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ABSTRACT

Christopher Allen: Microservices vs Serverless functions
Master of Science thesis
Tampere University
Master’s Programme in Information Technology
September 2023

Microservices and Serverless computing are two highly popular cloud computing models, with
tech giants and cloud vendors employing both models. There exists some crossover between the
two in terms of architectural style and purposes, namely concerning event-based applications that
are stateless.

In this thesis we compare the two models in terms of performance and cost, to determine if
businesses would benefit from migrating from microservices to serverless computing. To measure
the cost and performance, an existing microservices demo was deployed on a virtual machine
running on Amazon web services’ Elastic Compute Cloud(EC2) and then redeveloped as a set of
serverless functions running on Amazon web services’ Lambda serverless computing platform.

The performance was measured by using a series of mock HTTP requests with different quan-
tities of concurrent mock users (10-1000) and analysing the median response times. In order to
measure the costs of the systems, the data from the Amazon billing centre was analysed using
a model taking into consideration the number of computing hours used, the cost per serverless
function execution, duration etc.

The results showed that despite worse response times at the beginning of the tests, due to a
cold start, that the Lambda system performed similar to the EC2 system, and outperforming it at
higher levels of concurrent users. It was also concluded that the cost of the EC2 system remains
static regardless of the level of concurrent users and requests, but that under a certain amount of
requests the lambda system has lower costs.

Keywords: Microservices, Serverless, AWS, Lambda, virtual machines
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1. INTRODUCTION

Cloud computing is a paradigm that involves the delivery of on-demand computing re-

sources over the Internet. It enables users to access and utilize a pool of shared comput-

ing resources, such as servers, storage, databases, software, and applications, without

the need for on-premises infrastructure. The cloud computing model offers scalability,

flexibility, cost efficiency, and convenience, making it a popular choice for individuals,

businesses, and organizations.

In practice, cloud computing for end users enables many of the most popular web applica-

tions today, from Spotify to Netflix, social media platforms, file backups, and code reposi-

tories such as GitHub. It allows for users to carry out operations from a web browser that

they themselves may lack the necessary hardware to carry out locally.

There are essential characteristics used in defining cloud computing. These character-

istics are as follows: on-demand self-service, broad network access, resource pooling,

rapid elasticity, and measured service.

What these characteristics mean is that when using a cloud service the resources should

be automatically provided to a consumer without having to go through another human,

that the services should be available over network through heterogeneous clients such

as computers, and mobile phones. That resources are available to many clients all at

once within one shared resource pool and that the resources themselves are being dy-

namically assigned and reassigned according to the current needs of the clients. The

services should be elastic in that they can rapidly be scaled up and down, and finally that

the resources be automatically controlled and optimised and that resource usage is avail-

able to clients through appropriate levels of abstraction. Cloud computing has been the

subject of extensive research, it being one of the most popular research areas in mod-

ern computer science. This research tackles many problems in cloud computing such

as how to improve existing solutions to make them more efficient, categorizing different

cloud computing solutions that are available, how to keep the costs of cloud computing

solutions low, to identifying what solution matches what use case.

Cloud computing is modeled based on a 5-layer model: the physical layer, virtual layer,

control layer, orchestration layer, and service layer. Different cloud computing solutions

are categorized based on how many of these layers are under the control of the user, and
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Figure 1.1. A representation of different types of cloud services and what components
of the hardware and operating system are under the control of the end-user and which
components are entirely controlled by the service provider.

how many are completely under the control of the cloud service provider.

There are different models of deployment for cloud infrastructure. These models are

differentiated by who owns them, either partly or wholly. The models are as following:

• Private cloud is cloud that is provisioned exclusively for a single organisation and is

managed either by them or a third party on or off site.

• Public cloud is provided for the use of the general public by an organisation that

operates the system on their premises.

• Community cloud is provisioned for the use of a specific community that can consist

of multiple organisations, and may be operated by them or by a third-party with

infrastructure existing either on or off premises.

• Hybrid refers to a combination of the above that are bound together by standardised
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technology, but remain separate from each other. For example a public cloud that

has private services integrated into it.

Microservice architecture is one of the most dominantly popular architectures for cloud-

native systems in the industry, where many giant technology companies, e.g., Amazon,

LinkedIn, Netflix, and Spotify, are all adopting such an architecture in their systems. In

academia, studies on microservice architecture are increasing exponentially in recent

years. Many studies focus on the different critical aspects regarding the architectural

best practices and issues of microservice architecture, including, the patterns and anti-

patterns [1, 2], the decomposition of monolithic systems towards microservices [3], the

technical debt of monolithic system migration [4], and so on. Many studies also contribute

to the systematic analysis of microservice architecture from different application layers in

order to support its monitoring and maintenance, e.g. the architecture reconstruction and

visualization techniques [5], static analysis techniques for architectural reconstruction [6],

reconstruction visualization [7], and etc.

Compared to microservice, serverless is an emerging technology that enables the reduc-

tion of unnecessary overhead for provisioning, scaling, and general infrastructure man-

agement [8]. The industry has also seen such benefits and started the migration to the

new paradigm of serverless [9]. Many studies also contribute to the theoretical founda-

tion concerning the many aspects of serverless computing, including the patterns and

anti-patterns for serverless functions [8], the economic and architectural impact [10], the

design and implementation [11], potential issues and solutions [12] and the even broader

application of serverless edge computing [13] as well as the platforms for such a purpose

[14].

Despite the benefits of serverless mentioned above, many practitioners and companies

are still not certain whether it is beneficial to migrate from microservices to serverless or

not. Cost and performance are two of the main concerns that have not been addressed

in a proper manner. Many studies have contributed to the analysis and modeling of the

performance of either microservice [15] or serverless [16], but not in comparison to one

another. Several studies also contribute to the comparison of microservice architecture

performance and that of monolithic systems [17, 18, 19]. Regarding the cost, studies con-

tributed to the analysis of AWS billing estimation as well as the prediction and optimization

of the cost of serverless workflow [20, 21].

This study aims at filling the gap in existing literature for those debating if migration has

enough benefits to make it worthwhile, such as potentially lower costs and improved per-

formance with a minimal overhaul to existing code. By comparing these two architectures

in terms of cost and performance and determine what benefits might have by migrating if

any significant benefits exist at all. To conduct the comparison, we set up an experiment

using a demo system. The system is designed with a three-service architecture that is
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deployed on two different platforms: AWS EC2 for the microservices, and AWS Lambda

for the serverless functions.

To evaluate performance, we employ the Locust open-source load testing tool which al-

lows us to simulate different load volumes and measure the response time of both the

containerized microservices and serverless functions. By subjecting both configurations

to varying levels of load, we can analyze their performance under different conditions and

assess their efficiency in handling requests.

As for the cost aspect, We analyze the associated expenses for both containerized mi-

croservices and serverless functions. This analysis helps us identify a potential threshold

at which the cost comparison between the two approaches may shift. By understanding

the relationship between performance and cost, we can provide insights into selecting the

most suitable configuration based on specific requirements and constraints.

In addition to the comparison, this study aims at answering the following research ques-

tions (RQ):

• RQ1. What is the difference in response time between microservice and serverless

systems?

• RQ2. What is the difference in cost of running microservice and serverless systems

on AWS environments?

The thesis organized as follows: Chapter 2 provides information about related work on

the performance and cost of microservices and serverless architecture, including com-

parative studies, and some background on serverless testing. Chapter 3 explains the

experiment system’s design and analysis methods in detail. Chapter 4 presents the re-

sults from the experiment. Chapter 5 discusses potential limitations of the work and what

could be accomplished in future works. Chapter 6 goes over the potential threats to va-

lidity and chapter 7 presents the conclusion to the thesis.



5

2. BACKGROUND

2.1 Theoretical background

In this Section, we summarize the related works on serverless testing, considering unit,

integration, and system-level testing, their advantages as well as disadvantages.

2.1.1 Virtualisation

Virtualisation refers to recreating a virtual instance of a computer system that is ab-

stracted away from the hardware by a hypervisor which is responsibly for the creation

and running of virtual machines. There are two distinct types of hypervisors; bare metal

and hosted. Bare metal refers to the hypervisor running directly on the computer hard-

ware it is using, and a hosted hypervisor is run as an application on an operating system.

Virtual machines are computer systems that run on top of another operating system, and

typically have limited access to the host machine’s resources. It is important to note

that Serverless functions do not fall under the category of virtualisation as the vendor is

merely providing access to computing power to run the program on, whereas containers

and virtual machines offer greater control over infrastructure.

Containers are similar to virtual machines in the sense that it is an environment isolated

from its host system and can run processes independently of it and be exposed to internet

traffic. The main difference between the two is that a container is intended only to run a

single program and actually shares the same kernel as its host. It only consists of the

files and libraries needed to run the application, whereas a virtual machine is a complete

computer system and is multi-purpose. [22]

2.1.2 Docker

Docker is a popular tool that is used for creating containers for the purpose of creating

platform-independent applications. Docker containers contain files giving it instructions

to run the application, what ports to use in the docker network, which to expose to the

host network (and potentially internet traffic) and to install all of the libraries and other

dependencies that the application may need. Docker can be used to orchestrate multiple
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applications at once on the same network, run servers and can create data volumes that

will persist on the host machine [23].

2.1.3 Monolithic architecture

Monolithic is an older style of software architecture that features very tightly-coupled ser-

vices, that resemble a monolith. The advantages of this approach to developing appli-

cations is that it makes things quite simple given that the entire structure is centralised,

and every component shares the same database making the time to deploy applications

much faster.

If you remove one component then the entire monolith will come tumbling down, or in other

words the application will cease to function. As a consequence of this it is much harder to

scale monolithic applications up, and they are a lot less flexible than other architectures.

The bigger and more complex the application grows the harder it is to maintain it or to

develop it further, and the more data you have the larger the bottleneck in performance.

Monolithic architecture is more suited to applications that do not need to be frequently

updated or scale to meet user needs.

For an example, Netflix used to be a monolithic application until 2009. The reason for

their switching to AWS cloud services was that they experienced a database failure. This

was the only component that failed but because of the architecture the entire application

went down until the issue was fixed because the other components could not operate

independently. Below is a diagram depicting an example of monolithic architecture.

2.1.4 Service-Oriented architecture

SOA (Service-Oriented Architecture) is an architecture that features smaller, more inde-

pendent, moderately-coupled services compared to those of the monolithic architecture.

The time to develop and implement changes is much faster as the application can still

function if one component is removed. SOA is able to take and re-purpose existing legacy

functionalities by exposing it via interface to newer web applications when before these

functions might have been locked into a monolithic architecture .

SOA makes use of a ESB (Enterprise Service Bus), which allows different components of

different applications across different platforms communicate with each other and allows

components to be reused without much extra effort to integrate them. SOA therefore

is used for business applications in enterprises. When the client uses a service it is

abstracted away from them. All they know is the information about what the service does,

how to communicate with it, and any documentation that has been provided on the service

registry that lists all of the available services on the network.
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Figure 2.1. A visual representation of a monolithic application architecture. The compo-
nents that the applications is comprised of are very tightly-coupled and if you remove one
of the components then the application cannot function.

An example of SOA would be in a hospital environment. There are many different de-

partments in a hospital that serve different functions but have overlap, especially when it

comes to the supporting systems that they need access to. For example, a pharmacist

and a doctor both need to be able to access a patient’s history and record changes in

prescribed medication. Instead of redeveloping the same system for both departments

which would require a lot of effort, they can instead access an organisation-wide patient

database from the client in their department.

2.1.5 Microservice architecture

Microservices refer to lightweight web application modules that are loosely coupled to-

gether. Microservices evolved from Monoltihc and Service-oriented architectures. These

services that comprised these applications were tightly coupled and structured in such a

way that if you removed one service or component of the application, then the applica-

tion could not function until you replaced it with the same/different component, making it

difficult to push any kind of changes without taking the whole system offline in case of

unforeseen problems. [24]

With microservices, any service at any granularity can be exposed, and the architecture
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Figure 2.2. A visual representation of a service-oriented architecture (SOA). SOA allows
components from different applications on different platforms to communicate with each
other over a shared network for enterprise applications. The Enterprise Service Bus
facilitates communication between components. This approach can help integrate legacy
functionality into new applications with minimal effort. The client on the end can be a
human user on a browser or a different service acting as a client requesting a job to be
completed.
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style is very flexible and more simplistic, especially the maintenance of microservices as

if one of these services is removed then the rest of the services can still function in a

reduced capacity until the other services are brought back online or is replaced. This

also lends itself well to continuous deployment, as the size of the application won’t grow

the same way a monolithic application does, and it is easier to push updates to different

modules. To give an example of a microservices structure, if we take an online shopping

website and look into the backend of it, we can see that it’s split into separate modules:

• The search engine service would handle the functionality of searching and retriev-

ing products based on user queries. It would have its own codebase, data storage,

and API endpoints dedicated to this task.

• The item database service would manage the storage and retrieval of product

information, such as names, descriptions, prices, and inventory levels. It would

handle tasks related to product management, updates, and data synchronization.

• The shopping cart service would take care of managing the user’s selected items,

allowing users to add, remove, and update their cart contents. It would handle cart-

related operations, such as calculating totals, applying discounts, and saving cart

information for future sessions.

• The payment service would handle secure payment processing, integrate with

external payment gateways, and manage transactions. It would ensure that users’

payment information is handled securely and that orders are processed accurately.

By splitting these functionalities, the online shopping website gains several advantages

as each microservice can be developed, deployed, and scaled independently, allowing

for faster development cycles and easier maintenance. It also enables teams to work on

different services concurrently, fostering parallel development and reducing dependen-

cies. The modular nature of microservices allows for better fault isolation—If one service

experiences an issue or requires an update, it can be addressed without affecting the rest

of the system.

The costs of microservices depend on how they are hosted. If they are hosted using

on-site servers then the costs largely come from maintenance of the servers, licenses for

software, and maintaining the production pipeline. In scenarios where the developer is

not responsible for the hardware, these costs are streamlined and become about paying

for the service from a cloud vendor used to host the application, which can reduce costs.

These solutions scale depending on how much storage, memory, and processing power

the application requires, they can also be used in conjunction with other services such as

hosted databases.

The drawback to such an approach is that there is increased operational complexity and

overhead. Issues need to be considered such as balancing the load between services,
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Figure 2.3. A concept map detailing a simple eCommerce microservices application split
into four different loosely-coupled services and the user interface from which the can be
accessed.

the complexity of interactions between services, service discovery, and fault tolerance.

These can be mitigated with careful planning of the individual services

2.1.6 Serverless computing

Serverless computing is a cloud computing model where developers can build and run

applications without the need to manage or provision servers. In a traditional server-

based architecture, developers are responsible for setting up and maintaining servers to

host their applications. However, in serverless computing, the infrastructure management

is abstracted away, allowing developers to focus on writing code and building applications

[25].

In a serverless architecture, the cloud provider takes care of all the server management

tasks, such as server provisioning, scaling, and maintenance. Developers only need to

write and deploy their code in the form of functions or small units of logic, often referred to

as serverless functions or function-as-a-service (FaaS). These functions are event-driven,

meaning they are triggered by specific events such as HTTP requests, database updates,

or scheduled events.
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Figure 2.4. Visual representation of a generic serverless architecture using
AWS(Amazon Web Services) Lambda as an example. Each serverless function is in-
dependent of each other aside from that they use the same API gateway endpoint to
receive incoming traffic and then access their own relational database instance.

When an event occurs, the cloud provider automatically allocates the necessary re-

sources and executes the corresponding function. This on-demand scaling ensures that

applications can handle varying workloads efficiently, without developers needing to worry

about infrastructure scalability.

Serverless computing offers several benefits:

1. They provide developers with a highly scalable and elastic environment. Functions

can scale automatically based on the incoming workload, ensuring optimal perfor-

mance and resource utilization. This scalability is achieved by spinning up new

instances of functions as needed and shutting them down when they are no longer

required.

2. Allows for cost optimization. Users are billed based on the actual execution time and

resource consumption of their functions, rather than paying for idle server time. This

makes it cost-effective, especially for applications with sporadic or unpredictable

workloads.

3. Inherent high availability and fault tolerance. Cloud providers handle the underlying

infrastructure, ensuring that functions are automatically replicated and distributed

across multiple data centers. This redundancy helps mitigate the risk of single-point

failures and ensures that applications remain highly available.
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2.1.7 Cold start

Cold start is a phenomenon that occurs in server computing where an inactive serverless

function is pinged and the cloud service needs to allocate resources to deal with the

incoming request(s). This causes a significant delay in the response time of the function

and increases it from a matter of milliseconds to seconds. There are multiple ways to

avoid this issue, for example by pinging the function to keep it active. [26]

2.1.8 Function-as-a-Service (FaaS) model

The Function-as-a-Service (FaaS) model is a form of serverless computing that is pro-

vided as a service to cloud users. In this model, users provide functions to the cloud

provider, who takes care of the entire operational lifecycle, from deploying the function to

ensuring security patches are applied. FaaS offers a high-level abstraction of distributed

computing elements, reducing the need for users to be experts in distributed systems and

letting them focus on business concerns. Major public cloud providers already offer FaaS

solutions, and numerous FaaS platforms and serverless projects are being developed in

the open-source community. The potential of serverless computing has also triggered our

academic interest.

The serverless market has an ever increasing number of shareholders. Among these

are tech giants Amazon, Google, Microsoft with AWS Lambda, Google Cloud Platform,

and Microsoft Azure. Serverless providers have a level of abstraction that obscures the

inner workings of the serverless runtime environment from the users, they cannot see

or interact with the underlying infrastructure, or the resources. Serverless systems are

suited for use with lightweight event-driven functions, given that the resources are only

provisioned during the execution time, the serverless application must be stateless.

The cost of serverless services is based on usage. The more traffic your application

receives, the more times the serverless functions are pinged adding to usage. Some

services like Lambda give users X number of free computing time/usage per month and

then charging after that has been exceeded. This contrasts with a service that provides

a virtual machine that is always on, where the cost is constantly accumulating while it

is running, even if there is no traffic. Serverless systems have some drawbacks such as

long response times from a cold start, the apps will need to be stateless and event-driven.

There is also the potential for vendor lock-in.

2.1.9 Load testing in web applications

Load testing in web applications refers to a method of testing, where the system in ques-

tion is subjected to different loads, and determine how much of a load of end user traffic
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Table 2.1. Faas pricing comparison. A table representing the prices and free-tier limits
of three different FaaS providers. Amazon Web Services’ Lambda, Microsoft’s Azure,
and Google’s Google Cloud Services. The price is given in USD and for each a single
invocation of a function is billed depending on how long the function takes to execute in
GB-s. [27]

free tier pricing

AWS Lambda
1 million/month

400,00GB-s
0.0001667 per GB-s

Microsoft Azure
1 million/month

400,000GB-s
0.000016 per GB-s

Google Cloud Functions
2 million/month

400,000GB-s

0.0000004 per GB-s

separate billing for

memory and CPU

IBM
1 million/month

400,000GB-s
0.000017 per GB-s

Monolith Microservice

Microservice

Microservice

Serverless function

Serverless function

Serverless function

Serverless function

Serverless function

Serverless function

Figure 2.5. Visual representation of the scale of three different architectural approaches.
The blocks denote how a monolithic structure of tightly-coupled services can be bro-
ken down into loosely-coupled services, and then further down into a finite granularity of
serverless functions
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the system is able to handle. An important metric in load testing is the time it takes for

the client to get a response from the system from the moment that the request is sent.

Another important metric to look at is the number of concurrent users and the number of

hours they log as the performance of the system is directly impacted by the number of

user sessions it has to handle. By taking the total time that the test was performed for

and the number of concurrent users we can calculate the "throughout" of the application

which is the number of user requests per second that have been processed for the test’s

duration.

2.1.10 Vendor lock-in

Vendor lock-in is a phenomenon that occurs when a company is too dependent on one

particular vendor for the services/environment which they use to develop their web ap-

plication and use only that one vendor’s services for everything. The issue with this is

that it can have the potential to severely limit the performance of the application and cost

more money in operations. It also poses a problem in the future as it can prevent the

application being migrated away from the vendor in question. Some of the reasons that

we may want to migrate partially or entirely from a particular vendor is the potential for

a complete security breach of the application, as if one of the services the application

uses is compromised then that means that the other services can be too. The quality

of the service might deteriorate over time and it may become outdated due to a lack of

updates to the services on the vendor’s part. A vendor may also decide to cut support

for a particular framework that the application is dependent on. Finally the vendor may

cease to exist or experience a long period of downtime and an interruption of services.

One way to avoid vendor lock-in is to use a multicloud approach where different services

from different vendors are used in conjunction.

Multicloud

Multicloud refers to an approach to serverless computing where different serverless com-

ponents from different cloud vendors are used in conjunction with one another to improve

performance by mitigating the drawbacks of each individual service. It could potentially

be cheaper than using one service as well because workloads are distributed across mul-

tiple vendors the execution times and resources used are lower than if one vendor was

used to handle every incoming workload.

Microservices and serverless functions are not mutually exclusive and could be used in

conjunction with each other to mitigate some of the issues to adopting either of them. The

mutual differences between these functions are described in Table 2.2.

When we measure the performance of both microservices and serverless functions we
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Figure 2.6. A concept map detailing the abstraction of a multicloud approach to web
application architecture. Different services are hosted by different providers avoiding the
pitfalls of being locked into one vendor.

Table 2.2. Summary of the mutual differences between Microservices and Serverless
functions categorized by duration, dependency, resources, hosting, model, cost, multi-
functionality, logging, and size.

Microservices Serverless functions

Duration Continuous Execution-based

Dependency Loosely-coupled Singular

Resources Always available Dynamically-allocated

Hosting Self/service-based Service-based

Model Service-oriented/cloud computing Cloud computing

Cost Continuous + execution based Execution-based

Multifunctional Yes No

Logging Self-managed Service

Size Small-medium Small

measure the response time for a single request to complete, relative to the amount of

internet traffic that is being processed during that time frame. This is essential in web

applications as a long delay in response times can have a large impact on not just one,

but potentially hundreds of users as computing resources are tied up as new requests are

made.

2.2 Related works

Performance engineering for microservices, in terms of testing, monitoring, and model-

ing, is one of the challenges in the related domain [28]. Especially regarding perfor-
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Figure 2.7. A concept map detailing the abstraction of virtual machines and containers
from the underlying infrastructure of a computer system. In this example docker is used.
The hypervisor is a layer of abstraction that allows one host system to run multiple guest
systems on top of itself and assign resources to them accordingly

mance testing, many approaches have been proposed. For example, De Camargo et

al. [29] proposed an automatic testing method where each microservice shall provide

a test specification. Regarding the performance comparison between microservices and

monolithic systems, Auer et al. [30] proposed an assessment framework that encom-

passes the measures of function suitability, performance efficiency, reliability, maintain-

ability, process-related, and cost as the key dimensions. Regarding the performance

comparison between microservice and monolithic systems, Blinowski et al. [19] con-

ducted a series of controlled experiments in different deployment environments to verify

the different benefits of the migration from monolithic systems to microservice in various

context settings. Gos and Zabierowski [18] also conducted experiments comparing the

performance of microservice and monolithic systems in terms of response time for differ-

ent request numbers and indicating the pros and cons of both architectures. Al-Debagy

and Martinek [17] drove a comparison experiment on load testing and service discovery

scenarios with specific configurations between the two architectures.

On the other hand, many studies also contributed to the performance engineering re-
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garding serverless applications in terms of the various quality aspects of the architec-

ture. Eismann et al. [31] conducted a case study towards investigating the stability

of performance tests for serverless applications by comparing the results with different

load levels and memory sizes. Their findings show improvement in the response time

(faster responses) with higher workloads and also larger function sizes, as well as perfor-

mance fluctuations in the short-term and long-term within the observation period. Lloyd

et al. [9] investigate the influencing factors of infrastructure elasticity, load balancing,

provisioning variation, infrastructure retention, and memory reservation size by compar-

ing such attributes of AWS Lambda and Azure Functions. Their results indicate that

extra infrastructure is provisioned to compensate for the initialization overhead of COLD

service requests. Lee et al. [32] compared and evaluated concurrent invocations on

Amazon Lambda, Microsoft Azure Functions, Google Cloud Functions, and IBM Cloud

Functions. Their results show that the elasticity of Amazon Lambda outperforms the oth-

ers regarding throughput, CPU performance, network bandwidth, and file I/O in terms of

concurrent function invocations for dynamic workloads. Yu et al. [33] proposed a bench-

mark suite for characterizing serverless platforms and compared the evaluation results

on AWS Lambda, Apache OpenWhisk, and Fn serverless platforms.

Despite the studies in performance engineering for either microservice or serverless sys-

tems, limited contributions to the performance comparison between them. Fan et al. [20]

performed a performance comparison study of a cloud-native application regarding its

reliability, scalability, cost, and latency between microservices and serverless strategies.

They conducted experiments using an employee time-sheet management system devel-

oped with Node.js with three main modules when their deployment strategy is 5 containers

for 5 main cases for microservices and 6 Lambda functions for serverless. The results

show that serverless suffers from cold-start issues and is outperformed by microservice

with small size and repetitive requests. Their results also show that microservices suf-

fer from the load balancing and traffic redistribution problem, nevertheless, they do not

provide performance comparison with different request load numbers.

A case study is described where this approach was applied to a real-world cloud-native

monolithic application. Two parts of the application that were suitable for migration - a

reporting service and a data processing service - were identified and migrated into mi-

croservices and FaaS while leaving the rest of the application in the monolithic architec-

ture.

The benefits of this approach are highlighted, including reduced risk, reduced downtime,

and improved maintainability. It is also noted that the partial migration approach allows

developers to gradually adopt microservices and FaaS without disrupting the existing ap-

plication.

The challenges faced during the migration process are also discussed, including the need
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for careful planning and coordination, as well as the need to maintain compatibility with the

existing monolithic architecture. Regarding the comparison of costs between approaches,

a study conducted by Fan et al. [20] compared the costs of serverless and microservice

systems based on the number of requests and the code execution time. While this method

is useful, it does not account for the concurrent load as an influencing factor on cost.

Additionally, there have been several other studies that have investigated the cost of

serverless and microservice systems. For example, Eismann et al. [21] proposed a

method to predict the cost of serverless workflows, which allows for the prediction and

optimization of the expected cost of a serverless workflow. This type of analysis can help

developers make informed decisions about the most cost-effective way to implement their

applications.

Mahajan et al. [34] explore the optimal pricing for serverless computing, the work dis-

cusses the modeling of cloud computing services where a client can use both serverless

computing and virtual machines simultaneously to split jobs for the same web applica-

tion. The cost model for these services is based on fixed unit time prices for both types

of services, but the cost of serverless computing is proportional to the sum of the running

times of the jobs processed. The client’s load is modeled as a continuous arrival of jobs

split randomly between the rented resources, and each rented resource is modeled as an

M/G/1 queue (for VMs) or an M/G/∞ queue (for serverless computing). The client has an

explicit performance constraint, such as an upper bound on the average response time of

jobs, and this constraint is used to determine the number of VMs rented and the amount

of load assigned to serverless computing to minimize cost.

Furthermore, they investigated the economic benefits and performance tradeoffs when

using virtual machines and serverless computing simultaneously. The results indicate

that if there is a load that if using a serverless function for executions is cheaper than

the renting of a virtual machine then the serverless option will always be the more cost

effective. This applies to scenarios where the cost of using serverless for a load equals

that of a virtual machine and the load is more than what a virtual machine can handle.

2.2.1 Serverless testing methods

Different traditional testing methods can be used in the testing of Serverless computing,

despite the user typically only having access to the environment in which the code is

executed and not the underlying infrastructure. These methods include: Unit testing,

hybrid Testing, cloud-integration testing, load testing, and end-to-end.

Regarding Unit Tests, Zambrano [35] employs local versions of services, e.g. databases,

for testing. There are ways to simulate the necessary cloud stack in a local environment,

with AWS providing a local executable for DynamoDB. Certain third-party solutions like
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LocalStack can simulate a broader range of AWS services locally using Docker contain-

ers.

In serverless Hybrid testing, integration tests are conducted using real/simulated cloud

resources, however the tests are executed from the local machine. Tools such as Lo-

cust.py can be used for this purpose. If we want to test the serverless functions in an

environment that is unavailable to public internet traffic we can .

In integration testing, the serverless function is deployed in the cloud and tested against

real-world services, [36, 37, 38, 39, 40] there are numerous sources that vouch for the

use of regular cloud services as they provide more reliable results in terms of integration

functionality during real-world scenarios. Local simulations cannot provide a precise one-

to-one recreation of their cloud counterparts and the factors affecting their performance

[41]. Hence, cloud integration testing is the preferred choice for validating integration with

cloud services. However, testing deployed functions in the cloud often results in black-box

testing since there is no access to the application runtime, making it difficult to observe

code execution or inject mocks. In cases where specific integrations need to be mocked,

hybrid testing is likely the more suitable option [39].

Serverless functions can be directly invoked through multiple tools, such as AWS CLI or

directly from the website. Invocations can also occur through indirect triggers such as

an API Gateway, and these triggers can be used through tools such as curl or Postman.

Lambda can also be simulated in a local environment.

The System Testing approaches outlined in the literature primarily focus on load testing

and end-to-end testing. In end-to-end testing, the goal is to invoke the application by

simulating a real-world execution scenario. There are various ways to perform end-to-

end testing for a cloud system, depending on the use case and method for invocation. In

a scenario where the trigger is an external action from another service, a test case could

involve performing said action and then monitoring the Lambda function for its execution.

However, this approach can be challenging to implement, prone to errors, and typically

results in longer test duration, often relying on timers [42].

2.2.2 Economics of Serverless

A study was carried out to find out what assumptions needed to be made to compare the

pricing strategies of AWS Lambda, and AWS EC2 [43]. The instances that were made

was that:

1. The code worked seamlessly on both instances

2. The application is auto-scalable

3. Saving in IaaS administration costs were not a factor.
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4. A 1:1 throughput ratio is used meaning that the amount of memory used by both should

be roughly the same for a single request, for as much memory as is available to the EC2

instance.

In this work, a formula is given for working out the cost of running a lambda instance for a

month, which is calculated based on the number of requests made, the memory allocated,

and the (expected) execution time. This contrasts with the factors making up the formula

for calculating the cost for an EC2 instance. In an EC2 instance, the factors include; the

time period, the maximum number of requests per second that can be handled by the

instance, the number of requests per second, and the cost per time unit.

The comparison between the costs of running these two instances based on the formulas

found that until a certain point, Lambda was cheaper than the EC2 instance, but after that

point the cost of lambda rose more sharply, leading to the conclusion that the Lambda

instance was the better option if the expected traffic was low enough, with the system

experiencing periods of inactivity. This point, where the cost of lambda passes that of the

m4.4xlarge EC2 instance can be higher or lower depending on the application being run.

Across all of the cases, the cost-to-request ratio of the m4.4xlarge remains consistent

[43].

2.2.3 Architecture Decision on using Microservices or Serverless

Functions with Containers

In this article, cloud technologies are discussed in detail and analyzed in order to compare

the advantages and challenges associated with each and then suggest a solution to move

forward with respect to the cloud.

The systems being compared are virtual machines, containers, and a serverless appli-

cation. The issues with serverless that are addressed are the vendor lock-in, monitoring

the application, and testing the application can be more difficult with integration testing

because the units of integration are smaller than in other application architectures.

Docker containers simplify infrastructure management from virtual machines and are also

more resource efficient. By abstracting the infrastructure entirely so that the user only

needs to upload code to run, serverless manages to be the simplest one of the three to

run and maintain. The article notes that Docker is not mutually exclusive with Server-

less and that Docker can be considered Serverless in the sense that functions can be

containerized, deployed, and used in the same way that Serverless functions are. The

advantage to this is that there are some tasks that can’t be accomplished with Serverless

functions that could instead be accomplished with containers running functions and vice

versa.
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The main finding from the article was that Serverless requires a cloud service provider

whether they are operating in a container, or as serverless functions. The approach of

running microservices without serverless computing works better when it is expected that

the code will always be running instead of only needing to take resources at execution

time. The article then recommends that the ideal option is for microservices to be run

in containers, although splitting microservices into separate functions impact the perfor-

mance and the ability to monitor/measure the microservice.

2.2.4 Microservice Performance in Container- and

Function-as-a-Service Architectures

This paper [44] proposes an evaluation model of the functions-as-a-service model, that

is implemented as an open-source platform on a private cloud environment, and then

compared against a container-as-a-service. The testing architecture is comprised of

docker for the container approach, Apache OpenWhisk for serverless architecture, and

Prometheus to collect the relevant data.

The metrics analyzed here are response time, and CPU and memory utilization. Two

microservices are deployed to be tested; a face recognition service, and an image con-

version service. The language used in the tests is Python. The tests are carried out on

two virtual machines on the same server that both have 4 threads and 4GBs of RAM

each, and either OpenWhisk or Docker installed as per the approach that that machine

simulates [44].

Two different approaches were taken to testing, interval and sequential. In the first case

1000 requests were sent 60 seconds apart, and in the second 3000 were sent without

concurrency immediately after the previous request was resolved. By utilizing both ap-

proaches the "cold start" nature of the serverless approach can be properly evaluated.

Evaluating the response time, the Docker approach had an average of 2.3 seconds and

1.1 seconds for each microservice. The OpenWhisk approach had an average of 4.8 and

3.6 from a cold start for the services, however, this dropped drastically to 0.7 and 0.2

seconds from a warm start making it faster than the Docker container. The results for the

CPU utilization returned that the Docker container utilized 34 percent of CPU resources

while OpenWhisk only consumed 18.

RAM utilization is poorer in the serverless approach, with 1.9GB of RAM used while the

Docker container only uses 900MB. The reason for this and for the difference in CPU

utilization is because due to the architecture of OpenWhisk, actions are kept in active

memory which saves the script needing to be interpreted again, sacrificing RAM for lower

CPU utilization.

The findings from this paper show that there is considerable overhead in a cold-start of
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a FaaS system that makes it perform slower than the CaaS, however, this becomes the

opposite in the case of a sequential series of requests that prevents a shutdown and

keeps the system warmed up.

2.2.5 Open source serverless frameworks

As mentioned earlier in this chapter, vendor lock-in is a problem with serverless frame-

works, and cloud services in general. Diversifying the vendors that a company uses is a

method to prevent this lock-in and protect the application from severe breaches or other

potential issues by making migration easier.

However, frameworks such as a AWS Lambda or Microsoft Azure have constraints placed

on them in terms of storage, duration and concurrency. One way to combat this is by

considering open source frameworks that can reduce costs and further mitigate the issue

of vendor lock-in. Mohnaty et al. [45] evaluated a number of open source frameworks by

orchestrating them simultaneously with Kubernetes and then measuring and comparing

the response times with different numbers of concurrent users, and with different numbers

of replicate functions (1,25,50). The selected frameworks were Kubeless, Fission, and

OpenFaaS. To reduce overhead in function logic and dependencies, a simple function was

deployed that takes a string as input and returns that same string. Kubernetes cluster was

selected for the orchestration of the tests as it was the only orchestrator that is supported

by all three of the frameworks being tested.

The performance of the three frameworks was evaluated by deploying them on the Google

Kubernetes Engine, with a cluster consisting of three identical worker nodes and the de-

fualt settings enabled for each framework. To generate the requests, Apache Benchmark

was deployed on a virtual machine and sent 10,000 requests at different levels of concur-

rency [45].

2.2.6 Serverless utilization in microservice e-learning platform

In this paper a hybrid system of microservices and serverless functions deployed via AWS

EC2 and Lambda was proposed, and a comparison of the performance of the two carried

out by deploying an application that has two backends, one serverless and one based

on microservices. Both of the backends have the same methods, but the serverless

backend is only called upon during low traffic periods and starts 30 minutes before the

microservice backend becomes inactive, the reverse happens when the app enters high

traffic hours [46]. All of this is controlled from the frontend.

Apache Jmeter was used to evaluate the performance and scalability of both of these

systems. The tests consisted of a ramp test starting from 50 concurrent users and adding

100 users every two minutes of the test, and then a spike test of 200 concurrent users
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that spikes to 400 and then 600 concurrent users.

The results showed that the EC2 system had better average response times using one

instance up until 500 concurrent users. There was a significant spike in the result times

of the lambda system from 300 concurrent users onward. As for the spike tests, there

was no noticeable impact on the performance of the EC2 system, however the Lambda

system experienced a massive increase in response time despite being stable during the

first spike.

2.2.7 Serverless Computing: An Investigation of Factors

Influencing Microservice Performance

Another study that provides some methodology and a benchmark for our own results

is "Serverless Computing: An Investigation of factors influencing Microservices Perfor-

mance.". This study tackles the issues regarding the performance of serverless systems

such as the cold start problem and compares microservices deployed on docker contain-

ers, single thread and twelve thread, with Lambda serverless functions in both a cold

state and a warm state where resources have already been provisioned for the functions.

The testing method measures the response times for different memory allocations in the

warm and cold states and then plots them to see how they correlate. With a warm start the

lambda system started with much faster run times at lower memory capacities, and better

than the docker systems at the same memory capacity, however at higher capacities the

Docker single thread performed better than the lambda.
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3. STUDY DESIGN

In this section, we describe how the study is designed towards comparing the responding

performance of microservice and serviceless systems. We aim at comparing microser-

vices implemented with docker containers deployed on AWS EC2 instances, against mi-

croservices deployed as serverless functions on AWS Lambda. Both systems are ver-

sions of the same application; one of them is a dockerized microservice container, while

the other is a collection of lambda functions, that is, a serverless function that only exists

through execution and requires its code to be in a stateless form. Each one performs the

same functionality as one of the individual services, and they are all exposed using the

same API gateway instance.

The study has established certain metrics to assess the outcome, which is also aligned

with the research questions of the article:

• Response time measured in milliseconds for each functionality in the system dur-

ing tests, given a period of time.

• Cost for running both systems on AWS.

3.1 Experiment design

To compare microservice and serverless applications, we chose a microservice-based

application that can be deployed on docker containers and transformed into a serverless-

based application. The chosen application must be built with a microservice architecture

that can be divided into independent serverless functions and written in a programming

language compatible with the AWS Lambda environment among the following:

• Node.js 16/14/12

• Python 3.9/3.8/3.7

• Java 11/8

• Ruby 2.7

• .NET Core 3.1/.NET 6/.NET 5

• Go 1.x
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In addition to this, the application must be event-driven to match the finite nature of the

serverless lambda functions. The code cannot have any recursion as this leads to an

increased cost due to the extra invocations of the function and the cost for the duration

of each extra function. The code per each function should be relatively simple, with each

function being easy to deploy and scale up, and to avoid the maximum execution time,

concurrent invocations, and memory usage. The application should not rely on internal

states.

We selected the Bookshop application https://github.com/happy-bhesdadiya/microservices-demo
as the testbench of this study. The Bookshop application is a demonstration of microser-

vices and consists of three separate services that track customer information, book infor-

mation, and order details including information about which customer bought which book.

These services are written in NodeJS using the express framework and interact with

the same MongoDB database instance, which is a popular and widely used document-

oriented database system that does not rely on traditional tabular relations (a connection

between two tables of data) used in relational databases like SQL. The order service re-

trieves information from the other two services using HTTP (HyperText Transfer Protocol)

method calls.

The EC2 deployed version (See Figure 3.1a) consists of three loosely-coupled microser-

vices that operate within the same docker network and can send requests to one another,

with external communication going through ports that are exposed via the EC2 instance’s

public IPv4 address. The instance is also connected to Amazon Cloudwatch for metrics

and an S3 bucket for storage. The decision to modify the original application to run in

docker containers came from difficulties in installing the required nodeJS modules in the

EC2 environment.

The Lambda application is made of three different Lambda functions that each represent

one of the microservices from the original application (See Figure 3.1b). Each of them is

exposed externally through endpoints routed through an instance of AWS API gateway.

These communicate directly by using execution links. Each serverless code excerpt was

deployed on a separate Lambda instance that was running on a NodeJS 12.x run-time.

Serverless is not directly compatible with ExpressJS, which is the used framework in the

original application, so a JS package called Serverless Express is used to wrap each

function in a handler.

In order to assess the performance of both systems, unit tests were conducted on both

the microservice and serverless versions using Locust.py to simulate mock user requests.

The tests were performed with 10 concurrent users first, then increased to 50, 100, 500,

and finally 1000, each for approximately 30 seconds. Although the tests were virtually

identical, they had different endpoints due to the differences between the systems.

During the test, each simulated user was lined up at the start, and they frequently made

https://github.com/happy-bhesdadiya/microservices-demo
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(a) Concept map depicting the AWS (Amazon Web Services) EC2 (Elastic Computing Container)
architecture.

(b) Concept map depicting the AWS (Amazon Web Services) Lambda serverless event-driven
compute service.

Figure 3.1. Architecture comparison between AWS EC2 (3.1a) and the Lambda server-
less 3.1b. The former consists of three loosely-coupled services that are orchestrated
using docker containers operating on a docker network that is exposed to external traffic
via the EC2 container’s public IP (Internet Protocol) address by binding certain internal
ports to external ports. The container is monitored using the AWS Cloudwatch tool for
debugging purposes. A storage tool is used to upload the relevant files to the container.
The latter service consists of three different Lambda serverless functions that are inde-
pendent of each other but can communicate via direct invocation. These are exposed to
external traffic using AWS’ API (Application Programming Interface) gateway.
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http requests with different weights. When a new entry was created in the MongoDB

persistence storage during the POST actions, random strings were generated, and when

querying the ID of the returned items from the GET requests, the IDs were stored and

then accessed. The requests were made in a random order. The code for the mock

requests is as follows:

from locust import HttpUser, task, between
import random
import string
import json
from random import randint
from random import randrange
import datetime
global book_res
global customer_res
global customerid
global bookid
#orders_res
def random_date_generator():

temp = randint(0, 4)
random_y = 2000 + temp * 10 + randint(0, 9)
random_m = randint(1, 12)
random_d = randint(1, 28)
# to have only reasonable dates
return str(random_y) + "-" + str(random_m) + "-" + str(random_d)

def random_string_generator():
return random.choices(string.ascii_lowercase, k=5)

class Requests (HttpUser):
wait_time = between(0.5, 1)
@task(1)

#tags that allow locust to find tasks
def create_book(self):

#generate random data to be posted
title = random_string_generator()
author = random_string_generator()
self.client.post("/book", json={"title":

title[0], "author": author[0]})

@task(2)
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def get_books(self):
global book_res
x = self.client.get("/books")
book_res = json.loads(x.text)

@task(3)
def search_books(self):

global bookid
bookid = book_res[0]
self.client.get("/book/" + str(bookid["_id"]))

@task(4)
def create_customer(self):

name = random_string_generator()
address = random_string_generator()
age= randint(16,35)
self.client.post("/customer",

json={"name": name[0], "age":age,
"address": address[0]})

@task(5)
def get_customers(self):

global customer_res
x = self.client.get("/customers")
customer_res = json.loads(x.text)

@task(6)
def search_customers(self):

global customerid
customer_res
customerid = customer_res[0]
self.client.get("/customer/"+

str(customerid["_id"]))
@task(7)
def create_order(self):

date = random_date_generator()
self.client.post("/order",

json={"customerID": customerid["_id"],
"bookID": bookid["_id"],
"initialDate":date})

@task(8)
def get_order(self):
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global orders_res
x = self.client.get("/orders")
orders_res = json.loads(x.text)

3.2 Data Analysis

The Locust tool was used to collect execution and performance data for the two systems

under test. The tool was ran on a local machine, and the URL of each system was passed

to the tool. The tool created the specified number of users at a rate of x users per second

until the desired number was reached. The users continually executed tasks specified in

a text file, and the tool generated a table and graph in HTML format with raw data in CSV

format after the tests stopped.

To analyze the results, the data generated by the tool was plotted on a graph at different

intervals (5, 10, 15, 20, 25, and 30 seconds) to compare the performance of the two

systems and identify trends as the number of concurrent users increased over time.

The response time and the cost of operating both systems are compared against each

other. While the response time is measured in milliseconds, the cost is calculated by

applying the number of executions to the individual cost per execution. The cost of the

EC2 instance is defined per on-demand instance hour. The precise number of function

requests made and computing hours used is taken from AWS’ billing center for the month

when the tests were carried out. The Amazon billing tool was used to obtain the total

number of times the Lambda functions were triggered in a month, and this was then

applied alongside the average duration of the request and the cost per individual request.
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4. RESULTS

In this chapter, we present the results towards answering the research questions stated

earlier in the paper in terms of the performance and cost comparison between AWS EC2

(microservice) and AWS Lambda (serverless) in the form of graphs and tables with the

rationale explained for each, and any anomalies or unexpected results.

4.1 RQ1. What is the difference in response time?

In order to compare the performance of the two architectural styles, first we simulate 10

concurrent users using the bookstore application in both AWS EC2 and AWS Lambda

(see Figure 4.1); we ran the simulation 10 times in order to avoid potential external in-

fluences. On each simulation, we record the response time at 5, 10, 15, 20, 25, and 30

seconds respectively.

We can observe from the figures above and below, regarding the medians of both parties,

their performances in terms of response time are very similar, and both are under 1000

milliseconds, although the performance of the AWS EC2 is slightly better than that of

Lambda in the range of 0 to 15 seconds. However, an interesting phenomenon is that,

regarding the 95th Percentile, the response time of Lambda is more than six times longer

than that of EC2 in the range of 5 to 10 seconds. Meaning that, at least, 5% of the users

shall experience a 7-second long latency when sending a request to Lamdba. However,

when the application has been started for longer (≥ 25 seconds) the 95th percentile

performance of Lamdba improves to nearly the level of AWS EC2.

Furthermore, we also conduct the same simulation experiments for 50, 100, 500, and

1000 concurrent users in order to verify the consistency of the previous comparison. The

comparative results are shown in Figure 4.2. In terms of the performance median, we

can easily observe that Lambda often has a longer response time in the beginning (5 -

15 seconds) than EC2 and then improve to a similar level of EC2 after this period. Such

a phenomenon does not stand when the user number increases up to 500, where the

performance of Lamdba exceeds that of EC2 by more than 10 to 30 times after the first

20 seconds "cold start".

On the other hand, regarding the 95th percentile performance with 50 and 100 concurrent
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Figure 4.1. Performance Comparision between AWS EC2 and AWS Lambda in milisec-
onds (10 Concurrent Users) [47]
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(d) 1000 Users

Figure 4.2. Performance Comparison with Different User Numbers. The Y axis denotes
the average response time in milliseconds, while the X axis denotes the time interval
during the execution of the test that these averages happened at [47].
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users, the significant lagging phenomenon for Lambda persists for the first 20 seconds.

The maximum response time can reach 9000 milliseconds. However, similar to the situa-

tion with 10 users, the 95th percentile performance of Lambda starts to improve after the

20 seconds "cold start", but still cannot reach the level of EC2. To be noted, starting from

100 concurrent users, the 95th percentile performance of EC2 decreases in performance

when the user number grows. Especially, with more than 500 concurrent users, the 95th

percentile response time of EC2 grows almost exponentially with the experiment time.

Other phenomena to be observed is that the peak in the lambda response times shifts to

longer times in the test duration as the number of users increases and is at its highest

when the number of concurrent users is at 100.

The results of these tests are in-line with the results observed in some of the works

discussed earlier in earlier chapters, like the cold start latency [48], and the larger spikes

in latency that come with increased concurrent users [46].

4.2 RQ2. What is the difference in cost?

Regarding the costs of the two architectural setups, we compare the potential cost when

holding the same amount of requests frequency. Meanwhile, we also compare the cost

difference in terms of different request rates.

Firstly, we calculate the potential monthly cost of EC2 service by taking into account the

less costly example solutions. By exploring the "Savings Plans" https://aws.amazon.
com/savingsplans/compute-pricing, we select the region of "US EAST (N. Virginia)"

with the shared-tendency Linux operating system with the payment options of 1-year term

length and "no upfront". For such a basic configuration, the on-demand hourly cost rate

for a "t2.micro" instance (1 vCPUs, 1GB memory, Low to Moderate network performance,

EBS storage) is 0.0116 USD. Therefore, the basic monthly payment for such an EC2

instance shall be 0.0116× 24× 30 = 8.352 USD/month.

On the other hand, we calculate the cost of AWS Lambda service by taking into account

the same configuration. We adopt the "US EAST (N. Virginia)" region as the default set-

ting with which the monthly compute price is 1.67e−5 USD/GB-second. With the Lambda

function executed n times per month and running for 10ms each time, the monthly com-

pute charges will be n × 1.67e − 5 × 0.01. Meanwhile, the basic monthly request price

is 0.2 USD per million requests for the starting 6 billion GB-seconds month. Therefore

the monthly request charges shall be calculated as n × 0.2 × 1e − 6. Therefore, the

total Lambda function monthly charge is the sum of the compute charge and the request

charge when the cost has a linear relation to the number of monthly requests. These

calculations are summarized in Table 4.1.

As shown in Figure 4.3, we can observe the relatedness of the monthly costs of both

https://aws.amazon.com/savingsplans/compute-pricing
https://aws.amazon.com/savingsplans/compute-pricing
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Figure 4.3. Costs Comparison of AWS EC2 and Lambda. The intersection is the point
where the expenses of running the Lambda services are as great as running the EC2
service for one month, and beyond it that it becomes more expensive. The cost of the
EC2 remains static regardless of the amount of internet traffic that it receives.

EC2 and Lambda where the intersection point can be easily calculated. For a simplified

application scenario like the above-mentioned configuration, when a service receives no

more than 447,427 requests per month, Lambda is a better option for savings.

Compared to other comparisons of monthly costs vs requests [43], the configurations

used here have a higher threshold where the lambda solution becomes more expensive

than the EC2 solution.

Table 4.1. Cost Calculation for EC2 Vs Lambda. The measurement of the EC2 usage is
the number of hours that the system is online per month, which is estimated from the cost
per hour’s usage by the number of hours it is used in a day and the number of days it is
used per month.

EC2 Lambda

Measurement Unit number hours per
month

execution duration per
month

Estimation Formula
(per month)

hourly cost × #hours
per day × #days per
month

#executions × price per
request

Cost for Basic Con-
figurations

0.0116 × 24 × 30 =
8.352 USD/month

n× (2× 10−7);

Calculation Tool AWS Billing center1 AWS Billing cen-
ter/dashbird.io Lambda
cost calculator2
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The measurement for the usage of lambda functions is the duration time per each invoca-

tion in a month, multiplied by the number of times in a month that the function is invoked

beyond the free tier of 1,000,000 executions. The calculation tools used in this are Ama-

zon’s own billing centers and in addition, a free calculation tool to estimate what the costs

of the invocations below the 1,000,000 threshold are when the free tier is not in use. n is

considered as the number of requests per month.
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5. DISCUSSION

This chapter discusses the results from the previous chapter to draw conclusions from

them, and reflects on the methods used to achieve them. The chapter also contains

some suggestions on how the experiment could be expanded upon in future iterations

and what factors should be take into consideration that could lead to different results.

In this study, we have performed a comparison between Microservices and Serverless

computing by deploying two functionally identical applications using different architectural

methods, in this case, for AWS EC2 and AWS Lambda. After deploying these systems

we then developed a test that was designed to simulate real internet traffic by generating

mock users in large quantities (10, 50, 100, 500, 1000) using the locust.py testing tool

and comparing the aggregated response times for the two systems against each other. In

addition to this, we analyzed the cost for both systems for the duration of the performance

of the tests. The results are represented in the above graphs which compare the median

and 95th percentile of the response time per request at different intervals during the 30-

second test duration.

The cost of the Lambda system was calculated by multiplying the price of an individual

request (2 × 10−7 USD) by the number of requests (4011 requests) and then adding

the cost of the duration of the function execution time (0.00001667 USD per GB-second)

multiplied by the average execution time (1996 milliseconds). By using this formula, the

cost equates to 0.03 USD As for the cost of the EC2 system. This was calculated by

the number of computing hours used multiplied by the cost per computing hour (0.0116

USD). Some constraints in this study relate to the environments in which the systems

were deployed. In order to deploy the system to the EC2 container it was necessary

to dockerize the application as there were difficulties installing the prerequisite tools and

frameworks, and orchestrating these through docker.

Regarding the response time comparison outcomes (RQ1), we can observe the "cold

start" issue for the AWS Lambda service in terms of both the median and 95th Percentile

(see Figure 4.2d). Such a phenomenon is due to the fact that the first request for a new

Lambda worker needs to find a space in the EC2 fleet to allocate and initialize. According

to an analysis of production Lambda workloads provided by AWS Compute Blog, cold

starts typically occur in under 1% of invocations [49]. Such an inference can be seen as
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supported by our outcomes showing that the "cold start" issue for the 95th percentile is

more obvious and somehow insufferable due to the lagging experience. Several studies

have provided potential solutions for solving the "cold start" issue of Lambda, e.g., by

reducing container preparation and function loading delay, invoking function periodically

preventing cold functions, using application knowledge on the function composition, etc.

[50, 51].

With a growing number of concurrent users, the 95 percentile performance deteriorates

significantly for both EC2 and Lambda. The reason is likely due to the selected experi-

ment configuration with only limited resources allocated. The limitation shall be addressed

in future studies by using a higher level of configuration settings and testing with a larger

number of concurrent users.

On the other hand, regarding the cost comparison (RQ2), we adopted a basic application

scenario for both EC2 and Lambda and found out that, when the number of requests

per month is under a certain level, (in this scenario, 447,427 see Figure 4.3) Lambda is

a more cost-saving option. Due to the various "saving plans" and configuration options

provided by AWS, the "sweet spot" for switching services shall inevitably vary. Consider-

ing large search engine companies process about 400k searches in about 10 seconds,

their preferred option shall still be EC2 with a fixed monthly quote instead of Lambda,

though the eventual number will largely exceed the number for our bookstore demo sce-

nario. To such an end, the future shall be conducted towards a more comprehensive cost

calculation model with a set of critical cost parameters taken into account.

In future works, the scope of the study could be broadened in multiple ways. For example,

using different Faas solutions from multiple cloud vendors in addition to different platform

solutions for microservices could have a significant impact on the results with regard to

both RQ1 and RQ2. Due to numerous differences between the solutions, such as:

• increased memory capacities

• different payment plans

• selection of operating systems to run a container on

• different compatible programming languages/frameworks

• different programming models (JSON objects vs triggers and bindings).

In addition, by expanding to incorporate these different solutions can give a deeper insight

into the potential difficulties that companies could face when considering migration, and

help to clarify if certain issues are unique to that particular vendor’s solution or if it is an

issue that is universal to all FaaS solutions and an unavoidable consequence of adopting

that approach.

The difference in payment plans can make it so that one solution is more appropriate for
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a given application than others, due to the number of invocations and the frequency of

those invocations vs the cost of each individual invocation per month and the duration of

these invocations. For different cloud vendors the number of free invocations per month,

and the cost beyond that means that the intersection for different Serverless solutions

with a platform like EC2 can vary greatly.

Challenges encountered during this work occurred when finding the right application to

use as the basis of the system, as some of the previous iterations turned out not to be

compatible with the Lambda system, due to reasons such as in one example the appli-

cation relying on an in-memory database. The next challenge was that the application

decided upon needed modification to work on lambda as it relied on a package called

expressJS which is a server framework. In order to get it to function in a serverless envi-

ronment another framework called serverless-http was employed to wrap each serverless

function in a wrapper with minimal changes to the code. The next challenge was in setting

up the environment on the EC2 container. Due to difficulties in installing the necessary

prerequisites in the container, the application was dockerised to make installing depen-

dencies and networking between the services easier.

The collecting and analysis of the results was simplified greatly by the testing tools em-

ployed. The only work that needed to be done was to export the data and to plot it

ourselves. As for testing the cost it took more effort to develop the model used to cal-

culate the intersection given the different ways that the two systems are billed from the

vendor. The model developed is similar to that of the one in the earlier mentioned work

on the economics of serverless [43].
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6. THREATS TO VALIDITY

This section addresses the threats to the validity of our research. We consider Wohlin’s

taxonomy [52] for this. There are four different types of threats to validity that we cover,

construct validity, internal validity, external validity, and conclusion validity. Construct va-

lidity refers to the extent that our test accurately assesses what it is intended to, internal

validity concerns assumptions being made about experimental conditions and the validity

of those claims. External validity is about how the findings relate to real-world scenarios

and conclusion validity the author bias.

Construct Validity: We have implemented two system versions, one for each approach.

We used development frameworks that are used in the enterprise architecture to develop

such systems, each system with comparable resources. Moreover, we used conventional

practices aligning with the particular approach to developing these systems. Regarding

the system size, it is limited but sufficient to demonstrate the differences. The simulation

traffic has been fabricated and reflects conventional system testing approaches. To mea-

sure performance, we used the established tool, locust.py, to mitigate inaccurate methods.

The format of testing and measurement could present a validity threat, however, we used

established practices and tools to mitigate these construct threats.

Internal Validity: The first potential threat to internal validity is related to the fact that one

author developed both system versions to ensure that they have the same functionality

and comparable amount of computing resources. There may be some unintentional bi-

ases or errors in the development process that could affect the results. However, other

authors verified the implementation. Another potential threat is related to the timing de-

viation in the measurements. To limit this, the experiment was repeated 10 times for 30

seconds each, and the values were averaged.

External Validity: Regarding the case study, we have used a small system benchmark;

however, all the design principles remain the same for arbitrary sizes. The performance

evaluation must be assumed in the context of a small system limiting the perspective on

sample data access operations, not involving complex business logic or data routings.

The motivation of the study is not to derive exact costs but to draw the relative difference

between the two considered approaches, and the findings render themselves significant.

Conclusion Validity: We minimized the risk of author bias in the study by eliminating
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any potential mechanisms that could influence the performance of the two cloud models.

Furthermore, we employed a small system with two implementations to compare the

performance and costs of two cloud design approaches. As a result, our study findings

demonstrate a substantial cost difference and a noticeable performance variation as the

number of users increases.
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7. CONCLUSION

The goal of this thesis was to answer the two questions on the performance and costs

of microservices vs serverless functions. The tests and analysis carried out concluded

that in the case of a simple event-driven application that serverless FaaS perform better

after initial cold starts and cost less to maintain than microservices on an IaaS system.

Therefore the recommendation for businesses looking to reduce costs and improve per-

formance is to use serverless solutions. To achieve these results, we used the demo

application to develop a microservices solution and a serverless solution. From there we

used mock user requests at different quantities of concurrent users to test the response

times of the two systems and compare the medians of the two. Then the costs from

running the tests were applied to a model in order to make them compatible.

In future, the methodology could be expanded to include more configurations of the two

systems at different tiers offered by the cloud vendor. In addition, more cloud platforms

could be included to give insight to any peculiarities present in the vendor used that could

influence the results. Changes made to the demo application were done to ease the

deployment and the original functionality was kept intact as much as possible.

In conclusion, no major issues were faced with the deployment of either system or in the

development of models to analyse the data. The two research questions that were set at

the start of this work were answered in a satisfactory manner.
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