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Abstract—Objective: Monitoring stress using physiological sig-
nals has recently achieved a lot of attention since it has a
significant adverse influence on an individual daily’s health
and efficiency. As it has been proven that stress and mental
workload are proportionally correlated, several studies have
proposed algorithms for stress monitoring by increasing the
mental workload. Despite the promising results reported in
the literature, a majority of the proposed algorithms require
the employment of several physiological signals which hinder
their real-life application. Nonetheless, the advent of low-cost
wearable devices has provided a new possibility for outdoor
stress monitoring. The objective of this paper is to present
an algorithm for stress detection using low-channel prefrontal
electroencephalography (EEG) data. Methods: Firstly, artifacts
in EEG signals are removed. Secondly, EEG signals are split into
sub-bands using the discrete wavelet transform and two nonlinear
parameter-free features are extracted. Thirdly, the extracted
features are fed to three classifiers, i.e., support vector machine,
Adaboost, and the K-Nearest Neighbours to discriminate stress
from relaxed states. Main results: According to the obtained
results, the highest accuracy (80.24%) was achieved using the
AdaBoost classifier. Significance:Given that the proposed method
does not require any parameter adjustment before processing, it
has the potential to be used in real-world scenarios.

Index Terms—Cognitive load, Stress, EEG, Wearable, Nonlin-
ear feature

I. INTRODUCTION

Cognitive load refers to the amount of mental effort or
resources required to perform a task or set of tasks. Mental
stress, on the other hand, is the emotional and psychological
response to certain triggers or events. There is a relationship
between cognitive load and mental stress in that high levels
of cognitive load can contribute to the experience of mental
stress. When the cognitive load exceeds a person’s capacity to
handle it, it can lead to difficulty in completing tasks, which
can contribute to mental stress [1]. Additionally, mental stress
can also increase cognitive load, as it can make it difficult
to focus and can lead to decreased cognitive performance.
Therefore, cognitive load and mental stress are closely related
since they can both negatively affect one another [2]. However,
it is important to note that stress can also be caused by
a variety of other factors. The high cognitive load can be
just one of many contributing factors to the development of
stress. Generally, there are two main modalities that are being
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used for mental stress and cognitive load detection: subjective
and physiological. The subjective approaches such as self-
report questionnaires (PSS) are prone to bias due to individ-
ualistic feedback [3]. The physiological approach comprises
biomarkers from heart, brain, and blood volume [4], which
have been proven more promising for the accurate detection
of stress. Nevertheless, as stress is a mental phenomenon,
analyzing the electrical activity of the brain can be a better
option compared to other measurements [4]. Amongst the
neuroimaging methods, Electroencephalogram (EEG) has been
proven as the most effective technique as it provides excellent
temporal resolution [5]. In particular, the advent of low-cost
EEG headbands provides a new possibility for stress and
cognitive load detection outside the laboratory, which is of
great importance in reducing the cost for the consumer and
save time for medical doctors. Therefore, several studies have
considered cognitive load detection using such systems.

Saeed et.al. [6] used a single-channel EEG headset to
quantify human stress with eyes closed. Beta waves were
used to predict the PSS score of an individual by a regression
method, but there was no information regarding the subject’s
mental state during the EEG recording. In [7], a low-channel
model of wearable EEG sensors for detecting chronic stress
and low cognitive load was designed. The proposed model
consists of a novel idea to assess the quality of EEG, applying
a combination of linear and nonlinear features. The obtained
results showed significant difference in the power asymme-
try of Alpha, Beta, and Theta bands between individuals
experiencing stress and normal controls. In [8], four EEG
channels at the Prefrontal Cortex (PFC) area were targeted
for the classification of stress and an accuracy of 50 %
was reported. After adding more physiological signals, the
accuracy increased to 85 %. In another study, the combination
of a single channel EEG, Heart Rate Variability (HRV), and
Galvanic Skin Response (GSR) information from 15 subjects
were studied and an accuracy of 86 % was obtained by
the Support Vector Machine (SVM) classifier [9]. Another
research [10] proposed low beta analysis to quantify stress and
achieved an accuracy of 71.4 %. A combination of selected
neural oscillatory features extracted from a single frontal EEG
and PSS score was used for classifying stress [11] and the best
result of 78.57 % accuracy was obtained using the SVM.

Although the reported results of the aforementioned studies



are promising, they are prone to using several physiological
variables and having low accuracy. In addition, the short period
of data recordings used in the studies may make the reported
results unreliable. This paper, therefore, presents a new method
for the classification of cognitive load and stress using two
prefrontal EEG channels. The hypothesis of the paper is that
during cognitive load EEG signals show higher complexity
and therefore, using nonlinear measures such as entropy can
offer a better option compared to standard linear features. Yet,
nonlinear measures usually require parameter tuning which is
a laborious task. Hence, we propose Wavelet Log Entropy and
Shannon Entropy which are parameter-free.

II. DATA

In this work, the correlation between cognitive load and
EEG features was studied to recognize the level of mental
cognitive load. The n-back memory game was adopted as a
proper test setting to elicit various levels of cognitive load
[14]. The game is described briefly in subsection A, and the
details of the examination setup and procedure are explained
in subsection B.

A. N -back memory game

The n-back memory game [12] has been extensively used in
cognitive studies [13], particularly those focused on working
memory performance [14]. It consists of sequential stimuli
such as alphanumeric characters shown on the screen or a
series of auditory probes, as well as the ability to recall them
afterward. During the game, the subject is asked to respond,
for example, by a left click, if the previous stimulus presented
was what is currently shown on the screen. The version of
the n-back memory game utilized in this examination used
simple visual stimuli as single digits (0-9) displayed on the
laptop screen every 3 seconds. The target digit was supposed
to be clarified by the subject by clicking the mouse. Gaming
sessions contained 9 games starting with 2-back and going
ahead randomly with varying levels ranging from 0-back to
2-back, with a brief break between the levels. Each level from
0 to 2 occurred 3 times and each game took 90 seconds. At
level 0, the subject is instructed to left-click if the predefined
target number is displayed on the screen. At level 1, the subject
should left-click if the previous number appears on the screen,
and at level 2 if the number occurring two steps earlier are
displayed. In this experiment, cognitive load is rated into three
levels (no load, medium, and high) and each level of the
n-back game corresponds to one of these levels. For binary
classification, we consider levels 1 and 2 as causing cognitive
load and level 0 as the no-load state. All game events and
details during every session, for instance: n-back game level
changes, displayed digits, and mouse clicks, were stored in a
log file.

B. Subjects and data

In total, 15 subjects were recruited between the ages of 18
and 65. There was no history of mental illness reported by
any of the subjects. Students and staff at Tampere University,

along with students and staff from Satakunta University of
Applied Sciences, performed the EEG measurements used
in this experiment in 2022. The study was approved by the
Ethical Committee of Satakunta universities.

The setup for the test comprised a laptop, an n-back memory
game, the Neuroelectrics® Instrument Controller (NIC2) soft-
ware running on the laptop, and the ENOBIO® EEG record-
ing system by Neuroelectrics® [15]. The ENOBIO system
possesses a wireless connection between the EEG amplifier,
attached to the electrode cap, and the laptop.

The version of the measurement equipment that was utilized
in the test supported up to 20 channels, however, we used 7
channels for recording EEG. In view of the proposed algorithm
being designed for commercial headbands, the two channels
in the prefrontal area (Fp1 and Fp2) were only considered.
EEG signals were recorded using Ag/AgCl electrodes located
according to the international 10-20 system with sampling rate
of 500 Hz.

C. Data segmentation

Due to the 90-second duration of each game, we separated
the signals of each game into three parts. Therefore, each part
of the EEG is 30 seconds long, giving us the opportunity to
triple our database size. The 30s signal is divided into 10s
subsegments for preprocessing.

III. METHODS

A block diagram of the proposed algorithm can be found
in Fig 1. Detailed explanations of the proposed algorithm can
be found in the subsections below.

A. Data Acquisition and Preprocessing

Preprocessing of the EEG data was carried out using a
standard pipeline that included zero-phase Butterworth band-
pass filtering (0.5-40 Hz) and eye blink removal with Discrete
Wavelet Transform (DWT) (see Fig. 2). Analogously to previ-
ous studies [16] and [17], db4 was used as the mother wavelet
as there is a resemblance between db4 morphology and eye
blinks.

B. EEG sub-bands extraction

The DWT is used to extract EEG sub-bands, which is
one of its main applications [5]. Firstly, approximation a1[n]
and detail d1[n] components are derived from the input EEG
signal. Then, DWT decomposes a1[n] into another approxima-
tion a2[n] and detail d2[n] components. This decomposition
procedure is continued up to the maximum DWT level L (see
Fig. 3). The original EEG signal can be reconstructed from
the components by:

x[n] =

L∑
l=1

dl[n] + aL[n], (1)

In order to calculate the frequency band of each approximation
and detail component, the following formula is used:

al =

[
0,

Fs

2l+1

]
, dl =

[
Fs

2l+1
,
Fs

2l

]
, (2)



Fig. 1. Block diagram of the proposed algorithm for detecting cognitive load using the feature set applied to two prefrontal EEG channels.

Fig. 2. An example of artifactual EEG and filtered EEG. a) An artifactual EEG
contaminated with eye blinks and EMG. b) Noise-free EEG after applying
filters

where L is the highest decomposition level. Considering the
sampling rate of the EEG data and Equations 1 and 2, six levels
of DWT can extract EEG sub-bands, where detail components
of the third, fourth, fifth, and sixth levels correspond to gamma
(25-40 Hz), beta (13-30 Hz), alpha (8-12 Hz), and theta (4-
8 Hz) frequency bands, respectively, and the sixth level of
approximation component relates to the delta (0-4 Hz) band.

C. Feature extraction and classification

After splitting the EEG into its sub-bands, Wavelet-Log-
Entropy (WLE) and Shannon entropy (SE) are calculated from
each sub-band [18] [19].

By employing symbolic dynamics, the Shannon entropy(SE)
quantifies the signal’s randomness as follows:

SE = −
K∑
i=1

p(Bi)× log(p(Bi)), (3)

Where p(Bi) is the probability of obtaining the value of Bi

and Bi is the EEG band. WLE measure built on wavelet
analysis can signify the complexity of unsteady signal defining
as follows:

WLE =
∑
n

log(B[n]2), (4)

Fig. 3. An example of decomposed EEG signal into its sub-bands by DWT.

where B[n] is the EEG band.
Therefore, the feature vector consists of 10 measures per

channel. Then, the extracted features are normalized based
on the z-score technique. Afterward, the data are randomly
split into 70 % for training and validation, and 30% for
testing purposes. To ensure the validity of the results, the
training-validation procedure is executed based on 10-fold
cross-validation, while the testing procedure is only conducted
on data that has not been seen before. In this paper, we use
the Support Vector Machine (SVM) with radial basis func-
tion kernel, Adaboost, and the k-Nearest Neighbour (kNN)
methods to classify the EEG data into two classes, one
corresponding to cognitive load and the other corresponding
to the no-load state. It should be noted that the MATLAB
’Optimize Hyperparameters’ function is used to optimize the



hyperparameters during the training-validation phase based on
the Bayesian optimization method.

To evaluate the classification results, the following formulas
were used to calculate the Positive Predictive Value (PPV),
Negative Predictive Value (NPV), Accuracy (Acc), Sensitivity
(Sen), Specificity (Spe), and Area Under the Curve (AUC):

Acc =
TP + TN

TP + TN + FN + FP
× 100, (5)

PPV =
TP

TP + FP
× 100, (6)

NPV =
TN

TN + FN
× 100, (7)

Sen =
TP

TP + FN
× 100, (8)

Spe =
TN

TN + FP
× 100, (9)

AUC =

∫
Sen(T )(1-Spe)′(T )dT, (10)

where TP and FN represent the number of correctly and
wrongly classified cases of high cognitive load (game levels
1 or 2), respectively, while TN and FP stand for the number
of correctly and wrongly classified cases of no cognitive load
(game level 0).

IV. RESULTS

A. Single feature classification

Table I displays the classification results for the WLE and
SE features in terms of validation and test data. As it is shown,
the best classification results for the test dataset were obtained
by the WLE as the feature and the AdaBoost as the classifier
with an average Acc of 80.86%, PPV of 81.08%, and NPV of
80.80%. The boxplots of the feature values for each sub-band

TABLE I
THE AVERAGE CLASSIFICATION RESULTS FOR VALIDATION AND TEST

DATA.

Validation data Test data
Classifier Acc PPV NPV Acc PPV NPV

W
L

E

SVM 86.77 91.30 85.31 75.92 75.86 75.93
kNN 83.33 76.92 86.20 75.92 69.23 78.04

AdaBoost 89.94 90.74 89.62 80.86 81.08 80.80

SE

SVM 87.83 93.47 86.01 75.30 73.33 75.75
kNN 82.80 75.63 86.10 75.30 68.42 77.41

AdaBoost 91.97 89.25 92.99 78.39 75.67 78.20

using single features are shown in Fig. 4. It can be seen that
the entropy of the EEG tends to decrease in case of cognitive
load in the Theta band while the opposite behavior can be
seen in the Alpha band.

B. Combined features

Fig. 5 demonstrates the classification results for the test
data using both features in terms of Acc, PPV, NPV, and
AUC for all three classifiers. As a result of the comparison,
AdaBoost is clearly superior to the other classifiers. When fed
the 30% of the unseen data to the classifiers, the AdaBoost
outperformed the other classifiers by showing the mean Acc,
PPV, NPV, and AUC of 80.24%, 78.94%, 80.64%, and 0.86,
respectively. Followed by that, the SVM showed the Acc,
PPV, NPV, and AUC of 76.54%, 76.66%, 76.51%, and 0.82
respectively. When kNN was applied, the results were 75.30%,
68.42%, 77.41%, and 0.68 for the Acc, PPV, NPV, and AUC,
respectively.

According to the T-test, there is significant difference in the
obtained results between Adaboost and the other classifiers in
terms of Acc, PPV, and NPV (p<0.05).

V. DISCUSSION

The objective of this research was to present an efficient and
reliable feature set that would need no initial calibration for the
detection of cognitive load using the analysis of low-channel
prefrontal EEG data. Since most of the current methods rely
on multi-channel EEG recordings, they can hardly be used
in real-life applications due to the inconvenience of wearing
an EEG cap with several electrodes and attachments. Further-
more, multi-channel EEG configuration requires covering hair-
bearing areas of the scalp which are associated with more noise
[4]. By employing two prefrontal EEG channels, the user is
provided with greater comfort since all electrodes are placed
on the forehead.

We aimed to develop a low-complexity algorithm that can
be applied to EEG measured using commercial headbands.
To this end, we used nonlinear calibration-free measures, i.e.,
WLE and SE, which have been proven to be powerful for the
discrimination of mental states [18] [19].

Some studies addressed cognitive load classification based
on the employment of several biomedical signals such as ECG,
Heart Rate, Galvanic Skin Response, and Respiratory Rate
[11]. Unarguably, the main source of mental states is the brain
while the other biomedical signals indicate the response of the
autonomous nervous system to cognitive load. Thus, detecting
the mental states of the main source is of great importance for
real-life applications. In addition, employing several biomedi-
cal signals may require more instruments which increases the
wearable complexity. The proposed algorithm achieved lower
accuracy compared [9] but, that research enjoyed a variety of
biological signals and variables which increase the complexity
of the method. Unlike [9] our method possesses lower com-
plexity which brings it more appropriate to use in real-life
applications by far. While [10] confined low beta analysis and
reached an accuracy of 71.4%, we considered all EEG bands
and their information to obtain much higher accuracy as the
result reveals other EEG bands carry on valuable information
in cognitive workload occasions. Although based on the pur-
pose of the research utilizing initial free features to employ
in commercial headbands, the promising results obtained in



Fig. 4. Boxplots of the WLE and SE features in each sub-band.

Fig. 5. a) Comparison of three classifiers’ results using both features in terms
of Acc, PPV, and NPV. The AdaBoost is superior to the other classifiers.
b) The ROC curves and corresponding AUC values obtained by the SVM,
AdaBoost, and kNN using both features

this paper, a couple of issues exist to be considered for future
works. Firstly, while we have only examined two levels of
cognitive load, we should extend the study in the future to
consider three classes, i.e., no cognitive load, middle load, and
high cognitive load [8]. Secondly, the inter-subject variability,
due to the small number of subjects in the database, was not
investigated. As a result, a larger number of subjects will be
needed to investigate the performance of the proposed method.
Thirdly, the performance of the proposed method should be
further investigated on different commercial EEG headbands
with different channel configurations. The last issue is to
consider other classifiers that are not commonly used in EEG-
based cognitive load detection. Fourthly, advanced classifiers,
e.g., random forest, can improve classification results.
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