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ABSTRACT 
Consumption flexibility, also known as demand response, 
allows balancing power systems in case of an electricity 
shortage or intermittent power generation. In the future, 
more distribution network customers are expected to 
participate in demand response through active control of 
their loads. If flexibility resources are controlled in large 
numbers, they may have an impact on distribution 
networks. Therefore, methods to automatically detect 
flexibility resources participating in reserve instruments 
are required to support distribution network operation and 
planning. In this study, machine learning is used to detect 
the commissioning of a flexibility resource load control 
and the days when the control has not been enabled. In the 
developed two-stage approach, first, feedforward neural 
networks are trained for feature engineering, and then, the 
load control detection is performed in two alternative 
scenarios – supervised and unsupervised learning, using 
random forest and isolation forest, respectively. The 
proposed methodology has been validated on the data 
collected from an office building in Finland that 
participates in FCR-N reserve of the transmission system 
operator with its ventilation and air cooling. 

INTRODUCTION 
Consumption is required to have more flexibility to 
balance power systems as the degree of intermittent solar 
and wind power generation increases. Additionally, 
consumption flexibility is needed to support power 
systems in case of an electricity shortage, which has 
become a higher risk during the current energy crisis in 
Europe. It can be expected that more customers in 
distribution networks will actively participate in demand 
response. Distribution network customer’s resources can 
be aggregated for reserve markets of a transmission system 
operator (TSO). Suitable controlled loads can be, for 
example, ventilation and cooling systems. If the flexibility 
resources are controlled in large numbers in distribution 
networks, they may have an impact on network voltage 
control, reactive power compensation, and power quality. 
Distribution system operators (DSOs) may not have 
knowledge about these actively controlled flexibility 
resources in their distribution networks like they have from 
distributed generation. Therefore, methods to detect 

flexibility resources participating in TSO reserve 
instruments are required to support network operation and 
planning. This study aims to detect the commissioning of 
a load control of a flexibility resource, and to detect the 
days when the load control has not been enabled. An office 
building, we focus on, participates in FCR-N reserve of 
TSO of Finland (Fingrid) with its ventilation and air 
cooling through a virtual power plant.  
The load control detection is performed based on electrical 
measurement data of the ventilation feeder and the supply 
of the main distribution board of the building, the latter of 
which is close to a practical case where measurement data 
may be available in distribution networks. The data are 
used in machine learning model training, in addition to 
some knowledge about the flexibility resource control 
signal. We present two scenarios for the load control 
detection, in which random forest (supervised learning) 
and isolation forest (unsupervised learning) are trained. To 
improve the model performance, we propose an additional 
feature engineering step, in which more input variables are 
generated using artificial neural networks. 

SITE AND DATA DESCRIPTION 
Here, the site including the controlled loads and then the 
measurement data utilized in the detection are described. 

Site 
The site of the automated load control is an office building 
called Kampusareena located in Tampere University 
campus in Finland. The ventilation and air-cooling 
systems of the building are resources for a virtual power 
plant of Vibeco Oy that controls them according to the 
FCR-N reserve of Fingrid Oyj, that is the national TSO. 
FCR-N is operated in the frequency range of 49.9-50.1 Hz.  
In this paper, detection of the ventilation control is 
considered. Three-phase frequency converters of fans are 
controlled in continuous manner according to FCR-N 
starting from September 2020. Thus, it may be assumed 
that the control affects each of the phases similarly. The 
measurement data used for the load control detection have 
been collected at the ventilation feeder level and at the 
main distribution level that feeds several other loads. 
These two measurement points could be seen in Figure 1. 
In addition to the main distribution board, the ventilation 
is supplied by the solar power plant, however, its effect is 
at the lowest in winter periods analyzed in this study. 
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Figure 1. Main electricity distribution and measurement 
points in the building. 

Data 
The data were measured with eQL Laatuvahti3 meters at 
1-second interval. The data are either averages or root 
mean square (rms) values of the interval depending on the 
measurement variable. The bandwidth of the meter is 0-2 
kHz that is applied to measurement variables that do not 
consider a certain frequency. Total distortion in voltage 
and current include harmonics and interharmonics. The 
measurement system is further described in [1]. 
A set of electrical variables was selected from the 
measurement data collected at the ventilation feeder and 
the main distribution board supply (Table 1). All variables, 
except Freq, U2U1, and U0U1, were measured for three 
phases (denoted by L1, L2, and L3). Variables Pact and 
Q1act demonstrate the actual active power consumption 
when the production of the solar power plant is added to 
the active power measurement.  
The measurement data utilized in this paper are from the 
winter periods November–February 2018–2019, 2019–
2020, and 2020–2021. Also, control data of the flexibility 
resources are utilized to test the model outputs. 
 
Table 1. Electrical variables used for the control detection. 

Name Unit Description 

Freq Hz Fundamental frequency 
P W Active power 
Pact W Actual active power consumed 
S VA Apparent power 
I A Current 
U V Phase voltage 
U2U1 % Negative sequence component of voltage in 

percentage of positive sequence component 
U0U1 % Zero sequence component of voltage in 

percentage of positive sequence component 
TDI % Total distortion of current in percentage of 

fundamental frequency component  
TDU % Total distortion of voltage in percentage of 

fundamental frequency component 
ITD A Total distortion of current in amperes 
Qf var Fryze’s reactive power, i.e., nonactive power 
Q1act var Actual fundamental frequency reactive 

power 

METHODOLOGY 
In this study, to detect the load control for FCR-N reserve, 
we implemented two scenarios using supervised and 
unsupervised learning. The first scenario is suitable for 
monitoring systems, where the load control has been 
commissioned and used for a while, whereas the second 
scenario could work for systems, where the load control 
has not been used at all (it is detected as an anomaly). 
The same input variables were used in both scenarios. We 
compared several combinations of variables to find the one 
that leads to the highest model accuracy:  

1. power measurements: P;   
2. power quality measurements: TDU, ITD, Q1act;  
3. power and power quality measurements: P, TDU, 

ITD, Q1act; 
4. power quality measurements, estimates, and 

deviations: TDU, ITD, Q1act, TDU� ,� ITD� , Q1act� , 
TDU� TDU� , ITD� ITD� , Q1act � Q1act� .  

For each variable, there were three phases, which were 
handled as separate inputs. All the inputs were aggregated 
and transformed in a similar way before using them for 
model training. In the last set of variables, the power 
quality estimates and their deviations from the measured 
values were produced in the additional feature engineering 
step. We assumed that these variables could increase the 
model accuracy in the load control detection. 
The whole modeling pipeline implemented in this study 
[2] is presented in Figure 2. The following subsections 
describe its steps in more detail. 

  
Figure 2. Modeling pipeline implemented for the load 
control detection in this study.  

Data aggregation 
The densely measured raw data were aggregated in the 10-
minute data. Data aggregation was implemented by 
calculating either an arithmetic mean (Freq, P, Pact, S, Qf, 
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Q1act) or an rms value (I, U, U2U1, U0U1, TDI, TDU, 
ITD) for 10-minute intervals. This preprocessing did not 
affect the results, but it allowed us to run the next steps in 
the modeling pipeline much faster.  

Feature engineering 
Feedforward neural networks (NNs) [3] were trained to 
estimate (i.e., nowcast) three power quality characteristics 
TDU, ITD, Q1act using electrical data presented in Table 
1. Nine estimators (i.e., TDU, ITD, Q1act for three phases 
L1, L2, L3) were trained on the 10-minute aggregated data 
collected in November 2018 – February 2019, before the 
load control has been commissioned.  
NNs were trained with the Adam algorithm implemented 
in Keras [4]. The model meta parameters and architecture 
were tuned using 5-fold cross-validation, the results were 
averaged over 10 runs.  
Then, TDU� ,� ITD� , Q1act�  were estimated for November 
2019 – February 2020 (with no load control) and 
November 2020 – February 2021 (with the load control) 
using the trained models. The performance of NNs in these 
two periods was compared based on several metrics such 
as root mean square error (RMSE), mean absolute error 
(MAE), index of agreement (IA), and bias. It was noticed 
that the NN-estimators were less accurate for the second 
period when the load control was used. Therefore, TDU� ,�
ITD� , Q1act�  and their deviations from the measured values 
TDU, ITD, Q1act were assumed to be informative for the 
load control detection and tested in both supervised and 
unsupervised learning scenarios. 

Data transformation 
Power measurements, power quality measurements, along 
with their estimates and deviations generated in the feature 
engineering step, were selected from the 10-minute 
aggregated data to be used in the daily load control 
detection. For these input variables, daily samples were 
produced by calculating mean, maximum, minimum 

values, and standard deviations for three phases separately. 
These transformed data were later used in the daily load 
control detection.  

Supervised learning approach for the load control 
detection  
In the supervised learning scenario, the training and test 
data included days from both periods, i.e., with and 
without the load control. In our experiments, the data from 
November, January, and February in 2019–2020 and the 
same months in 2020–2021 were used to train the model, 
whereas the data from December 2019 and December 
2020 were reserved to test the model.   
A random forest model [5], implemented in scikit-learn 
[6], was trained to detect the load control. The maximum 
tree depth was optimized using the 5-fold cross-validation. 
For other model meta parameters, we used their default 
values in scikit-learn. The experiment was repeated 25 
times to assess the average model accuracy on the test data. 
Finally, the variable importance was examined in the 
random forest model that achieved the highest accuracy.  
The scikit-learn documentation explains in detail, how the 
variable importance is calculated for random forests. In 
our experiments, the best model was trained 100 times and 
the variable importance was averaged over these 
independent runs.   

Unsupervised learning approach for the load 
control detection  
In the unsupervised learning scenario, the training data 
included days only from the period with no load control. 
Therefore, from the methodological point of view, it was 
seen as an anomaly in the system. 
In this study, we applied an isolation forest model [7], 
implemented in the scikit-learn library, to estimate 
anomaly scores daily, so that we would detect the 
commissioning of the load control. 

Figure 3. TDU, phase L1 measured at the ventilation feeder level and TDU� , phase L1 estimated with the NN model for 
November 2019 – February 2020 (with no load control) and November 2020 – February 2021 (with the load control). The 
left-hand side plots portray only seven days for the sake of better visibility (i.e., the plots are zoomed in), whereas the right-
hand side scatter plots and the calculated metrics correspond to the whole specified periods.  



 27th International Conference on Electricity Distribution Rome, 12-15 June 2023 
 

Paper n° 11087 
 

 

CIRED 2023  4/5 

The data from November, January, and February in 2019–
2020 (no load control) were used to train the model, the 
data from December 2019 (no load control) were reserved 
to select a threshold needed to distinguish between normal 
and abnormal days based on their anomaly scores. The 
data from December 2020 (with the load control) were 
used to test the model. Thus, in this scenario, the model did 
not see the data with the load control when being trained.  
The isolation forest model was trained with the default 
meta parameter values used in scikit-learn. The experiment 
was repeated 25 times to assess the average anomaly 
scores and model accuracy on the test data. 

RESULTS 
First, we illustrate the results of the feature engineering. 
The difference between measured and estimated values of 
power quality characteristics is exemplified with TDU, 
phase L1 of the ventilation system in Figure 3. It is seen 
that for the period with the load control, the NN model 
produces less accurate estimates, therefore, deviations 
TDU � TDU� , ITD � ITD� , Q1act � Q1act�  could be 
informative in the load control detection.   
Then, several combinations of electrical variables were 
tested as model inputs in the load control detection. The 
results obtained in the supervised learning scenario are 
presented in Figure 4. For both measurement points, i.e., 
the ventilation feeder and the main distribution board, the 
random forest models trained on power quality 
measurements, estimates and deviations (produced in the 
feature engineering step) demonstrated the highest 
accuracy, 99.87% and 99.03%, correspondingly. For the 
ventilation feeder, t-test run on the accuracy values 
obtained with the best model and the second-best model in 
25 independent runs resulted in t-score = 1.613 and p-value 
= 0.113, which is a “borderline” value signaling that in this 
case the rather high accuracy could have been achieved 
even without feature engineering. However, for the main 
distribution board, the same analysis resulted in t-score = 
5.840 and p-value = 4.391e-07, which indicates the 
significant improvement in the model accuracy due to the 
feature engineering. 

A. Ventilation feeder level 

 
B. Main distribution board level 

 
Figure 4. Test accuracy of the random forest model in the 
load control detection for different input variables. 

When analyzing the variable importance (Tables 2 and 3), 
we found that power quality deviations were the most 
important in both cases (i.e., for the ventilation feeder and 
the main distribution board). Several power quality 
measurements and estimates also were found important in 
the load control detection for the main distribution board.  
Nevertheless, in the unsupervised learning scenario, we 
excluded power quality measurements and estimates from 
the fourth group of inputs and kept only deviations as they 
seemed the most important.   

Table 2.  Top 10 most informative variables in the load 
control detection for the ventilation feeder level. 

Input variable Importance 

mean(ITDL1 � ITD� L1) 0.0963 
mean(TDUL1 � TDU�L1) 0.0879 
mean(TDUL� � TDU�L�) 0.0753 
mean(Q1actL1 � Q1act� L1) 0.0750 

max(TDUL� � TDU�L�) 0.0596 
mean(Q1actL� � Q1act� L�) 0.0522 

min(Q1actL� �Q1act� L�) 0.0509 

mean(TDUL� � TDU�L�) 0.0447 
max(ITDL1 � ITD� L1) 0.0413 
max(TDUL1 � TDU�L1) 0.0374 

Table 3. Top 10 most informative variables in the load 
control detection for the main distribution board level. 

Input variable Importance 

mean(TDUL1 � TDU�L1) 0.0928 
max(ITDL1 � ITD� L1) 0.0529 
mean(TDUL� � TDU�L�) 0.0503 
mean(TDUL� � TDU�L�) 0.0456 
max(TDUL1 � TDU�L1) 0.0448 
min(TDUL�) 0.0356 
min(TDUL�) 0.0333 
mean(ITDL1 � ITD� L1) 0.0327 
std(ITD� L1) 0.0315 
min(TDUL1) 0.0310 

 
In the unsupervised learning scenario, a similar set of 
experiments with different input variables was conducted 
for both measurement points. The distributions of the 
averaged anomaly scores were approximated with 
histograms presented in Figure 5 (the smooth lines were 
built using kernel density estimations). In this scenario, 
more informative variables allow the better separation 
between the “test data” histogram (with the load control) 
and the “training data” histogram (with no load control). 
The vertical gray line in the figures indicates the 
“anomaly” threshold, which is defined as the largest k-th 
percentile of the “training data” anomaly scores that allows 
classifying all the validation days as normal (i.e., no load 
control). The threshold differs from the minimum “training 
data” anomaly score because the training data could 
contain anomalies caused by any other reasons.  
First three sets of variables were the same as in the 
supervised learning scenario. Then, using Tables 2 and 3, 
we preselected inputs from the fourth group of variables, 



 27th International Conference on Electricity Distribution Rome, 12-15 June 2023 
 

Paper n° 11087 
 

 

CIRED 2023  5/5 

(i.e., the power quality measurements, estimates, and 
deviations). For the ventilation system, we kept mean 
deviations, whereas for the main distribution board, we 
kept mean and maximum deviations.  

A. Ventilation feeder level 

 
 

B. Main distribution board level 

 
 

Figure 5. Distributions of anomaly scores evaluated using 
different input variables on the training (no load control), 
validation (no load control), and test data (with the load 
control) for the ventilation feeder level (A) and for the 
main distribution board level (B). 

As might be seen in Figure 5, these inputs led to the highest 
average accuracy: 96.67% and 64.52% of days with the 
load control were detected based on the data from the 
ventilation feeder and the main distribution board, 
correspondingly.   

CONCLUSIONS 
In this work, the load control detection of the FCR-N 
resource was performed using machine learning models 
trained on the electrical measurement data. We 
implemented two scenarios – supervised and unsupervised 
learning, which were preceded with the common feature 
engineering step. We selected ensemble-based models for 
the load control detection and NNs for the feature 
engineering as these models have demonstrated the highest 
performance in many different applications. As a result, 
we reached up to 99.87% and 96.67% accuracy for the 
ventilation feeder level, 99.03% and 64.52% for the main 
distribution board level in the supervised and unsupervised 
learning scenarios, correspondingly.    
In the proposed approach, the load control detection was 
performed as post-analysis at the daily level, which could 
be considered as the main limitation. Nevertheless, using 
this approach, DSO may discover if their customers begin 
to have flexibility resources, when the flexibility has been 
in operation, or if there is a problem with the flexibility 
control. The methodology can be developed for other kind 
of demand response, markets, and flexibility resources 
(e.g., electric cars). 
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