ically defined for the discretization of these primitives (see Table 1),
differentiating between three states for fingers’ bending (open, half-
closed, closed) and three states for fingers’ contact (no contact, contact,
strong contact). Regarding hand gesture, it just considers gesture tran-
sition (opening/closing) according to the fingers’ bending values, and
hand contact considers an overall contact for the hand, which can be:
contact, in case any finger detects a simple or strong contact, or no
contact otherwise.

The Hand Orientation Analysis node receives the raw orientation
of the hand from the glove and it calculates the hand rotation and
orientation primitives. For the hand rotation analysis, it calculates the
rotation matrix between two consecutive timesteps and, if any of the
Euler angles is above the empirically defined threshold (𝜑𝑟), a rotation
in one of the hand’s axes is detected. Additionally, higher threshold
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Fig. 9. UML activity diagram of the Discretizing module and its interaction with the Interface & Calibration module.
values are also used to identify fast rotations. Regarding the hand
orientation, the rotation matrix of the glove is analyzed, identifying
which hand axis (raw, pitch or yaw) is aligned with the gravity axis
(i.e. the z world axis), if any.

Finally, the Hand Position Analysis node receives the raw position
of the hand from the tracker (𝑃 ) and it calculates the hand discrete
movements in the world (XYZ) and hand (RPY) axis. In both cases, first,
the distance in the different axes between timesteps is calculated. In the
case of XYZ motions, these distances are calculated just as the position
difference in the different axes. However, this is a bit more complicated
for the RPY motions, as the hand positions have to be transformed to
the hand reference frame. Therefore, this distance is defined as the
translation vector of the homogeneous transformation matrix between
two timesteps. Then, the calculated distances are analyzed to determine
if there was a displacement in any of the axes. However, the analysis is
more complex now than for the previous two nodes, as slow movements
have to be detected but, at the same time, it must be robust against
hand vibrations. Therefore, an initial threshold (𝜑𝑚) is used for the 𝑡−1
to 𝑡 timesteps transition, if no movement is detected, it is checked again
from 𝑡 − 2 to 𝑡 timesteps using 1.5𝜑𝑚, and this is repeated again for a
third level using 1.75𝜑𝑚 (this can be seen Table 1). This way, small
isolated movements are discarded but small and continued movements
are detected.

Additionally, the Discretizing module communicates with the In-
terface & Calibration module for calibrating the sensing devices. This
calibration is composed of an online calibration, performed every time
the teaching system is launched, and an offline calibration, which just
needs to be done once and it is saved. In the online calibration, the
devices’ readings are transformed and scaled into the world’s frame.
For this, the user has to follow some steps, which are indicated in
Fig. 10. The first step is the alignment of the gloves and tracker axes
with the world ones. For this, it is necessary to obtain the rotation
matrices between the world and the axes of the devices (i.e., 𝑅𝑤𝑜𝑟𝑙𝑑

𝑔𝑙𝑜𝑣𝑒
and 𝑅𝑤𝑜𝑟𝑙𝑑

𝑡𝑟𝑎𝑐𝑘𝑒𝑟), so the sensor’s readings (i.e., 𝑅𝑔𝑙𝑜𝑣𝑒
ℎ𝑎𝑛𝑑 and 𝑅𝑡𝑟𝑎𝑐𝑘𝑒𝑟

ℎ𝑎𝑛𝑑 ) can be
transformed to the world frame (i.e., 𝑅𝑤𝑜𝑟𝑙𝑑

ℎ𝑎𝑛𝑑 ). In the case of the tracker,
the gravity axis (i.e., Z) is already aligned with the world’s one, so
just one rotation angle is needed. This angle is calculated by analyzing
the initial and final X and Y coordinates captured by the tracker after
moving the hand along the X and Y axes. Regarding the glove, it is
necessary to calculate the 3D rotation matrix. For this, the user just
needs to align the hand with the world axes (i.e., Roll with X, Pitch with
Y, and Yaw with Z), ideally using a calibration platform. Then, with the
11
Table 1
Sensor’s data discretization conditions. Subindexes: 𝑖 = finger index, 𝑗 = hand axis
(RPY), 𝑘 = world axis (XYZ), 𝑡 = current timestep (by default). Other notation: 𝐻𝐴

𝐵
= homogeneous transformation matrix from 𝐴 to 𝐵, composed of 𝑅 (rotation matrix),
and p (translation vector), 𝑃𝑡 = position of the hand at timestep 𝑡, 𝜑 = threshold (its
subindex specifies the sensor’s data for which it is applied).

Primitive
variable

Discretization conditions

Fingers bending
(FB)

∀𝑖, 𝐹𝐵𝑖 =

⎧

⎪

⎨

⎪

⎩

Open, if 𝑓𝑏𝑖 ≥ 𝜑𝑏𝑖,1 ;
Half closed, if 𝜑𝑏𝑖,1 > 𝑓𝑏𝑖 ≥ 𝜑𝑏𝑖,2 ;
Closed, otherwise

Fingers pressure
(FP)

∀𝑖, 𝐹𝑃𝑖 =

⎧

⎪

⎨

⎪

⎩

Strong contact, if 𝑓𝑝𝑖 ≥ 𝜑𝑝𝑖 ;
Contact, if 𝜑𝑝𝑖,1 > 𝑓𝑝𝑖 > 0;
No contact, otherwise

Hand gesture
(HG)

𝐹𝐵𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Opening, if
∑5

𝑖=1 ((𝑓𝑏𝑖 )𝑡−(𝑓𝑏𝑖 )𝑡−3 )
5

> 𝑡ℎ𝐻𝑅;

Closing, if
∑5

𝑖=1 ((𝑓𝑏𝑖 )𝑡−(𝑓𝑏𝑖 )𝑡−3 )
5

< −𝑡ℎ𝐻𝑅;
No change, otherwise

Hand rotation
(HR)

𝑅𝑡−1
𝑡 = (𝑅𝑤𝑜𝑟𝑙𝑑

ℎ𝑎𝑛𝑑 )−1𝑡−1 ⋅ (𝐻
𝑤𝑜𝑟𝑙𝑑
ℎ𝑎𝑛𝑑 )𝑡

∀𝑗,𝐻𝑅𝑗 =

⎧

⎪

⎨

⎪

⎩

+Rotation, if R_to_Euler(𝑅𝑡−1
𝑡 )[𝑗] ≥ 𝜑𝑟;

−Rotation, if R_to_Euler(𝑅𝑡−1
𝑡 )[𝑗] ≤ −𝜑𝑟;

No rotation, otherwise

Hand orientation
(HO)

𝑅 = (𝑅𝑤𝑜𝑟𝑙𝑑
ℎ𝑎𝑛𝑑 )𝑡

𝐴𝑙𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗

(|𝑅[𝑗, 𝑍]|)

𝐻𝑂 =

⎧

⎪

⎨

⎪

⎩

+𝐴𝑙𝑗 axis aligned with 𝑍, if 𝑅[𝑍,𝐴𝑙𝑗 ] ≥ 𝜑𝑜;
- 𝐴𝑙𝑗 axis aligned with 𝑍, if 𝑅[𝑍,𝐴𝑙𝑗 ] ≤ −𝜑𝑜;
Random hand orientation, otherwise

Hand XYZ
motion (WM)

𝑃 𝑡−𝑛
𝑡 = |

|

𝑃𝑡 − 𝑃𝑡−𝑛
|

|

∀𝑘,𝑊𝑀𝑘 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Fast motion, if 𝑃 𝑡−1
𝑡 [𝑘] ≥ 0.5𝜑𝑚;

Motion, if 0.5𝜑𝑚 ≥ 𝑃 𝑡−1
𝑡 [𝑘] ≥ 𝜑𝑚

or 𝑃 𝑡−2
𝑡 [𝑘] ≥ 1.5𝜑𝑚

or 𝑃 𝑡−3
𝑡 [𝑘] ≥ 1.75𝜑𝑚;

No motion, otherwise

Hand RPY
motion (HM)

Equivalent equations than for WM, with:
𝑃 𝑡−𝑛
𝑡 = ((𝐻𝑤𝑜𝑟𝑙𝑑

ℎ𝑎𝑛𝑑 )−1𝑡−𝑛 ⋅ (𝐻
𝑤𝑜𝑟𝑙𝑑
ℎ𝑎𝑛𝑑 )𝑡)[p]

sensor readings (𝑅𝑔𝑙𝑜𝑣𝑒
ℎ𝑎𝑛𝑑 ) and the known hand orientation (𝑅𝑤𝑜𝑟𝑙𝑑

ℎ𝑎𝑛𝑑 = I),
the conversion matrix can be obtained. These matrices are finally sent
to the Discretizing module that can use them to correct the sensor
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Fig. 10. UML activity diagram of the user steps required to calibrate the sensors and record a demonstration. S: the activity is performed automatically by the system.
eadings.
𝑤𝑜𝑟𝑙𝑑
𝑔𝑙𝑜𝑣𝑒 = 𝑅𝑤𝑜𝑟𝑙𝑑

ℎ𝑎𝑛𝑑 ⋅ 𝑅𝑔𝑙𝑜𝑣𝑒
ℎ𝑎𝑛𝑑

−1

The second step is aligning the origin of the coordinate frames of the
evices with the origin of the working platform. For this, the user needs
o place the hand in the platform’s origin, and this position is defined
s the new zero. Finally, the tracker readings in the three axes have to
e scaled to correct small deviations. This is done by moving the hand
known distance along each axis and calculating the ratio between this
istance and the one obtained with the tracker. The placement of the
and in this step does not need to be extremely precise, as the goal
f the system is not to record trajectories but to recognize patterns of
otion.

Besides calibrating the sensors, it is necessary to determine the
ranslation vectors from the tracker (placed on the user’s wrist) to the
bjects’ actuation frames (i.e., the part of the object that executes the
peration), so the system can detect in which locations the operations
re performed. This is known as offline calibration, as it just needs
o be done once for each operation of each object (as objects can be
rasped with a different orientation in each operation). The calibration
ranslation vector of each operation is defined as the tracker’s position
with reversed signs) when the actuation frame of the object is placed at
he origin of the working platform. However, to make the calibration
ndependent of the object’s size, this vector is normalized. Hence, to
alibrate an object’s position, the calibration vector of the recognized
12

peration has to be multiplied by the object’s length.
4. Experimental evaluation

The system was tested in a workbench with four location areas
for five different objects: two bottles of different sizes, two hammers
of different sizes, a screwdriver, a taping gun and cutting pliers (see
Fig. 11). The system was trained with 40 demonstrations for each
operation, performed by four users, three men and a woman, with
different hand and arm sizes. After calibrating the sensing devices, the
average time to record an operation demonstration is approximately
fifteen seconds. Thus, to achieve the results presented in this section,
every operation was trained in less than fifteen minutes. The following
subsections present and analyze the results obtained when recognizing
operations, processes and the operations’ locations (Table 2 shows all
the objects, operations and processes used for testing the system).

Regarding the models used in the experiments, these were gener-
ated using the following primitive variables: ℎ𝑎𝑛𝑑_𝑥𝑦𝑧, the sequence
of hand movements in the world axis; ℎ𝑎𝑛𝑑_𝑧, the sequence of hand
movements in the gravity world axis (positive or negative, fast or slow,
long or short); ℎ𝑎𝑛𝑑_𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛, hand rotations sequence in the hand axis
considering also their speed; ℎ𝑎𝑛𝑑_𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, the sequence of the hand
axis aligned with the world Z axis; 𝑓𝑖𝑛𝑔𝑒𝑟_𝑏𝑒𝑛𝑑𝑖𝑛𝑔, sequence of fingers
bending discrete levels; 𝑓𝑖𝑛𝑔𝑒𝑟_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, sequence of fingers pressure
discrete levels; 𝑑𝑒𝑚𝑜_𝑙𝑜𝑛𝑔, the sequence of the primitives of all the
previous files; 𝑑𝑒𝑚𝑜_𝑠ℎ𝑜𝑟𝑡, a simplified sequence of the primitives of

all the previous files (e.g., hand motion instead of hand motion in +Z
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Fig. 11. Material used for the experiments.

Table 2
Objects, operations and processes used for testing. Additionally, each individual
operation was also considered as a process for testing the system.

Object Operations Processes

Bottle

Grasp (G), Place (P)
Grasp top (GT),
Place top (PT),
Pour water (PW)

G-PW-P
G-P
GT-PT

Screwdriver

Grasp (G), Place (P),
Screw strong (SS),
Screw light (SL)

G-SL-SS-P
G-SS-P
G-SL-P
G-P

Hammer
Grasp (G), Place (P),
Hammer (H)

G-K-P
G-P

Taping gun Grasp (G), Place (P),
Tape (T)

G-T-P
G-P

Cutting pliers Grasp (G), Place (P),
Cut (C)

G-C-P
G-P

axis). Fig. 12 shows an instance of the information model, populated
for the experimental evaluation.

4.1. Recognition of individual operations

The operation recognition was tested for each object by cross vali-
dation, using all the demonstrations of all its operations. Fig. 13 shows
the results for a bottle using the 1st, 2nd and 3rd order Markov models.
The same weight was assigned to all the variables’ models used for each
of these models. These results show an improvement in the operations
recognition considering the two previous states for the transitions (2nd
order models), instead of the conventional 1st order Markov Models.
However, the performance drops when considering the three previous
states (3rd order). Therefore, it can be concluded that increasing the
order of the models (i.e., the number of previous states considered for
the transitions), the differences between similar operations increases,
13
but it can also make the recognition less robust against deviations from
the normal motion pattern, needing many training demonstrations to
have robust and generic models. Due to this, depending on the variable,
it will be better to consider a higher or a lower order to be robust but at
the same time detect the differences between operations. Additionally,
it can be observed that with the three models, the Place top operation is
frequently confused with the Grasp top operation, this was an expected
result as these two operations have the same motion pattern, being the
only difference between them the hand opening or closing.

Fig. 14 shows the confusion matrix of all the tested objects. In this
case, the order of the models used and the variables’ weights were
already optimized to maximize the process segmentation performance.
The single operation recognition performance does not have to neces-
sarily improve with these models, as the optimization was made for
the processes. However, this confusion matrix shows a more realistic
representation of how the operations will be recognized when per-
formed in a sequence. In general, the results show a good recognition
of individual operations with a 76.4% correct recognition average. The
poorest recognition is for the screwdriver operations, where Grasp and
Place are confused with Screw light, however, both screwing operations
(Screw strong, with a wrist movement, and Screw light, with the fingers
movement) are successfully differentiated. Additionally, as was also
seen in Fig. 13, the Place top operation of the bottle object is sometimes
confused with Grasp top. The same happens with the Grasp and Place
operations for the hammer because, again, these are operations with
a very similar motion pattern that just differ on the hand opening or
closing.

4.2. Segmentation and recognition of processes

An average of 40 processes were recorded for each object for testing
the process segmentation and classification, as well as the operations
location recognition. The processes performed are indicated in Table 2,
including also each of the individual operations as additional processes,
to test the ability of the system to detect when just one operation
was executed. In order to test the performance of the system, several
metrics were defined: 𝑜𝑝_𝑝𝑒𝑟𝑓𝑒𝑐𝑡, the percentage of processes perfectly
segmented; 𝑜𝑝_100, the percentage of processes for which all the op-
erations were recognized, independently of their order and the wrong
detections; 𝑜𝑝_50, the percentage of process for which at least a 50% of
its operations were recognized; 𝑤𝑟𝑜𝑛𝑔_𝑜𝑝, the percentage of incorrect
segmented operations; 𝑙𝑜𝑐_𝑝𝑒𝑟𝑓𝑒𝑐𝑡, the percentage of processes in which
the sequences of locations is correctly recognized; 𝑙𝑜𝑐_100, the percent-
age of processes for which all the locations were recognized, inde-
pendently of their order and the wrong detections; 𝑝𝑟𝑜𝑐_𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛,
the percentage of processes correctly classified; 𝑝𝑟𝑜𝑐_𝑝𝑒𝑟𝑓𝑒𝑐𝑡, the per-
centage of processes perfectly recognized (i.e., when both operations
and locations are correct); and 𝑝𝑟𝑜𝑐_𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛5 and 𝑝𝑟𝑜𝑐_𝑝𝑒𝑟𝑓𝑒𝑐𝑡5,
that are the same than the two previous metrics when providing five
demonstrations of the process, instead of just one. Additionally, a
metric was defined for the optimization of the weight assigned to the
model of each variable. This metric is called performance (𝑃 ) and it is
calculated as follows:

𝑃 =
3 ⋅ 𝑜𝑝_𝑝𝑒𝑟𝑓𝑒𝑐𝑡 + 2 ⋅ 𝑜𝑝_100 + 𝑜𝑝_50 − 2 ⋅𝑤𝑟𝑜𝑛𝑔_𝑜𝑝

6
Thus, the weights of the variables’ models are calculated using

an iterative optimization algorithm that maximizes 𝑃 . The adjusted
weights are shown in Fig. 15. As can be seen, not all the variables have
the same relevance in the motion patterns of each object. For instance,
the hand orientation has a high weight for the bottle, as it helps to
distinguish between 𝐺 and 𝐺𝑇 , and 𝑃 and 𝑃𝑇 operations, depending
on whether the Z world axis is aligned with the hand pitch or yaw
axis, respectively. The same happens for the screwdriver object, where
the hand orientation can be critical to differentiate the 𝑆𝑆 operation,
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Fig. 12. Information model instance.
Fig. 13. Confusion matrix of the bottle operations recognition using Multivariate Markov Models of different orders.
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xerted by the wrist, and 𝑆𝐿 were the orientation is constant and the
ingers move. However, the weight of this model is much lower for the
est of objects. It can also be seen that the demo_long model, which
rovides information of all the variables in the same sequence, has
lmost always the highest weight, indicating that this is probably the
ost important model. Finally, in the legend of the figure we can see

hat, in almost all cases, second order models were selected. This was
xpected according to the recognition of individual operations tests,
hat showed the best results when considering the two previous states
or the transitions (see Fig. 13).
14

w

Using these weights, the starting and transition probabilities for
ach operation of the manipulated object are calculated along the
emonstration timeline, following Algorithm 1. Based on these prob-
bilities, the demonstration can be segmented in a sequence of opera-
ions, determining also the exact moment when each operation starts.
his can be seen in Fig. 16 for a 𝐺𝑟𝑎𝑠𝑝–𝐻𝑎𝑚𝑚𝑒𝑟–𝑃 𝑙𝑎𝑐𝑒 process.

Fig. 17 summarizes the performance of the system, showing the
erformance metrics obtained for each object. As expected, the screw-
river presents the worst results, as its individual operation recognition
as not very good (see Fig. 14). However, without considering the
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Fig. 14. Confusion matrix of the operations recognition of the tested objects.
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Fig. 15. Weight of the models of each variable optimized for each object. These
weights were determined using an iterative optimization algorithm. In the legend, in
brackets, the order of each model is specified.

screwdriver, the average of processes that were perfectly segmented is
almost 40% and, without taking into account the sequence order, all the
operations were detected in an average of almost 70% of the processes.
This average increases to over 95% for the processes where at least a
50% of the operations are detected.

Regarding the location recognition, the calculated metrics depend
on how good the segmentation is. Thus, if the operations are not
detected in the correct time (or not detected at all), the coordinates of
the hand during that time step will not match with the location where
they were actually performed. Additionally, if an operation starts with
the hand in one location and finish in other, the recognized location
will be the one at the beginning, which in most of the cases is incorrect.
This is why, the perfect recognition of the locations of a process should
not be higher that the perfect recognition of its operations, however,
this can be the case if the timeline segmentation is good but the
detected operations are confused. The average number of processes
with a perfect recognition of locations is around 35%, a bit lower
than the perfectly segmented processes. Fig. 18 shows how the wrist
and hand frame are visualized in RVIZ at the beginning of the 𝐺𝑟𝑎𝑠𝑝
operation of a bottle.
15

g

Finally, it can be observed that the system performance improves
with the Sequencing module, which classifies the segmentations as the

ost similar processes. The screwdriver results are clearly the worst
gain, which is derived from its bad segmentation. However, there is
lso an improvement with respect to the perfectly segmented processes,
eaning that even with an incorrect segmentation the processes can

e identified. Excluding the screwdriver from the analysis, we can see
hat the average of correctly classified processes increases over 70%.
egarding the processes correctly classified with the correct locations,
precision of almost 50% is achieved in average, without considering

he screwdriver. This last metric indicates the precision of the system
or perfectly understanding the recorded manipulation. Additionally,
he results show that these two metrics improve even more when
erforming five demonstrations of the same process. In the case of the
crewdriver there is not improvement, as even if the user performs
any demonstrations, if most of them are incorrect, the average will
ot necessarily improve the results. However, in the rest of the objects,
he process recognition improves on average to almost 90% and to 75%
hen considering also location recognition.

. Conclusions and future directions

Robots are flexible machines that can perform multiple processes
ust by changing their program. To exploit this capability, we need
ools and systems that allow the fast and easy programming and
econfiguration of the robot. With this aim, in this paper a ROS-based
igh-level PbD system is proposed, that allows the understanding and
igitizing of single-arm human manipulation processes, creating an
ction plan that later could be interpreted by a robot. The system is
omposed of five modules intercommunicated, three of them in charge
f processing and converting the information from the low-level sensor
ata to a high-level manipulation process; one for training the system,
reating Multiorder Multivariate Markov Models for each operation;
nd another for interfacing and calibrating it.

The system was implemented and tested using a hand position
racker and dataglove with a one degree of freedom bending sensor
n each finger, a pressure sensor in each fingertip and several sensors
o determine the hand orientation. The experiments were run by four
sers with five different types of objects, checking the performance of
he system for the individual operations recognition as well as the pro-
ess segmentation and classification. The obtained results show a very

ood performance recognizing individual operations, with an average
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Fig. 16. Initial state and transition Markov probability timelines of the different hammer’s operations during a 𝐺𝑟𝑎𝑠𝑝–𝐻𝑎𝑚𝑚𝑒𝑟–𝑃 𝑙𝑎𝑐𝑒 process. The black lines are obtained directly
from the Markov probabilities computation, whereas the orange ones are a polynomial regression of the black ones, and are used for the segmentation computation. The blue
background areas indicate when the beginning of the operation is detected (in the maximums of the regression curves of the initial state probability graphs), and when the
execution of the operation is detected (in the transition probability graphs).
recognition accuracy of around 80%. Regarding process segmentation,
the accuracy decreases a bit, as it depends strongly on a good operation
identification. One of the objects, the screwdriver, clearly shows worse
results than the others, however, for the rest, the segmentation is
perfect in around 40% of the times, increasing to around 70% if the
order of the detected operations is not taken into account. This means
that the segmentation provides good information about the process but
it is not always perfect. Therefore, the performance and robustness of
the system improves considerably classifying the segmentation as the
most similar process, from a list of possible processes with that object.
With this, the accuracy of the system is doubled for every object, and
almost tripled when five demonstrations are provided for every process.

Additionally, the system identifies the locations in which the opera-
tions are performed. This depends a lot on how good the segmentation
is, as the location picked is the one where the hand is placed at the
moment of the segmentation of each operation. Therefore, the results
obtained are a bit lower than the ones of the segmentation. However,
these results are improved after the process classification and the use
of several demonstrations, reaching a perfect process and locations
16
recognition of around 75% for most of the objects when providing five
demonstrations.

The system is scalable and can be used to identify any manipulation
process performed with any object, provided it has been trained for
its constituent operations. To define a new object or operation in the
system, the user just needs to create a new folder with the object
or operation’s name according to the information system’s model and
populate it with new demonstrations. The time required to train the
system for a new operation depends on the number of demonstra-
tions provided, typically yielding improved performance with a greater
number of demonstrations. As a reference, the results presented in
this manuscript were achieved after training every operation with 40
demonstrations, which took between 10 and 15 min per operation.
Once the system is trained, the time required to generate a new high-
level robot program is just the time required to demonstrate the new
process.

The promising results obtained after this initial implementation of
the system open many future lines of research, not just for enhancing
and extending it, but also for applying its outcomes for new appli-
cations. Regarding the extension of the system, an interesting line of
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Fig. 17. System performance metrics for the different objects. M1: 𝑜𝑝_𝑝𝑒𝑟𝑓𝑒𝑐𝑡, M2: 𝑜𝑝_100, M3: 𝑜𝑝_50, M4: 𝑙𝑜𝑐_𝑝𝑒𝑟𝑓𝑒𝑐𝑡, M5: 𝑙𝑜𝑐_100, M6: 𝑝𝑟𝑜𝑐_𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛, M7: 𝑝𝑟𝑜𝑐_𝑝𝑒𝑟𝑓𝑒𝑐𝑡, M8:
𝑝𝑟𝑜𝑐_𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛_5, M9: 𝑝𝑟𝑜𝑐_𝑝𝑒𝑟𝑓𝑒𝑐𝑡_5. These metrics are described in Section 4.2.
Fig. 18. User grasping a bottle in location L1 of the workbench and RVIZ visualization
of the wrist and hand frames.

research could be the inclusion of additional sensors that could capture
important manipulation information that currently is missing, such as
the hand contact points, the abduction of the fingers or the status of
the manipulated object. Additionally, the system could be extended
to recognize also dual-arm operations and processes. As to the system
applications, the main future line is transferring the digitized operator
knowledge to a robotic manipulator. A possible approach for this was
already presented by the authors in [56] as a proof of concept. This
17
approach consists of preprogramming all the possible operations as
parameterized functions, which are denominated skills. The input of
this system must be a high-level action plan that specifies the sequence
in which these skills have to be called, and a set of parameters for each
of them, which configure them to generate the optimal trajectories and
end effectors’ actions. Thus, this approach could be combined with the
proposed PbD system, using the recognized sequence of operations to
determine which skills to execute, and the recognized locations as the
parameters sent to configure these skills. This is a simple case, but the
same approach could be scaled to very complex applications. Therefore,
the goal is to keep working on this line, extending the PbD system
to extract more parameters from the recognized operations (e.g., how
much force to apply, how many degrees to rotate, etc.), which will
allow the definition of more complex and generic skills.
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