
Python API for Kactus2 IP-XACT tool

Esko Pekkarinen, Mikko Teuho, Timo Hämäläinen

SoC Design Group, Computing Sciences

Tampere University

Tampere, Finland

{esko.pekkarinen, mikko.teuho, timo.hamalainen}@tuni.fi

Abstract— System-on-chip design is highly reliant on efficient

tooling and commonly agreed standards. IP-XACT is the de-facto

industry standard for exchanging design data, yet tool flows fail to

fully leverage the information within. We present a Python

application programming interface for Kactus2, an open-source

IP-XACT design tool to improve the utilization of the standard in

tool flows. The Python programming language is well understood,

fast to develop and easy to interface with which motivated the

language choice. We demonstrate the API applicability in a use

case as a part of a recently taped-out System-on-Chip ASIC

implementation.

Keywords—IP-XACT; Python; Application programming

interface; Kactus2; Tool flow

I. INTRODUCTION

Extensive reuse of Intellectual Properties (IPs) and efficient
tool flows fuel modern System-on-Chip (SoC) design. The IP-
XACT standard [1] is designed to ease the integration of IPs by
providing metadata on the IP interface and design structure. In
practice, providing the IP-XACT description as part of the IP
delivery means extra effort which pays off later when the IP is
reused. In the worst case, the IP-XACT needs to be manually
created based on the specification and the implementation at the
end of the IP development. On the flip side, if the IP-XACT
description is available early, it can improve communication and
boost productivity e.g. through code generation tools.

Kactus2 [2] is the most widely used open-source IP-XACT
tool developed since year 2011. The objective has been much
better user experience compared to the standard level of
Electronic Design Automation (EDA) tools. This has been
achieved by clear Graphical User Interface (GUI) and providing
immediate checking and feedback to the user while editing the
designs and components. Kactus2 also hides the inherent
complexity of IP-XACT and removes the need to view and edit
IP-XACT eXtensible Markup Language (XML) as text.
Extensive generators provide RTL for synthesis and C output for
SW development. Due to these features Kactus2 has been
deployed in hundreds of companies, and the tool is downloaded
on average 100 times per month over the years.

However, there is an increasing demand for improved
automation. The GUI provides visual clues for easy
understanding of large design structures, but for repetitive tasks
the use is cumbersome and does not automate well. Kactus2 has
generators, which can be used to address some of the challenge,
but their creation requires expertise and still they are launched
from the GUI. For batch jobs affecting the design structure, a
Command-Line Interface (CLI) or an option to run pre-
made

scripts is a better solution. Our goal is to combine the good GUI
features with the CLI use. The most important goal is to utilize
the IP-XACT data model and error checkers that are already
implemented in Kactus2 so that the CLI will not diverge to a
new independent tool like in many related works. We consider
it very important to strictly conform to the IP-XACT standard
for long-term design compatibility.

The main contribution of this work is the development of a
Python Application Programming Interface (API) that is
integrated into the Kactus2 tool. There are two main
requirements: First, the user must be able to use Python
programming language to read and modify the IP-XACT data.
Secondly, the Python scripts must be executable both using the
GUI and on the command line. Having a GUI allows the user to
create, modify and run the scripts interactively while also
viewing with the visual design. On the other hand, ready scripts
and repetitive runs are more convenient to run in non-interactive
mode using the CLI.

The work presented in this paper is part of the SoC Hub
project [3], a high-impact collaborative initiative for boosting
SoC design competence. The project ambition is to design and
tape-out an Application Specific Integrated Circuit (ASIC)
every year for three consecutive years to demonstrate fast and
efficient design process. In designing the first chip, IP-XACT
was mainly used to capture the memory maps which, together
with Kactus2 generators, provided a significant amount of
production-ready software code for e.g., peripheral access. In
the second, currently ongoing chip design the presented work
will be used also for architectural design and RTL generation.

This paper is organized as follows: Section II explains the
need and rationale for the proposed Python interface along with
existing solutions. Section III shows how the work fits in a
modern SoC design flow. Section IV presents the technical
implementation and Section V demonstrate the use in a practical
use case. Section VI evaluates the applicability of the work.
Last, Section VII summarizes the work and discusses future
work.

II. RATIONALE AND RELATED WORK

Most EDA tool APIs utilize the Tool Command Language
(Tcl) which can be used from the command line and/or a console
in the GUI. Typically, the tools have a feature to store the user
actions as a sequence of commands in a script file which can be
used to reproduce the work later. While commercial tools use
almost exclusively Tcl, individual point tools and open-source
projects seem to prefer Python. Notably, Python modules do not

toikai
Cross-Out

need a separate API as they can be used directly from another
module, which reduces the development effort. The popularity
of Python is further motivated by a massive selection of freely
available modules.

Python is well understood by SW developers and a lot of
effort has been put to extend it to cover also HW design.
MyHDL [4] and SysPy [5] are good examples of this. In [6] an
extensive Python-based framework is proposed for generating
targeted domain specific languages for SoC design. The
metamodeling combined with configurability and automation
serve development for various target platforms with increased
productivity. While these models are well-suited for their
intended use, they are non-standardized and thus tightly coupled
with the framework.

Creating a tool flow, i.e., binding together a set of tools and
handing the design data between them is a complex task. Tools
have their own APIs, and the data exchange means, including
formats, must be agreed upon. Simulation, FPGA and ASIC are
all very different target platforms, so all require specific tools
and domain expertise. ASIC design is further complicated by the
target technology dependent libraries and the real-world
physical constraints of the circuit. Initiatives like the
OpenROAD project [7] have emerged to lower this very high
entry threshold for an ASIC design. The objective of
OpenROAD is to bind open-source tools into a fast, RTL-to-
GDS tool chain requiring no human interaction to lower the cost
and expertise requirements for ASIC production.

The goal of this work is not to create a full tool flow, but to
enable the use of IP-XACT as an essential part in tool flows. The
IP-XACT standard defines the XML format for describing the
IP design data which serves as the single source of information
in the design flow. The standard also defines the Tight Generator
Interface (TGI) which describes the means for accessing the data
in any standard-compliant tool with Simple Object Access
Protocol (SOAP). Alternatively, Python modules such as
minidom and ElementTree can be used to read XML into
Python structures. However, similar to TGI, they only give
access to the data and require detailed understanding of the IP-
XACT structure, e.g. whether a given property is an XML
element or an attribute. Having access to the data is mandatory,
but alone it is not enough. The value of EDA tools is that they
provide more than just editing capabilities in form of validity
checkers, code generators, and project file management, to name
a few. These functions are heavily used in automated tool flows
and therefore need to be available with an API for repeated runs.

Kactus2 is an open-source design tool written in C++ and
utilizing the Qt libraries. Its functionality can be extended with
plugins that currently offer RTL import, generation, and file
dependency analysis capabilities. However, developing C++
plugins for small, dedicated tasks on-demand is not flexible and
fast enough to be considered efficient. Therefore, we propose a
Python API for Kactus2 which gives access to the IP-XACT
design data and the existing tool functions, including plugins.
This retains Kactus2 as the main application while Python
becomes the enabler to create customizable tasks and tool flows.

The main technical challenge is data incompatibility.
Whenever a language boundary is crossed within an application
(or between applications), the exchanged data must be

transformed to be processable by the target. Most of the
incompatibility is caused by difference in data representation,
i.e. data types. Existing solutions like Qt for Python [8] and PyQt
[9] provide bindings for Python to Qt libraries (C++), but both
expect Python to run as the main application. For the reverse,
the Python interpreter must be embedded in the application.
QConsole [10], PythonQt [11] and pyqtconsole [12] were all
considered for this work but rejected for their restrictive
licensing, difficult extendibility, and lack of features,
respectively.

 We address the language incompatibility by using
Simplified Wrapper and Interface Generator (SWIG) [13]. It
connects applications written in C and C++ with a variety of
other programming languages including Python and Tcl. The
input to SWIG is an interface file that identifies which data and
functions need to be accessible from the target language. SWIG
then generates the required wrapper code for the data type
conversions and function calls so that similar structure and
functions are available as in the C/C++ code.

To avoid unnecessary duplication, the design data and core
functions such as generator runs are retained inside Kactus2.
While the data can be queried and modified through the API, it
cannot be directly copied to the Python environment. This
design is to prevent synchronization issues between the three
data instances: the original XML file, Kactus2 data, and the
Python copy of the data.

Compared to other tools combining Python and IP-XACT,
the presented work provides a wider set of features thanks to the
existing work in Kactus2. Currently available Python modules
ease the XML reading and writing, but do not directly contribute
to the design activities. Open-source point tools implemented
with Python target only a single task, such as UVM register
model generation with Tanto [14], or utilize only a fraction of
the standard e.g. filesets for IP build and dependency
management in FuseSoc [15]. Commercial IP-XACT tools are
not considered here as they do not use Python but Tcl in their
APIs.

III. SOC DESIGN FLOW WITH PYTHON API

The generalized target SoC design flow is shown in Fig. 1.
In the early design phases, the communication between the
different teams and activities is majorly through information
sharing and documentation. Once the specification and an early
architectural plan with hardware/software division is available,
the design effort is split into sub-systems and further into
individual IPs and modules. Designing the overall system
structure and creating memory maps are in the intended domain
for IP-XACT and designers can benefit from the visual aid of
the Kactus2 GUI (activities marked in blue color). Next, the IP
behavior is implemented in writing the RTL. Later, the IPs are
assembled to compose the whole SoC, and the structural RTL
can be generated from the IP-XACT design. The RTL needs to
be regenerated whenever the design is updated which is an
obvious activity to automate using the Python API (activities
marked in green color). Similarly on the IP level, as the interface
(parameters, bus interfaces, or ports) is changed, the respective
RTL, that is VHDL entity or Verilog module declaration, needs
to be updated.

The software is designed in parallel to the hardware and
depends highly on the agreed register definitions and address
locations. The address spaces and registers in IP-XACT can be
automatically translated into executable format such as C header
files abstracting away the raw physical address locations with
proper register names. The RTL functionality is constantly
verified on IP level and later on (sub-)system level in simulation.
Preferably verification is done also on a Field Programmable
Gate Array (FPGA) device, but it may not always be possible
due to e.g. too large design size. Finally, the verified RTL is run
through a complex ASIC design process and fabricated on
silicon. The detailed activities in simulation, FPGA, and ASIC
design, are omitted as they are not in the scope of this paper.

We identify three different categories where the API is
potentially more convenient than the GUI: component
construction, design construction and output generation.
Component construction is simply inputting the IP-XACT
component details such as ports and parameters from an external
source like importing an existing file. For design construction
the value is in creating large numbers of instances or regular
structure. For example, wiring between components often
follows a regular pattern and is considerably faster to generate
programmatically than by drawing one wire at a time in the
schematic. Lastly, the data in IP-XACT needs to be converted to
different formats for the other tasks such as RTL files for
simulation. This file generation is likely to occur often and thus
convenient to run as a script on the CLI e.g. as part of the
simulation setup.

Most importantly, the API must be able to query and modify
the IP-XACT data in Kactus2. This is the enabler for all of the
three categories. Most IP-XACT items must have a unique name
within the data structure, so access to the data is handled
primarily with the item name as identifier. As an example,
changing a parameter is done with a function call using the
parameter name and the new value as arguments. Where name
cannot be used to identify the item, the item index, i.e. the order

number within the containing element, is used instead. Port
maps, for example, do not have a name, and while they pair
together a logical port on a bus and a physical port in a
component using their respective names, neither name can
unambiguously identify the port map, so indexing is used.

IV. C++ PYTHON INTEGRATION

The structure of the created API and the related components
are shown in Fig. 2. The main component, PythonAPI, was first
written in C++. Using the functions in KactusAPI namespace, it
provides the access to the Kactus2 IP-XACT data objects
(denoted as Models in Fig. 2.). Next, SWIG was run for
PythonAPI and the SWIG interface file (denoted as file suffix .i)
to generate the Python wrapper which functions like any other
Python module and can be imported. It provides all the same
functions as the C++ implementation but can be invoked from
Python code. Finally, the Kactus2 CLI and GUI were connected
to the Python interpreter to allow the user to input Python
commands while running Kactus2.

Internally Kactus2 stores the IP-XACT data as C++ objects
that map one-to-one with the IP-XACT structure. Wrapping the
data models with SWIG would force the access logic and all
error checking to be on the Python side thus duplicating the work
already done in Kactus2. Instead, we created 18 interface classes
for reading and modifying the data objects in C++. The
interfaces use only standard library types in their function
arguments and return values, thus removing the dependency to
the data types in the Qt libraries required by the internal objects.
Then, we ran SWIG wrapper generation for the interface classes.
Error checking and access details are now done behind the
interfaces thus removing the extra work in every Python script
using the data.

KactusAPI also has functions for running plugins that can be
used without input from the GUI. Kactus2 supports three kinds
of plugins: import plugins, source analyzers and generators.
Import plugins are a perfect match for component construction
since their intended use is to parse a given file and add data in
the target component. Source analyzers search for file
dependencies which does not match with the any of the intended
API use. Generator plugins cover output generation and already
provide e.g. VHDL and Verilog format. Therefore, the
applicable import and generator plugins are included in the API.

Fig. 1. The targeted SoC design flow.

Fig. 2. Structure of the proposed Python application programming

interface to Kactus2.

The official Python installation comes with a C/C++ API
which allows another application to embed the interpreter i.e. to
control the command execution. The main application is then
responsible for the initialization and providing the commands.
By default, the input to Python interpreter is read from the
application standard input interactively and all the output is
written to the standard output. When Kactus2 is run on the
command-line, this default behavior is applied. If only a script
file is given as input, the application is closed after the
commands have been executed. When the Kactus2 GUI is open,
the interpreter operation is always interactive. One GUI element
mimics a command-line console that waits for the user input,
parses and executes the entered command(s), and displays the
output. An extension to Python was implemented to bypass the
default input/output behavior and instead connect the GUI
console with the interpreter. At Kactus2 startup the extension
class named IOCatcher is loaded before starting the interpreter.
Once started, the standard input and output instances are
replaced with instances of IOCatcher. Now any line entered in
the console is input for the interpreter and all output is appended
in the console for the user to see.

In total 20 C++ source files and 4 SWIG interface files were
added to embed the Python interpreter and create the API in
Kactus2. The API can be further extended by implementing the
functionality in PythonAPI class with C++, running SWIG and
compiling the PythonAPI library. If new interface classes for IP-
XACT are added, they need to be listed as includes in the SWIG
interface file before rerunning SWIG and recompiling the API.

V. USE CASE: IP-XACT REGISTER GENERATION

Our use case shows component construction with the help of
the implemented API. Python was used to create register
definitions in IP-XACT based on a pre-existing C header file.
NVDLA [16] is a deep learning accelerator by NVIDIA and it
was selected as one of the subsystems for the first, already taped-
out chip in the project. The IP-XACT description was already
available for all but one part of the memory map and the
objective was to fill in the missing set of registers, namely the
CFGROM registers. The header file, 6400 lines in total, has
defines for all the 531 NVDLA registers and the registers can be
identified from the define format.

The created script, 62 lines in total, reads the header file and
matches each line with a regular expression to determine if the
define matches a CFGROM register. When a matching line is
found, the register name and the address offset are captured. An
IP-XACT register is then created with the captured name and
offset in a CFGROM address block in the target component.
Each register is assumed 32 bits wide and to have read-only
access. A matching IP-XACT field is created in the register to
satisfy the requirement for each register to contain at least one
field. At the end, the component is written in an XML format
and saved on the disk.

Running the script yields 104 registers with identifying
names and correct offsets along with matching bit fields. Our
approximation is that creating the definitions manually in
Kactus2 GUI would take a minimum of 45 minutes compared to
20 minutes of writing the script for the task. We acknowledge
that the presented use case is rather specific but note that need
for quickly customizing data read and formatting is very real in

SoC design projects. The use case serves to demonstrate the
applicability of the presented Python interface for an ad-hoc
design activity. Scripting provides flexibility and the created
script could be easily changed to create all the NVDLA registers
instead of the subset needed in this case.

VI. EVALUATION

Table I displays the number of elements and attributes
covered in Kactus2 and the presented Python interface. The
baseline data is collected from the IP-XACT standard. The
column labeled Kactus2 GUI is for items that are editable in the
editors using the GUI and the Python API column shows the
items that are editable using the Python interface. Each number
covers all the descendant elements and their attributes. For
example, the component includes all the items of memory maps,
address spaces and bus interfaces together with their child
elements, grand-child elements and so on. In case of self-
composition, e.g. register files within register files, only the first
occurrence is counted.

Of the eight top level elements, Abstractor and
GeneratorChain are not included in Kactus2 at all, so they are
missing from the API as well. A lot of the other missing items
in both Kactus2 GUI and the API are various parameterizations
of individual element groups. For example, registers and fields
within memory maps have their own parameter group (58 items
each) but they may also reference the component parameters,
making the parameter group mostly redundant.

Despite the low coverage, the API was already used in
designing a SoC and proven beneficial for the design flow.
Presently it is mostly suited for component and design
construction which corresponds with the core scope of the IP-
XACT standard. In designing the first chip, the API was
demonstrated to add register elements in an IP-XACT
component. In the next chip design, the API use will be
expanded and used to automatically generate the structural RTL
whenever the IP-XACT description is updated. With the current
design, more element coverage will be straightforward to add
with SWIG later.

TABLE I. IP-XACT ITEM COVERAGE

IP-XACT top-level

element

Item count

IP-XACT

standard
Kactus2 GUI Python API

Component 7724 809 315

Design 119 57 23

DesignConfiguration 85 14 0

BusDefinition 59 19 0

AbstractionDefinition 278 84 0

Catalog 87 70 0

Abstractor 455 0 0

GeneratorChain 110 0 0

Total 8917 1053 338

VII. CONCLUSIONS

We have presented a Python API implementation for
Kactus2, an open-source IP-XACT design tool to enable easier
extendibility and ad-hoc jobs for SoC design. It combines the
visual aids of the graphical user interface in Kactus2 with the
flexibility and rapid development of Python scripts. The API
provides access to the IP-XACT elements, solidifying IP-XACT
as the single source of information in a SoC design flow, and
can leverage existing Kactus2 features such as generator plugins
for batch jobs.

The Python API continues to be developed and has access to
the essential elements already editable in the Kactus2 GUI.
Currently, it already benefits SoC design in component
construction, as demonstrated in our use case, and output
generation. Future work will extend the API to access even more
of the Kactus2 features and improve the coverage of the IP-
XACT elements. A long-term goal is to cover all the same
elements that are editable in the Kactus2 GUI. To make sure the
API benefits relevant activities in SoC design, the development
will be strongly guided by the needs of a large SoC project
targeting taped-out ASIC implementations.

REFERENCES

[1] IEEE, "IEEE Standard for IP-XACT, Standard Structure for Packaging,

Integrating, and Reusing IP within Tool Flows" (Revision of IEEE Std
1685-2009), Std. IEEE Std 1685-2014, 2014.

[2] A. Kamppi, E. Pekkarinen, J. Virtanen, J. M. Määttä, J. Järvinen, L.

Matilainen, M. Teuho, T. D. Hämäläinen, "Kactus2: A graphical EDA
tool built on the IP-XACT standard", The Journal of Open Source

Software (JOSS). vol. 2, no. 13, May 2017,
https://doi.org/10.21105/joss.0015M

[3] System-on-Chip (SoC) Hub, https://sochub.fi/, 2022.

[4] J. Decaluwe, "MyHDL Manual Release 0.10.0", 2018.

[5] E. Logaras and E. S. Manolakos, "SysPy: using Python for processor-
centric SoC design", 2010 17th IEEE International Conference on
Electronics, Circuits and Systems, 2010, pp. 762-765, doi:
10.1109/ICECS.2010.5724624.

[6] Z. Han, K. Devarajegowda, M. Werner and W. Ecker, "Towards a
Python-Based One Language Ecosystem for Embedded Systems
Automation", 2019 IEEE Nordic Circuits and Systems Conference
(NORCAS): NORCHIP and International Symposium of System-on-
Chip (SoC), 2019, pp. 1-7, doi: 10.1109/NORCHIP.2019.8906949.

[7] T. Ajayi, D. Blaauw, T.-B. Chan, C.-K. Cheng, V. A. Chhabria, D. K.
Choo, M. Coltella, S. Dobre, R. Dreslinski, M. Fogaça, S. Hashemi, A.
Hosny, A. B. Kahng, M. Kim, J. Li, Z. Liang, U. Mallappa, P. Penzes, G.
Pradipta, S. Reda, A. Rovinski, K. Samadi, S. S. Sapatnekar, L. Saul, C.
Sechen, V. Srinivas, W. Swartz, D. Sylvester, D. Urquhart, L. Wang, M.
Woo and B. Xu, "OpenROAD: Toward a Self-Driving, Open-Source
Digital Layout Implementation Tool Chain", Proc. Government
Microcircuit Applications and Critical Technology Conference, 2019, pp.
1105-1110.

[8] The Qt Company, Qt for Python, 2022, [Online], Available:
https://www.qt.io/qt-for-python.

[9] Riverbank Computing Limited, PyQt home page, 2022, [Online],
Available: https://riverbankcomputing.com/software/pyqt/intro.

[10] H. Bdioui, M. Nuessle, U. Ring, Y. Oh, I. Malinovskiy, QtConsole
widget, 2016, [Online], Available: https://github.com/uglide/QtConsole

[11] MeVisLab, PythonQt, 2010, [Online], Available:
https://github.com/MeVisLab/pythonqt

[12] M. Oskarsson, pyqtconsole, 2021, [Online], Available:
https://github.com/pyqtconsole/pyqtconsole

[13] Simplified Wrapper and Interface Generator, 1996, [Online], Available:
http://www.swig.org/

[14] Tanto, 2012, [Online], Available: https://bitbucket.org/verilab/tanto/

[15] O. Kindgren, "A Scalable Approach to IP Management with FuseSoC",
1st Workshop on Open-Source Design Automation (OSDA), March
2019, Florence, Italy

[16] NVIDIA, "NVIDIA deep learning accelerator (NVDLA)", 2018,
[Online], Available: http://nvdla.org/index.html

	I. Introduction
	II. Rationale and Related Work
	III. SoC Design Flow with Python API
	IV. C++ Python Integration
	V. Use case: IP-XACT Register generation
	VI. Evaluation
	VII. Conclusions
	References

