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Abstract— System-on-chip design is highly reliant on efficient 

tooling and commonly agreed standards. IP-XACT is the de-facto 

industry standard for exchanging design data, yet tool flows fail to 

fully leverage the information within. We present a Python 

application programming interface for Kactus2, an open-source 

IP-XACT design tool to improve the utilization of the standard in 

tool flows. The Python programming language is well understood, 

fast to develop and easy to interface with which motivated the 

language choice. We demonstrate the API applicability in a use 

case as a part of a recently taped-out System-on-Chip ASIC 

implementation. 
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I. INTRODUCTION

Extensive reuse of Intellectual Properties (IPs) and efficient 
tool flows fuel modern System-on-Chip (SoC) design. The IP-
XACT standard [1] is designed to ease the integration of IPs by 
providing metadata on the IP interface and design structure. In 
practice, providing the IP-XACT description as part of the IP 
delivery means extra effort which pays off later when the IP is 
reused. In the worst case, the IP-XACT needs to be manually 
created based on the specification and the implementation at the 
end of the IP development. On the flip side, if the IP-XACT 
description is available early, it can improve communication and 
boost productivity e.g. through code generation tools. 

Kactus2 [2] is the most widely used open-source IP-XACT 
tool developed since year 2011. The objective has been much 
better user experience compared to the standard level of 
Electronic Design Automation (EDA) tools. This has been 
achieved by clear Graphical User Interface (GUI) and providing 
immediate checking and feedback to the user while editing the 
designs and components. Kactus2 also hides the inherent 
complexity of IP-XACT and removes the need to view and edit 
IP-XACT eXtensible Markup Language (XML) as text. 
Extensive generators provide RTL for synthesis and C output for 
SW development. Due to these features Kactus2 has been 
deployed in hundreds of companies, and the tool is downloaded 
on average 100 times per month over the years. 

However, there is an increasing demand for improved 
automation. The GUI provides visual clues for easy 
understanding of large design structures, but for repetitive tasks 
the use is cumbersome and does not automate well. Kactus2 has 
generators, which can be used to address some of the challenge, 
but their creation requires expertise and still they are launched 
from the GUI. For batch jobs affecting the design structure, a 
Command-Line Interface (CLI) or an option to run pre-
made 

scripts is a better solution. Our goal is to combine the good GUI 
features with the CLI use. The most important goal is to utilize 
the IP-XACT data model and error checkers that are already 
implemented in Kactus2 so that the CLI will not diverge to a 
new independent tool like in many related works. We consider 
it very important to strictly conform to the IP-XACT standard 
for long-term design compatibility.   

The main contribution of this work is the development of a 
Python Application Programming Interface (API) that is 
integrated into the Kactus2 tool. There are two main 
requirements: First, the user must be able to use Python 
programming language to read and modify the IP-XACT data. 
Secondly, the Python scripts must be executable both using the 
GUI and on the command line. Having a GUI allows the user to 
create, modify and run the scripts interactively while also 
viewing with the visual design. On the other hand, ready scripts 
and repetitive runs are more convenient to run in non-interactive 
mode using the CLI. 

The work presented in this paper is part of the SoC Hub 
project [3], a high-impact collaborative initiative for boosting 
SoC design competence. The project ambition is to design and 
tape-out an Application Specific Integrated Circuit (ASIC) 
every year for three consecutive years to demonstrate fast and 
efficient design process. In designing the first chip, IP-XACT 
was mainly used to capture the memory maps which, together 
with Kactus2 generators, provided a significant amount of 
production-ready software code for e.g., peripheral access. In 
the second, currently ongoing chip design the presented work 
will be used also for architectural design and RTL generation. 

This paper is organized as follows: Section II explains the 
need and rationale for the proposed Python interface along with 
existing solutions. Section III shows how the work fits in a 
modern SoC design flow. Section IV presents the technical 
implementation and Section V demonstrate the use in a practical 
use case. Section VI evaluates the applicability of the work. 
Last, Section VII summarizes the work and discusses future 
work. 

II. RATIONALE AND RELATED WORK

Most EDA tool APIs utilize the Tool Command Language 
(Tcl) which can be used from the command line and/or a console 
in the GUI. Typically, the tools have a feature to store the user 
actions as a sequence of commands in a script file which can be 
used to reproduce the work later. While commercial tools use 
almost exclusively Tcl, individual point tools and open-source 
projects seem to prefer Python. Notably, Python modules do not 
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need a separate API as they can be used directly from another 
module, which reduces the development effort. The popularity 
of Python is further motivated by a massive selection of freely 
available modules. 

Python is well understood by SW developers and a lot of 
effort has been put to extend it to cover also HW design. 
MyHDL [4] and SysPy [5] are good examples of this. In [6] an 
extensive Python-based framework is proposed for generating 
targeted domain specific languages for SoC design. The 
metamodeling combined with configurability and automation 
serve development for various target platforms with increased 
productivity. While these models are well-suited for their 
intended use, they are non-standardized and thus tightly coupled 
with the framework. 

Creating a tool flow, i.e., binding together a set of tools and 
handing the design data between them is a complex task. Tools 
have their own APIs, and the data exchange means, including 
formats, must be agreed upon. Simulation, FPGA and ASIC are 
all very different target platforms, so all require specific tools 
and domain expertise. ASIC design is further complicated by the 
target technology dependent libraries and the real-world 
physical constraints of the circuit. Initiatives like the 
OpenROAD project [7] have emerged to lower this very high 
entry threshold for an ASIC design. The objective of 
OpenROAD is to bind open-source tools into a fast, RTL-to-
GDS tool chain requiring no human interaction to lower the cost 
and expertise requirements for ASIC production. 

The goal of this work is not to create a full tool flow, but to 
enable the use of IP-XACT as an essential part in tool flows. The 
IP-XACT standard defines the XML format for describing the 
IP design data which serves as the single source of information 
in the design flow. The standard also defines the Tight Generator 
Interface (TGI) which describes the means for accessing the data 
in any standard-compliant tool with Simple Object Access 
Protocol (SOAP). Alternatively, Python modules such as 
minidom and ElementTree can be used to read XML into 
Python structures. However, similar to TGI, they only give 
access to the data and require detailed understanding of the IP-
XACT structure, e.g. whether a given property is an XML 
element or an attribute. Having access to the data is mandatory, 
but alone it is not enough. The value of EDA tools is that they 
provide more than just editing capabilities in form of validity 
checkers, code generators, and project file management, to name 
a few. These functions are heavily used in automated tool flows 
and therefore need to be available with an API for repeated runs. 

Kactus2 is an open-source design tool written in C++ and 
utilizing the Qt libraries. Its functionality can be extended with 
plugins that currently offer RTL import, generation, and file 
dependency analysis capabilities. However, developing C++ 
plugins for small, dedicated tasks on-demand is not flexible and 
fast enough to be considered efficient. Therefore, we propose a 
Python API for Kactus2 which gives access to the IP-XACT 
design data and the existing tool functions, including plugins. 
This retains Kactus2 as the main application while Python 
becomes the enabler to create customizable tasks and tool flows. 

The main technical challenge is data incompatibility. 
Whenever a language boundary is crossed within an application 
(or between applications), the exchanged data must be 

transformed to be processable by the target. Most of the 
incompatibility is caused by difference in data representation, 
i.e. data types. Existing solutions like Qt for Python [8] and PyQt
[9] provide bindings for Python to Qt libraries (C++), but both
expect Python to run as the main application. For the reverse,
the Python interpreter must be embedded in the application.
QConsole [10], PythonQt [11] and pyqtconsole [12] were all
considered for this work but rejected for their restrictive
licensing, difficult extendibility, and lack of features,
respectively.

 We address the language incompatibility by using 
Simplified Wrapper and Interface Generator (SWIG) [13]. It 
connects applications written in C and C++ with a variety of 
other programming languages including Python and Tcl. The 
input to SWIG is an interface file that identifies which data and 
functions need to be accessible from the target language. SWIG 
then generates the required wrapper code for the data type 
conversions and function calls so that similar structure and 
functions are available as in the C/C++ code. 

To avoid unnecessary duplication, the design data and core 
functions such as generator runs are retained inside Kactus2. 
While the data can be queried and modified through the API, it 
cannot be directly copied to the Python environment. This 
design is to prevent synchronization issues between the three 
data instances: the original XML file, Kactus2 data, and the 
Python copy of the data. 

Compared to other tools combining Python and IP-XACT, 
the presented work provides a wider set of features thanks to the 
existing work in Kactus2. Currently available Python modules 
ease the XML reading and writing, but do not directly contribute 
to the design activities. Open-source point tools implemented 
with Python target only a single task, such as UVM register 
model generation with Tanto [14], or utilize only a fraction of 
the standard e.g. filesets for IP build and dependency 
management in FuseSoc [15]. Commercial IP-XACT tools are 
not considered here as they do not use Python but Tcl in their 
APIs. 

III. SOC DESIGN FLOW WITH PYTHON API

The generalized target SoC design flow is shown in Fig. 1. 
In the early design phases, the communication between the 
different teams and activities is majorly through information 
sharing and documentation. Once the specification and an early 
architectural plan with hardware/software division is available, 
the design effort is split into sub-systems and further into 
individual IPs and modules. Designing the overall system 
structure and creating memory maps are in the intended domain 
for IP-XACT and designers can benefit from the visual aid of 
the Kactus2 GUI (activities marked in blue color). Next, the IP 
behavior is implemented in writing the RTL. Later, the IPs are 
assembled to compose the whole SoC, and the structural RTL 
can be generated from the IP-XACT design. The RTL needs to 
be regenerated whenever the design is updated which is an 
obvious activity to automate using the Python API (activities 
marked in green color). Similarly on the IP level, as the interface 
(parameters, bus interfaces, or ports) is changed, the respective 
RTL, that is VHDL entity or Verilog module declaration, needs 
to be updated. 



The software is designed in parallel to the hardware and 
depends highly on the agreed register definitions and address 
locations. The address spaces and registers in IP-XACT can be 
automatically translated into executable format such as C header 
files abstracting away the raw physical address locations with 
proper register names. The RTL functionality is constantly 
verified on IP level and later on (sub-)system level in simulation. 
Preferably verification is done also on a Field Programmable 
Gate Array (FPGA) device, but it may not always be possible 
due to e.g. too large design size. Finally, the verified RTL is run 
through a complex ASIC design process and fabricated on 
silicon. The detailed activities in simulation, FPGA, and ASIC 
design, are omitted as they are not in the scope of this paper. 

We identify three different categories where the API is 
potentially more convenient than the GUI: component 
construction, design construction and output generation. 
Component construction is simply inputting the IP-XACT 
component details such as ports and parameters from an external 
source like importing an existing file. For design construction 
the value is in creating large numbers of instances or regular 
structure. For example, wiring between components often 
follows a regular pattern and is considerably faster to generate 
programmatically than by drawing one wire at a time in the 
schematic. Lastly, the data in IP-XACT needs to be converted to 
different formats for the other tasks such as RTL files for 
simulation. This file generation is likely to occur often and thus 
convenient to run as a script on the CLI e.g. as part of the 
simulation setup. 

Most importantly, the API must be able to query and modify 
the IP-XACT data in Kactus2. This is the enabler for all of the 
three categories. Most IP-XACT items must have a unique name 
within the data structure, so access to the data is handled 
primarily with the item name as identifier. As an example, 
changing a parameter is done with a function call using the 
parameter name and the new value as arguments. Where name 
cannot be used to identify the item, the item index, i.e. the order 

number within the containing element, is used instead. Port 
maps, for example, do not have a name, and while they pair 
together a logical port on a bus and a physical port in a 
component using their respective names, neither name can 
unambiguously identify the port map, so indexing is used. 

IV. C++ PYTHON INTEGRATION 

The structure of the created API and the related components 
are shown in Fig. 2. The main component, PythonAPI, was first 
written in C++. Using the functions in KactusAPI namespace, it 
provides the access to the Kactus2 IP-XACT data objects 
(denoted as Models in Fig. 2.). Next, SWIG was run for 
PythonAPI and the SWIG interface file (denoted as file suffix .i) 
to generate the Python wrapper which functions like any other 
Python module and can be imported. It provides all the same 
functions as the C++ implementation but can be invoked from 
Python code. Finally, the Kactus2 CLI and GUI were connected 
to the Python interpreter to allow the user to input Python 
commands while running Kactus2.  

Internally Kactus2 stores the IP-XACT data as C++ objects 
that map one-to-one with the IP-XACT structure. Wrapping the 
data models with SWIG would force the access logic and all 
error checking to be on the Python side thus duplicating the work 
already done in Kactus2. Instead, we created 18 interface classes 
for reading and modifying the data objects in C++. The 
interfaces use only standard library types in their function 
arguments and return values, thus removing the dependency to 
the data types in the Qt libraries required by the internal objects. 
Then, we ran SWIG wrapper generation for the interface classes. 
Error checking and access details are now done behind the 
interfaces thus removing the extra work in every Python script 
using the data. 

KactusAPI also has functions for running plugins that can be 
used without input from the GUI. Kactus2 supports three kinds 
of plugins: import plugins, source analyzers and generators. 
Import plugins are a perfect match for component construction 
since their intended use is to parse a given file and add data in 
the target component. Source analyzers search for file 
dependencies which does not match with the any of the intended 
API use. Generator plugins cover output generation and already 
provide e.g. VHDL and Verilog format. Therefore, the 
applicable import and generator plugins are included in the API. 

 

Fig. 1. The targeted SoC design flow. 

 

Fig. 2. Structure of the proposed Python application programming 

interface to Kactus2. 



The official Python installation comes with a C/C++ API 
which allows another application to embed the interpreter i.e. to 
control the command execution. The main application is then 
responsible for the initialization and providing the commands. 
By default, the input to Python interpreter is read from the 
application standard input interactively and all the output is 
written to the standard output. When Kactus2 is run on the 
command-line, this default behavior is applied. If only a script 
file is given as input, the application is closed after the 
commands have been executed. When the Kactus2 GUI is open, 
the interpreter operation is always interactive. One GUI element 
mimics a command-line console that waits for the user input, 
parses and executes the entered command(s), and displays the 
output. An extension to Python was implemented to bypass the 
default input/output behavior and instead connect the GUI 
console with the interpreter. At Kactus2 startup the extension 
class named IOCatcher is loaded before starting the interpreter. 
Once started, the standard input and output instances are 
replaced with instances of IOCatcher. Now any line entered in 
the console is input for the interpreter and all output is appended 
in the console for the user to see. 

In total 20 C++ source files and 4 SWIG interface files were 
added to embed the Python interpreter and create the API in 
Kactus2. The API can be further extended by implementing the 
functionality in PythonAPI class with C++, running SWIG and 
compiling the PythonAPI library. If new interface classes for IP-
XACT are added, they need to be listed as includes in the SWIG 
interface file before rerunning SWIG and recompiling the API. 

V. USE CASE: IP-XACT REGISTER GENERATION 

Our use case shows component construction with the help of 
the implemented API. Python was used to create register 
definitions in IP-XACT based on a pre-existing C header file. 
NVDLA [16] is a deep learning accelerator by NVIDIA and it 
was selected as one of the subsystems for the first, already taped-
out chip in the project. The IP-XACT description was already 
available for all but one part of the memory map and the 
objective was to fill in the missing set of registers, namely the 
CFGROM registers. The header file, 6400 lines in total, has 
defines for all the 531 NVDLA registers and the registers can be 
identified from the define format. 

The created script, 62 lines in total, reads the header file and 
matches each line with a regular expression to determine if the 
define matches a CFGROM register. When a matching line is 
found, the register name and the address offset are captured. An 
IP-XACT register is then created with the captured name and 
offset in a CFGROM address block in the target component. 
Each register is assumed 32 bits wide and to have read-only 
access. A matching IP-XACT field is created in the register to 
satisfy the requirement for each register to contain at least one 
field. At the end, the component is written in an XML format 
and saved on the disk. 

Running the script yields 104 registers with identifying 
names and correct offsets along with matching bit fields. Our 
approximation is that creating the definitions manually in 
Kactus2 GUI would take a minimum of 45 minutes compared to 
20 minutes of writing the script for the task. We acknowledge 
that the presented use case is rather specific but note that need 
for quickly customizing data read and formatting is very real in 

SoC design projects. The use case serves to demonstrate the 
applicability of the presented Python interface for an ad-hoc 
design activity. Scripting provides flexibility and the created 
script could be easily changed to create all the NVDLA registers 
instead of the subset needed in this case. 

VI. EVALUATION 

Table I displays the number of elements and attributes 
covered in Kactus2 and the presented Python interface. The 
baseline data is collected from the IP-XACT standard. The 
column labeled Kactus2 GUI is for items that are editable in the 
editors using the GUI and the Python API column shows the 
items that are editable using the Python interface. Each number 
covers all the descendant elements and their attributes. For 
example, the component includes all the items of memory maps, 
address spaces and bus interfaces together with their child 
elements, grand-child elements and so on. In case of self-
composition, e.g. register files within register files, only the first 
occurrence is counted. 

Of the eight top level elements, Abstractor and 
GeneratorChain are not included in Kactus2 at all, so they are 
missing from the API as well. A lot of the other missing items 
in both Kactus2 GUI and the API are various parameterizations 
of individual element groups. For example, registers and fields 
within memory maps have their own parameter group (58 items 
each) but they may also reference the component parameters, 
making the parameter group mostly redundant.  

Despite the low coverage, the API was already used in 
designing a SoC and proven beneficial for the design flow. 
Presently it is mostly suited for component and design 
construction which corresponds with the core scope of the IP-
XACT standard. In designing the first chip, the API was 
demonstrated to add register elements in an IP-XACT 
component. In the next chip design, the API use will be 
expanded and used to automatically generate the structural RTL 
whenever the IP-XACT description is updated. With the current 
design, more element coverage will be straightforward to add 
with SWIG later. 

TABLE I.  IP-XACT ITEM COVERAGE 

IP-XACT top-level 

element 

Item count 

IP-XACT 

standard 
Kactus2 GUI Python API 

Component 7724 809 315 

Design 119 57 23 

DesignConfiguration 85 14 0 

BusDefinition 59 19 0 

AbstractionDefinition 278 84 0 

Catalog 87 70 0 

Abstractor 455 0 0 

GeneratorChain 110 0 0 

Total 8917 1053 338 



VII. CONCLUSIONS

We have presented a Python API implementation for 
Kactus2, an open-source IP-XACT design tool to enable easier 
extendibility and ad-hoc jobs for SoC design. It combines the 
visual aids of the graphical user interface in Kactus2 with the 
flexibility and rapid development of Python scripts. The API 
provides access to the IP-XACT elements, solidifying IP-XACT 
as the single source of information in a SoC design flow, and 
can leverage existing Kactus2 features such as generator plugins 
for batch jobs.  

The Python API continues to be developed and has access to 
the essential elements already editable in the Kactus2 GUI. 
Currently, it already benefits SoC design in component 
construction, as demonstrated in our use case, and output 
generation. Future work will extend the API to access even more 
of the Kactus2 features and improve the coverage of the IP-
XACT elements. A long-term goal is to cover all the same 
elements that are editable in the Kactus2 GUI. To make sure the 
API benefits relevant activities in SoC design, the development 
will be strongly guided by the needs of a large SoC project 
targeting taped-out ASIC implementations. 
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