
A Resilient System Design to Boot a RISC-V
MPSoC

Antti Nurmi∗, Antti Rautakoura, Henri Lunnikivi, Timo D. Hämäläinen
∗Nokia, Finland – antti.nurmi@nokia.com

Tampere University, Finland – {antti.rautakoura, henri.lunnikivi, timo.hamalainen}@tuni.fi

Abstract—This paper presents a highly resilient boot process
design for Ballast, a new RISC-V based multiprocessor system-
on-chip (SoC). An open source RISC-V SoC was adapted as a
bootstrap processor and customized to meet our requirement
for guaranteed chip wake-up. We outline the characteristic
challenges of implementing a large program into a read-only
memory (ROM) used for booting and propose generally applica-
ble workflows to verify the boot process for application specific
integrated circuit (ASIC) synthesis.

We implemented four distinct boot modes. Two modes that
load a software bootloader autonomously from an SD card are
implemented for a secure digital input output (SDIO) inteface
and for a serial peripheral interface (SPI), respectively. Another
SDIO based mode allows for direct program execution from
external memory, while the last mode is based on usage of
a RISC-V debug module. The boot process was verified with
instruction set simulation, register transfer level simulation, gate-
level simulation and field-programmable gate array prototyping.
We received the fabricated ASIC samples and were able to
successfully boot the chip via all boot modes on our custom
circuit board.

Index Terms—RISC-V, SoC, boot, bootROM, FPGA, ASIC

I. INTRODUCTION

A functional boot process is an essential requirement to
enable an autonomous wake up for a system-on-chip (SoC)
and abstract low-level system functionality to aid software
development. Boot process implementations can differ in the
amount of fixed hardware functionality before any central
processing unit (CPU) instructions, the complexity of the boot
code and the memory resources that are used to host it. Typi-
cally, after reset de-assertion, the boot CPU’s program counter
will point to a set of hardcoded instructions in an internal
read-only memory (ROM) called the bootROM. The size and
complexity of the bootROM can vary dramatically, from the
simplest implementations with a single jump instruction to
some form of programmable memory, to large autonomous
software routines. [1]

SoCs designed for and implemented to application specific
integrated circuits (ASIC) can be found in both academia and
industry, with academic designs more commonly released as
open source. Academic SoC designs typically favor special-
ization towards a limited set of metrics such as computing
performance or energy efficiency, while commercial SoC de-
signers are also incentivised to create flexible and easily usable

This work is a part of the SoC-Hub project and received funding from
Business Finland.

general purpose products. In our research project SoC-Hub1,
we developed Ballast, a large general purpose multiprocessor
SoC (MPSoC) comparable in complexity to commercial edge
computing devices, with the aim of creating a reusable SoC
template for a set of three chips, and later for other projects.
The goal with Ballast is to provide a base platform for MPSoC
application development, at the base of which is a flexible boot
concept with support for autonomous operation and multiple
alternative modes.

The functionality of a SoC boot process can be compro-
mised at a number of different stages, which at worst can
render the ASIC completely unusable. Design-time logic errors
may slip past verification and may compromise the boot
process, depending on their location of occurrence. Critical
components are the boot CPU and the interconnects, memories
and peripherals that it utilizes. The manufacturing yield of
integrated circuits is never 100 %, which leaves room for
small, transistor-level faults to occur. [2] As the size of a
bootROM increases, the probability of such a fault corrupting
an instruction word from the bootROM also grows. If no
mechanism to bypass usage of the bootROM is in place, such
a fault may also critically compromise the chip.

Due to the schedule and resources of our research project,
respins of Ballast are not possible. This makes the boot process
of the chip extremely important, as the chip must be functional
enough to be evaluated and guide development of subsequent
chips. This context serves as motivation to implement multiple
alternative boot modes that allow for bypassing the bootROM
and utilizing different combinations of hardware resources to
boot the chip. This research focuses on resiliency through
redundancy, while security features, performance and remote
boot by network are out of scope. This paper presents the
following contributions:

• a resilient design that implements multiple independent
boot alternatives utilizing different hardware resources,

• an analysis of developing a large boot program to be
implemented as a bootROM,

• the reproducible and generally applicable workflow that
we used for developing and verifying the boot code for
the SoC and

• the evaluation of our design on fabricated ASIC samples.
This paper is structured as follows: Section II explores the

related work on existing implementations of RISC-V SoC

1www.sochub.fi

boot. Section III gives an overview of the whole MPSoC
that hosts the bootstrap processor (BSP) that this work is
centered on. Section IV presents the proposed boot process
design, while Section V reviews the boot code implementation
of the base RISC-V platform, outlines the requirements for
general bootROM development and presents our bootROM
implementation. Section VI explores the methodologies used
to evaluate and verify the correctness of our design and
presents the results of ASIC sample testing. Finally, Section
VII recaps the results and contributions of this paper and
outlines directions for future work.

II. RELATED WORK

The approaches open source SoCs take to the boot process
range from minimal implementations to elaborate and special-
ized routines. PULPissimo [3], an edge computing oriented
SoC, supports three implementations of its boot process. A
file I/O based bootROM module can be used for simulation
and allows for changes to the boot code without recompilation
of the hardware. An infinite CPU execution loop is targeted at
field programmable gate array (FPGA) implementations that
rely on control from an external debugger. Finally, PULPis-
simo also provides a full boot code written in C along with
scripts to format the compiled executable and linkable format
(ELF) file into a SystemVerilog (SV) memory array.

Another example is Rocket-Chip [4] that is a Chisel
[5] based RISC-V platform generator. It provides a simple
bootROM written exclusively in assembly language that is
used to jump to random access memory (RAM) upon reset
for further software execution.

Most of the related work centered specifically on the boot
process is focusing on secure boot protocols. Haj-Yahya et al.
[6] implemented a lightweight secure boot architecture with
a focus on software authentication and the integration of a
code authentication unit into a RISC-V SoC. Simililarly, Dave,
Banerjee and Patel [7] presented a lightweight secure boot
architecture for RISC-V that featured a hardware accelerated
code integrity and authentication unit. Both systems were
evaluated on an FPGA platform and compared against state-
of-the-art secure boot solutions.

Kumar et al. [8] presented another security oriented RISC-
V SoC prototype, ITUS, along with implementation details on
their design of the system boot process. Their bootROM im-
plemented a minimal zero-stage bootloader with basic system
information and a jump to on-chip block RAM (BRAM) or
external memory to execute further bootloader software.

Our work implements a highly resilient and fault tolerant
system design, which is an unexplored research direction to
the best of our knowledge, and thus differentiates our approach
from the related work.

III. SYSTEM OVERVIEW

The MPSoC developed as a part of this research is a
heterogeneous system targeted at edge computing applications.
The IPs of the system are mostly complete open source blocks
or generated with open source toolchains.

Fig. 1. The high-level architecture of the Ballast MPSoC.

A simplified block diagram of Ballast is presented in
Figure 1. The system contains two 32-bit RISC-V processor
subsystems based on the PULPissimo microcontroller [3], a
64-bit RISC-V processor subsystem based on the CVA6 pro-
cessor [9], the open source NVIDIA deep learning accelerator
(NVDLA) [10] and a transport triggered architecture (TTA)
based digital signal processor (DSP) subsystem designed using
the TTA co-design environment (TCE) [11]. The 64-bit dual
core subsystem is labeled as the high performance computing
(HPC) subsystem and provides application class computing
capability to the system, while the DSP subsystem functions
as a co-processor to the RISC-V based subsystems. One of the
PULPissimo subsystems is left to the default design configu-
ration with the CV32E40P processor core [12] and labeled as
the medium performance computing (MPC) subsystem, while
the other is configured to use the Ibex [13] processor core.
The second PULPissimo subsystem is reduced in terms of
memory and peripheral interfaces and is designated as the
system control CPU subsystem (SysCtrlCPU) that functions
as the BSP for the system. In addition to the processor
subsystems, the system has a chip-to-chip (C2C) interface, a
central interconnect subsystem, an Ethernet subsystem and a
peripherals subsystem.

IV. BOOT STRATEGIES

The core functionality of our boot code is loading a software
image from an external memory to the SysCtrlCPU static
RAM (SRAM) and executing the image. With this minimal
functionality in our bootROM, the responsibility of the system
level boot is left to a subsequent bootloader that is contained
within the loaded software image. The bootROM contains
only the control flow and necessary initializations to access
a connected SD card in both secure digital I/O (SDIO) [14]
and serial peripheral interface (SPI) mode. To improve the
reliability of this system through high redundancy in the boot
process, four distinct boot modes were conceived.

The SDIO boot mode is the default boot mode for the
system. It uses the SDIO protocol to access an SD card from
a custom SDIO register interface, which is connected directly
to the subsystem peripheral bus. In this mode the bootROM

initializes the SD card to store the contained software boot-
loader image to internal SRAM and move execution to the
bootloader.

The SPI boot mode is similar to the SDIO boot, but
accesses the SD card through the SPI. This change requires
an additional program section in the boot code to perform the
initialization and accesses to the SD card through the direct
memory access (DMA) which connects the SPI interface to
the peripheral bus.

The external boot mode is enabled by a hardware finite
state machine (FSM) in the SDIO register interface with the
ability to initialize a connected SD card and autonomously
translate bus accesses to the SDIO memory space into SD
protocol compliant read and write operations. This makes the
SD card a continuous and directly accessible memory space
for the CPU. With this configuration the CPU can be set to
execute programs directly from the SD card without loading
them to internal memory.

The JTAG boot mode is the final supported boot alternative.
It uses the JTAG interface to connect a debug host to the
RISC-V debug module [15] implemented in the SysCtrlCPU.
In this mode the debug module has control over the halting and
resuming the CPU execution as well as access to the subsystem
SRAM via the peripheral bus. To execute programs, the debug
module halts the CPU and fills the SRAM before releasing the
CPU execution again. While this boot mode does not utilize
the SDIO register interface, the SPI interface, the DMA or the
bootROM, it is not autonomous due to the dependence on a
debug host.

The use of hardware resources on the SysCtrlCPU in each
of the four boot modes is illustrated in Figure 2. The CPU
and peripheral bus form the core of every boot mode, but all
other resources can be bypassed with at least one other mode.
One of the three peripheral interfaces being accessible should
enable booting the system, and a dysfunctional bootROM, for
example, should be bypassable with the JTAG and external
boot.

The four boot alternatives were conceived to be completely
contained within the subsystem and therefore rely on a mini-
mal number of hardware components to operate. A boot option
using Ethernet, for example, was not implemented for this
reason, as it would depend on multiple subsystems on the
MPSoC to operate.

V. DEVELOPMENT

In this section we review the default boot process of the
PULPissimo and contrast it against our research goals. We
outline the minimum requirements to consider when creating
a hardware description of a bootROM from a compiled ex-
ecutable. Finally, we present the structure of our bootROM
implementation.

The original boot code of the PULPissimo is formed by
a C source code file, multiple platform specific header files
and a minimal runtime written in assembly language. As
of now, the PULPissimo boot supports four boot modes
configured through two bits. The four boot modes are a

Fig. 2. Usage of the hardware resources of the SysCtrlCPU in each boot
mode.

zforth shell accessed through UART, a JTAG mode accessed
through an external debugger, a QSPI based flash read and a
preloaded boot, which assumes the SRAM to be loaded with
an executable image. The size of the compiled PULPissimo
bootROM code is approximately 5 kB [3]. Notably, of the
four default boot modes only the flash read can be considered
completely autonomous.

A fully autonomous boot was one of the key targets in our
work, which along with the heavy deviation of the SysCtrlCPU
from the original PULPissimo motivated us to create a novel
boot concept tailored to our platform and specific needs. While
the crt0 runtime, the linker script and the compilation script
from ELF to SV were reused with minimal modifications, the
main functionality of the new boot code was developed from
scratch.

The functionality of the bootROM code can largely be
developed like any conventional bare metal program. However,
certain restrictions that stem from the unique system state and
execution setting will have to be considered, including runtime
initalization, linking and special compilation. As the bootROM
will be hardcoded on the ASIC and consume silicon area,
minimizing its size is a universal goal in its development.

A. Runtime Initialization

While most of the boot code can be written in a high-level
compiled language such as C, C++ or Rust, the immediate start
of the boot code must perform the initialization of the main
abstractions of the platform programming model. Typically,
these include setting up an interrupt vector table, initializing
the stack pointer and finally, calling the main program entry
point [16]. These tasks are conventionally implemented by a
platform-dependent file called C-runtime zero, contained in
a crt0.S file. The file is automatically inserted by most C-
compiler toolchains unless the contrary is specified with a
flag such as GCC’s -nostartfiles. The default start file
supplied by compilers is most often excessively elaborate for
a boot program and a custom start file might be preferable to
minimize code size and thus save silicon area.

B. Linkage

Linking is the process of mapping the program sections of
compiled object files to system memory resources to produce
an executable program. Compiler toolchains typically use a
generic default linker script unless specified otherwise, but the
implementation of a bootROM requires a custom linker script
to manage the unique memory environment. This becomes
apparent when considering the four most common output
sections [17]:

• .text contains the executable program code and must be
mapped to the ROM.

• .rodata contains read-only (R/O) data and must be
mapped to the ROM.

• .data contains read-write (R/W) initialized data. The
requirement to write to this section means it can not be
mapped to ROM and must be allocated space from a
writable memory on the system.

• .bss contains R/W zero initialized data and must also be
mapped to a writable memory area.

C. Compilation

The source code files are compiled together with the custom
crt0 runtime and linker script to create an ELF-executable from
the boot code. The compilation flags should be set to optimize
for code size. In GCC, this is set with the -Os flag. [18]

After compilation [19], the relevant sections from the ELF
file are formatted into an SV module using the objcopy-
utility and scripts adapted from PULPissimo [3].

D. Results

The developed boot code has a size of approximately 3 kB
when compiled to an SV memory array, making it significantly
smaller than the 5 kB on PULPissimo. Figure 3 illustrates
the relative sizes of of the program sections from different
source files and their offset from the bootROM base address.
The spi.c source file accounts for appproximately 55 % of
the bootROM’s size, followed by 29 % for sdio.c, 11 % for
bootrom.S and 5 % for crt0.S. The C source files contain
the SD card specific initalization protocols for each operating
mode, while bootrom.S mainly operates the control flow of the
boot code and crt0.S is the minimal runtime for the program.
The large size of the C based sections is explained by the
complexity of the implemented SD initialization protocols.
Furthermore, the size of the SPI section in contrast to the SDIO
section stems from the requirement to program the SPI mode
via DMA commands, while the SDIO protocol has hardware
support from the programmable SDIO register interface.

The structure and functionality of the bootrom.S source file
is illustrated in Listing 1. By default, the code is structured
to automatically run through all initializations supported by
software until the image is successfully loaded. If the image
can not be loaded, the boot code defaults to an infinite loop
to leave the processor in a stable state for the debug module
to seize. With this implementation the debug module should
be usable even if other boot modes fail, unless the chip
completely faulty. From lines 2 to 5, the I/Os are initialized

0x0B7D

0x0824

sdio.c

0x0823

0x01D6

spi.c

0x01D5

0x008C
bootrom.S

0x008B
0x0000 crt0.S

Fig. 3. The offsets of the boot code program sections from the base address
0x1A00 0000.

1 int main(){
2 set_schmitt_trigger(PADCFG_08_11);
3 set_pin(GPIO9, INPUT);
4 set_padmux(PADMUX_MASK);
5 GPIO_ENABLE |= GPIO_MASK;
6 int gpio_value = PADIN_00_31;
7 if (GPIO9_MASK & gpio_value) loop();
8 if (CSN1_MASK & gpio_value){
9 spi_load();

10 if(check_control_word())
11 goto SW_IMAGE_ENTRY;
12 else loop();
13 }
14 else{
15 sdio_read();
16 if(check_control_word())
17 goto SW_IMAGE_ENTRY;
18 else{
19 sdio_init();
20 sdio_read();
21 if(check_control_word())
22 goto SW_IMAGE_ENTRY;
23 else{
24 spi_load();
25 if(check_control_word())
26 goto SW_IMAGE_ENTRY;
27 else loop();
28 }
29 }
30 }
31 }

Listing 1. C-pseudocode describing the behaviour of bootrom.S.
Memory addresses, registers and bit masks are abstracted with macros.

to use GPIO9 and CSN1 as inputs, after which their value is
read on line 6. The pin values are evaluated on lines 7 and 8,
where a high value will call the loop or spi_load function,
respectively. loop is a function to implement an infinite loop.
spi_load performs both the card initialization and read from
the SPI interface, while the SDIO interface performs these
operations separately with the sdio_init and sdio_read
functions. The check_control_word function is used to
evaluate a predefined control word in the loaded software
image to verify the correctness of the transferred image. The
program first attemps to directly read from the SDIO interface
on line 15, as the hardware FSM should have initialized the
card before software execution. The program then attempts to
reinitialize the card on the SDIO interface on line 19 before
reading again on line 20. Finally, the program attempts to load
the image through SPI on line 24 and enters the busy loop if
this is not successful either. The result of each read attempt is
verified with a call of the check_control_word function.
If a read is successful, the program performs an unconditional
jump to the fixed image start address, represented with the
goto SW_IMAGE_ENTRY command.

VI. EVALUATION

The BootROM will be unchangeable after fabrication. That
makes its careful and exhaustive verification much more
critical than for other firmware. For our goals most boot modes
are deemed functional in verification if they can transfer an
arbitrary software image to the SRAM and execute that image
successfully. The external boot mode is the only exception,
because it runs software directly from external memory.

To achieve maximal confidence in our design before it is
manufactured, we evaluated our design with instruction set
simulation, register transfer level simulation and gate-level
simulation along with prototyping on two different FPGA
boards.

A. Simulation

The boot code was simulated on a number of abstraction
levels and methodologies to test its behaviour exhaustively be-
fore the design was deployed to FPGA boards for prototyping.

Instruction set simulation (ISS) was used as a low-
overhead method to test the simplest functionality of the boot
code and check it for runtime errors that are undetectable at
compile time. Due to its focus on abstracting away hardware,
ISS is of relatively low value in bootROM development where
most code deals with the interactions between the CPU and the
system’s memory mapped peripheral interfaces. With ISS we
were able to check the boot code for simple runtime errors and
verify the base boot code functionality of reading and writing
to and from a directly mapped memory.

Register transfer level (RTL) simulation was used for
most of the simulation work during the boot code develop-
ment. RTL simulation gives a cycle accurate description of the
entire system and can be augmented with tracing tools [20] to
help software development using processor level abstraction.
With RTL simulation we were able to completely simulate

Fig. 4. The FPGA prototyping setup for the PYNQ-Z1 board.

the behaviour of the JTAG and external boot options, as well
as test the control flow of the bootROM. A simple SD card
model allowed us to simulate the functionality of the SDIO
boot mode, while no model was available to simulate the SPI
mode of an SD card.

Gate-level simulation (GLS) or netlist simulation was
reserved for the end of the development cycle, as the sim-
ulation is significantly slower than RTL simulation and the
design should have reached a reasonable level of maturity
before deploying GLS. With GLS we were able to replicate
the results achieved in RTL simulation and thus confirm the
functional correctness of the bootROM was not compromised
during ASIC synthesis and achieved high confidence in our
boot concept and implementation.

B. Prototyping

Prototyping of the boot CPU on physical hardware is an
extremely important step in verification as it allows for the
system to be tested with the same real physical interfaces as
the final ASIC. In this work the prototyping was started after
RTL simulation had been mostly covered and was performed
on two FPGA boards: the Xilinx PYNQ-Z1 and the Xilinx
Zynq Ultra-Scale+ MPSoC ZCU104 Evaluation Kit for the
subsystem level and system level, respectively.

The FPGA setup for the PYNQ-Z1 is presented in Figure 4.
The SysCtrlCPU device under test (DUT) and its interfaces are
implemented fully on the programmable logic of the board.
In the prototyping setup the SDIO and SPI interfaces are
connected to two SD cards with duplicated data, while on
the final PCB one card will be accessed by both interfaces.
The option to internally multiplex both interfaces to the same
pins during the boot process was considered, but was left
unimplemented to avoid the associated increase in complexity.
The JTAG pins of the DUT are connected to an FT2232
JTAG-USB adapter to access the RISC-V debug module from
a host PC via OpenOCD [21]. The GPIO9 and CSN1 pins
are by default configured as inputs and are used in the
boot control flow. In the FPGA setup they are controlled by
connecting them to VCC or GND with jumpers. The setup on

Fig. 5. The Ballast ASIC on the custom circuit board.

the PYNQ-Z1 was closely mirrored on the ZCU104 board to
accommodate the full-sized system prototype.

The importance of FPGA prototyping for both development
and verification in this work was amplified by the limited
availability of full simulation models for SD cards. With
the limited visibility on the FPGA during the boot process
and the time of synthesis limiting the flexibility of making
changes to the bootROM, a new approach was adapted to
implement the SDIO and SPI initialization protocols. The
SysCtrlCPU was implemented first with a blank bootROM
to allow for the debug module to seize control without the
system state being affected. The initialization protocols were
then developed as conventional software that could be executed
with the debug module in conjunction with GDB [22], giving
full control and visibility into the system while having a
negligible recompilation time. After the software could access
the SD card successfully on this level, the sdio.c and spi.c
files could be included in the bootROM compilation and their
initialization functions called from bootrom.S during the boot
process. This approach requires the designer to be especially
mindful of the memory space being used, as software on the
SRAM could easily overwrite itself. Even with the bootROM

in its own memory space, the stack it reserves is located on
the SRAM and must not be overwritten when loading the next
stage bootloader from the SD card.

FPGA prototyping enabled us to verify all boot modes with
the physical SD cards and interfaces that will be used to wake
up the final ASIC.

C. ASIC Sample Evaluation

A custom printed circuit board (PCB) was developed to
evaluate the Ballast ASIC samples upon their arrival. The PCB
including the ASIC is pictured in Figure 5. The Ballast ASIC
is packaged in a ceramic pin grid array (CPGA) package and
is hosted in the central socket of the PCB. The board has a
microcontroller dedicated to power control and monitoring and
an FT2232H mini module for JTAG-to-USB connectivity. The
SD card on the board can be routed to the SDIO or SPI pins,
or be left unconnected with the use of the JP2 jumper. Other
jumpers are also implemented to further control the system,
including the boot select signal that enables the external boot
mode.

The functional testing of the boot process on the ASIC was
started after the chip and PCB were tested for their electrical

integrity. Functional testing was started with establishing a
JTAG connection, which was successful and allowed us to gain
visibility and control of the three RISC-V subsystems. After
program execution via JTAG was verified, the SD card based
boot alternatives were tested. The SPI boot alternative proved
to be functional and reliable immediately, while the SDIO boot
was initially dysfunctional. Investigation of this revealed that
a very small 4 pF capacitance needed to be added between
the sdio_cmd line and ground for the SDIO boot to work.
The external boot was tested with very simple programs and
achieved satisfactory results. The usage of the external boot
will be limited due to its very slow execution speed.

VII. CONCLUSION

This paper introduced Ballast, our novel MPSoC ASIC de-
sign and the context in which it was developed. We presented
four distinct boot modes based on independent hardware
resources to make our design highly resilient to a number
of potential faults originating from design or fabrication. The
core functionality of our boot process is minimal to retain
flexibility and general purpose usability in our design. We
outlined the essential considerations for writing software for a
bootROM and evaluated our design with ISS, RTL simulation,
GLS and FPGA prototyping. Our design achieved the desired
results in verification and could be sent to manufacturing with
confidence. We evaluated the ASIC samples and were able
replicate the results achieved in simulation and prototyping.

Future work with Ballast is centered on developing the
software bootloaders and full applications that are loaded
during the bootROM execution. As the general concept of
the boot process has now been proven on ASIC, multiple
directions exist to develop the SysCtrlCPU further. Secure
boot features that were omitted from this research would be
a natural direction for future development to make the system
more comparable with other academic works and commercial
solutions. The efficiency and utility of the different boot modes
should be evaluated critically for potential savings in system
area or to further improve reliability.

REFERENCES

[1] P. Zhang, Advanced Industrial Control Technology. Elsevier
Inc, 2010, pp. 601–611.

[2] C. Chiang, Design for Manufacturability and Yield for Nano-
Scale CMOS, ser. Series on integrated circuits and systems.
Springer, 2007, ISBN: 1-280-93802-1.

[3] P. D. Schiavone, D. Rossi, A. Pullini, et al., “Quentin: An
Ultra-Low-Power PULPissimo SoC in 22nm FDX,” in 2018
IEEE SOI-3D-Subthreshold Microelectronics Technology Uni-
fied Conference (S3S), 2018, pp. 1–3. DOI: 10.1109/S3S.2018.
8640145.

[4] CHIPS Alliance. “Rocket-chip.” (2022), [Online]. Available:
https: / /github.com/chipsalliance/rocket- chip.git (visited on
03/01/2022).

[5] J. Bachrach, H. Vo, B. Richards, et al., “Chisel: Constructing
hardware in a Scala embedded language,” in DAC Design
Automation Conference 2012, 2012, pp. 1212–1221. DOI: 10.
1145/2228360.2228584.

[6] J. Haj-Yahya, M. M. Wong, V. Pudi, S. Bhasin, and A.
Chattopadhyay, “Lightweight Secure-Boot Architecture for
RISC-V System-on-Chip,” in 20th International Symposium
on Quality Electronic Design (ISQED), 2019, pp. 216–223.
DOI: 10.1109/ISQED.2019.8697657.

[7] A. Dave, N. Banerjee, and C. Patel, “CARE: Lightweight
Attack Resilient Secure Boot Architecture with Onboard Re-
covery for RISC-V based SOC,” in 2021 22nd International
Symposium on Quality Electronic Design (ISQED), 2021,
pp. 516–521. DOI: 10.1109/ISQED51717.2021.9424322.

[8] V. B. Y. Kumar, S. Deb, N. Gupta, et al., “Towards Designing
a Secure RISC-V System-on-Chip: ITUS,” eng, Journal of
Hardware and Systems Security, vol. 4, no. 4, pp. 329–342,
2020, ISSN: 2509-3428.

[9] F. Zaruba and L. Benini, “The Cost of Application-Class Pro-
cessing: Energy and Performance Analysis of a Linux-Ready
1.7-GHz 64-bit RISC-V Core in 22-nm FDSOI Technology,”
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 27, no. 11, pp. 2629–2640, 2019, ISSN: 1557-
9999. DOI: 10.1109/TVLSI.2019.2926114.

[10] NVIDIA Corporation. “Hardware Manual.” (2018), [Online].
Available: http : / / nvdla . org / hw / contents . html (visited on
02/15/2022).

[11] P. Jääskeläinen, T. Viitanen, J. Takala, and H. Berg, “HW/SW
Co-design Toolset for Customization of Exposed Datapath
Processors,” in Computing Platforms for Software-Defined
Radio, W. Hussain, J. Nurmi, J. Isoaho, and F. Garzia, Eds.
Springer International Publishing, 2017, pp. 147–164, ISBN:
978-3-319-49679-5. DOI: 10 . 1007 / 978 - 3 - 319 - 49679 - 5 8.
[Online]. Available: https : / / doi . org / 10 . 1007 / 978 - 3 - 319 -
49679-5 8.

[12] A. Traber, M. Gautschi, and P. Schiavone. “RISCY: User
Manual.” (2019), [Online]. Available: https://pulp- platform.
org/docs/ri5cy user manual.pdf (visited on 04/11/2022).

[13] P. D. Schiavone, F. Conti, D. Rossi, et al., “Slow and
steady wins the race? a comparison of ultra-low-power RISC-
V cores for Internet-of-Things applications,” in 2017 27th
International Symposium on Power and Timing Modeling,
Optimization and Simulation (PATMOS), 2017, pp. 1–8. DOI:
10.1109/PATMOS.2017.8106976.

[14] SD Association. “Simplified Specifications.” (2018), [Online].
Available: https://www.sdcard.org/downloads/pls/ (visited on
02/21/2022).

[15] RISC-V. “RISC-V External Debug Support.” (2019), [Online].
Available: https://riscv.org/wp-content/uploads/2019/03/riscv-
debug-release.pdf (visited on 02/21/2022).

[16] Embecosm. “The C Runtime Initialization.” (2010), [Online].
Available: https://www.embecosm.com/appnotes/ean9/html/
ch05s02.html (visited on 02/23/2022).

[17] S. Chamberlain and I. Taylor. “The GNU Linker.” (2021),
[Online]. Available: https : / / sourceware . org / binutils / docs -
2.37/ld.pdf (visited on 03/02/2022).

[18] R. Stallman. “Using the GNU Compiler Collection.” (2021),
[Online]. Available: https://gcc.gnu.org/onlinedocs/gcc-11.2.
0/gcc.pdf (visited on 03/17/2022).

[19] RISC-V Software Collaboration. “RISC-V GNU Compiler
Toolchain.” (2022), [Online]. Available: https: / /github.com/
riscv-collab/riscv-gnu-toolchain (visited on 03/02/2022).

[20] lowRISC. “Ibex Reference Guide: Tracer.” (2022), [Online].
Available: https : / / ibex - core . readthedocs . io / en / latest / 03
reference/tracer.html (visited on 03/04/2022).

[21] “riscv-openocd.” (2022), [Online]. Available: https: / /github.
com/riscv/riscv-openocd (visited on 04/12/2022).

[22] R. Stallman, R. Pesch, and S. Shelbs. “Debugging with GDB,
The GNU Source-Level Debugger.” (2022), [Online]. Avail-
able: https://sourceware.org/gdb/current/onlinedocs/gdb.pdf
(visited on 03/09/2022).

