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ABSTRACT 

Bacteria are exposed to changing environments and other stresses, such as 
antibiotics. Some of these events can even be lethal. Their phenotypic adaptations 
to these stresses are driven by internal mechanisms of gene regulation that, therefore 
play a fundamental role in their survivability. The core mechanism of gene regulation 
is arguably the promoter regions. These are DNA sequences that largely determine 
whether a gene is sensitive to specific transcription factors, supercoiling fluctuations, 
and other regulatory factors and events.  

In this thesis, we used Escherichia coli as a model organism to study bacterial 
mechanisms of genome-wide expression regulation during stresses, focusing on the 
promoters in tandem formation. For that, we started by developing a novel method 
to determine single-cell distributions of RNA numbers from flow cytometry data. 
This method can predict the moments of the distribution of the single-cell RNA 
numbers from the moments of the distribution of total fluorescence of cells 
expressing the proteins that the RNAs code for. This greatly facilitates the study of 
transcription dynamics using large numbers of cells as a source of data. 
  
Next, we used a large strain library of tagged genes controlled by tandem promoters. 
From the single-cell distributions of their protein levels under different stress 
conditions, we dissected the main features controlling the kinetics of overlapping 
tandem promoters. Specifically, we identified the distance between start sites and the 
dynamics of the transcription initiation at each promoter, as the main factors.  

Finally, we designed and constructed a strain library of synthetic genes controlled by 
non-overlapping tandem promoters. We used them to validate, by proof of concept, 
that they can be used to engineer genes with predictable dynamics. Moreover, we 
identified a key variable controlling these constructs, namely, the strength of the 
downstream promoter, which acts as the main limiting factor of the overall 
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transcription rate. Overall, this study dissected important regulatory features of 
tandem promoters. The findings facilitate their use as building blocks of future 
synthetic circuits. 
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1 INTRODUCTION 

Bacterial genes are subject to strict regulation (Stoebel, Hokamp, Last, & Dorman, 
2009), in order for the cells to be able to control when a specific gene will be activated 
or repressed. Regulation can also be exerted on the noise in expression rates 
(Elowitz, Levine, Siggia, & Swain, 2002; Kaern, Elston, Blake, & Collins, 2005). 
These evolved regulation mechanisms play a critical role in the ability of cells to carry 
out complex transcriptional programs that make possible their adaptation to stresses 
(Kussell & Leibler, 2005; Stoebel et al., 2009). 

Studies have shown that transcription initiation is a major checkpoint in the process 
of regulating the expression of a gene (Browning & Busby, 2004, 2016; McLeod & 
Johnson, 2001). Several rate-limiting steps occur during transcription initiation (for 
a review see (Häkkinen & Ribeiro, 2016)). The rate of these steps differs with factors 
such as the promoter sequence in general (for a review see (McClure, 1985)), 
promoter specificity to σ factors (Kandavalli, Tran, & Ribeiro, 2016), promoter 
configuration, supercoiling, global regulators, specific transcription factors, among 
others (for a review see (Häkkinen & Ribeiro, 2016)). By tuning each these factors, 
the rate-limiting steps can be controlled, which, in turn, affects both mean and noise 
in  Ribonucleic acid (RNA) levels (Kaern et al., 2005).  

While mean expression levels could be measured using techniques such as northern 
blotting (Alwine, Kemp, & Stark, 1977), quantification of noise in gene expression 
was first made possible by the use of fluorescent proteins and fluorescence 
microscopy (and currently flow-cytometry). The measurements showed how much 
protein numbers can differ even between sister cells (Elowitz et al., 2002; Kaern et 
al., 2005). These methods, along with the presently vast libraries of tagged 
fluorescent proteins and synthetic probes, currently allow the in vivo counting and 
tracking of the majority of natural proteins of Escherichia coli (E. coli) (Baba et al., 
2006; Endesfelder, 2019; Taniguchi et al., 2010; Yu, Xiao, Ren, Lao, & Xie, 2006; 
Zaslaver et al., 2006). There is, however, measurement noise associated with each of 
these techniques that need to be considered, including in flow-cytometry (Steen, 
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1992). For instance, fluorescent proteins can be out of focus. This makes collecting 
precise data difficult, particularly in time-lapse microscopy measurements (Golding, 
Paulsson, Zawilski, & Cox, 2005; Häkkinen & Ribeiro, 2014).   

While several regulatory mechanisms of gene expression have been discovered, the 
ones that are best characterized are those based on transcription factors (TFs), 
including global regulators (GRs) (Razo-Mejia et al., 2018). Meanwhile, there are 
many mechanisms directly embedded in the Deoxyribonucleic acid (DNA) 
sequence, such as pause sequences, closely spaced promoters, and highly 
supercoiling sensitive sequences (Palma et al., 2020; Sneppen et al., 2005). While 
these are known to exist, the quantification of how their specific DNA sequences 
affect the dynamics remains challenging. Importantly, they are likely to play major 
roles, for example, during genome-wide stress responses, potentially differentiating 
the response of their hundreds of downstream genes from that of other genes of E. 

coli. 

Using E. coli as a model organism, this thesis focuses on the investigation of 
promoters’ arrangement in tandem formations as a structural regulatory mechanism 
of gene expression. For this, we subject cells to stresses that include quick changes 
in RNAP levels and antibiotics. We expect that our results will help engineering 
synthetic genetic circuits with kinetics predictable from their structure. 
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2 LITERATURE REVIEW 

2.1 Escherichia coli and its use as a Model Organism 

Escherichia coli (E. coli) (Figure 1), which is a rod-shaped and gram-negative bacterium, 
was discovered by Theodor Escherich (Escherich, 1988) in 1886, and is found in the  
normal gut flora of human beings. A typical E. coli cell measures between 2 and 4 
µm in length and 0.5 to 0.8 µm in width (Volkmer & Heinemann, 2011), and can 
divide once every 30 minutes in optimal conditions.  

There are a number of advantages in using E. coli as a model organism, including 
their simple nutritional requirements, the rapid growth rate, and the ability to survive 
both with and without oxygen. In agreement, E. coli is easy to maintain and breed in 
laboratories. Another advantage is their well-established genetics (Ullmann, 2011). 
For these reasons, E. coli is the most common choice for researchers to study life-
sustaining biological processes in bacteria (Elowitz et al., 2002; Golding et al., 2005; 
Hufnagel, Depas, & Chapman, 2015; Lukačišinová, Fernando, & Bollenbach, 2020; 
Muthukrishnan et al., 2012; Zaslaver et al., 2006). Moreover, its extensive use has 
made possible the development of techniques to genetically clone modified strains 
of E. coli (Lukačišinová et al., 2020) to better understand biological processes and to 
test new concepts using genetic engineering. 
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Figure 1.  E. coli. (A) Image of E. coli cells taken by phase contrast when observed under microscope 
using an 100x objective. (B) An illustration of a cross-section of a small portion of an E. coli cell. 
The cell wall and transmembrane proteins are shown in green. Nucleoid region, DNA, and enzymes 
are shown in yellow, orange, and blue, respectively. The illustration was created by D.S. Goodsell 
(Goodsell, 2012).  

E. coli cells contain a couple of thousands of protein-coding sequences (Blattner et 
al., 1997). It also contains several plasmids in the natural state. These plasmids are 
relatively small DNA sequences that are not located in the chromosome and can 
replicate independently. The plasmids typically carry genes for specialized functions, 
such as antibiotic resistance (Eliasson, Bernander, Dasgupta, & Nordström, 1992; 
Russo & Johnson, 2003). We made use of plasmids to introduce specific genes and 
fluorescent proteins in E. coli cells.  

2.2 Gene Expression Machinery of E. coli 

2.2.1 Promoters  

Commonly, bacterial genes are composed of a promoter, followed by an RNA 
coding region, downstream of the promoter. The promoters are DNA segments to 
which RNAP can bind and initiate transcription at a transcription start site (TSS) 
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(Santos-Zavaleta et al., 2019). Aside from a TSS, promoters also contain operators. 
They can be used by transcription factors (TFs) to regulate transcription rates. 
Usually, TFs bind to the operators to either block (repressor) or stimulate 
transcription (activator). Usually, when a promoter is active, several RNAs copies 
are produced. From each RNA, several proteins are translated.  

We made use of synthetic promoters PLac/ara-1, and PLtetO-1, to control the production 
of RNA target for MS2-GFP, in order to estimate how their number in single cells 
relates to corresponding single cell protein numbers. For this, we used the same 
promoters to control the expression of fluorescent proteins. The first promoter, 
PLac/ara-1, is the result of combining the operator regions of the Arabinose promoter 
with the transcription start site and operator regions of the Lac promoter (R. Lutz 
& Bujard, 1997).  

Meanwhile, we studied natural tandem promoters, using the YFP strain library 
(Taniguchi et al., 2010), that includes 102 strains where YFP is expressed by a tandem 
promoter. Of these we used 30 because in the other strains, the tandem promoters 
suffer from clear interferences by other gene coding regions or promoters. Finally, 
we made use of modified versions of the natural promoters PLac, PtetA, and PBAD. 

Specifically, we designed new sets of tandem promoters, whose dynamics we 
predicted from the dynamics of the individual promoters.  

2.2.2 Transcription  

During transcription, the DNA sequence determines the future sequence of RNA 
produced (also known as a transcript). Transcription in bacteria has three main steps: 
initiation, elongation, and termination (Alberts et al., 2002). The enzyme responsible 
for RNA synthesis is RNA polymerase (RNAP). Roger D. Kornberg was awarded 
the Nobel Prize in 2006 for the structure of RNAP performing transcription 
(Cramer, Bushnell, & Kornberg, 2001). The RNAP has five subunits: two α subunits, 
a β subunit, a β’ subunit, and an ω subunit, which forms the RNAP core enzyme 
(Haugen, Ross, & Gourse, 2008), which has a crab claw-like structure (Figure 2). The 
α subunit (36.5 kDa) is involved in RNAP assembly. The β (150 kDa) and β’ subunits 
(155 kDa) form the jaws of the RNAP (Tagami, Sekine, & Yokoyama, 2011). This 
structure that these two jaws form acts as the DNA binding clamp. The smallest 
subunit of RNAP is ω (10.2 kDa). This subunit is the only one that was classified as 
non-essential for cell growth (W. Ross et al., 1993).  Nevertheless, studies suggest 
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that it acts as a catalyst, maintains the structure of the β’ subunit, and responds to 
ppGpp (W. Ross et al., 1993; So et al., 2011; Weiss et al., 2017). As such, it has 
regulatory capabilities. 
 
Due to being a global regulator, perturbing RNAP numbers should have genome-
wide consequences. We studied this using RNA-seq technology. However, in 
addition to average concentrations in cell populations, we also considered that their 
single-cell numbers as well as their spatial distributions could be significant in our 
studies. As such, we made use of the RL1314 strain of E. coli, where β’ subunit is 
tagged with GFP.  
 
The RL1314 strain was engineered by  (Bratton, Mooney, & Weisshaar, 2011), and 
generously offered to us, with the main purpose of measuring RNAP::GFP in single 
cells in four different LB media richness conditions. That was very helpful in our 
studies, where changes in RNAP::GFP levels were the key perturbations of the gene 
networks. In recent works, this strain has been used for several purposes by several 
teams, including to study the spatial distribution and diffusion of RNA Polymerase 
(Bratton et al., 2011), how RNA polymerase is redistributed to support cell growth 
(Fan et al., 2023), and novel models of genetic circuits (Barajas, 2022).  
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Figure 2.  An illustration of the RNAP holoenzyme. (A left) Structure of an RNAP holoenzyme with its 
subunits including the sigma factor when interacting with the promoter region (-35 and -10 
positions). (A right) An enlarged version of a small region of the A left picture, without the β subunit 
to show the transcription bubble. Picture taken from (Karpen & deHaseth, 2015) with permission. 
(B) A cartoon of the RNA polymerase interacting with a promoter region. Shown are the consensus 
sequences for the −10 and −35 regions (boxed) of the promoter. The jaws of the RNAP are shown 
on the right bottom region, and they allow the RNA polymerase to ‘grab’ the DNA. Picture was 
taken from (deHaseth Pieter L., Zupancic Margaret L., & Record M. Thomas, 1998) with 
permission. 

Transcription initiates when the RNAP core enzyme binds to the DNA, with a σ 
factor, and forms the RNAP holoenzyme (Figure 3) (Murakami & Darst, 2003). In 
this formation, the RNAP occupies ~35 bp of DNA (deHaseth Pieter L. et al., 1998). 
We used this information to decipher the effects of tandem promoters distanced 
sufficiently close to allow for RNAP interference on gene regulation. 

σ70 is the most commonly needed factor (Feklístov, Sharon, Darst, & Gross, 2014). 
σ factors recognize the promoter and ensure that the RNAP holoenzyme binds to 
the promoter. In order for RNAP to recognize a sequence, two specific sequences 
are needed. These are shown in the -35 and -10 ‘boxes’, respectively (Figure 2B).  
These sequences of DNA define the exact position where transcription of a gene 
begins (referred to as transcription start site, TSS, which is numbered ‘+1’). Small 
variations in the sequences of these regions suffice to block recognition by RNAP 
(Alberts et al., 2002). When these regions are recognized, the RNAP holoenzyme 
and DNA form a complex, known as the closed promoter complex (RPc). It covers 
about 60 bp of DNA (Alberts et al., 2002). Upstream and downstream are towards 
the 5’ and 3’ ends, respectively, of the coding strand of the DNA. Next, the RNAP 
holoenzyme unwinds the double helix of the promoter, which leads to the formation 
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of a structure known as the open promoter complex (RPo). The σ factor now 
dissociates from the holoenzyme, converting it into a core enzyme. The first 
phosphodiester bond of RNA is synthesized at this moment (Alberts et al., 2002).  

Several recent studies have focused on the genome-wide consequences of changes 
in σ factor numbers. (John et al., 2022) investigated genome-wide assembly of RNAP 
at promoters while (Britton et al., 2002) studied the role of sigma H in the phase 
transition of B. subtilis to stationary. Interestingly, binding sites for σ factors 
constitute 9.1% of all known binding sites listed in PRODORIC (Dudek & Jahn, 
2021). We quantified the role of changes in σ factor numbers in the genome-wide 
responses to shifts in RNAP concentrations. 

Transcription elongation begins when RNAP slides along the DNA molecule, 
unspooling the DNA helix as it advances. As it does this, it attaches ribonucleotides 
to the 3’ end of the growing RNA molecule (Figure 3). A transcriptional elongation 
complex (TEC) is formed by RNAP, DNA sequence, and RNA molecule. The TEC 
occupies ~35 bp of DNA (Alberts et al., 2002).  

Once transcription elongation has started, only a limited region of DNA is melted 
at any given time. This region of the DNA forms a transcription bubble, which 
occupies 12-14 bp (Korzheva et al., 2000; Saecker, Record, & Dehaseth, 2011). 
Studies showed that there are variations in the rate of transcription as an RNAP 
moves along the DNA. Occasionally, the RNAP slows down, pauses, and 
reaccelerates (Fujita, Iwaki, & Yanagida, 2016; Greive & von Hippel, 2005; Lewin, 
2008). The rate of occurrence of these events depends on the interactions between 
TEC, DNA, RNA, and other regulatory molecules (Greive & von Hippel, 2005). 
Pauses usually last from seconds to a couple of minutes (Herbert et al., 2006). Pauses 
can also be due to collisions between RNAPs, e.g., in closely spaced promoters 
(Epshtein & Nudler, 2003). The elongation factor NusG acts as a down regulator of 
both backtracked and non-backtracked pausing (Yakhnin et al., 2023). We 
investigated the potential role of pause sequences in the dynamics of transcription 
under the control of tandem promoter formations. 
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Figure 3.  Illustration of the transcription cycle in E. coli. It has three main steps: initiation, elongation, 
and termination. First, a σ factor (yellow) binds to the core RNAP to form an RNAP holoenzyme. 
The holoenzyme then binds to the promoter and forms a closed complex. Upon binding, the 
enzyme opens a bubble in the DNA, named open complex, from which transcription is initiated. 
Abortive transcription events, when occurring, produce short RNAs. Once the enzyme starts sliding 
along the DNA, the elongation phase begins and the σ factor is released. Finally, RNAP reaches 
a terminal sequence of DNA where it detaches and produces RNA transcripts. Once ribosomes 
recognize the RNA transcript, translation begins. Picture adapted from (Stracy & Kapanidis, 2017). 
Modified using Biorender.   

Similar to initiation, transcription termination occurs at specific positions after the 
end of the gene coding region (Alberts et al., 2002).  The features of these positions 
are not yet fully understood. However, it is known that termination in E. coli can be 
intrinsic or Rho-dependent. In intrinsic terminations, the terminators are 
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complimentary palindromes, forming base pairing between and within the strands 
of the double helix, and also within the RNA transcript. This base pairing results in 
a cruciform or a stem-loop structure, which is an essential cause for the termination. 
It is hypothesized that the RNAPs pause just after the stem-loop structure forms, 
causing a break in base pairing, which terminates transcription (Martin & Tinoco, 
1980; Wilson & von Hippel, 1994).  

The Rho-dependent termination occurs in the presence of the Rho protein. When 
the RNAP pauses at the stem-loop structure, the Rho protein disrupts the base 
pairing between the DNA template and RNA, terminating transcription (Greive & 
von Hippel, 2005). The RNAP dissociates from the DNA and RNA is released. 
Recent studies suggest that the RNAP can stay associated with DNA or unbind, after 
which it can begin a new round of transcription (Harden et al., 2020; Song et al., 
2022). The RNA transcript formed is ready for translation or acts as the end-product 
of gene expression. 

2.2.3 Translation  

Ribosomes synthesize proteins by the translation process. George Palade discovered 
ribosomes in 1955 (Palade, 1955). They consist of ribosomal proteins and rRNA 
(ribosomal RNA). The rRNA has two subunits in E. coli: a small 30S subunit, made 
of 16S RNA, and a bigger 50S subunit, is made of 5S and 23S RNAs (Ramakrishnan, 
2002). 

There are three stages in translation: initiation, extension, and termination (Figure 
4). E. coli initiates translation by binding an mRNA to the small subunit of the 
ribosome. Translation starts at a specific position of the RNA, the ribosome binding 
site (RBS). These sequences are called Shine-Dalgarno sequences, which bind with 
the small subunit of the ribosome (Ramakrishnan, 2002).  

As the 30S subunit migrates, it encounters the AUG codon. An initiation complex 
then forms around this codon, which marks the start of translation initiation. This 
complex is formed by the pairing between the 30S subunit of mRNA and an 
aminoacylated tRNA (transfer RNA). Translation initiation in E. coli requires three 
initiation factors (IF). First, IF1 and IF3 mediate the dissociation of ribosomes into 
smaller subunits. Meanwhile, IF3 is involved in the recognition of the ribosome 
binding site. Moreover, IF2 is responsible for attaching tRNA and binding the 
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initiation complex to GTP, which provides energy for translation (Alberts et al., 
2002).  

During translation elongation, the tRNA enters the A-site, which is formed by the 
hydrolysis of the GTP molecule. This requires elongation factors (EF-Tu and EF-
Ts). The ribosome slides along the mRNA and amino acids are linked, one by one, 
causing the polynucleotide chain to grow. When the stop codon (UAA, UAG, or 
UGA) enters the A-site, the translation terminates. Upon entry into the A-site, 
release factors dissociate the polypeptide from the tRNA. In general, Polypeptide 
chains then fold into tertiary structures, at which point they become functional 
(Alberts et al., 2002).  

 

Figure 4.  A cartoon illustrating translation in E. coli. Translation initiates with the formation of an 
initiation complex, which includes an mRNA sequence, a small ribosomal subunit, and an 
aminoacylated tRNA. During elongation, the ribosome slides along the mRNA, and amino acids 
are linked one by one, causing the polynucleotide chain to grow. Termination occurs when the 
release factor finds the stop codon and dissociates the polypeptide from the tRNA. The figure is 
generated using Biorender. 
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Since transcription and translation are mechanically linked in bacteria (Alberts et al., 
2002), they are also expected to be dynamically correlated, which has been 
confirmed. Because of the mechanical link, we used measurements of protein levels 
(translation level) from a strain library with fluorescently tagged proteins to track 
transcription (Taniguchi et al., 2010; Zaslaver et al., 2006). These measurements 
confirmed the results from RNA-seq (transcription level) in our publications. 

2.3 Regulation of Gene Expression 

An organism appropriate responsiveness to environmental changes is heavily 
influenced by gene regulation (Browning & Busby, 2004, 2016). Jacob and Monod 
laid the foundation of the basic understanding of gene expression in 1961, with the 
(now classic) example of the lactose (lac) operon. The lac operon has three genes for 
lactose metabolism (lacZ, lacY, and lacA), and LacI is the regulator gene. Aside from 
these, lac operon has three operator sites (O1, O2 and O3).  

In E. coli, transcription initiation is the main step most influenced by gene expression 
regulation (Browning & Busby, 2004, 2016; Chamberlin, 1974; McClure, 1985). This 
bacteria has evolved multiple regulators of gene expression such as σ factors, RNAP, 
TFs, and Gyrase (Browning & Busby, 2004, 2016; Sneppen et al., 2005). Also, 
influential factors, but not subject to regulation, are the promoter sequence and 
location in the DNA.  

2.3.1 Transcription Factors  

Transcription factors (TFs) are regulatory proteins whose presence can influence 
transcription rates (Browning & Busby, 2004). Most TFs are either activators or 
repressors (Figure 5) (which can differ between promoters). There are more than 
300 transcription factors in E. coli. Some control a large number of genes, while 
others control one to a few genes (Hochschild & Dove, 1998; Madan Babu & 
Teichmann, 2003; Martínez-Antonio & Collado-Vides, 2003).   
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Figure 5.  TF regulation of gene expression. (A) Repression. In the case of repression due to steric 
hindrance, RNA polymerase is blocked from binding to the promoter by the binding of a TF to a 
site that overlaps the promoter. In the case of repression by looping, protein–protein interactions 
form between repressors that bind to sites upstream and downstream of the promoter, which 
prevents the recognition of promoter elements by RNA polymerase. Repressors can also modulate 
activators to prevent recruitment of RNA polymerase. (B) Activation. In class I activation, the 
activator binds to a site upstream of the promoter and recruits RNA polymerase to the promoter. 
In class II activation, the activator binds to a site in the promoter adjacent to (or overlapping with) 
the −35 element, where it recruits RNA polymerase through direct interactions with the sigma 
factor. Some activators induce a conformational change in the promoter DNA to activate 
transcription. These activators bind at, or near to, the core RNA polymerase recognition elements 
of the promoter and often realign the −10 and −35, hence enabling the recruitment of RNA 
polymerase to the promoter and activation of transcription. Picture taken from (Browning & Busby, 
2016) with permission. 

There are various mechanisms of transcription repression. The most common 
mechanism for inhibiting transcription is ‘steric hindrance’, by the binding of 
repressors to operator sites, which limits the RNAP from accessing the -10 or -35 
regions of the DNA (Garcia & Phillips, 2011; Oehler, Eismann, Krämer, & Müller-
Hill, 1990). Another mechanism is the occupation of operator sites by TFs, if close 
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to the RNAP binding region, causing the DNA to bend, which forms a loop and 
causes repression (Müller, Oehler, & Müller-Hill, 1996; Swint-Kruse & Matthews, 
2009). 

There are three common mechanisms by which TF-mediated activation occurs 
(Browning & Busby, 2004, 2016). In the first, a TF binds to an operator site and 
helps RNAP recruiting by interacting with the subunits of the RNAP.  By binding 
the TF to its operator site, it activates an operator site upstream of the -35 element 
(Ebright, 1993). In another form of activation, a TF attached to the DNA, influences 
the affinity of RNAP holoenzyme (Dove, Darst, & Hochschild, 2003). In the last 
type of TF-mediated activation, a TF binds with the DNA conformationally changes 
the promoter’s spacing between the elements of consensus sequences. Through this 
conformational change, the promoter DNA is positioned optimally to enhance 
RNAP binding to -35 and -10 elements. 

Additionally, TFs themselves are subject to regulatory mechanisms. For example, 
the TFs’ affinity to bind with DNA can be altered by binding of specific molecules 
whose concentration can vary with the environment (Browning & Busby, 2004). In 
laboratory conditions, the use of such inducers has been one of the most 
common methods to control TF binding to DNA (Garcia & Phillips, 2011).  

We use inducers Isopropyl ß-D-1-thiogalactopyranoside (IPTG), L-arabinose, and 
anhydrotetracycline (aTc) as chemical inducers for the regulation of the activity of 
the promoters of PLac/ara-1, PLtetO-1, PLac, PtetA, and PBAD. We also investigated the 
effects of perturbations on TF-gene transcription regulation at the genome-wide 
level. In addition, we studied the relationship between genes controlled by tandem 
promoters and their input and output TFs.  
 
The transcription factor network (TFN) of E. coli is widely mapped (Santos-Zavaleta 
et al., 2019). It has information on approximately 4700 transcription factors (TFs) 
interactions in approximately 4500 genes. It also informs on their activators and 
repressors. We used this information to quantify the response of genes to the shifts 
in RNAP concentrations.  
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2.3.2 σ Factors regulation 

σ factors play specific roles in different stages of transcription initiation (Figure 6). 
These roles include the recognition of promoter elements to create a closed complex 
(CC), the stabilization of the open complex (OC), and interactions with transcription 
activators (Hengge-Aronis, 2002a; Saecker et al., 2011).  

 

Figure 6.  Illustration of σ factors driven transcription. When an RNAP core enzyme binds with a σ 
factor, it forms the RNAP holoenzyme. This holoenzyme can recognize the promoter region of a 
gene with the help of the σ factor. After promoter recognition, transcription of that gene occurs 
(assembling an RNA). E. coli uses different types of σ factors to recruit different sets of genes to 
adapt to different perturbations. Created using Biorender. 

There are seven σ factors in E. coli, named in accordance with their molecular weights 
(kDa) (Table 1). These σ factors are σ70, σ38, σ54, σ24, σ32, σ19, and σ28. The first, σ70 

(also known as σD), is an important housekeeping factor that controls many 
promoters in E. coli (Tripathi, Zhang, & Lin, 2014). 

Table 1.  σ factors in E. coli, the genes producing them, and their function. For 
a review, see  (Ishihama, 2000).  

Type of σ factor Gene Function 
σ70 rpoD House keeping 
σ38 rpoS Respond to stress 
σ54 rpoN Respond to nitrogen stress 
σ32 rpoH Respond to heat shock 
σ19 fecI Uptake of ferric citrate 
σ24 rpoE Extracytoplasmic function 
σ28 fliA Flagellar synthesis 
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Changes in σ factor numbers are a main cause for changes in the rate of transcription 
of genes with different preference for σ factors. As such, most σ factors are only 
expressed in unfavorable conditions. For example, σ32 is expressed in response to 
heat shock (Hengge-Aronis, 2002a, 2002b). σ38 (also referred to as RpoS) is expressed 
in response to nutrient deprivation, which may cause cells to enter the stationary 
growth phase (Battesti, Majdalani, & Gottesman, 2011; Ishihama, 2000). σ54 

expresses in response to nitrogen limitation. σ24 (also called RpoE) is an extreme 
heat-responsive factor. σ32 (also called RpoH) expresses when the bacteria are 
exposed to heat. Finally, σ19 (also called FecI) transports and metabolizes iron. σ28 

(also called RpoF/FliA) is responsible for flagellar synthesis and chemotaxis. 
Consequently, genes responsible for responding to these stresses only become active 
in these specific conditions.  

Evidence suggests that the time length of the closed complex formation relative to 
the open complex formation of a promoter affects the promoter's responsiveness to 
changes in σ factor numbers (Kandavalli, Tran, & Ribeiro, 2016). Meanwhile, a 
recent study investigated the dynamics of genes with preference for both σ38 and σ70, 
found that they are upregulated in stationary growth, and proposed a sequence 
dependent model of that process (Baptista et al., 2022). Also, both studies suggest 
that the strength of the regulation exerted by σ factors differs between genes. 
Another recent study (Van Brempt et al., 2020) used promoter libraries specific to 
E. coli σ70 and B. subtilis σB, σF, and σW to develop prediction models. These models 
predicted the transcription initiation frequency (TIF) of promoters associated with 
σ factors promoters. Another recent work (Balakrishnan et al., 2022) showed that 
the components that regulate σ factors such as Rsd controls the RNAP accessibility 
for promoters.  
 
We measured RpoS levels using an MGmCherry strain coding for RpoS tagged with 
mCherry (Patange et al., 2018). We also measured the RNA fold changes of the genes 
expressing each of the seven σ factors following the shifts in media dilution. 
However, their influence was not found to be significant in that context. 

2.3.3 Other Factors 

In addition to TFs, σ factors, and closely spaced promoters, several other intracellular 
factors influence gene expression in E. coli (for a review see (Bervoets & Charlier, 
2019)). Small molecules, such as guanosine 3’, 5’-diphosphate (ppGpp), inhibit the 
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expression of genes responsible for stress responses by interacting with the RNAP 
(Wilma Ross, Vrentas, Sanchez-Vazquez, Gaal, & Gourse, 2013). Studies show that 
ppGpp inhibits transcription initiation (Artsimovitch & Henkin, 2009; Wilma Ross 
et al., 2013). Moreover, ppGpp enhances the expression of genes that are responsible 
for amino acid synthesis (Wilma Ross et al., 2013).  

Meanwhile, some global regulators (GRs) are responsible for DNA compaction, 
such as H-NS, Fis, and HU proteins (Dillon & Dorman, 2010). This is known to 
influence gene expression. H-NS, for instance, binds to the AT-rich region of DNA 
and acts as a repressor global, eventually leading to the inhibition of global 
transcription activity(Browning & Busby, 2016; Navarre et al., 2006).  

DNA supercoiling is another factor that influences gene expression and, thus, is 
under regulation. Under standard conditions, the DNA of E. coli is negatively 
supercoiled (Vinograd, Lebowitz, Radloff, Watson, & Laipis, 1965). Studies have 
shown that increases in supercoiling levels can regulate gene expression, by slowing 
down or dissociating the RNAP (Chong, Chen, Ge, & Xie, 2014). 

Environmental factors, such as temperature, also highly influence gene expression, 
in some cases in complex ways, in both bacteria and eukaryotic cells (Charlebois, 
Hauser, Marshall, & Balázsi, 2018; Richter, Haslbeck, & Buchner, 2010). It is known 
that bacteria trigger an evolved genome-wide cold shock response (Phadtare & 
Inouye, 2004), while a rise in temperature also initiates a heat-shock response 
program (Craig & Schlesinger, 1985; Neidhardt, VanBogelen, & Lau, 1983). 

2.3.4 The Stochastic Nature of Gene Expression 

Gene expression in E. coli is a multi-step process (Jones, Brewster, & Phillips, 2014; 
Rolf Lutz, Lozinski, Ellinger, & Bujard, 2001; Saecker et al., 2011), with each step 
involving complex biochemical reactions. In a few steps, there is only a small number 
of reactive molecules that, by being regulated, allow for regulating transcription rates. 
This also contributes to making gene expression a noisy process (Kaern et al., 2005).  
As a result of this noise, clonal cell populations display phenotypic diversity (Bury-
Moné & Sclavi, 2017; Eldar & Elowitz, 2010; Elowitz et al., 2002). The noise in gene 
expression can be both “intrinsic” as well as “extrinsic” (Elowitz et al., 2002).  
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Intrinsic noise arises from the stochastic nature of biochemical reactions along with 
the small number of some of the molecules involved in those reactions composing 
transcription. Meanwhile, extrinsic noise is caused by differences in the number of 
cellular components between cells (including proteins) (Elowitz et al., 2002). 
Furthermore, asymmetries in RNA and proteins partitioning during cell division also 
contribute to extrinsic noise in a cell population (for a review see (Baptista & Ribeiro, 
2020)). 

2.3.5 Genome-wide Stresses 

In their natural environment, gut bacteria such as E. coli are subject to fluctuations 
in pH, temperature, nutrients availability, and osmolarity, among others. These 
fluctuations cause stresses that perturb hundreds of genes. E.g., approximately 60-
90% of genes in E. coli are responsive to changes in the conditions of growth 
(Sanchez-Vazquez, Dewey, Kitten, Ross, & Gourse, 2019). These responses can be 
in the short-, mid- and/or long-term (Mitosch, Rieckh, & Bollenbach, 2019).  

Transcription factors (TFs) play crucial roles in influencing those stress responses 
(Brooks et al., 2014; Côté et al., 2016; Fang et al., 2017; Urchueguía et al., 2021) and 
may partially explain such large percentages of responsive genes. In addition, the TF 
network (TFN) topological features may further influence the coordination of the 
stress responses. This poses a challenge in understanding bacteria genome-wide 
stress responses. We studied the influence of the topology of the TFN of E. coli on 
the genome-wide responses to shifting RNAP concentrations. 

2.3.6 Closely Spaced Promoters 

E. coli has hundreds of genes controlled by more than one promoter (Santos-
Zavaleta et al., 2019). Usually, two such promoters separated by less than 1kb 
distance between their transcription start sites  (TSSs) are defined as being closely 
spaced in the DNA (Trinklein et al., 2004). They exist in convergent, divergent, or 
tandem configurations (Figure 7) (for a review, see (McClure, 1985)).  

In the divergent configuration, the two promoters are arranged in opposite 
orientations (Figure 7A). In the convergent configuration, the promoters are 
arranged in face-to-face orientations (Figure 7B). Because of this, in both cases, the 
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two promoters control the transcription of different genes. Meanwhile, in tandem 
configurations, the promoters are placed in the same orientation, one being upstream 
of the other. This causes them to control the transcription of the same gene(s) 
(Figure 7C). 
 
Closely spaced promoters are expected to be subject to transcriptional interference 
(TI) (Eszterhas, Bouhassira, Martin, & Fiering, 2002), which is a reduction of the 
transcriptional activity of one promoter, due to the transcriptional activity of the 
other promoter (Shearwin, Callen, & Egan, 2005). This phenomenon can be 
particularly strong in convergent promoter configurations (Eszterhas et al., 2002). 

TI can involve promoter occlusion, where transcription initiation events at one 
promoter physically obstruct RNAPs attempting to bind to the TSS of the other 
promoter (Figure 8). In detail, an RNAP occupies approximately 35 bp, when in OC 
formation (Greive & von Hippel, 2005). Therefore, if the distance between the TSSs 
of two promoters (dTSS) is less than 35 bp, an RNAP occupying one of the promoters 
will occlude the other promoter (Sneppen et al., 2005).  
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Figure 7.  Configurations of closely spaced promoters. (A) Divergent promoters. (B) Convergent 
promoters. (C) Tandem promoters. 

Meanwhile, if the distance between the two promoters is greater than 35 bp, the 
RNAPs elongating from one promoter can bump into RNAPs occupying the other 
promoter. Such collisions can cause the RNAPs to fall off (Figure 10) (Callen, 
Shearwin, & Egan, 2004; Hoffmann, Hao, Shearwin, & Arndt, 2019; Ponnambalam 
& Busby, 1987; Sneppen et al., 2005). Moreover, variables such as the RNAP binding 
affinity to a downstream promoter, are expected to influence the outcome of those 
events. However, models using realistic parameter values suggest that such collisions 
are rare (Häkkinen, Oliveira, Neeli-Venkata, & Ribeiro, 2019; Martins et al., 2012; 
Sneppen et al., 2005). 
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Another factor that influences closely spaced genes are the time-lengths of rate-
limiting steps in transcription (Häkkinen et al., 2019). To test this, in vivo single-cell, 
single-RNA measurements on gene pairs that share promoter elements have been 
conducted using genes controlled by promoters with a head-to-head configuration. 
The results support the hypothesis. Based on this, the authors suggested that closely 
located genes could evolve compatible configurations in their rate-limiting steps to 
achieve specific degrees of cooperation.  
 
Another work by (Yeung et al., 2017) studied transcriptional interference with a 
focus on supercoiling in convergent, divergent, and tandem genes. They used 
modeling to simulate the effects of supercoiling on the transcriptional rates of these 
genes. They also conducted experiments using synthetic constructs to validate their 
findings. They postulate that supercoiling is responsible for the observed differences 
in the expression levels of different configurations of closely spaced genes. More 
recently (Johnstone & Galloway, 2022) characterized the influence of supercoiling 
in two-gene systems in Zebrafish. The two-gene system consisted of a reporter gene 
and an inducible gene in convergent, divergent, or tandem orientation.  



 

38 

 

Figure 8.  Illustration of the phenomenon of transcription interference. (A) Occlusion: An RNAP blocks 
another RNAP’s attempt to bind to the promoter. (B) Collision: Two elongating RNAPs undergo 
collision, potentially causing one or more fall-offs. (C) Sitting duck: An elongating RNAP is stopped 
by an RNAP bound to a promoter. Creating using Biorender. 

We investigated the dynamics of native genes controlled by promoters in tandem 
configuration. We also designed synthetic constructs in tandem configuration. We 
then used them to study the effects of transcription-targeting antibiotics on the 
dynamics of tandem promoters.  

2.4 Models of Bacterial Gene Expression  

Numerous models of prokaryotic gene expression have been proposed over the 
years, with the aim of predicting, mimicking, or better visualizing the dynamics of 
the genetic circuits and the cellular functions that they control (for reviews see (de 
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Jong, 2002; Ribeiro, 2010a)). These models, once validated by empirical data, can 
also serve as a framework for testing new hypotheses. The development of live cell 
imaging, cloning, and genetic engineering has led to a better understanding of gene 
expression, which in turn allowed the development of models. Since transcription 
initiation is the major regulation checkpoint of bacterial gene expression (Browning 
& Busby, 2004; Djordjevic & Bundschuh, 2008), most gene expression models 
include it explicitly.  

Since bacterial transcription and translation are mechanically coupled, some models 
of prokaryotic gene expression assume that RNA and proteins are produced in a 
single step. The degradation of RNA and proteins are also typically modeled as one-
step process, not subject to complex regulation (Munsky & Khammash, 2006; 
Peccoud & Ycart, 1995).  Stochastic models are usually implemented using chemical 
reaction systems. A basic chemical reaction model is shown in 2.4.1: 

+ ⎯⎯→A B  Ck
                                                                                               2.4.1 

This reaction involves two reactants, A and B, which react to form a product, C. The 
rate constant, k, determines the reactivity between A and B. Assuming this modeling 
approach, transcription can be modeled as follows (Ribeiro, 2010a): 

⎯⎯→ + +  +  kRNAP Pro Pro RNAP RNA                                                       2.4.2 

In this reaction, RNAP represents the RNA polymerase holoenzyme, Pro is a free 
promoter, and k is the rate constant of the reaction. Since RNAP and the promoter 
are not consumed in the reaction, they are also products of the reaction. In this 
model, no reversible steps or rate-limiting steps are included. 

Transcription initiation in E. coli, however, is a more complex process, since it 
involves a few rate-limiting steps that significantly influence mean kinetics and noise 
(Browning & Busby, 2016; Muthukrishnan et al., 2012). The following model of the 
set of reaction events accounts for the most rate-limiting steps (Walter, Zillig, Palm, 
& Fuchs, 1967): 
 

 +  x ik k

cc ocRNAP Pro RP RP RNA⎯→ ⎯⎯→ ⎯⎯→                                  2.4.3    
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In this reaction, RNAP binds with the promoter, at a rate (kx), and forms a closed 
complex (RPcc). The closed complex is then isomerized and forms an open complex 
(RPoc) at a rate (ki). RNAP then reaches termination and releases the RNA. Since 
elongation usually takes much less time than the rate-limiting steps in initiation, it is 
usually modeled as an (infinitely) fast step, for simplicity (Walter et al., 1967). 
Meanwhile, the first step is set to be reversible, to account for the chemical instability 
of the closed complex (for a review see (Ribeiro, 2010b)). 
 
Using these reactions, one can model the dynamics of two closely spaced genes (gene 
1 and gene 2) sharing promoter elements in the head-to-head configuration as 
follows (Häkkinen et al., 2019):  
 

⎯⎯→ ⎯⎯→ +31
0 1 0

kk
P I P X                                                                                    2.4.4    

⎯⎯→ ⎯⎯→ +42
0 2 0

kk
P I P Y                                                                                      2.4.5     
 
Here, P0 refers to a free promoter, while I1 and I2 are the intermediate transcription 
complexes from gene 1 and gene 2, respectively. Also, X and Y refer to the mRNA 
from genes 1 and 2, respectively, k1 and k2 are the rates of closed complex formation 
respectively, and k3 and k4 represent the rates of open and elongation complex 
formations, respectively.  

We proposed new transcription models for genes regulated by tandem promoters. 
For that, we modeled independent promoters, that then can interfere with each other 
depending on the distance and the rates of occupation of each TSS.  

2.5 Gene Expression Measurement Techniques 

2.5.1 Fluorescent Labeling, MS2-GFP Tagging System, and DNA Integration  

Green fluorescent protein (GFP) was isolated from jellyfish, Aequorea (Morise, 
Shimomura, Johnson, & Winant, 1974; Shimomura, Johnson, & Saiga, 1962; Ward, 
Cody, Hart, & Cormier, 1980). GFP, when expressed in Escherichia coli, produces a 
stable fluorescence and has since been established as a tool for monitoring gene 
expression in live cells (Chalfie, Tu, Euskirchen, Ward, & Prasher, 1994). Identifying 
GFP from Aequorea has been described as a revolutionary step in cell biology.  In 
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subsequent years, many new FPs were engineered, for quantifying gene expression 
in live cells (Day & Davidson, 2009). In comparison to other fluorescent markers, 
fluorescent proteins have several advantages (Hayashi-Takanaka, Stasevich, 
Kurumizaka, Nozaki, & Kimura, 2014; Schneider & Hackenberger, 2017).  

Modified fluorescent proteins tagged to viral proteins can be fused with RNA 
sequences, to observe RNAs in live cells (Golding et al., 2005). Also, because of the 
unique structure of fluorescent proteins, mutations have a considerable chance to 
alter their fluorescent properties (Patterson, Knobel, Sharif, Kain, & Piston, 1997). 
As a result, presently there is a wide range of different emission colors of fluorescent 
proteins (Kremers, Gilbert, Cranfill, Davidson, & Piston, 2011).  

Fluorescent proteins also have limitations. These include fluctuations in the 
fluorescent intensity following some changes in the environment (Shaner et al., 
2004). For example, most fluorescent proteins are temperature-sensitive, while 
yellow fluorescent proteins (YFPs) are pH- and chloride-sensitive. This hampers 
their use in quantifying changes in protein levels between conditions. Fluorescent 
proteins can also be toxic (Shaner et al., 2004) . 

Several versions of fluorescent proteins (Shaner et al., 2004) have been developed to 
improve their original properties. For example, there are new GFP proteins that have 
much-improved fluorescence intensity at 37°C than the wild-type proteins 
(Cormack, Valdivia, & Falkow, 1996). In addition, many fluorescent proteins can be 
found as dimers or trimers. In many cases, this oligomerization causes toxic effects 
(Shaner et al., 2004). A protein can also become indirectly toxic if a certain 
wavelength is needed to excite it. Microorganisms, for example, are likely to be 
adversely affected by exposure to UV light (Jagger, 1976; Kramer & Ames, 1987).  

In general, when genetically engineering a fluorescent protein for a bacterium, it is 
recommended to perform toxicity tests (Turkowyd et al., 2017). Furthermore, the 
fluorescence signal needs to be higher than the autofluorescence that originates from 
the cellular background. There should also be minimal crosstalk between the 
emission spectrum and the excitation spectrum. Finally, when the fluorescent 
protein is fused with the target protein, it should have the least effect possible on the 
native protein’s functionality (Shaner et al., 2004). We made use of several 
fluorescent proteins in this thesis.  
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A special case of fluorescent labeling is the MS2-GFP tagging system which we 
utilized in our studies. The MS2-GFP system allows for quantifying RNA molecules 
in single cells (Golding et al., 2005) by tagging multiple GFPs to a single RNA. 
Robert Singer first developed this method for eukaryotic cells, but it was later 
modified for use in bacteria (Bertrand et al., 1998; Golding et al., 2005).  

The MS2-GFP system that we used consists of two components that need to be 
expressed simultaneously in the same cell (Golding 2005): (i) a fluorescent protein 
fused with an MS2 coat protein, which enables binding specifically, and (ii) RNA 
that carries repetitive sequences to which MS2 proteins can bind to. Figure 9 
illustrates these components. The original MS2 coat proteins are from 
bacteriophages, which use them to protect their RNA (Bernardi & Spahr, 1972). The 
binding pathway to a specific RNA sequence inhibits RNA replication and causes 
phage packaging (Peabody, 1993; Querido & Chartrand, 2008). Molecular scientists 
have developed fluorescent fusion proteins based on MS2 coat proteins that bind to 
RNA with stem-loop sequences, as the original (Fusco et al., 2003; Golding et al., 
2005; Lenstra, Rodriguez, Chen, & Larson, 2016). 

The MS2-GFP system allows investigation individual transcription events in live cells 
(Golding et al., 2005; Mäkelä et al., 2013). Before producing target RNA, a reporter 
plasmid coding for a fluorescent protein coupled to the MS2 coat protein must be 
highly expressed. The high concentration of MS2-GFP ensures its binding to target 
RNAs with multiple binding sites for MS2, as soon as they are produced in a cell. By 
binding multiple MS2-GFP proteins to one target RNA, the RNA becomes brighter 
than its surrounding with only freely diffusing, unbound MS2-GFPs. (Mäkelä et al., 
2013; Muthukrishnan et al., 2012). In a confocal microscope, target RNAs bound by 
MS2-GFP appear as bright spots (Golding et al., 2005; Mäkelä et al., 2013). Lastly, 
the degradation of the target RNA is very delayed as a result of the coating by MS2-
GFP proteins (Fusco et al., 2003; Tran, Oliveira, Goncalves, & Ribeiro, 2015). 

However, quantifying RNA by MS2d-GFP from microscopy data is difficult 
(Häkkinen, Muthukrishnan, Mora, Fonseca, & Ribeiro, 2013; Häkkinen & Ribeiro, 
2014, 2016). One common problem, easily visible in time-lapse microscopy, is the 
intermittent disappearance of MS2-GFP tagged RNAs. Also, the precision of 
estimating the number of tagged RNAs in an ‘RNA spot’ decreases with the number 
of RNAs in that spot (Golding et al., 2005). Other viral proteins have also been used 
for the same purpose, including PP7 proteins derived from the PP7 bacteriophage, 
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which operate similarly to the MS2-GFP system (Larson, Zenklusen, Wu, Chao, & 
Singer, 2011; Lenstra et al., 2016).  
 
The above systems are carried by plasmids, which, in turn, require DNA integration. 
The techniques to integrate DNA sequences and to create combinations of different 
genetic sequences have been developed and improved for almost four decades now, 
following the discovery of DNA ligase and restriction enzymes (H. O. Smith & 
Wilcox, 1970)(for a review, see (Kiermer, 2007)).  In 1973, the construction of the 
first bacterial plasmid vector was achieved using the restriction enzyme EcoRI, 
which generated fragments from two plasmids carrying sequences that provide cells 
with two different antibiotic resistances. These fragments were joined using DNA 
ligase. The transformants resulted in bacterial cells resistant to both antibiotics by 
carrying a single plasmid (for a review see (Kiermer, 2007)) 

The further development of these techniques made possible the construction of the 
first artificial genome (Mycoplasma genitalium) in which many DNA fragments have 
been synthesized independently, then assembled, and then transferred into a host 
(Gibson et al., 2009). Nowadays it is possible to construct synthetic genomes using 
advanced molecular biology software such as Snapgene and engineering techniques 
such as de novo synthesis, recombinant DNA  technology, Gibson Assembly, and, 
more recently, CRISPR-Cas9  (Deltcheva et al., 2011; Gibson et al., 2009; Jinek et 
al., 2012).  
 
 



 

44 

 

Figure 9.  Figure illustrating the MS2-GFP system. (A) Cells produce multiple MS2-GFP reporter 
proteins, under the control of PLtet-O1, while the production of RNAs target for MS2-GFP is under 
the control of PLac/ara-1. MS2-GFP proteins accumulate in the cytoplasm and bind to the target RNA 
upon its production. Meanwhile, the mRFP region of the target RNA is translated into proteins that 
glow red after translation. (B) Example images of E. coli cells when expressing only MS2-GFP 
molecules (left) and cells expressing RNA molecules appearing as fluorescent spots inside the 
cells (right). The final figure is created using Biorender. 

We we used molecular cloning techniques for the transformation of plasmids into 
host strain E. coli. The transformation was based on the selection of recombinants 
depending on the antibiotic-resistance gene of the plasmid DNA. We also designed 
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and assembled the synthetic constructs encoding mCherry in tandem formation 
using Snapgene software. We also made use of the chemically competent cells for 
the transformation of plasmids into host strain.  

2.5.2 Microscopy Imaging  

Monitoring gene expression using fluorescent proteins is frequently carried out using 
fluorescence microscopy (for a review see (Stephens & Allan, 2003)). By illuminating 
the sample with the wavelength of the excitation and then capturing the light that is 
emitted from the fluorescently tagged molecules, a fluorescence microscope can 
detect the light emitted by fluorescently tagged molecules. Moreover, confocal 
microscopy eliminates the need to expose the entire sample to a light source, partially 
solving the background noise problem. 

Confocal microscopy uses point illumination and point detection to examine a small 
sample area at a time (Pawley, 2022). As a result, background fluorescence is 
eliminated, improving optical resolution. In detail, a pinhole is used to ensure that 
no light other than the illuminated section of the sample reaches the detector. A 
photomultiplier tube (PMT) then collects the fluorescence and develops the 
complete image, which is then processed by a computer into a two-dimensional 
image (Elliott, 2020). Nevertheless, this approach has its limitations, such as that it 
can only capture a small section of the sample at a time. This time interval can be 
reduced by a spinning disk (Castellano-Muñoz, Peng, Salles, & Ricci, 2012; Nakano, 
2002). We made use of confocal microscopy of fluorescent proteins and of RNA 
tagged with MS2-GFP.   

 
Meanwhile, to study the morphological characteristics of cells, phase-contrast 
microscopy is commonly used (Murphy, Oldfield, Schwartz, & Davidson, n.d.). This 
technique was developed by Fritz Zernike (Zernike, 1942).  He was awarded a Nobel 
Prize for this development in 1953. Phase contrast allows detecting the phase shift 
when light is scattered, eventually converting it into the contrast of the image. The 
principle of phase contrast microscopy involves the introduction of a phase shift in 
the light passing through different parts of the sample. As the transmitted light 
passes through the sample, it encounters regions with varying refractive indices due 
to the differences in sample thickness and composition. These variations in the 
refractive index cause changes in the phase of the transmitted light. The phase 
contrast technique greatly enhances the visibility of cellular structures, which are 
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often difficult to observe with traditional microscopy. We used phase contrast 
microscopy to study the morphological characteristics of the strains in varying 
conditions of growth, temperatures, and inductions.  

2.5.3 Single-cell Data Acquisition Using Flow-cytometry 

Flow cytometers can measure the overall protein fluorescence levels inside individual 
cells orders of magnitude faster than microscopes. As cells pass through the laser 
beam, detectors collect several optical signals (e.g., forward scatter and side scatter) 
(Figure 10). The intensity of these signals provides information on cell size and the 
internal structures of the cell. Meanwhile, FITC (fluorescein isothiocyanate) is used 
to quantify the green fluorescence intensity, for example. 

 

Figure 10.  Schematic diagram of a flow cytometer. A single-cell suspension is focused on the light 
source (laser). A detector collects and amplifies the forward light scatter and converts it into digital 
signals, which can then be used to perform further analyses. This picture is taken from (Brown & 
Wittwer, 2000) with permission.  

Using flow cytometry, thousands of cells can be analyzed per minute. In addition, 
the single-cell data is in a format that can be processed quickly while, in comparison, 
microscopy data requires image analysis. However, similar to microscopy, when 
studying protein levels by flow cytometry, cellular autofluorescence should be 
considered (Galbusera, Bellement-Theroue, Urchueguia, Julou, & van Nimwegen, 
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2020). An ACEA Novocyte flow-cytometer equipped with a blue and a yellow laser 
was used for single-cell protein quantification.  

2.5.4 Transcriptome Quantification using RNA-sequencing 

Understanding the functioning of genomes requires measuring the transcriptome 
(defined as ‘all transcripts in a cell at a certain point in time’). Transcriptomes, 
therefore, include mRNAs, siRNAs, and non-coding RNAs (Wang, Gerstein, & 
Snyder, 2009). In the last decade, efforts have been made to develop and improve 
transcriptome quantification technologies (Emrich, Barbazuk, Li, & Schnable, 2007; 
Lister et al., 2008). 

Transcriptome research has improved dramatically with the advent of high-
throughput sequencing (Emrich et al., 2007; Lister et al., 2008), following the 
demonstration that next-generation sequencing technologies can be used to 
sequence complementary DNA (cDNA) through RNA sequencing. There are many 
advantages in next-generation sequencing, such as the ability to resolve single base 
pairs with very low background signal, the ability to capture a wide range of 
expression dynamics, and the high reproducibility of results (Cloonan et al., 2008; 
Nagalakshmi et al., 2008; Wang et al., 2009). The methodology of RNA sequencing 
used is illustrated in Figure 11.  

 

Figure 11.  Step-by-step workflow of RNA sequencing. The figure is adapted from “RNA Sequencing” 
in BioRender.com (2023).  
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Several variations exist in the analysis of RNA-seq data following sequencing. Many 
tools are available to support different aspects of RNA-seq analysis (Han, Gao, 
Muegge, Zhang, & Zhou, 2015). However, most of these tools are intended for 
eukaryotic genomes, which poses a challenge for bacterial RNA-seq. 

Bacterial RNA-seq presents different challenges from eukaryotic RNA-seq (for a 
review, see (Stark, Grzelak, & Hadfield, 2019)). These include overlapping genes, 
which makes distinguishing gene transcripts a more challenging task. Typical 
procedures of RNA-seq analysis are therefore quality control checks, aligning reads 
with a reference genome, and analyzing alignment results. In addition, quality control 
involves the assembly of overlapping reads without referring to a reference genome 
(de novo assembly), generating raw counts, and determining gene expression 
differences based on these raw counts.  
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3 AIMS OF THE STUDY 

In this thesis, we examined some of the regulatory mechanisms that govern the 
global transcription dynamics of the bacterium Escherichia coli under stress conditions. 
The aims of the study were: 

1. Develop a method to quantify RNA numbers on cells expressing RNA 
tagged with MS2-GFP from flow-cytometry data (Publication I).  

2. Investigate how individual gene responses to genome-wide stresses targeting 
the transcription machinery can be influenced by the TFN (Publication II).  

3. Investigate how promoter transcription interference affects the dynamics of 
genes controlled by natural tandem promoters following shifts in RNAP 
concentration (Publication III). 

4. Engineer novel, synthetic tandem promoter arrangements to tune gene 
responses to transcription-targeting antibiotics (Publication IV).  
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4 MATERIALS AND METHODS 

4.1 Strains and Growth Conditions 

In Publication I, to quantify the RNA expression at the single-cell level using 
fluorescent tags, we used a multi-copy reporter plasmid responsible for producing 
MS2d-GFP proteins, controlled by a PLtetO-1 promoter that can be activated by aTc. 
Meanwhile, the target RNAs were produced from a single-copy plasmid under the 
control of a Plac-ara-1 promoter. As such, the target RNA can be expressed by adding 
IPTG and L-Arabinose. From this system, one produces RNAs that encode for both 
a fluorescent protein (mRFP1) as well as for ~96 RNA binding sites for MS2-GFP. 
The plasmids were transformed into the DH5α-PRO cells, which already produce 
the necessary regulatory proteins (LacI, TetR, and AraC) required for the regulation 
of the target and reporter plasmids (R. Lutz & Bujard, 1997). Specifically, LacI and 
AraC repress the Lac and Ara1 promoters respectively, while TetR represses PLtetO-

1. Note that PLtetO-1 is a viral promoter that was altered to be repressed by TetR, by 
binding to the operator O1 (R. Lutz & Bujard, 1997).  

Overnight bacterial cultures containing the plasmids were inoculated in fresh Luria-
Bertani (LB) medium with an optical density (O.D.600) of 0.03. The cultures were 
then incubated at 37 °C with continuous shaking at 250 rpm. When the cells reached 
the mid-exponential phase (O.D.600 0.3), aTc was introduced in the media at a 
concentration of 100 ng/ml to induce the expression of the PLtetO-1 promoter. 
Simultaneously, L-arabinose was added at a concentration of 0.1% to pre-activate 
the target promoter PLac/ara-1. Finally, we waited for 50 minutes to allow the cells to 
intake the inducers as well as to allow the cells to accumulate sufficient MS2-GFP. 

After the 50 minutes, IPTG was added at varying concentrations (0, 6.25, 50, 100, 
200, 300, 500, and 1000 μM). This induction initiated the production of the RNA 
target for MS2d-GFP. After an additional hour of incubation, the cells were then 
examined through microscopy or flow cytometry to quantify both tagged RNA and 
mRFP1 protein levels. The settings for these two measurements are described in 
subsequent sections.  
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In Publication II, we used MG1655 cells to measure the transcriptome and RL1314 
cells with a RpoC subunit endogenously tagged with GFP to measure single-cell 
RNAP levels (generously given by Robert Landick). In addition, we used strains 
endogenously tagged with YFP to measure protein levels (YFP strain library) 
(Taniguchi et al., 2010). We further used a strain carrying the rpoS::mCherry gene to 
measure the distribution of rpoS in single cells (generously given by James Locke). 
Finally, we used a low-copy plasmid fusion library coding for GFP to track promoter 
activity (Zaslaver et al., 2006).   

Cells were streaked on LB agar plates (supplemented with appropriate antibiotics of 
the antibiotic resistance gene of the strain grown), and a single colony was picked. 
The colony was inoculated into LB medium (with necessary antibiotics) and allowed 
to grow overnight with aeration at 250 rpm. These cultures were further diluted into 
tailored LB media in a 1:1000 ratio, at 37 °C with aeration until reaching O.D.600 of 
0.4. 
 
The tailored LB media (mx, for 100 ml) was prepared using m grams of tryptone, 
m/2 grams of yeast extract, and 1 g NaCl in accordance with the protocol described 
in (Lloyd-price et al., 2016).  As an example; LB0.75x (100 ml) has 0.75 g tryptone, 
0.375 g yeast extract, and 1 g NaCl. This media, whose preparation consists of a 
“partial dilution” of LB media, is essential to cause a reduction in intracellular RNAP 
concentration (Lloyd-price et al., 2016).  
 
In Publication III, we used strains of the YFP fusion library (Taniguchi et al., 2010) 
to study the single-cell protein expression of genes with tandem promoters. We also 
studied the influence of their transcriptome on genes with tandem promoters by 
RNA-seq. The protein expression measurements were performed in M9 media (with 
0.4% glucose as the carbon source) by flow cytometry and microscopy. The cell 
growth protocol was the same as in Publication II. 
 
The M9 media used for these experiments had the following components:  1x M9 
Salts, 0.1 mM CaCl2, 2 mM MgSO4, 5x M9 Salts with 34 g/L Na2HPO4, 15 g/L 
KH2PO4, 2.5 g/L NaCl, 5 g/L NH4Cl, 0.2% Casamino acids, and 100X vitamins. 
Diluted M9 media was also used. The media was diluted using autoclaved distilled 
water to 0.5X.  
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Finally, in Publication IV, we used synthetic constructs tagged with mCherry. The 
promoters used in this study were Lac0301, TetA, and BAD. These promoters were 
induced by 1mM IPTG, 15ng aTc, and 0.1% arabinose, respectively.  The media 
used in this study was M9 and the cellular preparation protocol and growth 
conditions were the same as in Publication III.  The control strain which was used 
to transform the plasmids was DH5α-PRO as in Publication I. 

4.2 Single-cell Gene Expression Microscopy Measurements 
 
To conduct single-cell gene expression measurements, we used microscopy 
(supported by image analysis) as well as flow-cytometry. In general, in Publications 
I-III, we obtained ‘big data’ (thousands of cells) by flow-cytometry, and then 
observed a few hundred cells in detail, by microscopy. The latter observations, 
commonly, were to confirm that there were no events that could invalidate the 
conclusions taken from the flow-cytometry. 
 
In all the microscopy experiments, we captured confocal images of the cells using a 
C2+ (Nikon) microscope. The system uses the point-scanning confocal technique. 
In general, once the cells reached measurement timing/phase, they were sandwiched 
between the coverslip and 2% agarose gel pad and then visualized using a Ti-E 
Nikon inverted microscope, using a 100× objective. The fluorescence intensity of 
the GFP was measured with an argon ion laser of 488 nm and a filter of 514/30 nm. 
The morphology of the cells was studied from phase-contrast images, taken with a 
CCD camera (DS-Fi2, Nikon). Finally, NIS-Elements software was used to capture 
the images.   

In Publication I, microscopy data on single-cell RNA levels was collected for more 
than 300 cells per condition using confocal microscopy (Figure 1 of Publication I). 
Meanwhile, in Publication II, we quantified the levels of single-cell RNAP from 
confocal microscopy images while, at the same time, phase-contrast images were also 
acquired to learn the above cell morphology (for example, see Figure S1 of 
Publication II). Additionally, MG1655 cells were imaged in various LB media 
dilutions (LB1.0x, LB0.75x, LB0.5x, LB0.25x, LB1.5x, LB2.0x, and LB2.5x) to measure cell size. 
Moreover, MG1655 cells in LB1.0x were imaged during stationary growth. 
Furthermore, cells from the YFP strain library were imaged to evaluate their 
morphology and physiological state, to ensure that we observed healthy cells. 
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In Publication III, we performed confocal microscopy experiments on the protein 
levels of genes with tandem promoters (see example Figure 4B in Publication III), 
using cells of the YFP strain library, whose genes were endogenously tagged with 
YFP. We also performed confocal microscopy experiments of MG1655 cells (not 
expressing YFP) for background subtraction. Phase contrast images were collected 
to obtain information on cell morphology. The confocal and phase contrast images 
were acquired simultaneously.  

4.3 Microscopy Image Analysis 
 
In Publications I-III, the microscopy images were analyzed by the ‘CellAging’ 

software (Häkkinen et al., 2013). In detail, CellAging applies automated image analysis 
to extract information from the images. First, the cell segmentation was carried out 
using the Gradient path labeling algorithm (Mora, Vieira, Manivannan, & Fonseca, 
2011). This accurately identified and pre-segmented individual cells in the images. 
Next, to enhance segmentation results and minimize over-segmentation, classifiers 
were employed to merge relevant segments and discard unnecessary ones, such as 
unwanted artifacts. These classifiers were constructed using the Classification and 
Regression Trees algorithm (Breiman, Friedman, Olshen, & Stone, 1984). To ensure 
accurate classifier training, an expert manually trained the system using many 
example images. Additionally, to achieve precise segmentation, the software further 
allows for manual corrections, which were applied when necessary. 
 
Following segmentation, CellAging aligned confocal images with corresponding 
phase-contrast images, employing a semi-automated approach. To perform this 
alignment, the thin-plate spline interpolation technique was used for the registration 
transform. By manually selecting landmark points, the cell masks were adjusted to 
accurately match the corresponding cells in the confocal images. This alignment 
process ensures that the two types of images are properly registered, facilitating 
further analysis and comparison. Overall, this software combined automated 
segmentation algorithms with manual adjustments and registration techniques to 
provide robust and accurate analysis of cell images. 



 

54 

4.4 Flow-cytometry Measurements 
 
Flow-cytometry experiments were conducted using an ACEA NovoCyte flow 
cytometer with a blue and a yellow laser (Publications I-IV). For this, the cells 
growing in bacterial cultures were diluted into 1 ml PBS. This mixture was vortexed 
for 10 s. In each measurement, 50.000 events were collected with a flow rate of 14 
µl/min. These events were collected for 3 biological replicates in each condition. To 
remove the events due to particles smaller than E. coli, the forward scatter (FSC)-H 
threshold was set to 5000. For GFP and YFP detection, the FITC-H channel was 
used (488 nm excitation and 530/30 nm emission). For mCherry and mRFP1 
detection, the PE-Texas Red-H channel was used (561 nm excitation, 615/20 nm 
emission). YFP and GFP were excited using a blue laser (488 nm) and detected using 
the fluorescein isothiocyanate (FITC)-H channel. 

Control cells (not expressing any fluorescence protein) were measured to obtain an 
average background fluorescence that was then subtracted to the other data. Prior 
to each experiment, QC (quality control) was performed as per the recommendations 
of the manufacturer. Finally, the data was collected using the ACEA NovoExpress 
software in .csv file format.  

In Publication I, induction curves were obtained using data from flow-cytometry 
of cells with target and reporter plasmids. For protein detection, the PMT voltage of 
PE-Texas Red was set to 584. Unsupervised gating (Razo-Mejia et al., 2018) was 
applied to the data to remove doublets and data produced from debris. The events 
that did not produce fluorescence were also removed by the application of a 
minimum threshold. Overall, less than 5.000 events were discarded in any of the 
measurements.  

In Publication II, time-lapse flow-cytometry was performed of RL1314 (RpoC 
subunit tagged with GFP) cells in LB1.0x, LB0.75x, LB0.5x and LB0.25x. The time-series 
was performed for 210 min, with flow-cytometry data acquisition being conducted 
at every 30 min. Aside from time-series, flow-cytometry data was also acquired at 
180 min in LB1.0x, LB0.75x, LB0.5x, LB0.25x, LB1.5x, LB2.0x, and LB2.5x. Flow-cytometry 
data was further acquired for many strains from YFP strain library  (Taniguchi et al., 
2010) and the crl gene from the promoter fusion library (Zaslaver et al., 2006) in 
various media conditions. The PMT voltage was always set at 550 for GFP detection. 
Finally, flow-cytometry data was also acquired for RpoS levels using the 
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MGmCherry strain in exponential and stationary phases, in various media. The PMT 
voltage was set to 561 nm for detection of mCherry.  
 
In Publication III, flow-cytometry data was collected for 30 genes controlled by 
tandem promoters from the YFP fusion library (Taniguchi et al., 2010). These 
measurements were performed in exponential growth phase in two conditions of 
M9 media (1X and 0.5X). Flow-cytometry of MG1655 cells (control strain for 
background subtraction) was also performed in same conditions. Flow-cytometry 
data was also acquired for RNAP levels (using RL1314 strain, where RpoC subunit 
is fused with GFP) and W3110 strain (for background subtraction). Three biological 
replicates were performed for each condition. For the removal of debris and 
doublets, unsupervised gating was applied to the data (Razo-Mejia et al., 2018). 
Further, secondary gating was also applied to the distributions to remove outliers.  
 
In Publication IV, flow-cytometry data was obtained for synthetically engineered 
inducible tandem promoters and their component promoters. The individual 
promoters were Plac (inducible by IPTG), PtetA (inducible by aTc), PBAD (inducible by 
arabinose), and the tandem promoters were Plac-PtetA, PtetA-Plac, and PtetA-PBAD-Plac. 
These promoters are tagged with mCherry. The flow-cytometry distributions were 
obtained during full induction of each promoter and non-induction cases (for 
control) in M9 media after 180 min of induction. The data was collected for 3 
biological replicates in each condition. Outliers were removed by discarding 1% 
events with the highest fluorescence intensities. 

Finally, in all experiments above, three biological replicates were performed for all 
conditions. Moreover, data was also collected in the same conditions for the control 
cells (strains not tagged with any fluorescence protein) to subtract background 
fluorescence. Finally, abnormalities in the data, such as bimodal distributions, were 
carefully analyzed and, in some cases, were repeated, to ensure that it was not due to 
the presence of many unhealthy cells.  

4.5 Spectrophotometry 

In this thesis, a BioTek Synergy HTX Multi-Mode Microplate Reader equipped with 
Gen5 software was used to measure the optical densities and fluorescence intensities 
of cell cultures over time. This spectrophotometer has inbuilt incubation with 
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shaking, and temperature control that allows obtaining data in live cells, which can 
reach up to 50C temperature. We also made use of a spectrophotometer (Ultrospec 
10; GE Healthcare), which is only capable of capturing one time-point absorbance 
measurement. 

From overnight cultures, cells were diluted in fresh medium and then allowed to 
grow in a shaking incubator until reaching an OD600 of 0.3. Next, the cells were 
aliquoted into 24-96 micro-well plates and grown in appropriate media, while 
keeping the temperature constant and shaking consistent. To measure cellular GFP 
fluorescence intensities over time, we used the excitation filter of wavelength 485/20 
nm and the emission filter of wavelength 525/20 nm.  For mCherry detection, the 
excitation and emission wavelengths used were 575/15 nm and 620/15 nm, 
respectively, with a gain of 50. 

In Publication I, we used spectrophotometry to measure the fluorescence of i) cells 
carrying a multi-copy reporter plasmid for producing MS2d-GFP proteins, under the 
control of PLtetO-1, inducible by aTc. Also, present was a single-copy target plasmid 
producing an RNA coding for mRFP1 upstream of a 96 MS2 binding site array, 
controlled by the promoter PLac/ara-1, inducible by IPTG and L-Arabinose. ii) cells 
with only the reporter plasmid. This time series experiment was performed for 10 
hours, at an interval of 10 mins, with 6 technical replicates. 
 
In Publication II, we used spectrophotometry to measure the growth curves 
(O.D.600) of cells with RL1314 strain growing in several media conditions (LB1.0x, 
LB0.75x, LB0.5x, LB0.25x, LB1.5x, LB2.0x, and LB2.5x). For this, the overnight cultures were 
diluted into respective media with the starting O.D.600 0.05 and aliquoted into 24-
well transparent plates. The growth was monitored for 10 hours, every 10 minutes 
with continuous shaking.  
 
In Publication III, we used spectrophotometry to measure growth curves (O.D.600) 
of MG1655 cells in 0.25X, 0.50X, and 1X in M9 media. The overnight cultures were 
diluted into respective fresh M9 media and O.D.600 was measured for 450 min, while 
recording the measurement every 30 min with three biological replicates for 450 min 
while recording every 30 min. This was repeated for three biological replicates.  
 
In Publication IV, we used spectrophotometry to measure the optical density 
(O.D.600) to measure the cell growth rates of the DH5α-PRO cells and DH5α-PRO 
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cells carrying different plasmids (Figure 2 of Publication IV). The growth was 
measured for 720 min and the measurement was recorded every 20 min. We also 
measured the fluorescence of these cells having plasmids tagged with mCherry after 
full inductions and after the application of antibiotics targeting transcription 
(rifampicin and ofloxacin). The measurements were recorded every 20 min for a 
period of 650 min with three biological replicates.  

4.6 Protein Quantification using Western Blotting 

In Publication II, we used the western blot technique to quantify the relative RNAP 
levels in MG1655 and RL1314 strains.  The overnight cultures were inoculated into 
respective fresh media (LB1x, LB0.75x, LB0.5x, LB0.25x) and were allowed to grow until 
O.D.600 0.4. The cultures were next subjected to centrifugation (8000 rpm for 5 min) 
and the cell pellet obtained was lysed using bacterial protein extraction reagent. To 
this, a protease inhibitor was added at room temperature for 10 min. After this, 
centrifugation was done at 14000 rpm for 10 min and the supernatant was collected. 
This supernatant was mixed in 4X Laemmli buffer with β-mercaptoethanol and this 
mixture was boiled at 95C for 5 min. Next, the samples with total soluble proteins 
were loaded on TGX stain-free precast gels. These proteins were separated by 
electrophoresis and transferred on PVDF membrane. The membrane was blocked 
with 5% non-fat milk at room temperature for 60 min and then tagged with primary 
antibodies (1:2000 ratio) at 4C overnight.  

Next, HRP-secondary antibody (1:5000) treatment was performed for 60 min (RpoC 
antibodies for MG1655 and GFP antibodies for RL1314). Excess antibodies were 
removed by buffer wash. The membrane was then treated with chemiluminescence 
reagent, and the bands were detected. Images were obtained by the Chemidoc XRS 
(Biorad). The quantification of protein bands was performed using the Image Lab 
software. The images show three bands that are directly associated with the 
molecular weight of RNAP-GFP, RNAP and GFP, respectively. Consequently, they 
allowed determining, e.g., the fraction of RNAP and GFP molecules that are bound. 
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4.7 Genome-wide RNA-sequencing 

In Publication II, we performed RNA seq measurements in several media richness 
conditions (LB1.0x, LB0.75x, LB0.5x, LB0.25x, LB1.5x, LB2.0x, and LB2.5x). We used 
MG1655 cells and performed three biological replicates in each condition. RNA-seq 
data was collected for the following conditions:  

 
1. LB0.75x, LB0.5x, LB0.25x at 180 min relative to LB1.0x 
2. LB0.5x at 60 and 125 min relative to LB1.0x 
3. LB1.5x, LB2.0x, and LB2.5x at 180 min relative to LB1.0x 

For RNA extraction, first, the cells were treated with RNA protect bacteria reagent 
(Qiagen, Germany). This was done to prevent RNA degradation. The RNA was then 
extracted using RNeasy kit by Qiagen. The RNA was treated with DNAase (Turbo 
DNA-free kit, Ambion) and quantified using Qubit Fluorometer assay. Total RNA 
abundance was determined by gel electrophoresis (using 1% agarose gel, SYBR safe 
stain). Chemidoc XRS imager (Biorad) was used to detect RNA.  
 
The sequencing of LB0.75x, LB0.5x, LB0.25x at 180 min relative to LB1.0x (point 1 above) 
was performed by Acobiom (Montpellier, France). The RNA integrity number 
(RIN) of the samples was determined using the 2100 Bioanalyzer. To remove 
ribosomal RNA, the Ribo-Zero removal kit (Illumina) was used. Following the 
Illumina protocol, RNA-seq libraries were constructed. The samples were sequenced 
on an Illumina MiSeq instrument in a single-index (1×75 bp single-end 
configuration, 10M reads per library).  
 
For conditions 2 and 3, the sequencing was performed by GENEWIZ (Leipzig, 
Germany). The RNA integrity number (RIN) of the samples was determined using 
the Agilent 4200 TapeStation. Ribosomal RNA depletion was carried out using the 
Ribo-Zero Gold Kit (Illumina). NEB Next Ultra RNA Library Prep Kit was used to 
construct the RNA-seq libraries.  
 
For conditions LB1.5x, LB2.0x, and LB2.5x at 180 min relative to LB1.0x, the Illumina 
HiSeq 4000 instrument was used (2 × 150 bp paired-end configuration, 350M reads 
per lane). For conditions LB0.5x at 60 and 125 min relative to LB1.0x, the Illumina 
NovaSeq 6000 instrument was used (2 × 150 bp paired-end configuration, 10M reads 
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per lane). Raw sequence data was converted into fastq files using Illumina bcl2fastq 
v.2.20 software.  

In Publication III, RNA seq experiments were performed using the E. coli MG1655 
strain. The cells were grown in different growth-phase conditions and at time points: 
0, 20, and 180 mins. RNA was isolated from three independent biological replicates 
using the RNeasy kit (Qiagen) as in the Publication II. The sequencing was 
performed by GENEWIZ (Leipzig, Germany) using Illumina HiSeq instrument, and 
the raw files were converted into fastq files using Illumina bcl2fastq v.2.20. 

4.8 Genetic Engineering 

In Publication IV, we designed and engineered synthetic constructs using Snapgene 
Software (GSL Biotech). For this, we used well-known individual synthetic 
promoters (Plac, PBAD, and PtetA) (R. Lutz & Bujard, 1997; B. R. Smith & Schleif, 
1978).  These individual promoters were then arranged in tandem formations: ‘Plac-
PtetA’, ‘PtetA-Plac’, and ‘PtetA-PBAD-Plac’ (going upstream to downstream from left to 
right) using Snapgene software such that the distance between the TSSs of 
promoters is always between 150 and 200 bps. This distance was produced by the 
insertion of random sequences. The absence of hairpin loops and other translational 
products in the spacer sequences was confirmed. These biopart sequences were then 
assembled in Integrated DNA Technology, Iowa, U.S.A. A single-copy pBAC 
plasmid was used as then vector backbone where the bioparts were integrated (Lee 
et al., 2016). This vector also contains a coding region for mCherry supported by a 
strong RBS, to ensure visualization. Moreover, the maturation time of mCherry is 
15 min which allows easy mapping of RNA numbers from the fluorescence intensity. 
Finally, the proteins are non-toxic and stable to reduce influences from perturbations 
of the phenotype  (Lambert, 2019). 

This fully formed construct, with each biopart integrated in the vector backbone, is 
named ‘device’. These devices were transformed into a host strain of E. coli (DH5α-
PRO). Critically, this strain already carries the repressors for tight negative regulation 
of the promoters Plac, PBAD, and PtetA, in the absence of external activation. For their 
transformation, first, chemically competent DH5α-PRO cells (CC) were prepared. 
Plasmid DNA and DH5α-PRO CC were mixed in 1:10 ratio, accompanied with 30 
min of ice incubation. This mixture was then given a heat shock (42 °C) in a water 
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bath for 1 min. 800 µL of LB media was then added to the mixture and allowed to 
shake at 37 °C and 250 RPM. After 1 hour, 200 µL of the mixture was plated on agar 
plates supplemented with 34 µg/mL of chloramphenicol. These plates were kept 
overnight and the colonies containing the transformants (each device in DH5α-PRO 
cells) were harvested the next morning.  
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5 RESULTS 

5.1 Quantifying the Single-cell Distributions of RNA molecules 
Using MS2-GFP tagging System from flow-cytometry data 
(Publication I) 

In Publication I, we showed that it is possible to quantify with accuracy the single-
cell distributions of number of RNA molecules (tagged with multiple MS2-GFPs) in 
live bacterial cells, from flow-cytometry data. The method proposed overcomes what 
likely is the major limitation of the MS2-GFP system of RNA counting, based on 
microscopy. Specifically, using microscopy, it is necessary to apply image analysis in 
order to extract RNA numbers from live cells. Unfortunately, this analysis is more 
complex than standard cell segmentation (which is already a arduous process), 
because it is further necessary to segment individual fluorescent spots and then 
quantify how many MS2-GFP tagged RNAs compose each spot (Häkkinen et al., 
2013; Häkkinen & Ribeiro, 2014, 2016). Consequently, most studies using this 
technology limited their data to less than a few hundred (Golding et al., 2005) to a 
few thousand cells  (Lloyd-Price et al., 2016).  

Because of this, we set out to develop a method to automatically extract single-cells 
numbers of MS2-GFP tagged RNA molecules from flow-cytometry data. We first 
considered that one important feature of the MS2-GFP system is that a single RNA 
tagged with 96 MS2-GFP (Golding et al., 2005) is fluorescent enough for its signal 
to not be lost due to cellular background nor due to the background signal from 
individual, free-floating MS2-GFP proteins (unbound to any RNA) (Tran et al., 
2015). Moreover, we observed by spectrophotometry when new RNA molecules are 
tagged by MS2-GFPs, the total cell fluorescence increases (Figure 12). While we have 
not established the reason for this, one explanation could be the ‘immortalization’ 
of the MS2-GFP proteins once bound to a target RNA. That immortalization would 
cause bacteria producing tagged RNA to carry more MS2-GFP, on average, than 
bacteria without target RNA (Figure 1 of Publication I).  
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Figure 12.  Time series using spectrophotometry. Fluorescence intensity (in arbitrary units) of cell 
populations over time, was obtained from cells with target and reporter plasmids induced (light 
brown line) and from cells with only the reporter plasmid induced (blue line). Figure taken from 
Publication I.  

To test for other explanations (e.g., that the inducer adds fluorescence), we further 
determined the mean fluorescence of cells containing only the reporter gene by flow-
cytometry. We observed that it was not affected by adding an inducer of the target 
gene (IPTG), as expected (Figure 2 of Publication I). In contrast, the mean cell 
fluorescence of cells carrying both target and reporter genes increases with IPTG 
(Figure 2 of Publication I). This implies that RNAs, once with MS2-GFP tags, 
increase the total cell fluorescence. In support, we observed the same using 
microscopy images.  

Next, we measured how the total cell fluorescence, when measured by flow 
cytometry, scale with the changes in RNA numbers as measured by microscopy and 
image analysis (Figure 4 of Publication I). Unfortunately, we observed that it is not 
feasible to quantify with precision the number of MS2-GFP tagged RNAs in 
individual cells from flow-cytometry data. However, it is possible to quantify the 
single-cell distributions of these numbers. Visibly, there is a clear correlation between 
this distribution when obtained by microscopy with when obtained by flow-
cytometry (Figure 13). Therefore, it should be possible to “calibrate” the flow-
cytometry to the microscopy data, so as to directly extract single-cell distributions of 
RNA numbers from the flow-cytometry data. 
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Figure 13.  (A, B, and C) Single-cell moments of distribution (mean, standard deviation, and skewness) 
of RNA numbers by microscopy with increase in IPTG concentration. (D, E, and F) Single-cell 
moments of distribution (mean, standard deviation, and skewness) of F/W values by flow cytometry 
with increase in IPTG concentration. The figure is taken from Publication I.   

The calibration should be possible by using two or more data points from 
flowcytometry and corresponding data points from microscopy. We performed this 
calibration independently for the distributions of the mean, standard deviation, and 
skewness for different inductions strengths (Figure 7 of Publication I). We found 
that the best fitting line of the calibration could not be distinguished from the ideal 
line, which proves the accuracy of the method.  
 
Overall, we expect this technique to be able to contribute to studies of transcription 
at the single cell level, by facilitating the collection of data. Moreover, this method 
should also be applicable to other technologies relying on single-cell imaging such as 
FISH. Increased data should allow dissecting regulatory mechanisms that only 
weakly affect gene expression dynamics and, due to that, may have not yet been 
discovered. 

5.2 Transcription Factor Network Dynamics Following the Shifts in 
Media Richness (Publication II) 

In Publication II, we studied how the transcription factor network (TFN) of 
bacteria responds to stresses. Lack of environmental nutrition is one such stress. 
From previous studies (Lloyd-price et al., 2016), we knew that it leads to a quick 
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decrease in the numbers of RNA polymerases inside E. coli. Hence, it should cause 
a great disturbance in the TFN. On the other hand, cells adapt quickly to this stress, 
and thus the TFN responses are likely beneficial. We thus studied the TFN dynamics 
following quick shifts from rich to poor media (Figure 2 of Publication II) and vice 
versa (Figure 6 of Publication II).  

We observed shifts of 25-50% in RNAP levels at ∼ 75 min which stabilized at ∼ 165 
min (Figure 2 of Publication II). Moreover, we found that 180 min measurement 
time sufficed to detect RNA changes due to the changes in RNAP and due to 
changes in the numbers of direct input TFs. Consequently, the data can be used to 
study the influence of TF numbers on the genome-wide responsiveness. 

We then investigated if and how the initial gene responses propagated to other genes, 
because of the TFN. To make this possible, we extracted the known TFN of E. coli 

from the RegulonDB database (Santos-Zavaleta et al., 2019).  We also studied the 
functional role (activation or repression) of each TF. By confronting the data on 
gene expression responses, with the data on gene-gene interactions via transcription 
factors, we found that, on average, the difference in the numbers of activator and 
repressor input TFs of a gene is strongly correlated to the response strength of that 
gene (Figure 14A).  

Moreover, genes separated by a path length of two or more TFs in the TFN did not 
have correlated response strengths (Figure 14B). This suggests that the information 
on the stress did not propagate beyond the nearest neighbor genes in the TFN 
(during the measurement time of 3 hours). As such, the results above are mostly due 
to the interactions between nearest neighbors in the TFN. 
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Figure 14.  (A) Correlation plot between LFC of input and output genes distanced by minimum path 
length of 1, 2, and 3. (B) Mean changes in LFC as a function of the mean bias of the effects of 
input TFs. The figure is taken from Publication II.  

Finally, GRs,  factors, non-coding RNAs, (p)ppGpp, and structural parameters of 
the TFN (e.g., betweenness, stress centrality, clustering coefficient, eccentricity, and 
out-degree) had little to no influence on the main results. Overall, the results 
constitute empirical evidence that the TFN (topology and logic) can influence global 
stress responses of E. coli. Potentially, they may also influence the responses to 
antibiotics. 

5.3 dTSS and RNAP- promoter Occupancy Times play a major role 
in the Dynamics of Genes Controlled by Tandem Promoters 
(Publication III)  

In Publication III, we studied the dynamics of genes controlled by tandem 
promoters as a function of the nucleotide distance (dTSS) and the time intervals 
during which RNAP binds with the downstream promoter. Tandem promoters were 
defined as two closely spaced promoters controlling the transcription of the same 
gene in the same direction, in agreement with (Shearwin et al., 2005). Our aim was 
to find rules controlling the dynamics of tandem promoters to guide the design of 
future synthetic genetic circuits. 
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The E. coli genome contains 831 genes controlled by more than one promoter in 
tandem configuration (Santos-Zavaleta et al., 2019). We began by identifying which 
genes are controlled solely by their tandem promoters (rather than other nearest-
neighbor promoters). We identified 102 such pairs of genes (Section ‘Selection of 
natural genes controlled by tandem promoters’, S1 Appendix, Publication III). 

We collected their single-cell protein expression levels (limited to the 30% of those 
genes that are represented in the YFP protein fusion library) (Taniguchi et al., 2010). 
We found that the dynamics of tandem promoters, when close enough for their TSSs 
to be distanced by less than 35 bp, differ significantly from when the distance is 
larger than 35 bp. From this, we concluded that, if less than 35 bp, RNAPs in one 
TSS most likely can block other RNAPs from binding to other TSS. In agreement 
with increased expression levels, we also found that CV2 and skewness decreased 
with dTSS (Figure 15). 

Exponential 1, Exponential 2, and Step functions were then used to model the 
relationship between protein expression levels and dTSS. The equations are shown in 
Table 2. The result in Figure 15 shows that that the Step function best fits the 
empirical data (R2 equal to 0.36 in mean optimal condition), which we validated using 
the data from 0.5X M9 media richness. This can be explained by the occurrence of 
occlusion of one TSS due to the occupation of the other TSS by RNAP. As such, 
the time length that the RNAPs occupied the promoter during transcription 
initiation was a key variable, as it will influence the propensity for the RNAPs to 
occupy a TSS at any given time.  
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Figure 15.  Influence of dTSS on the single-cell protein numbers of genes controlled by tandem promoters 
and the analytical model. (A) Mean, (B) CV2, and (C) S of protein numbers in the 1X media as a 
function of dTSS. (D), (E), and (F) show the same for the 0.5X media, respectively. Red dots are the 
mean values from 3 biological repeats. These dots are grouped in boxes based on their dTSS. In 
each box, the red line is the median. The vertical bars are the range between the minimum and 
maximum of the red dots. The insets show the R2 for each model fit and prediction. Figure is taken 
from Publication III.  

Table 2.  Models of transcriptional interference due to promoter occlusion. 
Taken from Publication III.  
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Here, b1 represents the first order exponential decay constant, max
oclk  is the 

maximum occlusion possible,   represents fraction of time that ‘other’ promoter is 
occupied, b2 stands for the second-order exponential decay constant, L is the length 
of DNA (in bp), k is Interference by occlusion is constant irrespective of dTSS, and 
m stands for the steepness of the step. 

Based on the data on the single-cell distributions of protein numbers, we proposed 
and validated a new analytical model for the dynamics of promoters in tandem 
formation (Figure 16). The model aimed to account for known mechanisms of 
transcriptional interference in closely spaced promoters, and was based on past 
models proposed in (Callen et al., 2004; Shearwin et al., 2005; Sneppen et al., 2005). 
Thus, occupancy times of promoter regions are key parameters (Publication III). 
In conclusion, the model suggests that RNAP-promoter occupancy times and dTSS 
are the main determinants of interference. 

 

Figure 16.  Transcriptional interference between tandem promoters. (A) The sequence of events in 
transcription in isolated promoters. A similar set of events occurs in tandem promoters if only one 
RNAP interacts with them at any given time. (B / C) Interference due to the occlusion of the 
downstream / upstream promoter by a bound RNAP, which will impede the incoming RNAP from 
binding to the TSS. (D) Interference of the activity of the RNAP incoming from the upstream 
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promoter by the RNAP occupying the downstream promoter. One of these RNAPs will be dislodged 
by the collision. Figure is taken from Publication III.  

Overall, our findings revealed that the dynamics of tandem promoters can be 
predicted by a model of the transcription initiation dynamics of the component 
promoters when not closely spaced, along with the nucleotide distance between 
them when closely spaced. This suggests that a method could be implemented, where 
from a library of promoters whose individual dynamics is known and from a pre-
selected distance, one could assemble tandem promoters with novel, and yet 
predictable dynamics. Such could assist the design of novel circuits. 

5.4 Engineering Genes with Predictable Dynamics Using Synthetic 
Tandem Promoters (Publication IV) 

In Publication IV, we reported on our new genetic constructs of tandem promoters 
and findings using them. As first discussed in Publication 3, in Publication 4 we 
started by hypothesizing that it should be possible to engineer genes with predictable 
dynamics from promoters with known dynamics. Specifically, based on the results 
in Publication III, it should be possible, by placing one promoter in an upstream 
position from another promoter, to create a combined dynamics that is stronger than 
the dynamics of the downstream promoter alone, although not as strong as if the 
two promoters were fully independent. I.e., the interference due to the tandem 
formation should lead to new dynamics that ought to be tunable.  

To test this, as a proof-of-concept, we designed synthetic constructs in tandem 
formation based on the well-characterized promoters Plac, PtetA, and PBAD (Figure 17). 
The engineered tandem constructs are (Plac-PtetA), (PtetA-Plac), and (PtetA-PBAD-Plac). 
These tandem constructs are in single-copy plasmids and are distanced by a 150-200 
bp random sequence between them (for a detailed description, see Figure 17). 
Having measured their dynamics, first, we showed that the synthetic tandem 
promoters have the same mean-to-noise relationship (Figure 4 in Publication IV) 
as observed in natural E. coli promoters (Publication III). This suggests that the 
synthetic tandem promoters do not differ widely in behavior from natural ones, i.e. 
in an unpredictable manner.  
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Figure 17.  Illustration of the synthetic device and biopart cassettes integrating individual promoters (A, 
B, and C) into tandem (D, E, and F) configurations. Each biopart is inserted into the biopart cassette 
(shown in green) forming a device. The tandem bioparts contain the Lac,Tet, and BAD promoters, 
whose transcription start sites are distanced by 150 bp. In the bioparts D and E, the upstream and 
downstream promoters are flipped. Figure created with SnapGene and edited using Adobe 
Illustrator. 
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Next, by comparing the mean expression rates of the tandem promoter constructs, 
we showed that the dynamics of the downstream promoter is amplified by the 
activity of the upstream promoter (Figure 18). Moreover, we showed that this 
amplification is also a function of the strength of promoters. Based on this result, 
we proposed a general model to explain the kinetics of synthetic tandem promoters: 

 
. ( , ),= +T D U U DA A A f A A  where 1( , )U Df A A                      5.4.1 

 
Here, AD corresponds to the expression level of the downstream promoter, AU 

corresponds to the expression level of the upstream promoter, and AT stands for the 
overall expression level of the two promoters when placed in tandem formation. 

 

Figure 18.  Mean Protein levels of tandem promoters when: a) uninduced; b) only the downstream 
promoter is induced, and c) both promoters are fully induced. The figure is modified from 
Publication IV. 

Next, using time-lapse spectrophotometry (Figures S2 and S3 in Publication IV), 
we studied the responses of the new constructs to stresses caused by antibiotics 
known to target the transcription machinery. These antibiotics, rifampicin, and 
ofloxacin, act by blocking the main regulatory elements of the transcription 
machinery (Campbell et al., 2001). In detail, first, Rifampin inhibits RNA 
polymerase. This occurs through the blocking of the elongating RNA's pathway 
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(Kurepina, Chudaev, Kreiswirth, Nikiforov, & Mustaev, 2022). On the other hand, 
ofloxacin inhibits DNA gyrase and topoisomerase IV, both of which are type II 
topoisomerases (Shen et al., 1989). Specifically, ofloxacin binds to DNA-bound 
DNA gyrase, which increases the rate of double-stranded breaks in the DNA (Todd 
& Faulds, 1991). We expected that the effects of these antibiotics should depend on 
the strength of the downstream promoter. Interestingly, we found that for PUtetA-
PDlac, the antibiotics attenuate the synergy levels, while for PUlac-PDtetA, the antibiotics 
amplify the synergy (Figure 19). 

 

Figure 19.  Fluorescence levels normalized by the sum of the individual component promoters, relative 
to the normalized fluorescence in control conditions. The population fluorescence levels are 
measured by spectrophotometer over time (in minutes). The shaded areas are the standard error 
of the mean of 3 biological replicates. The figure is modified from Publication IV. 

Here, synergy (denoted as ‘Ψ’ in Figure 19) is assumed to occur when the overall 
expression is higher than the sum of the expression levels of the two promoters, 
when not in tandem formation. These results mean that the new constructs have 
complex responses to the antibiotics. The results also suggest that the tandem 
constructs can achieve a wide range of dynamical responses. Thus, they can be used 
to enrich the library of promoters with unique dynamics which can be used in future 
synthetic genetic circuits. 
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6 DISCUSSION 

Bacteria face several environmental stresses during their lifetime, such as nutrient 
scarcity, pH shifts, and non-optimal temperatures (Chung, Bang, & Drake, 2006). 
Overcoming these stresses requires phenotypic adaptations (Jozefczuk et al., 2010; 
Patange et al., 2018), such as the adjustment of the growth rate accordingly 
(Jozefczuk et al., 2010). Underlying these adaptations are genome-wide 
modifications. Some modifications involve one to a few genes, while others require 
the down- or upregulation of many genes (Hengge-Aronis, 2002a; Jozefczuk et al., 
2010).  

To perform complex modifications, bacteria have evolved transcriptional programs 
involving hundreds of genes. These programs are made possible by having multiple 
genes that share similar internal features (e.g., similar promoter arrangements or 
supercoiling sensitivity) or TFs. Some TFs are known to control a few hundred genes 
(Martínez-Antonio & Collado-Vides, 2003).  

To dissect why some genes, but not others, respond similarly to certain genome-
wide stresses, one needs knowledge of the internal features of the TFN. For this 
reason, we used E. coli as the model organism in our study. Specifically, its TFN is 
probably one of the best characterized, due to more than 25 years of studies (Fang 
et al., 2017). Here, we used this knowledge to study the correlations between genes’ 
response to stresses as a function of their known interactions with other genes via 
TFs (including the global regulator 38) and promoters’ proximity. Our findings 
provide direct evidence that these interactions influence the genome-wide response 
dynamics to the stresses studied. For example, we observed that, following changes 
in RNAP concentration, the response strength of pairs of genes that interact via TFs 
is more correlated than between randomly selected pairs of genes. In the same study, 
we further observed that, e.g., the response strength of each gene was correlated to 
the number of TFs regulating that gene. 

Our presently reported observations were restricted to stresses caused by changes in 
media richness affecting RNAP concentration and/or growth rates. Nevertheless, 
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we expect similar future observations following responses to other genome-wide 
stresses. Specifically, we expect that many stresses will initially activate a specific set 
of genes.  

We also expect that responsive genes will either share a similar feature, which 
provides them their similar responsiveness, and/or will be under the control of the 
same TFs. Moreover, in most cases, following the initial up/down-regulation of a 
gene cohort, the information will likely be sent through the TFN to other genes, 
which will then originate a longer-term response. We expect this because, e.g., for 
many stresses, the effect of a TF (activation or repression of other gene(s)) should 
be relatively independent from the nature of the stress. 

Finding the properties that determine which genes respond to specific stress remains 
complex (Larsen, Röttger, Schmidt, & Baumbach, 2019). E.g., in general, and as 
noted above, it is yet not possible to predict gene responses based solely on the 
promoter sequence, due to the interference from other features of the natural 
genomes. However, we found that this can become more feasible by reducing the 
search to a set of genes sharing properties and focusing on a specific stress or a small 
set of similar stresses. By focusing on a reduced set of promoters with the same σ 
factor dependency, we were able to establish that the promoter sequence of that gene 
cohort partially explained those genes’ response to a specific change in conditions 
(from exponential to stationary growth). Another method, employed in (Garcia & 
Phillips, 2011), is to engineer all possible sequences of promoters (within a restricted 
range of nucleotides) and measure the response of each synthetic promoter. This 
methodology should assist in verifying predictions made from the responses of 
native promoters to the same stress. 

We also provided evidence that subjecting E. coli to specific genome-wide stresses is 
an effective strategy to identify gene regulatory mechanisms. Specifically, it allows 
the partitioning of the genes into cohorts of responsive and non-responsive (Weber, 
Polen, Heuveling, Wendisch, & Hengge, 2005) or quickly and slowly responsive 
(Bhatia, Kirit, Predeus, & Bollback, 2022; Dash et al., 2022).  

The differences in the dynamics of each cohort can then be confronted with known 
specificities of the component genes (e.g., sequence and TFs). For example, we 
studied a cohort of tandem promoters without neighboring genes. Meanwhile, there 
are cases where one of the promoters overlaps with a neighboring gene (Santos-
Zavaleta et al., 2019). Comparing the mean behavior of the two cohorts should 
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provide insight into the role of the overlapping. In general, provided enough natural 
cases, it should be possible to remove the influence from other variables. 

Also noteworthy, in our study of a reduced set of tandem promoters, we observed 
differences in the dynamics of tandem promoters due to two variables, dTSS and 
RNAP-promoter occupancy time. In other promoter arrangements, other factors are 
influential (Bordoy, Varanasi, Courtney, & Chatterjee, 2016; Eszterhas et al., 2002; 
Meyer & Beslon, 2014). A promising strategy for dissecting how these and other 
regulatory mechanisms act on transcription is the combined use of large-scale 
perturbations, to observe the behavior of the natural circuits. Then, having 
established hypotheses of what are the controls of the natural systems, we 
hypothesized that it should be possible to use synthetic biology to engineer sufficient 
constructs to test the hypotheses. Following these hypotheses, we designed and 
engineered synthetic genetic constructs controlled by tandem promoters differing in 
strength from their component promoters.  

In the future, our research could be expanded by considering convergent and 
divergent arrangements, as well as additional variables, such as supercoiling buildup 
as a function of the location of the promoter in the DNA. For example, the current 
model does not account for interference from neighboring gene's elongation events, 
nor due to transcription factor bindings. The future models could be expanded by 
considering these factors. Further, small libraries of genetic constructs could be 
designed with different arrangements to support the findings using the models. 
Similarly, we could study the effects of supercoiling, global regulators, temperature, 
and antibiotics. These constructs could, later on, become valuable components of 
future synthetic gene circuits. 

Overall, as the dissection of GRN structures expands to more organisms, it should 
be possible to use strategies as the ones applied in this thesis and study their genome-
wide, transcriptional response programs to stresses. This could provide better 
insights into how such complex programs evolved in bacteria. Such programs are 
likely responsible for capabilities that we are yet to decipher how they are achieved, 
such as persistence to antibiotics. 
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7 CONCLUSIONS 

When I started my Ph.D. studies, transcription dynamics in E. coli was being studied 
using MS2-GFP tagging of RNA molecules. That led to several developments, such 
as the characterization of time intervals between RNA production events at the 
single-cell level. However, this was greatly limited by the small number of cells that 
could be followed and then segmented from microscopy images.  

To overcome this limitation, I worked on the development of a method to measure 
the numbers of tagged RNAs in individual cells (Publication I). This was found to 
be partially possible. Particularly, while we discovered that we could not easily 
quantify the numbers of RNAs in individual cells, surprisingly we were able to match 
single-cell distributions of RNA numbers in individual cells. This finding makes it 
possible to replace microscopy with flow-cytometry as a means to quantify single-
cell distributions of RNA numbers. This has the highly significant advantage of 
allowing the use of hundreds of thousands of cells to characterize transcription, 
instead of a few hundred cells due to the labor intensiveness of conducting 
microscopy and image analysis. Potentially, if combined with microfluidics, this may 
revive the use of MS2-GFP or FISH in the future to characterize transcription in 
bacteria.  

Perhaps more interesting, due to this finding, we could characterize transcription by 
observing the levels of fast-maturing proteins by flow-cytometry. Specifically, since 
the first images using electron microscopy of transcription and translation in 
bacteria, it is well known that these two processes are mechanically and thereby 
dynamically linked and highly correlated, respectively. However, protein maturation 
times and events in cell division, among others, are expected to be sufficient to “de-
correlate” RNA and protein numbers significantly. However, if the proteins 
maturated rapidly and efficiently, the correlation could remain high. In agreement, I 
observed that while it is not possible to match the RNA and protein numbers of 
individual cells with accuracy, the single-cell distributions of RNA and fluorescent 
proteins the RNA codes for are very well correlated. Thus, in subsequent studies, I 
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made use of single-cell distributions of fast-maturing YFP proteins to study 
transcription (Taniguchi et al., 2010).   
 
Subsequently, because of the findings above, the next main study used YFP 
fluorescent tags in the chromosome as the main method. Specifically, we observed 
single-cell distributions of YFP levels, from strains where these tags are attached to 
pairs of promoters in tandem formation. We focused on the phenomenon of 
interference between closely spaced promoters in tandem formation as a function of 
the distances between the promoter sequences and their strengths.  
 
Prior to this thesis, the behavior of tandem promoters had only been explored using 
synthetic constructs. Therefore, the knowledge of the behavior of natural genes 
controlled by such promoters was relatively speculative. Because we had already 
linked protein numbers with RNA numbers in single cells and because I was already 
experienced in using the YFP strain library, I set out to use it to the study tandem 
promoters as a regulatory mechanism in normal and in stress conditions 
(Publication III). 
 
Our main conclusion was that in natural E. coli cells, promoters with tandem 
formation that are spaced by less than 35 bp are subject to a strong phenomenon of 
interference due to promoter occlusion by RNAP occupancy of one of the 
promoters. Moreover, the degree of occlusion can differ with the stress condition. 
Based on this, I hypothesize that closely spaced promoters in tandem formation are 
evolved forms of gene regulatory mechanisms in bacteria and can be used to reliably 
control synthetic circuits.  
 
In our final work, we present a proof of concept of the finding about the natural 
tandem promoters (Publication IV). Shortly, our novel synthetic promoter 
arrangements exhibit the expected dynamics. I.e., they exhibit predictable 
interference, which influences their behavior in optimal conditions and also their 
responses to antibiotics targeting the core regulators of transcription and 
supercoiling. This suggests that transcription interference between closely spaced 
promoters could help engineering genes with novel dynamics.  
 
Overall, these studies reached the aims listed in Chapter 3. They also allow setting 
aims for future studies. I expect that it will prove to be valuable to synthetic genetic 
engineering studies and the further exploration of the regulatory mechanisms of 
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closely spaced promoters in convergent and divergent geometries. These future 
studies should consider the influence of other factors affecting transcription 
dynamics such as temperature, supercoiling, global regulators, transcription factors, 
and interference due to neighboring genes, among others. 
 
The main value is likely derived from their dynamics being subject to regulation due 
to not only their proximity, but also by the timing of the open and closed complex 
formation as well as by the timing of binding of transcription factors, for example. 
Such transcription factors could be chosen e.g., based on our observations of the 
TFN response to RNAP (Publication II). Specifically, those observations may be 
of use to estimate the strength that TFs have on their output genes and, thus, select 
those that best fit the desired synthetic genetic circuits. 
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A B S T R A C T

Estimating the statistics of single-cell RNA numbers has become a key source of information on gene expression
dynamics. One of the most informative methods of in vivo single-RNA detection is MS2d-GFP tagging. So far, it
requires microscopy and laborious semi-manual image analysis, which hampers the amount of collectable data.
To overcome this limitation, we present a new methodology for quantifying the mean, standard deviation, and
skewness of single-cell distributions of RNA numbers, from flow cytometry data on cells expressing RNA tagged
with MS2d-GFP. The quantification method, based on scaling flow-cytometry data from microscopy single-cell
data on integer-valued RNA numbers, is shown to readily produce precise, big data on in vivo single-cell dis-
tributions of RNA numbers and, thus, can assist in studies of transcription dynamics.

1. Introduction

Single-cell imaging and fluorescent proteins have become a key
source of information on multiple processes in live cells, particularly
gene expression (Kærn et al., 2005). Originally, they have been used
for, e.g., quantifying cell-to-cell diversity in protein levels (Elowitz
et al., 2002; Ozbudak et al., 2002; Pedraza and Van, 2005; Engl, 2018).
Subsequent progresses in microscopy and in the engineering of syn-
thetic fluorescent proteins have allowed observing in vivo individual
proteins (Yu et al., 2006) and RNA molecules (Fusco et al., 2003;
Golding et al., 2005; Trcek et al., 2012; Femino et al., 1998; Raj et al.,
2008). This made possible, among other, the quantification of the ef-
fects and the identification of sources of transcriptional bursting
(Golding et al., 2005; Yu et al., 2006; Chong et al., 2014).

While there are several methods to quantify RNA, such as RT-qPCR
(Saiki et al., 1985)(Higuchi et al., 1993), microarrays (Bumgarner,
2013), RNA seq (Tang et al., 2009), and UMI-based single-cell RNA-seq
(Kivioja et al., 2012; Islam et al., 2014), among other, only a few can
visualize individual RNAs, such as RNA Fluorescence In Situ Hy-
bridization (Singer and Ward, 1982), RNA aptamers (Bunka and
Stockley, 2006), and MS2-GFP RNA tagging (Golding et al., 2005). The
latter allows observing individual RNAs using a synthetic protein,
MS2d-GFP, and a synthetic target RNA, coding for multiple binding

sites for the MS2d capsid protein (Peabody, 1993). Due to the rapid and
stable binding of multiple MS2d-GFP proteins to the several binding
sites in a single RNA, time-lapse imaging detects individual RNAs as
these are produced. This facilitates the identification of sources of in-
trinsic noise in RNA production (Golding et al., 2005), the dissection of
rate-limiting steps in active transcription (Lloyd-Price et al., 2016;
Kandavalli et al., 2016), and the quantification of propensities for
threshold crossing in RNA numbers (Startceva et al., 2019), among
other.

The quantification of RNA by MS2d-GFP tagging is not free from
measurement noise. For example, in time-lapse confocal microscopy, it
is not uncommon that tagged RNAs (Supplementary Fig. S1) inter-
mittently disappear. In addition, the precision of the estimation of the
number of tagged RNAs within a given ‘RNA spot’ decreases rapidly
with the number of RNAs in the spot (Golding et al., 2005; Häkkinen
et al., 2014). Further, it is laborious to collect data, since even when
using tailored, state-of-the-art software for segmenting the microscopy
images (e.g. (Martins et al., 2018)), it usually still requires manual
corrections and, in the worst cases, the necessary information can be
absent from the images (e.g. an existing spot might not be captured in
the image, e.g. if not within a given z-plane).

One solution to these problems would be to complement the mi-
croscopy data on single-cell numbers of MS2d-GFP tagged RNAs with
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flow cytometry data. This would allow to rapidly collect much larger
amounts of data, and also reduce significantly the uncertainty in the
data (e.g. cells that are not entirely imaged can be automatically re-
moved from the dataset, by using combined information from various
channels of the flow cytometer, and RNA spots would always be en-
tirely present in each imaged cell). However, flow cytometry lacks
spatial information, which so far has been used in the quantification of
MS2d-GFP tagged RNAs (Golding et al., 2005; Häkkinen et al., 2014).

Recent approaches have successfully combined Fluorescence in situ
hybridization (FISH) for RNA counting with flow cytometry (see e.g.
(Arrigucci et al., 2017; Bushkin et al., 2015; Tiberi et al., 2018) for
similar aims. However, achieving the same using the MS2d-GFP tagging
technique is expected to be more complex because, unlike when using
FISH, not only the MS2d-GFP tagged RNAs are fluorescent but also the
cells' cytoplasm, due to the need for large numbers of free floating
MS2d-GFP to readily detect newly formed RNAs.

To address this, and since MS2d-GFP tagged RNA have been shown
to have constant fluorescence for a few hours following their formation
(Tran et al., 2015; Lloyd-Price et al., 2016; Oliveira et al., 2016), we
hypothesized that cells with tagged RNAs have, on average, higher
fluorescence than otherwise (since the MS2d-GFP proteins attached to
the RNA are ‘immortalized’). As such, the total fluorescence of a cell
should increase with the number of tagged RNAs that it accumulates. If
so, it should be possible, from flow cytometry data on cells expressing
MS2d-GFP tagged RNAs, to estimate the statistics of single-cell dis-
tributions of RNA numbers. Here we validate these hypotheses and
show that flow cytometry data can be used to extract the mean, stan-
dard deviation, and skewness of single-cell distributions of RNA num-
bers that match those observed using microscopy.

2. Materials and methods

2.1. Chemicals

Measurements were performed in Luria-Bertani (LB) medium. The
chemicals were: Tryptone and sodium chloride from Sigma Aldrich.
Yeast extract was from Lab M (Topley House, Bury, Lancashire, UK).
Antibiotics used are kanamycin and chloramphenicol, from Sigma-
Aldrich. Inducers isopropyl β-D-1-thiogalactopyranoside (IPTG), anhy-
drotetracycline (aTc) and L-Arabinose (ara) were purchased from
Sigma-Aldrich. For preparing microscopic gel pads we used agarose
from Sigma-Aldrich.

2.2. Strains and plasmids

The E. coli strain used was DH5α-PRO, identical to DH5αZ1. Its
genotype is deoR, endA1, gyrA96, hsdR17 (rK- mK+), recA1, relA1,
supE44, thi-1, Δ(lacZYA-argF)U169, Φ80δlacZΔM15, F-, λ-, PN25/tetR,
PlacIq/lacI and SpR. This strain produces the regulatory proteins re-
quired for tightly regulating the genetic constructs used (LacI, TetR and
AraC).

The two genetic constructs used in this strain are: i) a multi-copy
reporter plasmid responsible for producing MS2d-GFP proteins, con-
trolled by the promoter PLtetO-1, inducible by aTc; ii) A single-copy
target F-plasmid is responsible for producing an RNA coding for mRFP1
up-stream of a 96 MS2 binding site array, controlled by the promoter
PLac/ara-1, inducible by IPTG and L-Arabinose, (PLac/ara-1-mRFP1-96BS,
Supplementary Fig. S2). We also used the E. coli DH5α-PRO strain
carrying only the reporter plasmid. The plasmids were transferred into
the host strain by standard molecular cloning techniques (Alberts et al.,
2002).

The high number of binding sites for MS2d and the high affinity of
each site with MS2d proteins cause each target RNA, when tagged, to
appear as a bright ‘spot’ (Fig. 1B and Supplementary section 1.2), soon
after being transcribed (in< 1min) and to exhibit constant fluores-
cence intensity for a long period of time (mean half-lives of ~140min

(Tran et al., 2015)). Finally, it has been shown that, in these cells, the
protein expression level of the target gene is not affected by MS2d-GFP
tagging and follows the RNA numbers (Startceva et al., 2019).

2.3. Growth media and induction of the reporter and target genes

From a glycerol stock (−80 °C), cells were streaked on a LB agar
plate and incubated at 37 °C overnight. From this plate, a single colony
was picked and inoculated into a fresh LB medium supplemented with
appropriate antibiotics (35 μg/ml kanamycin and 34 μg/ml chlor-
amphenicol) and grown overnight at 30 °C with aeration. From the
overnight cultures, cells were diluted into fresh LB medium to an op-
tical density (OD600) of 0.03, and grown at 37 °C, 250 rpm. Once the
cells reach the OD600 0.3, aTc (100 ng/ml) was added to induce PLtetO-1
for MS2d-GFP production. L-Arabinose (0.1%) was also added, at the
same time, for pre-activation of the target promoter PLac/ara-1. After
50min, IPTG was added (0, 6.25, 50, 100, 200, 300, 500, or 1000 μM)
to activate the production of the RNA target for MS2d-GFP. Following
1 h, cells were observed to quantify RNA and proteins (microscopy or
flow cytometry).

2.4. Spectrophotometry

Fluorescence intensities were measured by using a BioTek Synergy
HTX Multi-Mode Microplate Reader with Gen5 software. From the
overnight culture, cells were diluted to 1:1000 times in fresh LB
medium and incubated at 37 °C with shaking, until an OD600 of 0.3.
Afterward, cells were aliquoted into 96 well microplates, and allow
them to grow while maintaining the same temperature and shaking.
Following induction of the reporter and target genes (see Section 2.3),
mean fluorescence intensities were recorded for 10 h at an interval of
10min, using the excitation (485/20 nm) and emission (525/20 nm)
filters. We performed 6 technical replicates for each condition. We
found weak variability between replicates. Results are the averages and
standard error of the means.

2.5. Microscopy and image analysis

A few μl of cells were sandwiched between the coverslip and an
agarose gel pad (2%), and visualized by a 488 nm argon ion laser
(Melles–Griot) and an emission filter (HQ514/30, Nikon), using a Nikon
Eclipse (Ti-E, Nikon) inverted microscope with a 100× Apo TIRF (1.49
NA, oil) objective. Fluorescence images were acquired by C2+ (Nikon),
a point scanning confocal microscope system. The laser shutter was
open only during exposure time to minimize photo bleaching.
Simultaneously with the confocal images, phase contrast images were
also captured by a CCD camera (DS-Fi2, Nikon). All images were ac-
quired with NIS-Elements software (Nikon). Microscopy images were
analysed using the software ‘CellAging’ (Häkkinen et al., 2013). For
details, see Supplementary Materials and Methods, Sections 1.1 and
1.2.

2.6. Flow cytometry and gating

Cells carrying the target and reporter genes were grown and in-
duced as described in Section 2.3. For this, from 5ml of the bacterial
culture, cells were diluted 1:10000 into 1ml PBS and vortexed for 10 s.
In each measurement, 50,000 events were recorded using an ACEA
NovoCyte Flow Cytometer (ACEA Biosciences Inc., San Diego, USA),
equipped with a blue (488 nm) and a yellow laser (561 nm) for ex-
citation. For detection of MS2d-GFP and RNA-MS2d-GFP, we used the
fluorescein isothiocyanate (FITC) detection channel (530/30 nm filter)
for emission, with a PMT voltage setting of 417. For detection of red
fluorescence proteins (mRFP1), we used the PE-Texas Red fluorescence
detection channel (615/20 nm) for emission, with a PMT voltage set-
ting of 584. We set a flow rate of 14 μl/min and a core diameter of
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7.7 μM. To avoid background signal from particles smaller than bac-
teria, the detection threshold was set to 5000 in FSC-H analysis. Data
were extracted using the ACEA NovoExpress software.

We applied unsupervised gating (Razo-Mejia et al., 2018) to the
flow cytometry data. We set the fraction of single-cell events whose
data is used in the analysis (α) to 0.99, as it was sufficient to remove
noncell events produced by debris, cell doublets, cell fragments, clump
of cells, and other undesired events. Reducing α further did not change
the results qualitatively. In addition, we removed events that did not
exhibit fluorescence from free-floating MS2d-GFP by applying (manu-
ally) a minimum threshold (Supplementary Fig. S3, Right). Also, we
removed<0.01% of the events with highest FITC-H normalized by
pulse width (F/W) values. Similarly, we removed< 0.01% of the events
with highest R/W values. In all measurements by flow cytometry fol-
lowed by data filtering,> 40,000 single-cells events were analysed per
condition.

Finally, the total cell fluorescence differs with cell size
(Supplementary Fig. S4, Right), while the concentration of MS2d-GFP
does not (Supplementary Fig. S4, Left). To account for this, we nor-
malized the FITC-H signal by the pulse Width (which differs with cell
size (Cunningham, 1990; Traganos, 1984) denoted by F/W. Likewise,
we also normalized the PETexasRedH signal by the pulse Width, de-
noted by R/W. For this reason, throughout the results section, we only
refer to F/W and R/W when referring to flow cytometry data.

2.7. Mean, standard deviation, and skewness of single-cell distributions of
RNA and protein numbers

We calculated the mean (M), Variance (Var), standard deviation
(Sd), 3rd moment and skewness (S), of the distribution of single-cell
RNA numbers (obtained from microscopy), and of the single-cell dis-
tributions of F/W, and R/W (obtained from flow cytometry), as shown
in Table 1:

The standard error of M is calculated from Sd X
N
( ) , where N is the

sample size of X. Meanwhile, the standard error (SE) of Var, Sd, 3rd
moment and S is estimated using a non-parametric bootstrap method
(Carpenter and Bithell, 2000; DiCiccio and Efron, 1996), by performing
103 random resamples with replacement, to obtain the bootstrapped
distributions of Var, Sd, 3rd moment and S.

3. Results and conclusions

3.1. Time-course cell fluorescence in the presence and absence of RNA
target for MS2d-GFP

We performed time-lapse microscopy measurements of E. coli cells
carrying a gene coding for RNA target for MS2d-GFP, under the control
of the Lac/Ara-1 promoter (PLac/ara-1). The cells also produce MS2d-GFP
proteins from a multi-copy plasmid controlled by the PLtetO-1 promoter
(Materials and Methods, Section 2.2).

For RNAs target for MS2d-GFP to be readily detected, the cells need
to contain multiple MS2d-GFP proteins (Golding et al., 2005). Due to
this, their background is green fluorescent (Fig. 1A) and each target
RNA appears as a bright spot in< 1min after being produced (Tran
et al., 2015) (Fig. 1B). In general, using these constructs and conditions,
the cells produce from one to a few target RNAs during their lifetime
(Häkkinen and Ribeiro, 2016).

In the absence of MS2d-GFP tagged RNAs, the total cell background
fluorescence (i.e. the sum of the intensity of all pixels covering the cell

Fig. 1. A) Example microscopy image of cells carrying the reporter gene coding for MS2d-GFP, prior to the production of target RNAs. The cells are visible due to
carrying a large amount of MS2d-GFP proteins; B) Example microscopy image of cells carrying the reporter gene coding for MS2d-GFP, after the production of target
RNAs. The RNAs tagged with MS2d-GFP are visible as bright spots; (C) Mean total cell background fluorescence intensity and mean total fluorescence intensity of all
RNA spots in individual cells (in arbitrary units), as measured by confocal microscopy (Methods, Section 2.5). Data from>300 cells. The error bars are the standard
error of mean. (D) Example image of a cell, along with the results of the segmentation of the cell border (blue line) and of the RNA spots within (red circles) using the
tailored software ‘SCIP’ (Martins et al., 2018) (Methods, Section 2.5). (E) Left: example image of a cell along with a yellow line, manually introduced to obtain a
fluorescence intensity profile using imageJ (Abramoff et al., 2004). Right: pixel intensity (in arbitrary units) along the yellow line shown on the left image. The peaks
correspond to the regions where the two spots (tagged MS2d-GFP RNAs) are located. (F) Mean fluorescence intensity of individual tagged RNA molecules over time
since first appearing. 10 tagged RNAs were tracked, all from cells with only one RNA. Also shown is the standard error of the mean (vertical bars). (G) Total
fluorescence intensity (in arbitrary units) of cell populations over time, as measured by spectrophotometry, obtained from cells with target and reporter plasmids
induced (brown line) and from cells with only the reporter plasmid induced (blue line). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Table 1
Mean (M), Variance (Var), standard deviation (Sd), 3rd moment and skewness
(S), of a distribution of observed values of the sample items, X, where 〈.〉 stands
for average.

Feature M Var Sd 3rd moment S

Definition 〈X〉 〈(X ‐ 〈X〉)2〉 〈 〈 〉 〉X(X‐ )2 〈(X ‐ 〈X〉)3〉 〈 〈 〉 〉X
Sd

(X ‐ )3
3
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area) is nearly only due to free floating MS2d-GFPs (Supplementary Fig.
S5). In addition, this total background fluorescence is higher than the
fluorescence of single MS2d-GFP tagged RNA spots (Fig. 1C). Never-
theless, MS2d-GFP tagged RNAs are clearly visible to the Human eye
(Fig. 1D) and detectable by image analysis (Martins et al., 2018), as the
fluorescence intensity of pixels with a spot is much higher than in near-
neighbour pixels (Fig. 1E). Thus, using spatial information, RNA spots
can be segmented, e.g., by kernel density estimation with a Gaussian
kernel (Häkkinen and Ribeiro, 2015). In addition, the variability in
fluorescence intensity of pixels where spots are absence is much smaller
than the difference in fluorescence intensity between pixels with and
without a spot (Fig. 1E). Due to this, one can subtract the mean back-
ground fluorescence from a spot's total fluorescence to obtain a ‘cor-
rected’ spot intensity, without risk of wrongly adding a ‘false’ RNA spot
or removing a ‘true’ RNA spot. Unfortunately, these methods cannot be
applied to flow cytometry data, as it only informs on total cell fluor-
escence.

Even though the spots' fluorescence is weaker than the total cell
fluorescence, we hypothesized that the production of an RNA target for
MS2d-GFP increases the total cell fluorescence, since the binding of
MS2d-GFP to the target RNA will protect bound MS2d-GFP proteins
from degradation or loss of fluorescence intensity (Tran et al., 2015).
This is due to the weak disassociation rate constant of MS2d from the
specific target RNA sequence (Dolgosheina et al., 2014), and the high
stability and long lifetime of the fluorescence intensity of MS2d-GFP
tagged RNAs. In particular, Fig. 1F shows that the RNA-MS2d-GFP
complexes have a weak mean fluorescence decay rate of
~8×10−5 s−1, which correspond to long mean half-lives of ~140min,
in agreement with past reports (Tran et al., 2015; Golding and Cox,
2004; Golding et al., 2005). Consequently, following the production of
an MS2d-GFP tagged RNA, as a cell produces more MS2d-GFP, a new
equilibrium in the number of MS2d-GFP in the cytoplasm is expected to
be reached, causing the total cell fluorescence to become higher.

To validate this hypothesis, we measured by spectrophotometry the
cells' fluorescence over time, when and when not inducing the target
gene with L-Arabinose and IPTG. Also, we measured cell grow rates.
From Supplementary Fig. S6, the cell growth rate does not differ be-
tween the conditions. Meanwhile, from Fig. 1G, the activation of the
target gene, as time progresses and tagged RNAs accumulate, causes a
continuous increase in the mean cell fluorescence.

Next, we subjected cells with the target gene controlled by PLac/ara-1
(responsible for producing the RNA target for MS2d-GFP) to various
IPTG concentrations (Methods). As a control, we performed the same
measurements on the strain without the target gene (Methods). We
measured by flow cytometry the single-cell fluorescence intensity re-
lative to cell size, so as to account for differences in cell size
(Cunningham, 1990; Traganos et al., 1984). In particular, we calculated
the ‘FITC-H' signal relative to the ‘pulse Width', here onwards referred
to as F/W (Methods, Section 2.6).

As a control, we further verified by microscopy that cells do not
differ significantly in morphology, for different IPTG concentrations, by
comparing their mean length along the major axis. We found no sig-
nificant differences between conditions (Supplementary Fig. S7).

From Fig. 2, while both strains are subject to the inducers, only cells
carrying the gene coding for the RNA target for MS2d-GFP show in-
creased F/W for increasing IPTG, which is consistent with the increase
in RNA numbers as measured by microscopy (Fig. 3A and D). It is also
consistent with the results by spectrophotometry (note that, at 1 mM
IPTG, the total cell fluorescence of cells of the strain carrying the target
is also approximately 30% higher, as in Fig. 1G). Given this and all of
the above, we conclude that the increase in F/W with increasing IPTG is
solely due to the appearance of RNAs tagged with MS2d-GFP.

3.2. Relationship between the statistics of single-cell RNA numbers obtained
by confocal microscopy and single-cell F/W obtained by flow cytometry

We next measured by microscopy and image analysis (Methods,
section 2.5) the RNA numbers produced by our gene of interest, under
the control of PLac/ara-1, for different concentrations of IPTG. Fig. 3A-3C
show the mean, standard deviation, and skewness of the single-cell
distribution of these numbers (Methods, Section 2.7) as a function of
IPTG, respectively.

Next, we extracted the same three statistics of the single-cell dis-
tribution of F/W values obtained in the same conditions by flow cyto-
metry. Results are shown in Fig. 3D-3F. Supplementary Fig. S8 (Left)
shows the probability density functions of the single-cell F/W values,
for each condition.

Given this, we investigated the relationship between the statistics
for F/W and the statistics for RNA numbers per cell. Results in
Supplementary section 1.5, show that there is a linear fit between the
two Means, the two Variances and, the two third moments, respec-
tively.

Given these linear relationships, to evaluate whether the moments
of single cell RNA numbers from microscopy and single cell F/W values
of flow cytometry are correlated, we plotted the results of Mean (M),
Variance (Var) and the third moment obtained by microscopy against
the results of M, Var and the third moment obtained by flow cytometry
in scatter plots (Fig. 4A-C). Next, we did a linear fit to the data, which
was performed using the linear regression fitting method explained in
Supplementary Methods, section 1.4. The adjusted R2 values and cor-
responding p-values of the linear fit are shown in Supplementary Table
S1. We find that Mean, Var and the third moment are well fitted by a
line (in Fig. 4).

Hence, we conclude that there is a good linear fit between the Mean,
Var and the 3rd moment of the single-cell distributions of RNA numbers
obtained by microscopy, and the Mean, Var, and the 3rd moment of the
single-cell distributions of F/W values obtained by flow cytometry,
respectively.

Fig. 2. (Light grey bars) Mean F/W values of the strain carrying only the multi-
copy plasmid carrying the reporter gene, at various IPTG concentrations (x-
axis), relative to its mean F/W value at the 0 μM IPTG condition. Its black error
bars are the standard error of mean, estimated from the cells in each condition
(Methods, section 2.7), relative to its mean F/W value at the 0 μM IPTG con-
dition. (Dark grey bars) Mean F/W values of the strain with both the single-copy
F-plasmid with the target gene and the multi-copy plasmid with the reporter
gene at various IPTG concentrations (x-axis), relative to its mean F/W value at
the 0 μM IPTG condition. The red error bars are the standard error of mean,
estimated from the cells in each condition (Methods, section 2.7), relative to its
mean F/W value at the 0 μM IPTG condition. The blue error bars result from the
standard error of mean, relative to its mean F/W value at 0 μM IPTG condition,
after adding the empirical variability between all measurements using cells
with only the reporter gene. This estimation is explained in Supplementary
Methods, section 1.6. In all conditions, cells were given 0.1% of L-Arabinose
(Methods, Section 2.3).
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These results are, as expected, dependent on degree of background
noise, produced by MS2d-GFP (random motion and measurement error
generate spatial heterogeneity). This noise could differ, e.g., in different
environments or if different plasmids were used to produce MS2d-GFP.
We thus tested the effects of increased background noise on our esti-
mation of M, Var, and 3rd moment in cells observed by Flow
Cytometry. For this, we modelled increasing background noise by
adding increasingly higher Gaussian noise to the total cell fluorescence
(F/W) obtained by Flow Cytometry. These added noises are shown in
Supplementary Fig. 10A.

The consequences of adding the increasingly higher noise on the
mean, variance, and the 3rd moment of the single-cell fluorescence
distributions, as measured by Flow Cytometry, are shown, respectively,
in Supplementary Fig. 10B, 10C, 10D.

Visibly, from Supplementary Fig. 10B, the addition of Gaussian
noise to the single-cell F/W distribution at different IPTG concentra-
tions (Noise corrupted F/W distribution), does not perturb the mean. In
particular, even though the Gaussian noise was gradually increased

from σ=0 to 400, the best fitting lines between the mean of the noise
corrupted F/W distribution and mean RNA numbers per cell obtained
from microscopy are all identical to the best fitting line when using the
original F/W distribution (Supplementary Fig. S10B).

Meanwhile, we expect increasing variance in the noise-corrupted F/
W distributions. However, the best fitting line between variance of the
noise corrupted F/W distributions and variance of the single-cell RNA
numbers distribution shows that only the intercept changes, not the
slope (Supplementary Fig. S10C). As such, one can reliably quantify the
variance of RNA numbers from the variance of noise corrupted F/W
distributions.

Finally, the third moment of noise is not expected to change with
increasing Gaussian noise. This can be seen at low noise levels (0 to
200), as the best fitting line between the third moment of noise cor-
rupted F/W distributions and the third moment of the distribution of
RNA numbers per cell is almost the same. However, at higher noise
levels (300 and 400), the best fitting line shifted slightly
(Supplementary Fig. S10D). This may be because the standard

Fig. 3. (A) Mean, M, (B) Standard deviation, Sd, and (C) Skewness, S, of single-cell distributions of integer-valued RNA numbers obtained by microscopy, as a
function of IPTG concentration (x-axis). The standard error of M, Sd and S of RNA numbers was estimated as described in Methods, section 2.7. (D) Mean, (E)
Standard deviation, and (F) Skewness of the single-cell distribution of F/W values obtained by flow cytometry. The red error bars are standard errors of the statistics
(Methods, Section 2.7). The blue error bars are the standard error of the statistics after adding variability estimated from eight technical replicates of cells carrying
only the reporter gene (Supplementary Methods, Section 1.6). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. Scatter plots between (A) Mean (M), (B) Variance (Var), (C) 3rd Moment of the single-cell distributions of F/W values obtained by flow cytometry against M,
Var and 3rd Moment of the single-cell distributions of RNA numbers in individual cells obtained by Microscopy for various induction strengths (0, 6.25, 50, 100, 200,
300, 500, and 1000 μM IPTG). The error bars of the points on x and y directions are standard errors estimated as in Methods, section 2.7. In each plot, we obtained the
best linear fit (black straight line) as described in Supplementary Methods, section 1.4. The dotted lines are the standard error of the fitted line.
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deviation, at the lower induction levels, is smaller than the added noise.
In that regime, the parameters of the best fitted line start being sensitive
to Gaussian noise, which increases the error of the estimation of the
third moment.

3.3. Validation of the quantification of MS2d-GFP tagged RNAs from flow
cytometry data

If the signal detected by Flow cytometry is produced by MS2d-GFP
tagged RNAs, one should be able to detect the corresponding proteins
produced from these RNAs (in particular, mRFP1 red fluorescent pro-
teins, see Methods). To test this, from the same flow cytometry mea-
surements as above, we also extracted the single-cell distribution of
PETexasRed-H and normalized these signals by the Pulse Width (de-
noted as R/W). From the single-cell R/W distribution, we obtained its
mean, standard deviation and skewness for each induction strength
(Fig. 5A-C). Supplementary Fig. S8 (right) shows the probability density
function of R/W for each induction strength.

To assess if the protein statistics (Fig. 5A-C) follows the RNA sta-
tistics (Fig. 3D-F), we plotted the values of each statistic in scatter plots
(Fig. 6A-C) and fitted with a linear fit. The adjusted R2 values and
corresponding p-values of the linear fit are shown in Supplementary
Table S2. From the Figures and Table, all three statistics are well fitted
by a line. Given the adjusted R2 values and p-values, we conclude that
there is a strong linear fit between those statistics of the single-cell
distribution of FITC-H normalized by Pulse width and PETexasRed-H
normalized by Pulse width obtained by flow cytometry, respectively.
These results confirm that the statistics of distribution of F/W values in
Fig. 3D-F should be the result of single-cell distribution of MS2d-GFP
tagged RNAs.

3.4. Estimation of mean, standard deviation and skewness of the single-cell
distribution of RNA numbers from single-cell F/W values

From the above, it should be possible to estimate the statistics of the
distribution of single-cell RNA numbers from the single-cell distribution
of F/W values. In particular, it should be possible to ‘map’ the flow
cytometry data to the microscopy data. E.g. one could calibrate two, or
more, data points (conditions) of the flow-cytometry data to the cor-
responding points (conditions) of the microscopy data. Then, we could
estimate the RNA numbers statistics of the remaining F/W data points
by linear interpolation and/or extrapolation. From this, we can obtain
an absolute RNA count scale for estimating the mean, standard devia-
tion, and skewness of the single-cell distribution of RNA numbers from
flow-cytometry data.

We start by calibrating the difference between a pair of conditions
from flow-cytometry data (e.g. 0 and 1000 μM IPTG) to the difference
between the corresponding pair of conditions from microscopy data.
This process has to be done independently for the mean, variance, and
third moment, but one can use any pair of conditions for each of the
moments.

Here we use the data in Fig. 4A-C to obtain the necessary pairs of
data points. For this, we started by testing all possible combinations of
pairs of data points (Fig. 4A-C contain 8 data points each, and thus,
there are 28 possible pairs of data points). Out of these, there are sev-
eral pairs that provide calibration lines that are consistent between
them, and thus can be used to obtain reliable results.

In order to find the largest group of calibration lines that are con-
sistent between, we plotted the y-intercepts against the slopes of the 28
calibration lines. Then we calculated the location of a ‘Median point’ in
that graph whose x-coordinate is the median of the slopes and the y-
coordinate is the median of the y-intercepts of the calibration lines (Fig.
S9A-S9C).

Fig. 5. (A) Mean, M, (B) Standard deviation, Sd, and (C) Skewness, S, of single-cell distributions of R/W values, when subject to various IPTG concentrations. The red
error bars are standard errors (Methods, section 2.7). The blue error bars are the standard error of the statistics after adding empirical variability estimated from cells
carrying only reporter gene (Supplementary section 1.6 and Supplementary Fig. S12). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 6. Scatter plots between (A) Mean (M), (B) Standard deviation (Sd), (C) Skewness (S) of the single-cell distributions of F/W values against M, Sd and S of the
single-cell distributions of R/W values for various induction strengths, differing in IPTG concentration (0, 6.25, 50, 100, 200, 300, 500, and 1000 μM IPTG). The error
bars of the points are the standard errors (red error bars as in Fig. 3D-F and Fig. 5A-C). In each plot, we obtained the best linear fit (black straight line) as described in
Supplementary Methods, section 1.4. The dotted lines are the standard error of the fitted line. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Next, we found that using the 33% points with smaller Euclidean
distance to the Median point, one obtains consistent calibration lines for
the mean, variance, and third moment. These lines are shown, respec-
tively, in Supplementary Fig. S9D-S9F. As expected, these set of con-
sistent lines correspond to using pairs of data point that differ sig-
nificantly between them in the Fig. 4A-4C (e.g. the pair of conditions 0
and 1000 μM IPTG).

Next, using these calibration lines (see Supplementary Section 1.7),
we estimated the mean, standard deviation and skewness (along with
their standard errors) of the single-cell distribution of RNA numbers
from the distribution of F/W values. Fig. 7A shows the estimated mean
of the single-cell distribution of RNA numbers from flow cytometry
data, for each condition, using the calibration line obtained by using the
pair of conditions 0 μM IPTG and 1000 μM IPTG. Fig. 7B shows the
estimated standard deviation of the single-cell distribution of RNA
numbers from flow cytometry data, for each induction level, using the
calibration line obtained using the pair of conditions 6.25 μM IPTG and
1000 μM IPTG. Fig. 7C shows the estimated skewness of the single-cell
distribution of RNA numbers from flow cytometry data, for each in-
duction level, using the calibration line obtained using the pair of

conditions 50 μM IPTG and 1000 μM IPTG.
To evaluate the accuracy of the estimated mean, standard deviation,

and skewness from flow cytometry data, we plotted them against the
corresponding actual values, obtained by microscopy (Fig. 7D-F). If the
estimations are accurate, one expects the best-fitting line to these points
(black lines in Fig. 7D-F) to exhibit a 45-degree inclination and to in-
tercept the y-axis at zero. To test this, we plotted also the ‘ideal line’
(black lines in Figs. 7D-F). Next, we compared by analysis of covariance
(McDonald, 2009) whether the best fitting line and the ideal line could
be distinguished in slope and intercept, in a statistical sense. Results of
these tests for the mean, standard deviation, and skewness (Supple-
mentary Table S3) show that the best fitting line cannot be dis-
tinguished from the ideal line, from which we conclude that the esti-
mations are accurate.

Given the above, we conclude that collecting data using microscopy
from two conditions differing in RNA numbers, allows accurate esti-
mations of the mean, standard deviation, and skewness of single cell
distributions of RNA numbers from the distribution of total cell fluor-
escence measured byflow cytometry in multiple conditions differing in
induction strength, using MS2d-GFP tagging of RNA.

Fig. 7. (A) Mean single-cell RNA numbers estimated from Flow cytometry data, using microscopy data (Mean RNA numbers per cell) in the minimum (0 μM IPTG)
and maximum induction (1000 μM IPTG) conditions for the calibration. (B) Standard deviation of single-cell RNA numbers estimated from Flow cytometry data,
using the microscopy data (Variance of RNA numbers per cell) in 6.25 μM IPTG and maximum induction conditions (1000 μM IPTG) for the calibration. (C) Skewness
of single-cell RNA numbers estimated from Flow cytometry, using the microscopy data (3rd moment of RNA numbers per cell) in 50 and 1000 μM IPTG for the
calibration. Light grey bars are the actual values obtained from microscopy data and dark grey bars are the estimated values from flow cytometry data (F/W). (D)
Scatter plot between estimated and actual mean values of single-cell RNA numbers. The blue points along with their standard error bars are the estimated mean of
single-cell RNA numbers (Mest), plotted against the corresponding actual values (Mact). Also shown is the best linear fit to the blue points (blue line) along with the
uncertainty of the fit (blue area). Finally, it is shown the ‘ideal’ linear fit (black line). The black line crosses 0 at the y-axis and has an inclination of 1, which would
correspond to the estimated values being identical to the actual values. (E) Scatter plot between estimated and actual standard deviations of single-cell RNA numbers.
The blue points along with their standard error bars are the estimated standard deviations of singe-cell RNA numbers (Sdest), plotted against the corresponding actual
values (Sdact). Also shown is the best linear fit to the blue points (blue line) along with the uncertainty of the fit (blue area). Finally, it is shown the ‘ideal’ linear fit
(black line). The black line crosses 0 at the y-axis and has an inclination of 1, which would correspond to the estimated values being identical to the actual values. (F)
Scatter plot between estimated and actual skewness of single-cell RNA numbers. The blue points along with their standard error bars are the estimated skewness of
single-cell RNA numbers (Sest), plotted against the corresponding actual values (Sact). Also shown is the best linear fit to the blue points (blue line) along with the
uncertainty of the fit (blue area). Finally, it is shown the ‘ideal’ linear fit (black line). The black line crosses 0 at the y-axis and has an inclination of 1, which would
correspond to the estimated values being identical to the actual values. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Next, as in Section 3.2, we tested for the robustness of these esti-
mations by adding increasingly higher Gaussian noise to the empirical
F/W values. Results of these estimations using the noise corrupted F/W
values are shown in Supplementary Fig. S11. Visibly, the estimations of
the mean and standard deviation are not significantly affected. Mean-
while, the estimations of skewness are only affected for the 3 lowest
induction conditions, similar to the results in Section 3.2, for similar
reasons.

It is noted that the added Gaussian noise is much above what we
expect to observe in real data collected from cells with the MS2d-GFP
technology. I.e., the highest artificially added noise is much higher than
the observed noise at the lowest induction conditions. Specifically, e.g.,
in the case at 6.25 μM IPTG induction, the observed standard deviation
is ~155, while we added up to σ=400 artificial Gaussian noise.

4. Discussion

Presently, FISH and MS2d-GFP RNA tagging are two of the preferred
technologies for visualizing and quantifying RNA numbers in individual
cells (Raj and van Oudenaarden, 2009). While the latter is likely more
intrusive, it has some advantages, such as allowing to track the dy-
namics of RNA production in live cells, which has been used to dissect
the underlying kinetic steps of transcription initiation, not possible
otherwise (Lloyd-Price et al., 2016). So far, the use of MS2d-GFP RNA
tagging has required microscopy and subsequent image analysis, which
heavily limits the amount of data that can be produced. Further, image
analysis introduces many errors (even with manual corrections). The
ability to extract information using this technique from flow cytometry
would overcome both limitations.

We have shown that it is possible to perform flow cytometry of cells
expressing MS2d-GFP and RNA targets for MS2d-GFP and accurately
estimate the mean, standard deviation, and skewness of the single-cell
distribution of RNA numbers. Importantly, we have shown that the
results cannot be distinguished, in a statistical sense, from those ob-
tained by microscopy followed by manually corrected image analysis.
Also, we have shown (Fig. 4) that the estimations of integer valued RNA
numbers in individual cells are highly correlated with single-cell
fluorescent protein levels, which is strong evidence of the accuracy of
the estimations.

Interestingly, the estimations of mean single-cell RNA numbers from
flow-cytometry data only exhibit significant discrepancy with the mi-
croscopy data when RNA production is weaker (Fig. 7). Past studies
using microscopy and image analysis of cells with MS2d-GFP tagged
RNAs (Häkkinen et al., 2014; Häkkinen and Ribeiro, 2015, 2016) sug-
gest that these discrepancies arise mostly from errors in the microscopy
data, which is based on ~500 cells per condition. In comparison, flow-
cytometry data is based on ~40,000 cells (each of which randomly
collected from a well-stirred medium). Consequently, the microscopy
data is more prone to errors due to small sample size, particularly in
weak expression conditions, where it is harder to select images of cells
that are good representatives of the population. Nevertheless, regarding
the estimations from flow-cytometry data, it is worth noting the un-
expected value for the standard deviation at 0 μM IPTG (Fig. 7B), likely
due to random biological variability.

In general, our results indicate that estimations of the statistics of
single-cell RNA numbers can largely be performed from flow cytometry
data and then be complemented by microscopy measurements (with
scaling only requiring population images in two conditions differing in
mean RNA numbers per cell). The large number of cells that can be
observed by flow-cytometry promises precise estimations these statis-
tics. Namely, we note that the estimations of single-cell RNA number
statistics performed here are accurate not only in what concerns mean
and standard deviation, but also skewness, which is in itself evidence of
the accuracy of the estimations. Relevantly, this ensures that this
technique can be used to estimate the propensity of a specific tran-
scription kinetics to overcome thresholds in RNA and protein numbers

(which is of significance in the context of small genetic circuits, among
other). Finally, it is worth noting that, in principle, the method is
readily applicable to cells with fluorescently tagged RNA using FISH
technology. In this case, the methodology is expected to contribute in
decreasing the effects of noise due to auto fluorescence from natural
cellular components.

Overall, we expect the methodology proposed here to be useful in
studies of in vivo transcription at single-molecule level, by adding more
reliability to the conclusions, as these will be based on larger number of
cells (by 2 to 3 orders of magnitude when compared to when collecting
data by microscopy and image analysis). Also, much more conditions
can be tested, due to the incomparably faster speed by which results can
be obtained, compared to when using microscopy and image analysis.
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1. Supplementary Materials and Methods 6 

1.1. Image analysis of microscopy data 7 

Cells are visualized by phase-contrast and fluorescence microscopy, nearly simultaneously. Information 8 
from the images is automatically extracted by the software ‘CellAging’ (Häkkinen et al., 2013).  9 

Cell segmentation is performed by applying the Gradient path labelling algorithm (Mora et al., 2011), and 10 
uses classifiers for merging (to reduce over segmentation) and discarding segments (e.g. air bubbles and 11 
unwanted artifacts). The classifiers were built by applying the Classification and Regression Trees algorithm 12 
(Breiman et al.,1984), and was manually trained by an expert using example images (Queimadelas et al., 13 
2012). When necessary, in the end, we performed manual corrections.  14 

Next, the software aligns confocal images (semi-automatically) with the corresponding phase-contrast 15 
images. This is executed by thin-plate spline interpolation for the registration transform (by manual selection 16 
of 5-8 landmarks), so as to adjust the cell masks to the corresponding cells in the confocal image. Finally, 17 
fluorescent spots (MS2d-GFP tagged RNAs) inside the cells are automatically detected using the Gaussian 18 
surface-fitting algorithm (Häkkinen and Ribeiro, 2015) (Figure 1D in main manuscript). The resulting data is 19 
used for RNA quantification of fluorescent spots in individual cells (supplementary section 1.2). 20 

 21 
1.2. RNA quantification from fluorescent spots 22 

Integer-valued number of MS2d-GFP-tagged mRNA molecules are quantified from microscopy images as in 23 
(Golding et al., 2005; Kandavalli et al., 2016; Lloyd-Price et al., 2016; Mäkelä et al., 2017; Oliveira et al., 24 
2016). Following the segmentation of RNA spots of multiple cells in an image (e.g. Figure 1D in main 25 
manuscript), the mean cell background fluorescence intensity from unbound MS2d-GFP proteins of each cell 26 
(average over all pixels not containing an ‘RNA-spot’) is subtracted from the intensity of each segmented 27 
RNA-spot. From the results from all cells (~4500 cells), we estimated how many tagged RNAs are in each cell 28 
from a histogram of total RNA spots intensity per cell (Häkkinen et al., 2015).  29 

For this, we first combined the data on each spot, from all conditions, into a single distribution of single-cell 30 
RNA spot intensities (as we found no significant difference in mean fluorescence intensity between cells in the 31 
various conditions, which is expected as the reporter is equally induced and the cells are in the same media 32 
conditions and temperature). From this distribution, we estimated the parameter values in maximum likelihood 33 
sense using a maximum a posteriori classifier to estimate the RNA numbers in each cell, in each condition 34 
(Häkkinen et al., 2015). 35 



2 
 

After RNA quantification, 0.5% or less cells with the highest total spot fluorescence intensities were 36 
removed from the analysis, if they were clear outliers (due to errors in imaging or abnormal overexpression of 37 
MS2d-GFP). Similarly, a few cells that were visible by phase contrast but did not express MS2d-GFP were 38 
also removed from the analysis (Supplementary Figure S3, Left). Interestingly, we found a similar fraction of 39 
non-expressing cells when using flow-cytometry (Supplementary Figure S3, Right). 40 
 41 
1.3. RNA spots lifetime and temporal fluorescence intensity 42 

For RNA counting by MS2d-GFP tagging to be accurate, both when using microscopy or flow-cytometry, 43 
the fluorescence intensity of tagged RNAs has to be constant over time and be largely uniform in cells in the 44 
same image. In practice, this implies that the fluorescence of a tagged RNA when first appearing needs to be 45 
near identical to subsequent moments, for a significant period of time (e.g. a few hours). Both conditions have 46 
been shown to be fulfilled in (Tran et al., 2015; Oliveira et al., 2019; Startceva et al., 2019). 47 

To verify this, we measured the mean and standard error of the mean of the fluorescence intensity of 10 48 
individual, MS2d-GFP tagged RNA molecules. We selected by visual inspection cells that contained only 1 49 
tagged RNA at any given moment of the observation period. Images were taken once per minute, for 108 50 
minutes. To plot their mean fluorescence intensity over time, for simplicity, we synchronized the moments 51 
when the tagged RNAs were first observed (Figure 1F). From Figure 1F, the ‘maximum’ RNA spot 52 
fluorescence is always reached in less than 1 minute. Afterwards, the spots’ fluorescence intensity remains 53 
fairly constant over time, with the main contribution to this standard error of the mean being from spots (rarely) 54 
leaving (and then returning to) the focal plane. ‘Bleaching’ of tagged RNAs was not observed in any case. 55 
 56 
1.4. Linear regression fitting using Ordinary Least Squares 57 

To perform linear fitting (Figures 4, 6 and 7 in main manuscript), we represent the uncertainty of each of 58 
the N empirical data points by m points (each without uncertainty), resulting in n = N×m points. Each of these 59 
n points is obtained by random sampling from a normal distribution whose mean (µ) and standard deviation 60 
(σ) equal the mean and error of the empirical data point, respectively. Here, we have set m = 1000, as it was 61 
sufficient to represent the error bars of the actual data points (obtained from the standard error, see main 62 
manuscript, section 2.7).  63 

Using such a large number of points per empirical data point, results in a significant underestimation of the 64 
standard error of the fit parameters and of their p-values. To correct for this, we use a multivariate regression 65 
model (Alexopoulos, 2010) with k independent variables x1, … , xk and one response variable, y, for each of 66 
the i = 1,…, n points: 67 

0 1 1, ,...i i k k iy x x                 (S1) 68 

Here, β0, β1, … , βk are regression coefficients and ε is the error. Next, each of the N empirical data points 69 
with uncertainty is replaced by the m points without uncertainty, resulting in the n points, with Yobs being the 70 
vector of all yi: 71 
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 73 
which can be written as: 74 

obs obsY X E              (S2) 75 

 76 
The least square estimator of β is 77 

 
^ 1T T

obs obs obs obsX X X Y


             (S3) 78 

The residual sum of squares (RSS) is calculated by: 79 

^ ^T

obs obs obs obsRSS Y X Y X 
   

        
   

        (S4) 80 

 81 
The mean squared error (MSE) is calculated by: 82 

RSSMSE
DOF

            (S5) 83 

where DOF is the degrees of freedom, which equals: N - (k+1). Meanwhile, to account for the number of 84 
points (m) per data point, the standard error of the estimated regression coefficients is calculated by:  85 

1
^ T

obs obsX X MSESE diag
m m



 
                 

 

 86 

Thus, 87 

 
^ 1T

obs obsSE diag X X MSE
  

     
   

        (S6) 88 

where diag are the diagonal elements of the matrix. The t-statistic of the estimated regression coefficients are 89 
calculated as, 90 

^
^

^
i

i

i

t statistic
SE







 

 
  
 
 

 , where i = 0,1,…k       (S7) 91 

The p-values of the estimated regression coefficients are calculated using this t-statistic and DOF. The R 92 
squared value of the fit is calculated as:  93 

   
2 1 T

obs obs obs obs

RSSR
Y Y Y Y

 
  

        (S8) 94 

where obsY  represents the mean value of obsY . The adjusted R squared value of the fit is calculated as: 95 
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 2 2 11 1
( 1)adj

NR R
N k

 
    

  
         (S9) 96 

For a matrix of predictor variables (X), the estimated response (Yest) is calculated as: 97 
^

estY X                         (S10) 98 

Finally, the standard error of estimated response is calculated as: 99 

 
1T

Tobs obs
est

X X MSESE Y diag X X
m m

 
      

  
 

   100 

Thus, 101 

   
1T T

est obs obsSE Y diag X X X X MSE
 

     
 

                 (S11) 102 

 103 
To show that the p-values are not underestimated due to increasing the resampling size (m), we created 104 

the example vectors x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and y = [2, 1, 5, 6, 7, 14, 21, 15, 11, 20]. Assuming m = 5, 105 
we then created the vectors X = [x, x, x, x, x] and Y = [y, y, y, y, y], that consist of 5 replicate vectors of x and 106 
y, respectively.  107 

Next, using the MATLAB function ‘fitlm’, we applied ordinary least square fitting on the data x vs y and the 108 
data X vs Y, respectively. The outcomes were two different p values (0.0014 and 1.3535×10-15, respectively). 109 
This is expected, as the size of the X vs Y data is 5 times larger than the size of the x vs y data. Meanwhile, 110 
when applying the fitting method described above (instead of ‘fitlm’), we obtained the same p value in both 111 
cases (0.0014), showing that the p value is not underestimated due to increased resample size.  112 

Finally, it is worth noting that, to perform the linear fitting, one can also use other fitting methods, for 113 
example, total least squares, which in general would be a good option, as it uses orthogonal residuals to 114 
obtain the best fit. However, the two variables composing our data have different scales, potentially causing 115 
incorrect estimation of the residuals. To overcome this, additional normalization procedures would be 116 
required. Therefore, instead, we made use of ordinary least square fitting. 117 

 118 
1.5 Relationship between single-cell RNA numbers (Microscopy) and total cell fluorescence (Flow 119 
cytometry) 120 

Given the results in Figure 3, the statistics of the single-cell distribution of F/W values is strongly correlated 121 
with the statistics of the single-cell distribution of RNA numbers obtained by microscopy. However, this may 122 
not always be the case. In this section, we provide argument why one should always expect a linear 123 
relationship between the first three central moments of these distributions. 124 

Let ‘NB’ be the distribution of number of free-floating MS2d-GFPs in a given cell, while ‘NR’ is the 125 
distribution of mRNAs per cell, ‘BS’ is the number of MS2d-GFPs bound to 1 mRNA (assumed to be constant) 126 
and, ‘I’ is the fluorescence intensity of one MS2d-GFP (also assumed to be constant). Then, the distribution of 127 
total cell fluorescence intensity (FT) is: 128 

B R TN I N BS I F                          (S12) 129 
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where, B BF N I   is the distribution of background MS2d-GFP fluorescence intensity per cell (in the 130 

absence of spots), and R RF N BS I    is the distribution of fluorescence intensity per cell from MS2d-GFP 131 
tagged RNAs alone.  132 

Finally, we note that, below, we assume that FB and FR are independent, and investigate the relationship 133 
between the various central moments. 134 

1.5.1 Mean  135 
 136 
From (S12), given that I and BS are constants: 137 
 138 

  ( ) ( )T B RM F M N I M N BS I                        (S13) 139 
 140 
From (S13): 141 

  ( )( ) T B
R

M F M NM N
BS I BS

 


                   (S14) 142 

Given (S14), ( )RM N and  TM F  are linearly correlated with a slope 
1m

BS I



and an intercept 143 

( )BM Nc
BS

  . 144 

1.5.2 Variance  145 
 146 
From (S12), given that I and BS are constants: 147 

  2 2 2( ) ( )T B RVar F Var N I Var N BS I    
                  (S15) 148 

 
2 2 2

( )( ) T B
R

Var F Var NVar N
BS I BS

 
                    (S16) 149 

From (S16), there is a linear relationship between ( )RVar N  and  TVar F  with a slope 2 2

1m
BS I




and 150 

intercept 2

( )BVar Nc
BS

  .  151 

Importantly, from equation (S16), one can estimate the standard deviation of single-cell RNA numbers, as 152 
measured by F/W values from the flow-cytometry can be calculated by: 153 

( ) ( )R Rstd N Var N                      (S17) 154 
 155 
1.5.3 Third moment  156 
 157 
Finally, also from (S12), given that I and BS are constants: 158 

  3 3 3
3 3 3( ) ( )T B RF N I N BS I                         (S18) 159 
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 3 3
3 3 3 3

( )( ) T B
R

F NN
BS I BS
 

  


                    (S19) 160 

From equation (S19), there is a linear relationship between the 3rd moment of RNA numbers per cell ( 3( )RN161 

) and the 3rd moment of total cell fluorescence per cell (  3 TF ) with a slope 3 3

1m
BS I




and intercept 162 

3
3

( )BNc
BS


  . 163 

Finally, from equation (S16) and (S19), one can estimate the skewness of single-cell RNA numbers, as 164 
measured by F/W values from the flow-cytometry can be calculated by: 165 

 

3
3
2

( )( )
( )

R
R

R

Nskew N
Var N


                     (S20) 166 

1.6 Estimation of the variability in F/W statistics using technical replicates of control cells  167 

To estimate the variability between technical replicates, we make use of measurements performed using cells 168 
absent of the target gene (eight measurements shown in Figure 2).  169 

First, to obtain the standard error of the mean, we used equation (S21): 170 

     
2 2

arg( ) t et controlSE M SE M SE M                    (S21) 171 

where  argt etSE M  is the standard error of mean of F/W values of target cells (with the target gene), 172 

estimated as described in Methods, section 2.7 in the main manuscript, and  controlSE M  is the standard 173 
deviation of the mean F/W from control cells from multiple conditions. 174 

Meanwhile, the variability in the standard deviation (Sd) of F/W values is estimated from: 175 

     
2 2

arg

arg

1( )
2

t et control

t et

SE Var SE Var
SE Sd

Var


                   (S22) 176 

Here,  argt etSE Var is the standard error of the variance of F/W values of target cells, estimated as 177 

described in Methods, section 2.7 in main manuscript,  controlSE Var  is the standard deviation of the 178 

variance of F/W values of control cells from multiple conditions, and argt etVar  is the variance of F/W values of 179 
target cells. 180 

Finally, the variability in Skewness (S) of F/W values in target cells is estimated from: 181 

     
2 2arg

3 3

3
arg

( )
( ( ))

t et control

t et

SE SE
SE S

Sd SE Sd

 



                  (S23) 182 



7 
 

where  arg
3
t etSE   is the standard error of the third moment of F/W values of target cells, estimated as in 183 

Methods, section 2.7 in main manuscript,  3
controlSE   is the standard deviation of the third moment of F/W 184 

values of control cells from multiple conditions, argt etSd  is the standard deviation of F/W values of target cells, 185 

and ( )SE Sd  is the standard error of the standard deviation in F/W values of target cells, calculated using 186 
equation (S22). 187 

In skewed distributions, we expect the variance and the third moment to be correlated. To compensate for this 188 
correlation, in equation (S23) we summed the standard deviation to its error in the denominator. 189 

Finally, the variability in M, Sd and S of R/W values, is calculated as above, but replacing the F/W values with 190 
R/W values. 191 

1.7 Estimation of single-cell RNA number statistics and standard error from F/W values from flow 192 
cytometry 193 

To quantify mean RNA numbers per cell, we use the calibration line obtained from the mean RNA numbers in 194 
two induction conditions using microscopy and the mean F/W values in the same conditions when using flow 195 
cytometry. For each induction condition, we obtained a distribution of mean F/W values by bootstrapping. 196 
Next, using the calibration line and applying it to the distribution of mean F/W values, we estimated the 197 
distribution of mean single-cell RNA numbers, as measured by flow cytometry. In this process, we removed 198 
any negative values and calculated the mean and standard deviation of this distribution, which correspond to 199 
the mean and standard error of the estimated mean RNA numbers per cell, respectively. 200 

Similarly, to quantify the standard deviation (Sd) of RNA numbers per cell as measured by flow cytometry, we 201 
used the calibration line to map the variance of RNA numbers obtained by microscopy to the corresponding 202 
variance in F/W values obtained by flow cytometry. Next, we used bootstrapping to obtain the distribution of 203 
variances of F/W values in each condition. Next, using the calibration line, we estimated the distribution of 204 
variances of RNA numbers per cell, in each condition. Again, we removed any negative values. Finally, the 205 
distribution of the Sd values of RNA numbers per cell was obtained by calculating the square root of the 206 
values of the distribution of variances of RNA numbers per cell. Next, we calculated the mean and standard 207 
deviation of the distribution of the Sd of RNA numbers per cell, which are the mean and standard error of the 208 
estimated Sd of RNA numbers per cell, respectively. 209 

To quantify the skewness of RNA numbers per cell, we used the calibration line for the variance and the third 210 
moment of RNA numbers (main manuscript, section 3.4). For each induction condition, by bootstrapping, we 211 
obtained distributions of variance and third moments of F/W values. Using their respective calibration lines, 212 
we calculated the variance and third moment of RNA numbers per cell for each value of the distribution of 213 
variances and third moments of F/W values. From this we obtained the distributions of variance and third 214 
moment of RNA numbers per cell. Negative variance values and the respective third moment’s values were 215 
removed. Next, the values of the distribution of skewness (S) of RNA per cell were obtained using equation 216 
S20. Finally, we calculated the mean and standard deviation of the distribution of values of S of RNA numbers 217 
per cell, which are the mean and standard error of the estimated S of RNA numbers per cell, respectively. 218 
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SUPPLEMENTARY FIGURES 219 

 220 

Supplementary Figure S1. Related to section 2.5 in main manuscript. Example microscopy images: (Left) Example 221 
image obtained by confocal microscopy. Visible are cells (due to the fluorescent background created by many free-floating 222 
MS2d-GFP) and spots within (MS2d-GFP tagged RNAs). (Right) Example of the observed fluorescence intensity over time 223 
of an MS2d-GFP RNA spot. Note the significant variability in intensity at two time points, due to its motion along the z axis 224 
during a time-lapse microscopy session (specifically, this spot left the focus plane at moments 9 min and 18 min).  225 

 226 

 227 

Supplementary Figure S2. Related to section 2.2 in main manuscript. Schematic representation of the target promoter 228 
sequence (marked in yellow) of the gene of interest. The -35 and -10 promoter elements are shown in light blue, while the 229 
transcription start site (+1 TSS) is marked by a small pink box. Operator sites are marked in green.  230 

 231 

 232 

Supplementary Figure S3. Related to section 2.6 in main manuscript. (Left): Distribution of single-cell green fluorescence 233 
intensity normalized by cell length, as obtained by microscopy. We (manually) applied a minimum threshold (black vertical 234 
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line, located at 0.025 in the x axis) to remove from the dataset the few cells not expressing sufficient MS2d-GFP for 235 
detecting target RNAs. Approximately 4500 cells were analyzed. (Right): Distribution of single-cell FITC-H values (F) 236 
divided by pulse Width (W), obtained by flow-cytometry (more than 40,000 cells were analyzed). To remove from the 237 
dataset the few cells lacking sufficient free-floating MS2d-GFP, we applied (manually) a minimum threshold (black vertical 238 
line, located at position 45 in the x axis). In addition, we removed the 0.01% or less cells with highest F/W values (not 239 
shown in the image). 240 

 241 

 242 

Supplementary Figure S4. Related to section 2.6 in main manuscript. (Left) Scatter plot of the single-cell fluorescence 243 
intensity (as estimated by the mean pixel intensity per cell) against the length of the major cell axis, as measured by 244 
microscopy. Approximately 500 cells were analyzed. The solid blue line is the best linear fit obtained by linear regression 245 
(R2 value is 0.0002). The linear fit does not reject the null hypothesis that there is no linear correlation, at a significance 246 
level of 0.05 (p-value is 0.8). The blue dashed lines are the one standard uncertainty of the fitted line. (Right) Scatter plot 247 
of the total cell intensity of individual cells against the cell length along the major cell axis, as measured by microscopy. 248 
Approximately 500 cells were analyzed. The solid blue line is the best linear fit obtained by linear regression (R2 value is 249 
0.27). The null hypothesis that there is no linear correlation is rejected at a significance level of 0.05 (p-value is 10-36). The 250 
blue dashed lines are the one standard uncertainty of the fitted line.  251 

 252 

 253 
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Supplementary Figure S5. Related to section 3.1 in main manuscript. Mean fluorescence intensity of cells, as measured 254 
by the FITC-H channel of the flow-cytometer. Measurements of the reporter gene expressing MS2d-GFP under the control 255 
of PLtetO-1 were performed when induced (100 ng/µl aTc) and when not induced (0 ng/µl aTc). The (small) error bars 256 
denote the standard error of the mean. Approximately 40,000 cells were analyzed in each condition. 257 

 258 

 259 

Supplementary Figure S6. Related to Figure 1 in main manuscript. (Left) Optical density (OD) curves of cell populations 260 
with the target plasmid in the presence (‘induced’, 1000 µM) and absence (‘uninduced’, 0 µM) of IPTG. Visibly, the two 261 
lines overlap. From a -80 °C glycerol stock, cells were streaked on LB agar plates containing 34 μg/ml chloramphenicol 262 
and 35 μg/ml kanamycin (Sigma-Aldrich, USA), and incubated overnight at 30 °C. From these plates, a single colony was 263 
picked and cultured overnight, with agitation (250 rpm), in LB medium supplemented with the appropriate concentration of 264 
antibiotics. From the overnight culture, cells were diluted to an initial OD600 of 0.03 in fresh LB medium, and grown at 37 265 
°C. Next, the OD600 was measured every 30 minutes for 5 hours. At OD600 0.3, aTc was added to induce the expression of 266 
the reporter, MS2d-GFP. Additionally, in cells where the target gene was induced, L-Arabinose was added at the same 267 
time as aTc (vertical red line). After 50 mins, IPTG was added to cells where the target gene was induced (vertical blue 268 
dashed line). Mean doubling time was estimated for the time period between 90 and 210 minutes (marked by two vertical 269 
dashed black lines). (Right) Mean doubling times, as estimated from the measurements in the left figure. Error bars (small) 270 
denote the standard error of the mean. 271 

 272 
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Supplementary Figure S7. Related to Section 3.1 in main manuscript. Mean length of the major axis of cells subject to 273 
various IPTG concentrations, as measured by microscopy. On average, approximately 500 cells were analyzed in each 274 
condition. The small error bars denote the standard error of the mean. Aside from IPTG, cells were also subjected to aTc 275 
and L-Arabinose. 276 

 277 

 278 

Supplementary Figure S8. Related to Figures 3D-F and 5 in main manuscript. (Left) Probability of single-cell F/W values 279 
(bin width = 20 units) for each condition differing in IPTG concentration, after gating (see Section 2.6 in main manuscript). 280 
In addition, we removed the 0.01% or less cells with highest F/W values (not shown in the image). (Right) Corresponding 281 
probability of single-cell R/W values (bin width = 1 unit), for each condition. In addition, we removed the 0.01% or less 282 
cells with highest R/W values (not shown in the image). Approximately 40,000 cells were analyzed in each condition.  283 

 284 

 285 

Supplementary Figure S9. Related to Figure 7 in the main manuscript. Slope vs intercept of the calibration lines between 286 
single-cell distributions of F/W and single cell distribution of RNA numbers for (A) Mean, (B) Variance and (C) 3rd moment. 287 
The small black dots correspond to each of all possible calibration lines (data from Figures 4A-C in main manuscript). The 288 
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red points are the median point, whose coordinates are the median of the slopes versus the median of the intercepts of all 289 
possible calibration lines, respectively. The blue circles identify the black dots that are closer to the median point (the 33 % 290 
closest are encircled). Calibration lines of the Mean (D), Variance (E), and 3rd Moment (F) of the single-cell distributions of 291 
F/W values and single-cell distributions of RNA numbers. Each line corresponds to one of the black dots identified by a 292 
blue circle.  293 

 294 

 295 

Supplementary Figure S10. (A) Gaussian noises with mean of 0 and increasingly higher std, which ranges from 0 to 400. 296 
(B) Best linear fit between the Mean of noise corrupted F/W (F/W from flow cytometry + gaussian noise) and the Mean of 297 
single-cell RNA numbers (microscopy data), (C) Best linear fit between the Var of noise corrupted F/W and the Var of 298 
single-cell RNA numbers (microscopy data), and (D) Best linear fit between the 3rd Moment of noise corrupted F/W and 299 
the 3rd Moment of single-cell RNA numbers (microscopy data). 300 
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 301 

Supplementary Figure S11. (A) Mean single-cell RNA numbers estimated from noise corrupted, empirical F/W 302 
distributions (i.e. with added gaussian noise). (B) Standard deviation of single-cell RNA numbers estimated from noise 303 
corrupted F/W distributions, using microscopy data in 6.25 and 1000 µM IPTG conditions for calibration. (C) Skewness of 304 
single-cell RNA numbers estimated from noise corrupted F/W, using microscopy data in 50 and 1000 µM IPTG conditions 305 
for calibration. The first light yellow bar is the actual value obtained from microscopy data. The rest of the other bars are 306 
estimated values from noise corrupted F/W having different levels of gaussian noise 0, 50, 100, 200, 400, respectively. In 307 
all cases, the light-yellow bar corresponds to actual (empirical) single-cell RNA numbers statistic as measured by 308 
microscopy, for comparison. 309 
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 310 

Supplementary Figure S12. Mean PETexasRed-H values, normalized by Pulse Width (R/W), of cells carrying only the 311 
reporter gene, at various IPTG concentrations (x-axis). The black error bars, barely visible, are the standard error of the 312 
mean (Methods, section 2.7). The scale of the y-axis is set to be identical to Figure 5A in the main manuscript, to facilitate 313 
comparison. 314 

  315 
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SUPPLEMENTARY TABLES 316 

Supplementary Table S1. Related to Figure 4. Estimation of the goodness of fit of the linear models to the data in Figure 317 
4 in the main manuscript. Linear fits were done to the scatter plots between the single-cell RNA numbers as measured by 318 
microscopy (No. of RNA per cell) and the F/W values obtained by flow-cytometry, for each induction level, using a linear 319 
regression fitting method, described in Supplementary Section 1.4. Shown are the adjusted R2 values and the p-values of 320 
the F-statistics versus the constant model. ‘M’ stands for mean and ‘Var’ stands for variance. 321 

(No. of RNA per cell) vs (F/W) R2 p value  
M 0.96 1.8×10-5 

Var 0.95 1.9×10-5 

3rd moment 0.77 2.5×10-3 

 322 

Supplementary Table S2. Related to Figure 6. Estimation of the goodness of fit of Linear models to the data in Figure 6 323 
in main manuscript. Fits were done to the scatter plots between R/W and F/W values obtained by flow-cytometry, for each 324 
induction level. Fits were obtained by the linear regression fitting method described in Supplementary Section 1.4. Shown 325 
are the adjusted R2 values and the p-values of the F-statistics versus the constant model. ‘M’ stands for mean, ‘Sd’ stands 326 
for standard deviation, and ‘S’ stands for skewness.  327 

 (R/W) vs (F/W) R2 p value  
M 0.93 6.3×10-5 

Sd 0.87 4.5×10-4 
S 0.86 5.2×10-4 

 328 

Supplementary Table S3. Related to Figure 7. Estimation of goodness of fit of the best linear fit between empirical and 329 
estimated values of mean (M), standard deviation (Sd) and skewness (S) of the single-cell distribution of RNA numbers. 330 
Shown are the p values for the slope and the intercept with the y-axis, assuming the null hypothesis that the empirical and 331 
estimated values are the same. In all cases, the test does not reject the null hypothesis that they are the same, at a 332 
significance level of 0.05. 333 

Empirical vs Estimated 
          p value 
Slope Intercept 

M (No. of RNA per cell) 0.52 0.95 
Sd (No. of RNA per cell) 0.70 0.71 
S (No. of RNA per cell) 0.53 0.46 

 334 

  335 



16 
 

Supplementary References 336 

Alexopoulos, E.C., 2010. Introduction to multivariate regression analysis. Hippokratia 14, 23–8. 337 

Breiman, L., Friedman, J., Olshen, R. A., Stone, C. J., 1984. Classification and Regression Trees. Chapman 338 
and Hall, CRC. 339 

Carpenter, J., Bithell J., 2000. Bootstrap confidence intervals: when, which, what? A practical guide for 340 
medical statisticians. Stat. Med. 19, 1141–1164. https://doi.org/10.1002/(SICI)1097-341 
0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F 342 

DiCiccio, T.J., Efron, B., 1996. Bootstrap confidence intervals. Stat. Sci. 11, 189–228. 343 
https://doi.org/10.1214/ss/1032280214 344 

Golding, I., Paulsson, J., Zawilski, S.M., Cox, E.C., 2005. Real-time kinetics of gene activity in individual 345 
bacteria. Cell 123, 1025–1036. https://doi.org/10.1016/j.cell.2005.09.031 346 

Häkkinen, A., Muthukrishnan, A.B., Mora, A., Fonseca, J.M., Ribeiro, A.S., 2013. CellAging: A tool to study 347 
segregation and partitioning in division in cell lineages of Escherichia coli. Bioinformatics 29, 1708–1709. 348 
https://doi.org/10.1093/bioinformatics/btt194 349 

Häkkinen, A., Ribeiro, A.S., 2015. Estimation of GFP-tagged RNA numbers from temporal fluorescence 350 
intensity data. Bioinformatics 31, 69–75. https://doi.org/10.1093/bioinformatics/btu592 351 

Kandavalli, V.K., Tran, H., Ribeiro, A.S., 2016. Effects of σ factor competition are promoter initiation kinetics 352 
dependent. Biochim. Biophys. Acta - Gene Regul. Mech. 1859, 1281–1288. 353 
https://doi.org/10.1016/j.bbagrm.2016.07.011 354 

Lloyd-Price, J., Startceva, S., Kandavalli, V., Chandraseelan, J.G., Goncalves, N., Oliveira, S.M.D., Häkkinen, 355 
A., Ribeiro, A.S., 2016. Dissecting the stochastic transcription initiation process in live Escherichia coli. DNA 356 
Res. 23, 203–214. https://doi.org/10.1093/dnares/dsw009 357 

Mäkelä, J., Kandavalli, V., Ribeiro, A.S., 2017. Rate-limiting steps in transcription dictate sensitivity to 358 
variability in cellular components. Sci. Rep. 7, 1–10. https://doi.org/10.1038/s41598-017-11257-2 359 

Mora, A.D., Vieira, P.M., Manivannan, A., Fonseca, J.M., 2011. Automated drusen detection in retinal images 360 
using analytical modelling algorithms. Biomed. Eng. Online 10, 59. https://doi.org/10.1186/1475-925X-10-59 361 

Oliveira, S.M.D., Häkkinen, A., Lloyd-Price, J., Tran, H., Kandavalli, V., Ribeiro, A.S., 2016. Temperature-362 
Dependent Model of Multi-step Transcription Initiation in Escherichia coli Based on Live Single-Cell 363 
Measurements. PLoS Comput. Biol. 12, 1–18. https://doi.org/10.1371/journal.pcbi.1005174 364 

Oliveira, S.M.D., Goncalves, N.S.M., Kandavalli, V.K., Martins, L., Neeli-Venkata, R., Reyelt, J., Fonseca, 365 
J.M., Lloyd-Price, J., Kranz, H., Ribeiro, A.S., 2019. Chromosome and plasmid-borne P LacO3O1 promoters 366 
differ in sensitivity to critically low temperatures. Sci. Rep. 9, 1–15. https://doi.org/10.1038/s41598-019-39618-367 
z 368 

https://doi.org/10.1214/ss/1032280214
https://doi.org/10.1093/bioinformatics/btu592
https://doi.org/10.1038/s41598-019-39618-z
https://doi.org/10.1038/s41598-019-39618-z


17 
 

Queimadelas, C., Rodrigues, J., Muthukrishnan, A.B., Mora, A., Ribeiro, A.S., Fonseca, J.M., 2012. 369 
Segmentation and tracking of Escherichia coli expressing tsr-venus proteins from combined 370 
DIC/Fluorescence images. In fifth International Conference on MEDSIP. Liverpool, UK. 371 
https://doi.org/10.13140/2.1.3835.3924 372 

Startceva, S., Kandavalli, V.K., Visa, A., Ribeiro, A.S., 2019. Regulation of asymmetries in the kinetics and 373 
protein numbers of bacterial gene expression. Biochim. Biophys. Acta - Gene Regul. Mech. 1862, 119–128. 374 
https://doi.org/10.1016/j.bbagrm.2018.12.005 375 

Tran, H., Oliveira, S.M.D., Goncalves, N., Ribeiro, A.S., 2015. Kinetics of the cellular intake of a gene 376 
expression inducer at high concentrations. Mol. Biosyst. 11, 2579–2587. https://doi.org/10.1039/c5mb00244c 377 



PUBLICATION
II

The transcription factor network of E. coli steers global responses to shifts
in RNAP concentration

B Almeida, V Chauhan*, MNM Bahrudeen*, S Dash*, V Kandavalli, A Häkkinen,
J Lloyd-Price, CSD Palma, ISC Baptista, A Gupta, J Kesseli, E Dufour, O-P Smo-
lander, M Nykter, P Auvinen, HT Jacobs, SMD Oliveira, and AS Ribeiro. *Equal

contributions

Nucleic Acids Research 50(12), 6801-6819.
DOI: 10.1093/nar/gkac540.

Publication reprinted with the permission of the copyright holders.





Published online 24 June 2022 Nucleic Acids Research, 2022, Vol. 50, No. 12 6801–6819
https://doi.org/10.1093/nar/gkac540

The transcription factor network of E. coli steers
global responses to shifts in RNAP concentration
Bilena L.B. Almeida 1,*, Mohamed N. M. Bahrudeen 1,†, Vatsala Chauhan1,†,
Suchintak Dash 1,†, Vinodh Kandavalli2, Antti Häkkinen 3, Jason Lloyd-Price4,
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ABSTRACT

The robustness and sensitivity of gene networks to
environmental changes is critical for cell survival.
How gene networks produce specific, chronologi-
cally ordered responses to genome-wide perturba-
tions, while robustly maintaining homeostasis, re-
mains an open question. We analysed if short- and
mid-term genome-wide responses to shifts in RNA
polymerase (RNAP) concentration are influenced by
the known topology and logic of the transcription
factor network (TFN) of Escherichia coli. We found
that, at the gene cohort level, the magnitude of the
single-gene, mid-term transcriptional responses to
changes in RNAP concentration can be explained by
the absolute difference between the gene’s numbers
of activating and repressing input transcription fac-
tors (TFs). Interestingly, this difference is strongly
positively correlated with the number of input TFs of
the gene. Meanwhile, short-term responses showed

only weak influence from the TFN. Our results sug-
gest that the global topological traits of the TFN of E.
coli shape which gene cohorts respond to genome-
wide stresses.

INTRODUCTION

Gene regulatory networks (GRNs) receive, process, act
upon and send out information, while being robust to
random fluctuations. How signals targeting one to a few
genes are processed is relatively well understood (1,2).
Meanwhile, many cellular environments fluctuate (some-
times unpredictably) in nutrient availability, pH, tempera-
ture, salts, community of other cells or species they live with,
etc., which may cause genome-wide stresses. We investi-
gate howGRNs produce chronologically ordered responses
to genome-wide perturbations, while robustly maintaining
homeostasis.
Evidence suggests that genome-wide stresses initially per-

turb hundreds to thousands of genes (3) but are quickly
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processed. As a result, after a transient period, only spe-
cific gene cohorts of tens to a few hundred genes (4,5) (usu-
ally sharing common feature(s)) participate in the respon-
sive short-, mid- and long-term transcriptional programs
(6). For example, whenEscherichia coli suffers a cold shock,
a specific cohort exhibits a fast, short-term response (∼ 70
genes), while another has a longer-term response (∼ 35
genes). Other genes remain relatively passive (7,8). Since
cells exhibit predictable, temporally ordered, beneficial phe-
notypic changes, these response programs have likely been
positively selected during evolution.
It has been shown that global regulators (GRs) (9–12),

DNA supercoiling (13) and small RNAs (sRNAs) (14),
among other, can select large cohorts of stress-specific,
responsive genes. It was also reported that 60–90% of
E. coli genes respond to changing growth conditions fol-
lowing a constant global scaling factor (15). Further,
measurements using fluorescent reporters and small cir-
cuits (16,17) showed that the effects of RNA polymerase
(RNAP), and other GRs, can be separate from the ef-
fects of input transcription factors (TFs) during genome-
wide responses. Nevertheless, establishing whether and how
the global topology and logic of transcription factor net-
works (TFNs) affect genome-wide responses remains chal-
lenging (18), despite successes in establishing that gene-
gene interactions generate gene-gene correlated dynamics
(19–22).
To investigate the influence of the topology and logic of

TFNs on large transcriptional programs, we study what
occurs following genome-wide perturbations. We consider
that, in E. coli, the concentration of the key genome-wide
regulator, the RNAP, naturally differs with medium com-
position (23). Also, it is well established how transcription
kinetics differs according to RNAP concentration (24,25).
We expect that these changes can have genome-wide effects.
We thus obtain increasingly dilute media to alter system-
atically and rapidly (26,27) the abundance of RNAP (illus-
trated in Figure 1A), and measure the genome-wide, short-
and mid-term changes in transcript abundances.
Decreases in RNAP abundance should, in the short-

term, cause quick genome-wide decreases in transcription
rates, and thus in RNA abundances (Figure 1B1, Supple-
mentary Results section Expected effects of shifting RNA
polymerase concentration on a gene’s transcription dynam-
ics). Such shifts, likely diverse in magnitudes, should then
cause downshifts in the corresponding protein abundances.
Thus, in the case of input TFs, their ‘output’ genes will,
later on, be affected as well (Figure 1B2), causing further
(here named ‘mid-term’) changes in RNA abundances (Fig-
ure 1B4).Meanwhile, the short-term changesmost likely are
only affected by the genes’ individual features affecting their
responsiveness to RNAP, since the protein abundances have
not yet changed significantly.
We focus on the mid-term changes in single-gene expres-

sion levels. Specifically, we hypothesize that, in the short-
term, a reduction in RNAP concentration will be followed
by a reduction in most genes’ expression levels. Subse-
quently, in the mid-term, genes with one input TF will have
their RNA abundance either further decreased or, instead,
increased, depending on whether their input TF is an ac-

tivator or a repressor, respectively. Meanwhile, the average
magnitude of the mid-term response of genes with multi-
ple input TFs should be correlated with the difference be-
tween the numbers of their activator and repressor input
TFs. This difference is here named ‘bias’ in the regulatory ef-
fect (i.e. activation or repression) of the input TFs of a gene.
A schematic and a predictivemodel of this regulatorymech-
anism of the genome-wide single-gene mid-term responses
are shown in Figure 1B and C, respectively.
At the single-gene level, the magnitude of the mid-term

changes in RNA abundances should be influenced by the
magnitude of the shift in RNAP and in input TFs concen-
trations, as well as by the specifics features of each gene and
its input TFs (bindings affinities, etc.). However, many of
these features are largely unknown. As such, here we only
study empirically if the average responses of gene cohorts
can be explained by the mean bias in the regulatory effect of
their input TFs, along with the magnitude of the shift in
RNAP concentration (Figure 1C2). In detail, we interpret
the data on the genome-wide kinetics based on the infor-
mation on the TFN structure (logic and topology) (Figure
1B3).

We use E. coli to validate this hypothesis since its gene
expression mechanisms have been largely dissected and the
kinetics of transcription, translation, and RNA and pro-
tein degradation are well known (26,32,33). Also, its TFN
is extensively mapped, with RegulonDB (34) informing
on ∼ 4700 TF interactions between ∼ 4500 genes (and
on their activating or repressing regulatory roles). Conse-
quently, since we know the regulatory network a priori, in-
stead of using the data on gene expression for network infer-
ence, we use it solely to quantify the genes’ responsiveness
with respect to the TFN topology and logic. We then in-
vestigate whether the mid-term responsiveness to shifting
RNAP concentration is in accordance with the presently
known topology and logic of the TFN, as hypothesized (Fig-
ure 1B1-B4). Supplementary Table S1 has a description of
the variables used throughout the manuscript.
In summary, here we show that changes in RNAP

concentration due to medium dilutions are followed by
short- and mid-term genome-wide changes in RNA abun-
dances (obtained by time-lapsed RNA-seq). These RNA
changes, globally, cannot be explained by potential influ-
ences from GRs, � factors, (p)ppGpp, non-coding RNAs,
or post-translation regulators (e.g. due to lack of correla-
tion with their output genes, lack of RNA changes, etc.).
Instead, we find that genes directly linked by TF interac-
tions show correlated changes in RNA abundances. Fur-
ther, the average magnitude of the mid-term responses
of gene cohorts can be explained by the mean bias in
the regulatory effect of their genes’ input TFs (obtained
from RegulonDB and shown to be correlated to the num-
ber of input TFs, KTF). Also influential is the magnitude
of the shift in RNAP concentration (obtained by flow-
cytometry and western blot) and operons and transcrip-
tion units (TUs) organization (from RegulonDB). Mean-
while, short-term responses are less influenced by TFs. Fi-
nally, we show the same phenomenon for opposite shifts in
medium concentration that cause the same shifts in RNAP
concentration.
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Figure 1. Expected short- and mid-term effects of quick downshifts of the RNAP abundance on the TFN of E. coli. (A) Example changes in mean RNAP
(μRNAP) and 68%CB (shadow) relative to control (LB1.0x) after diluting themedium (LB0.5x). Vertical red linesmarkwhen the transcriptomemeasurements
at 60, 125 and 180 min. Given the RNAP levels and the kinetics of RNA and protein abundances, these moments are named ‘prior to RNAP changes’ and
‘short-’, and ‘mid-term’ changes in RNA abundances. (B1) Known TF-gene interactions (red and green lines, if repressing and activating, respectively) and
genes with (pink) and without (blue) input TFs of E. coli. (B2) Schematics of the expected effects of a local topology of activating (green) and repressing
(red) input TFs on mid-term responses. Genes (balls) are coloured (blue, yellow, and green) according to the events in B4. (B3) Data collected on the
genome-wide kinetics as well as data collected on the TFN structure. (B4) Following a medium dilution, intracellular RNAP concentrations (black arrow)
decrease after a time lag, and RNA abundances (red arrow) will decrease accordingly. Compared to when at ∼ 0 min, the RNAP at ∼ 120 min and
corresponding RNAs at ∼ 125 min should be lower (25,28). Given translation times (∼ 50 min (29–31)), at ∼ 175 min, the protein abundances, including
input TFs, coded by the perturbed RNAs (green arrow) should differ as well. Fluctuations in these input TFs abundances will then propagate to nearest
neighbour ‘output’ genes, further shifting their RNA abundances (blue arrow) depending on whether the input TF is an activator or a repressor. Finally,
the yellow arrow represents (not measured) long-term changes (∼ 230 min or longer). We performed RNA-seq at ∼ 60 min (prior to RNAP changes),
∼ 125 min (short-term RNA changes), and ∼ 180 min (mid-term RNA changes, affected by input TFs). Finally, the green dashed line marks when the
RNAP level already differs significantly from the control (see example Figure 1A). (C1) Predictive model of the expected biases in sets of input TFs of
individual genes. Considering TF-gene interactions as either repressions (regulatory effect of -1) or activations (regulatory effect of +1), the overall effect
of a set of input TFs during these stresses should be predictable from the sum of the regulatory effect of the input TFs, named ‘bias’, (b). Regulatory effects
obtained fromRegulonDB. (C2) Example average response (μ|LFC| fromRNA-seq) at 180 min of gene cohorts with a given μ|b| and how they are expected
to relate to the biases. Figures created with BioRender.com.
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MATERIALS AND METHODS

Bacterial strains, media, growth conditions and curves, and
intracellular concentrations

We used wild type MG1655 cells as a base strain to study
the transcriptome. In addition, we used an RL1314 strain
with RpoC endogenously tagged with GFP (generously
provided by Robert Landick) to measure RNAP levels, and
20 YFP fusion strains with genes endogenously tagged with
the YFP coding sequence (25) to measure single-cell pro-
tein levels (Supplementary Table S4). Further, we used a
strain carrying an rpoS::mCherry gene (generously pro-
vided by James Locke), shown to track RpoS (35), to mea-
sure RpoS levels. In addition, we measured the protein lev-
els of the spoT gene, which is one of the genes responsible
for (p)ppGpp synthesis (3), using the YFP fusion library.
Finally, we measured single-cell levels of the crl gene using
a low-copy plasmid fusion library of fluorescent (GFP) re-
porter strain (36).
From glycerol stocks (at –80 ◦C), cells were streaked on

lysogeny broth (LB) agar plates with antibiotics and kept
at 37 ◦C overnight. Next, a single colony was picked, inoc-
ulated into fresh LB medium and, kept at 30 ◦C overnight
with appropriate antibiotics and aeration at 250 rpm. From
overnight cultures (ONC), cells were diluted to 1:1000 in
tailored LB media (see below) with antibiotics, incubated
at 37 ◦C with aeration, and allowed to grow until reaching
an optical density of ≈ 0.4 at 600 nm (OD600).

Using this protocol, to attain cells with different in-
tracellular RNAP concentration, starting from LB, we
used tailored media, denoted as ‘LB1.0x’, ‘LB0.75x’, ‘LB0.5x’,
‘LB0.25x’, ‘LB1.5x’, ‘LB2.0x’ and ‘LB2.5x’ specifically, as in
(26). Their composition for 100 ml (pH of 7.0) are, respec-
tively: (LB1.0x) 1 g tryptone, 0.5 g yeast extract and 1 g
NaCl; (LB0.75x) 0.75 g tryptone, 0.375 g yeast extract and
1 g NaCl; (LB0.5x) 0.5 g tryptone, 0.25 g yeast extract and
1 gNaCl; and (LB0.25x) 0.25 g tryptone, 0.125 g yeast extract
and 1 g NaCl; (LB1.5x) 1.5 g tryptone, 0.75 g yeast extract
and 1 g NaCl; (LB2.0x) 2 g tryptone, 1 g yeast extract and
1 g NaCl; (LB2.5x) 2.5 g tryptone, 1.25 g yeast extract and
1 g NaCl.
To measure cell growth curves and rates, ONC of the

RL1314 strain were diluted to an initial optical density at
600 nm (OD600) of ≈ 0.05 into independent fresh media
(LB1.0x, LB0.75x, LB0.5x, LB0.25x, LB1.5x, LB2.0x and LB2.5x).
The cultures were aliquoted in a 24-well flat bottom trans-
parent plate and incubated at 37 ◦C with continuous shak-
ing in a Biotek Synergy HTXMulti-Mode Reader. Growth
was monitored every 10 min for 10 h.
Finally, the RNAP and � factor concentrations were esti-

mated by measuring their average abundances from single-
cell fluorescence levels (of RpoC-GFP and rpoS::mCherry,
respectively, by flow-cytometry). Next, we divided that
abundance by the mean single-cell area (from phase-
contrast microscopy images of cell populations in the
same condition), used as a proxy for cell volumes, to ob-
tained concentrations in fluorescence intensity per pixel
(not shown in the figures). In all cases, for each condition,
we obtained images from, on average, 2500 cells (from three
biological replicates). The images are provided in Supple-
mentary Data.

Microscopy

To measure single-cell RNAP levels, ONC RL1314 cells
were pre-inoculated into LB1.0x, LB0.75x, LB0.5x and LB0.25x
media. Upon reaching mid-exponential growth phase, cells
were pelleted by quick centrifugation (10000 rpm for 1
min), and the supernatant was discarded. The pellet was re-
suspended in 100 �l of the remaining medium. Next, 3 �l of
cells were placed in between 2% agarose gel pad and a cov-
erslip and imaged by confocal microscopy with a 100× ob-
jective (example images in Supplementary Figure S1). GFP
fluorescencewasmeasuredwith a 488 nm laser and a 514/30
nm emission filter. Phase-contrast images were simultane-
ously acquired. MG1655 cells were imaged to measure cell
size in LB1.0x, LB0.75x, LB0.5x, LB0.25x, LB1.5x, LB2.0x and
LB2.5x media. Finally, MG1655 cells was also imaged in
LB1.0x during stationary growth. Finally, we imaged cells
of the YFP strain library to assess if their morphology and
physiology were consistent with healthy cells during mea-
surements.

Flow-cytometry

We performed flow-cytometry of RL1314 cells to measure
single-cell RNAP over time. ONC were diluted at 1:1000
into respective fresh media (LB1.0x, LB0.75x, LB0.5x and
LB0.25x) and grown as described in Methods section Bac-
terial strains, media,growth conditions andcurves, and intra-
cellular concentrations. Flow-cytometry data was recorded
every 30 min (three biological replicates), up to 210 min.
Datawas also captured in themid-exponential phase (at 180
min), in the media studied (LB1.0x, LB0.75x, LB0.5x, LB0.25x,
LB1.5x, LB2.0x and LB2.5x), with 3 biological replicates each.
We used a similar protocol to perform flow-cytometry of
several strains of the YFP library (25) in LB1.0x and LB0.25x
(three biological replicates, Supplementary Table S4), in-
cluding tomeasure single-cell SpoT levels in LB1.0x, LB0.75x,
LB0.5x, LB0.25x, LB1.5x, LB2.0x and LB2.5x (three biological
replicates each).
Meanwhile, we measured single-cell levels of the crl gene

in LB0.5x at 0 and 180 min, using a strain from the GFP-
promoter fusion library. Further, to measure RpoS levels,
we performed flow-cytometry of cells of the MGmCherry
strain in LB1.0x, LB0.75x, LB0.5x and LB0.25x during the expo-
nential (180 min) and stationary growth phases (LB1.0x,14
h after pre-inoculation). In these measurements, as well as
the measurements above, we recorded FSC-H, SSC-H and
Width, to be used as proxies for cell size and density (i.e.
composition), as they are positively correlated with these
features (37).
In addition, data from measurements of MG1655 cells

were used to discount background fluorescence from cells
of the MGmCherry and the YFP strains. Similarly, mea-
surements of the W3110 strain were used to discount the
background fluorescence from the RL1314 strain.
For performing flow-cytometry, 5 �l of cells were diluted

in 1 ml of PBS, and vortexed. In each condition, 50000
events were recorded. Prior to the experiments, QC was
performed as recommended by the manufacturer.Measure-
ments were conducted using an ACEA NovoCyte Flow
Cytometer (ACEA Biosciences Inc., San Diego, USA)
equipped with yellow and blue lasers.
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For detecting the GFP and YFP signals, we used the
FITC channel (-H parameter) with 488 nm excitation,
530/30 nm emission, and 14 �l/min sample flow-rate with
a core diameter of 7.7 �m. PMT voltage was set to 550 for
FITC and kept the same for all conditions. Similarly, to de-
tect the mCherry sinal, we used PE-Texas Red channel (-H
parameter) having an excitation of 561 nm and emission of
615/20 nm and sample flow-rate of 14 �l/min, with a core
diameter of 7.7 �m. PMT voltage was set to 584 for PE-
Texas Red and kept the same for all conditions. To remove
background signal from particles smaller than bacteria, the
detection threshold was set to 5000. All events were col-
lected by Novo Express software from ACEA Biosciences
Inc.

Protein isolation and western blotting

Western blotting was used to quantify relative RNAP levels
of MG1655 cells and GFP levels of RL1314 RNAP-GFP
cells (Supplementary Figure S2 and Table S2). Briefly, cells
were diluted from ONC into respective fresh media and in-
cubated at 37 ◦C with aeration and grown until reaching an
OD600 ≈ 0.4. Next, cells were harvested by centrifugation
(8000 rpm for 5 min) and pellets were lysed with B-PER
bacterial protein extraction reagent, added with a protease
inhibitor for 10 min at room temperature (RT). Following
lysis, centrifugation was done at 14 000 rpm for 10 min and
the supernatant was collected. Next, the supernatant was
diluted in 4X Laemmli buffer with �-mercaptoethanol and
samples were boiled at 95 ◦C for 5 min.
Samples with ∼ 30 �g of soluble total proteins were

loaded on 4–20% TGX stain-free precast gels (Biorad).
These proteins were then separated by electrophoresis and
transferred on PVDFmembrane using TurboBlot (Biorad).
Next, membranes were blocked with 5% non-fat milk at
room temperature (RT) for 1 h and probedwith primary an-
tibodies at 1:2000 dilutions (Biolegend) at 4 ◦C overnight.
The antibodies used for the MG1655 strain were against
RpoC (� prime subunit of RNAP), while for the RL1314
strain it was used antibodies against GFP. As a control
we also subjected MG1655 cells to antibodies against GFP
(Supplementary Figure S2B2). HRP-secondary antibody
(1:5000) treatment was then done (Sigma Aldrich) for 1 h at
RT. Excess antibodies were removed bywashingwith buffer.
Themembranewas treatedwith chemiluminescence reagent
(Biorad) for band detection. Images were obtained by the
Chemidoc XRS system (Biorad) and band quantification
was done using the Image Lab software (v.5.2.1).

RNA-seq

Sample preparation. RNA-seq was performed thrice, for
decreasing [LB0.75x, LB0.5x, and LB0.25x, at 180 min; LB0.5x
at 60 and 125 min] and for increasing (LB1.5x, LB2.0x and
LB2.5x, at 180 min) medium richness relative to a control
(LB1.0x) (an independent control was used for each three sets
of conditions). Cells from 3 independent biological repli-
cates of MG1655 in each modified medium were treated
with RNA protect bacteria reagent (Qiagen, Germany), to
prevent degradation of RNA, and their total RNA was ex-
tracted using RNeasy kit (Qiagen). RNA was treated twice

with DNase (Turbo DNA-free kit, Ambion) and quantified
usingQubit 2.0 Fluorometer RNAassay (Invitrogen, Carls-
bad, CA, USA). Total RNA abundance was determined
by gel electrophoresis, using a 1% agarose gel stained with
SYBR safe (Invitrogen). RNA was detected using UV with
a Chemidoc XRS imager (Biorad).

Sequencing.

Part 1: For shifts from LB1.0x to LB0.75x, LB0.5x and
LB0.25x, at 180 min. Sequencing was performed by Aco-
biom (Montpellier, France). The RNA integrity number
(RIN) of the samples was obtained with the 2100 Bioana-
lyzer (Agilent Technologies, PaloAlto, USA) using Eukary-
otic Total RNA 6000 Nano Chip (Agilent Technologies).
RibosomalRNAdepletionwas performed usingRibo-Zero
removal kit (Bacteria) from Illumina. RNA-seq libraries
were constructed according to the Illumina’s protocol. Sam-
ples were sequenced using a single-index, 1 × 75 bp single-
end configuration (∼ 10M reads/library) on an Illumina
MiSeq instrument. Sequencing analysis and base calling
were performed using the Illumina Pipeline. Sequences were
obtained after purity filtering.

Part 2: For shifts from LB1.0x to LB1.5x, LB2.0x and LB2.5x
at 180 min, and from LB1.0x to LB0.5x at 60 and 125 min.
Sequencing was performed by GENEWIZ, Inc. (Leipzig,
Germany). The RIN of the samples was obtained with the
Agilent 4200 TapeStation (Agilent Technologies, Palo Alto,
CA, USA). Ribosomal RNA depletion was performed us-
ing Ribo-Zero Gold Kit (Bacterial probe) (Illumina, San
Diego, CA, USA). RNA-seq libraries were constructed us-
ing NEBNext Ultra RNALibrary Prep Kit (NEB, Ipswich,
MA,USA). Sequencing libraries weremultiplexed and clus-
tered on 1 lane of a flow-cell.
For shifts from LB1.0x to LB1.5x, LB2.0x and LB2.5x at

180 min, samples were sequenced using a single-index,
2 × 150 bp paired-end (PE) configuration (∼ 350M raw
paired-end reads per lane) on an Illumina HiSeq 4000 in-
strument. Image analysis and base calling were conducted
with HiSeq Control Software (HCS). Raw sequence data
(.bcl files) were converted into fastq files and de-multiplexed
using Illumina bcl2fastq v.2.20. One mismatch was allowed
for index sequence identification.
For shifts from LB1.0x to LB0.5x at 60 and 125 min, sam-

ples were sequenced using a single-index, 2× 150 bp paired-
end (PE) configuration (∼ 10M raw paired-end reads per
lane) on an IlluminaNovaSeq 6000 instrument. Image anal-
ysis and base calling were conducted withNovaSeq Control
Software v1.7. Raw sequence data (.bcl files) were converted
into fastq files and de-multiplexed using Illumina bcl2fastq
v.2.20. One mismatch was allowed for index sequence iden-
tification.

Data analysis. Regarding the RNA-seq data analysis
pipeline: (i) RNA sequencing reads were trimmed to re-
move possible adapter sequences and nucleotides with poor
quality with Trimmomatic (38) v.0.36 (for data from se-
quencing part 1) and v.0.39 (for data from sequencing
part 2). (ii) Trimmed reads were then mapped to the ref-
erence genome, E. coli MG1655 (NC 000913.3), using the
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Bowtie2 v.2.3.5.1 aligner, which outputs BAM files (39).
(iii) Then, featureCounts from the Rsubread R package
(v.1.34.7) was used to calculate unique gene hit counts
(40). Genes with less than five counts in more than three
samples, and genes whose mean counts are less than 10
were removed from further analysis. (iv) Unique gene hit
counts were then used for the subsequent differential ex-
pression analysis. For this, we used the DESeq2 R pack-
age (v.1.24.0) (41) to compare gene expression between
groups of samples and calculate p-values and log2 of fold
changes (LFC) of RNA abundances usingWald tests (func-
tion nbinomWaldTest). P-values were adjusted for multiple
hypotheses testing (Benjamini–Hochberg, BH procedure,
(42)) and genes with adjusted P-values (False discovery rate
(FDR)) < 0.05 were selected to be further tested as being
differentially expressed (DE) (Methods sectionRNA-seq d).
For logistical reasons, the sequencing platform for the

RNA-seq data in Methods section RNA-seq b differ from
one another. Consequently, the data sets first mentioned in
the Results sections Genome-wide mid-term responses corre-
late with shifts in RNAp concentration and Further increases
in medium richness do not decrease RNAP concentration
and RNA numbers also do not change, respectively, can-
not be compared quantitatively nor be used to infer gene-
specific conclusions.
Finally, to analyse the data from LB1.0x and LB0.5x at

60 and 125 min and compare its results with the results
from the data of Methods section RNA-seq b Part 1 at 180
min, their raw countmatrices weremerged. Also, only genes
that passed the filtering were studied. The filtering removed
genes with less than 5 counts in more than 6 samples, and
genes whose mean counts were less than 10.
Moreover, we expect the overall sums of LFCs from each

perturbation to equal zero since, in DEseq2, the median-of-
ratios normalization calculates the normalizing size factors
assuming a symmetric differential expression across condi-
tions (i.e. same number of up- and down-regulated genes)
(43). Further, it fits a zero-centered normal distribution to
the observed distribution of maximum-likelihood estimates
(MLEs) of LFCs over all genes (41). Both steps (perhaps
related) force the mean LFC to be 0.

LFC criteria for differentially expressed genes. From past
methods (44–46), we classified genes as statistically sig-
nificantly DE following perturbations, by setting a maxi-
mum FDR threshold for adjusted P-values (Methods sec-
tion RNA-seq c) and a minimum threshold for the absolute
LFC of RNA numbers of individual genes (|LFC|).
From the μ|LFC| of genes whose FDR > 0.05, named

μ|LFC|(FDR> 0.05), we identified DEGs (DE Genes) as
those that, in addition to having FDR < 0.05, also have
|LFC| > μ|LFC|(FDR> 0.05). Specifically, we added the
conditions: |LFC| > 0.4248 for LB0.75x, > 0.4085 for LB0.5x,
> 0.4138 for LB0.25x, > 0.2488 for LB1.5x, > 0.2592 for
LB2.0x, and > 0.2711 for LB2.5x, for accepting a gene as be-
ing significantly DE. Meanwhile, for the data in LB0.5x at
60 and 125 min, we added the conditions: |LFC| > 0.2171
for LB0.5x 60 min, and > 0.2977 for LB0.5x 125 min. This
allows removing genes whose FDR < 0.05 but have a negli-
gible LFC.Noteworthy, in no condition didwe remove from
the set of DEG more than 5 genes by applying this rule.

RNA-seq vs Flow-cytometry. RNA and protein abun-
dances are expected to be positively correlated in bacteria,
since transcription and translation are mechanically bound
(47–49). Further, most regulation occurs during transcrip-
tion initiation (50), which is the lengthiest sub-process (24).
To validate that this relationship holds during the

genome-wide stresses, we randomly selected a set of genes
whose LFC’s, as measured with RNA-seq, cover nearly
the entire spectrum of LFCs observed genome-wide. Next,
we measured their LFC in protein levels, using the YFP
strain library (25) (Methods section Bacterial strains,
media,growth conditions andcurves, and intracellular con-
centrations) and flow-cytometry (Methods section Flow-
cytometry), at 180 min after shifting the medium. The list
of selected genes is shown in Supplementary Table S4. For
the fold change of 1/8×, 1/4×, 1/2×, 1×, 2×, 4× and 8×,
we selected three genes whose LFC in RNA abundances is
closest to that value (except for the 8× fold change, since
only two genes were available). This range of values cov-
ers nearly the whole LFC spectrum observed by RNA-seq
(Supplementary Figure S9).

Transcription factor network of Escherichia coli

We assembled a directed graph of the network of TF in-
teractions between the genes present in our RNA-seq data,
based on the data in RegulonDB v10.9 (34), as of 28 Jan-
uary 2022. We used all reported TF-gene, TF–TF, TF–
operon and TF–TU interactions. These equally contribute
to our network of gene-gene directed interactions. In de-
tail, a TF or regulatory protein is a complex protein that
activates/represses transcription of a TU upon binding to
specific DNA sites. A TU is one or more genes transcribed
from a single promoter. Similarly, an operon are one or
more genes and associated regulatory elements, transcribed
as a single unit.
The TFN graph was analysed using MATLAB (2021b)

and Network Analyzer v.3.7.2 plug-in in cytoscape (51) to
extract the following network parameters: number of nodes
and directed edges, number of connected components, num-
ber of isolated nodes and self-loops, and single-gene in- and
out-degree, edge-count, clustering coefficient, eccentricity,
average minimum path length, betweenness and stress cen-
trality, and neighbourhood connectivity. The statistics con-
sidered are shown in Supplementary Tables S5 and S19.

Statistical tests

2-Sample T-test, 2-sample KS-test and 1-sample Z-test.
The 2-sample T-test evaluates the null hypothesis that the
two samples come from independent random samples from
normal distributionswith equalmeans and unequal and un-
known variances. For this, we have set a significance level of
10% significance level (P-value < 0.10) when applying the
MATLAB function ttest2.
The 2-sample KS-test returns a test decision for the

null hypothesis that the data from two data sets are from
the same continuous distribution, using the two-sample
Kolmogorov-Smirnov test. As above, we have set the null
hypothesis at 10% significance level (P-value < 0.10).
The one-sample Z-test tests for the null hypothesis that

the sample is from a normal distribution with mean m and
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a standard deviation �. In this case, m and σ are estimated
from the genes with KTF = 0. As above, we have set the null
hypothesis at 10% significance level (P-value < 0.10).

Fisher test. The Fisher test evaluates the null hypothesis
that there is no association between the two variables of a
contingency table. We reject the null hypothesis at 10% sig-
nificance level (P-value < 0.1), meaning that the variables
are significantly associated.

Correlations between data sets. The correlation between
two data sets with known uncertainties (standard error
of the mean (SEM) in each data point) was obtained by
performing linear regression fitting using Ordinary Least
Squares. The best fitting line along with its 68.2% confi-
dence interval/bounds (CB) and statistics was obtained as
described in Supplementary Materials and Methods 1.4 of
(52). In short, the uncertainty of each of the N empiri-
cal data points was represented by m points, resulting in
n = N × m points. Each of these points is obtained by ran-
dom sampling from a normal distribution whose mean (�)
and standard deviation (�) equal the mean and error of the
empirical data point, respectively. It was set m = 1000, as it
was sufficient to represent the error bars of the actual data
points. We obtained the coefficient of determination (R2)
and the root mean square error (RMSE) of the fitted re-
gression line, and the p-values of the regression coefficients.
The P-value of x (P-value1) was obtained of a T-test un-
der the null hypothesis that the data is best fit by a degener-
ate model consisting of only a constant term. If P-value1 is
smaller than 0.1, we reject the null hypothesis that the line is
horizontal, i.e. that one variable does not linearly correlate
with the other. When there are more than three data points,
we also calculated regression coefficient of x2 (P-value2) of a
T-test under the null hypothesis that the second order poly-
nomial fit is no better than lower order polynomial fit, i.e.
coefficient of x2 = 0. IfP-value2 is smaller than 0.1, we reject
the linear model favouring the quadratic.
To obtain the overall best non-linear fit (and its 68.2%

CB) for the empirically measured datasets with uncer-
tainties, Monte Carlo simulations (1000 iterations) were
performed. In particular, to obtain Figure 2B, on each iter-
ation, we randomly sampled each data point from a normal
distribution whose mean and standard deviation are equal
to the mean (actual value) and SEM of the corresponding
empirical data point, respectively. Then a sigmoid (logistic)
curve fitting (R P (2020). sigm fit (https://www.mathworks.
com/matlabcentral/fileexchange/42641-sigm fit), MAT-
LAB Central File Exchange. Retrieved 6 August 2020) was
used to obtain the best fitting curve and its 68.2% CB for
each iteration. Finally, the best fitting curve along with
their 68.2% CB is obtained by averaging the respective
values from the 1000 iterations.
Finally, to create null-models of how variable X affects

variable Y, we performed random sampling without re-
placement of both X and Y datapoints. The number of
samplings and the sampling size (number of samples in
each sampling) are set to the maximum array size pos-
sible to us (∼ 45980 × 45980, 15.8 GB). The sampling
size is set to 5% of the number of datapoints (size XY)
and the number of samplings (K) is set according to

Max size/(0.05 × size XY) where Max size = 45980/2.
Next, for both X and Y, we combine the sampled data-
points in a vector (sample X, sample Y) and calculate the
correlation between sample X and sample Y by linear re-
gression fitting using ordinary least squares. To correct for
over-representation of the original datapoints, we corrected
the degrees of freedom to be (size XY – C), where C is the
number of parameters. In detail, for the linear regression fit-
ting, C equals to 2 (intercept and slope of best fitting line).

ANCOVA test to evaluate if two lines can be distinguished.
To evaluate if two lines are statistically different, we per-
formed the analysis of covariance (ANCOVA) test (53).
ANCOVA is an extension of the one-way ANOVA to incor-
porate a covariate. This allows comparing if two lines are
statistically distinct in either slope or intercept. This is done
by evaluating the significance of the T-test under the null
hypothesis that both the slopes and intercepts are equal.

Figures

Figures were produced in R (v.3.6.0) using the packages
‘ggplot2’ (v.3.2.0), ‘pheatmap’ (v.1.0.12), ‘VennDiagram’
(v.1.6.20) along with ‘grid’ (v.3.6.0), ‘gridExtra’ (v.2.3),
‘gplots’ (v.3.0.1.1), ‘R.matlab’ (v.3.6.2), ‘dplyr’ (v.1.0.2),
‘scales’ (v.1.0.0), ‘Metrics’ (v.0.1.4) and ‘fitdistrplus’ (v.1.0–
14).

RESULTS

Effects of medium dilution on cell growth, morphology, and
RNAP concentration

We first studied how the RNAP concentration changes
with medium dilutions. Concentration of RNAP (as well
as of other molecular species) was obtained as described in
Methods section Bacterial strains, media, growth conditions
and curves, and intracellular concentrations. From a control
medium (LB1.0×), we moved cells to diluted media (LB0.75×,
LB0.5×, and LB0.25×, Methods section Bacterial strains, me-
dia,growth conditions andcurves, and intracellular concentra-
tions). RNAP levels start changing ∼ 75 min later, based
on a as yet to be identified mechanism, stabilizing at ∼ 165
min (Figure 2B). Given this timing of events, measurements
to assess the effects on the RNA population should be per-
formed after ∼ 165 min.
We also considered that at ∼ 180 min (Figure 2A) the

cells are at late mid-log phase. Thus, measuring the effects
of changing RNAP should occur prior to ∼ 180 min, since
leaving the mid-log phase will involve significant, unrelated
genome-wide changes in RNA abundances (54–57). From
the point of view of cell division, from themoment when the
RNAP starts changing, up to themoment whenwemeasure
the short- and the mid-term changes in RNA abundances,
on average, less than one cell cycle and less than two cell
cycles should have passed, respectively.
Interestingly, this time moment (∼ 180 min) matches our

predictions of when, on average, RNA abundances have
changed due to changes in the abundances of both RNAP
as well as direct input TFs. In detail, from the timing of
the changes in RNAP (Figure 2B) and from known rates
of RNA and protein production and degradation in E. coli

https://www.mathworks.com/matlabcentral/fileexchange/42641-sigm_fit
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Figure 2. Cell growth and morphology, and RNAP abundance after medium dilutions. (A) Growth curves from OD600 measured every 10 min (Meth-
ods section Bacterial strains, media,growth conditions andcurves, and intracellular concentrations). The vertical dashed red lines mark when RNA-seq was
performed. After ∼ 180 min, cells subject to different dilutions (LBmx) start differing in growth rates. (B) Mean single-cell RNAP-GFP fluorescence rel-
ative to the control (LB1.0x), μRNAP F ITC−H, measured every 15 min for 210 min by flow-cytometry (FITC-H channel). The mean cellular background
fluorescence in each condition was subtracted (Methods section Flow-cytometry). The vertical dashed red lines mark when RNA-seq was performed. (C)
Growth rates at 180 min after medium dilution. The inset shows the corresponding doubling times. (D) Mean single-cell RNAP levels (μRNAP F ITC−H)
at 180 min relative to the control (Methods section Flow-cytometry). (E) μRNAP F ITC−H plotted against μRNAP WB (RNAP levels measured by Western
Blot, Methods section Protein isolation and western blotting). The inset shows μRNAP WB alone. (F) Mean cell area relative to the control, extracted from
phase-contrast images (∼ 2000 cells per condition) (Methods sectionMicroscopy). The inset shows the mean cell width relative to the control. (G) Mean
(relative to the control) Width, FSC-H and SSC-H obtained by flow-cytometry (Methods section Flow-cytometry). (H) Mean (relative to the control) FSC-
H versus SSC-H in each condition, obtained from 3 biological replicates. The inset shows the mean ratio between the relative FSC-H and SSC-H. (I) Mean
mCherry-tagged RpoS (μRpoS PE−Texas Red−H) concentration in the stationary growth phase relative to the exponential growth (set to 1), as measured
by mean single-cell fluorescence (PE-Texas Red channel, Methods section Flow-cytometry) over mean cell area (μcellarea ) (Methods sectionMicroscopy),
after subtracting mean background fluorescence(s). The inset shows the same, but after each medium dilution. Measurements in (D)–(I) taken 180 min
after medium dilution. Data points are from 3 biological replicates (except for (A) and (B), where 6 replicates were used). μ stands for mean relative to the
control. In (A)–(C) error bars represent the SEM. In (B) and (D)-(I), black error bars are the SEM and red error bars are the 95% CB of the SEM. In (C),
(E) and (H), the best fitting lines and their 68% CB and statistics (R2 and RMSE), and P-values at 10% significance level were obtained as described in
Methods section Statistical tests c.
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(25,28–31), widespread heterogenous short-term changes in
RNA abundances should occur, on average, at ∼ 120–135
min after shifting the medium (at whichmoment the RNAP
has already changed significantly). Changes in the corre-
sponding protein abundances should then occur tenths of
minutes later, i.e. at ∼ 160–175 min (29–31).
Soon after, we expect additional changes in RNA abun-

dances, now due to changes in direct input TFs abun-
dances. This second stage of events, here classified as ‘mid-
term’, should occur between ∼ 165 and 180 min. This is
also when cells are in the late mid-log phase (Figure 2A),
while cell growth rates do not yet differ between conditions
(Figure 2C) and cell sizes only differ slightly (Figure 2F–
H and Supplementary Figures S3 and S4, Methods sec-
tionsMicroscopy andFlow-cytometry). This is relevant since
growth rates affect protein concentrations due to dilution in
growth and division (58,59).
Finally, at 180 min, the �38 concentration is lower than

at 0 min (Figure 2I inset and Supplementary Figure S5), in
agreement with previous reports (27,35,60,61), suggesting
that the cells are not committed to the stationary growth
phase. The same is observed for theCrl protein (Supplemen-
tary Figure S6). This protein contributes to the expression
of genes whose promoter is recognized by �38 and is known
to be at higher abundance during stationary phase (62), as
confirmed here (Supplementary Figure S6).
Given the above, to capture the average mid-term effects

of RNAP shifts, we measured the transcriptome at 180 min
(Figure 2A). This timing should allow discerning the aver-
age genes’ behaviour under the influence of their local net-
work of TF interactions, albeit the diversity in RNA and
protein production and decay kinetics, etc. RNAP levels at
that moment are shown in Figure 2D (flow-cytometry data)
and 2E (flow-cytometry versus western blot data), Supple-
mentary Figures S2A1 and S2A2 (western blot of RNAP)
and Table S2 (absolute values extracted from western blot).
Similar RNAP downshifts have been observed in natural
conditions (63) and described in (23,26,27).
Finally, we performed an additional western blot to

measure RNAP-GFP using antibodies against GFP alone.
From Supplementary Figures S2B1 and S2B2 and Table
S2, the RNAP-GFP does not appear to be significantly de-
graded by cleavage, with the strongest bands being observed
for molecular weights between 150 and 250 kDa. As such,
these strongest bands should correspond toGFP (known to
be 27 kDa (64)) fused with the �’ unit (known to be 155 kDa
(65,66)). Moreover, no clear bands appear in the region be-
tween 150 and 250 kDa for theMG1655 strain. Meanwhile,
the weak band just above 25 kDa in some samples from
RL1314 cells (particularly in LB0.75x) might correspond to
GFP that has been cleaved off from the chimeric protein
but, given that it is only a small fraction compared to the
amount of RpoC-GFP in the same cells, one can conclude
that its contribution to the total cell fluorescence signals is
negligible.

Genome-wide mid-term responses correlate with shifts in
RNAP concentration

Transcription rates are expected to follow the free RNAP
concentration in a cell, rather than the total RNAP con-

centration (which is the sum of the free RNAP with the
RNAP engaged with theDNA).We heremeasured the total
RNAP concentration. However, within the range of condi-
tions studied, the fractions of free and DNA-bound RNAP
remain rather constant (26). Therefore, the total RNAP is a
good proxy for the free RNAP. Specifically, using modified
strains and plasmids controlled by lac and tet mutant pro-
moters (67–69), whose regulatory mechanisms have been
dissected, it was shown that their transcription rates are lin-
early correlated with the total RNAP concentration (26).
From here on, when mentioning RNAP concentration, we
refer to the total RNAP concentration.
The increasing medium dilution and corresponding de-

creases in RNAP concentration (Figure 3A) cause increas-
ingly broad distributions of single-gene LFCs at 180 min
(Supplementary Figures S7 and S8A-C and Table S3).
Specifically, the mean absolute LFC (μ|LFC|) of the 4045
genes and the number of DEGs increased with medium di-
lution (Figures 3B and C).
These RNAs changes correlate with subsequent changes

in proteins levels (Supplementary Figure S9, Methods sec-
tions Flow-cytometry and RNA-seq). This suggests that no
significant translational or post-translational regulation is
taking place in between the perturbation and the measure-
ments, that would alter proteins abundances significantly.
Interestingly, while both μ|LFC| and DEGs numbers fol-

low the RNAP concentration (Supplementary Figures S8D
and S10B), these relationships are not strictly linear (p-
value of 0.29, Supplementary Figure S8D). This suggests
that, in addition to RNAP, the direct input TFs are also in-
fluential. In this regard, we note that the assumption of lin-
earity in the absence of the influence of input TFs (observed
and discussed in (26)) is only expected to occur within a nar-
row range of parameter values.
Notably, some of the genes may be also influenced by

sources other than RNAP and direct input TFs, such as
supercoiling buildup. Also, some input TFs other than the
direct input TFs maybe be influential. However, we show
evidence below that this does not affect the average results
(Figure 4C and Supplementary Figure S18).
We also performed RNA-seq prior to when most sig-

nals, generated by the shift in RNAP, propagated in the
TFN. First, we measured LFCs at 60 min after diluting
the medium (Figure 1). From Figure 2B, at this moment,
RNAP abundances have not yet changed relative to the con-
trol. In agreement, the genome-wide μ|LFC| is very weak
(Figure 3D). We further performed RNA-seq at 125 min.
At this moment, RNAP levels have already reduced signif-
icantly (Figure 2B), but we do not expect input TF abun-
dances to have changed significantly given protein produc-
tion times (Figure 1). In agreement, |LFC|s at 125 min are
stronger than at 60 min, but much weaker than at 180 min
(Figure 3D). We conclude that the mid-term changes in the
TFNhave not occurred yet (further evidence is provided be-
low). Given this, from here onwards, we focus on the state
of the TFN at 180 min.

Influences from regulators other than RNAP

We investigated whether other factors influenced the global
response of the TFN. We considered GRs, � factors,
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Figure 3. Genome-wide effects on the transcriptome of diluting the medium. (A) RNAP concentration estimated from the ratio between the RNAP
measured by FITC-H (μRNAP F ITC−H) at 180 min (Methods section Flow-cytometry), and the mean cell area (μcellarea , used as a proxy for cell volume)
obtained by phase-contrastmicroscopy (Methods sectionMicroscopy). Values relative to the control (LB1.0x). (B)μ|LFC| in eachmedium. (C) Venn diagram
of the number (and percentage relative to the total number of genes) of DEG. (D) Violin plot with the maximum, minimum, median, interquartile ranges,
and probability density of the distributions prior to RNAP changes (LB0.5x at 60 min) and the subsequent short- (LB0.5x at 125 min) and mid-term (LB0.5x
at 180 min) responses to shifting RNAP. The inset shows μ|LFC| of the distributions. In (A), (B) and (C), black error bars are the SEM, while red error
bars are the 95% CB of the SEM.

(p)ppGpp and non-coding RNAs. We assumed the classi-
fication of GR in (70,71) as an input TF that regulates a
large number of genes that rarely regulate themselves and
participate in metabolic pathways. Meanwhile, we did not
account for promoters’ close proximity (e.g. tandem forma-
tion), since a recent study (72) showed that, under similar
stress, while close proximity causes transcription interfer-
ence, it does not influence the genes’ input TF regulation.
First, the RNA-seq shows large numbers of DEGs

(> 1000 for the two strongest dilutions (Supplementary Fig-
ure S10A)) as well as a linear correlation between these
numbers and μ|LFC| (Supplementary Figure S10C). Thus,
we argue that the responsive genes are not constrained to
a specific cluster, such as genes responding to a GR other
than RNAP (the most influential is, arguably, �70 with 1555
genes recognizing it, while other GRs control less than 510
genes each (34)).
Second, from the RNA-seq, we analysed the relative

abundances of GRs, � factors and of their output genes.
From Supplementary Figures S26A and S26C, apart from

rpoS (an input TF recognized by 321 genes) and flhC (an
input TF recognized by 75 genes), GRs and � factors did
not change significantly (Supplementary Figure S26). Fur-
ther, those two changes (rpoS and flhC) were positively cor-
related with the RNAP concentration (Figure 2I inset and
Supplementary Figure S5), not allowing to separate their
effects. Noteworthy, alternative � factors did not change
significantly relative to �70 (Supplementary Figure S26E),
whichwould have changed the competition forRNAPbind-
ing.
We thus failed to find evidence that the � factors and

GRs were influential, globally, in the mid-term responses.
Supplementary Table S15 lists the conclusion for each spe-
cific GR and � factor and Supplementary Figure S27 shows
these results at 125 min.
We then investigated if (p)ppGpp could be influential

since, under some nutrient starvation conditions, they af-
fect ∼ 1000 genes by binding RNAP and altering its affin-
ity for their promoters (3). Reports suggest that the effects
are rapid (5–10 min (3)). In agreement, genes responsive
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Figure 4. Genome-wide propagation of the effects of shifting RNAP in the TFN. (A) μ|LFC| of N genes with and without input TFs (KTF > 0 and = 0,
respectively). On the top of each bar is the number of DEGs in each set. (B) |LFC| of genes with KTF = 1 versus the |LFC| of genes coding their direct
input TFs. Data from the LB0.5x shift. The red line is the best fit. The blue line is the null-model fitting lines and was obtained as described in Methods
section Statistical tests c. The green line is the best fit after sorting the input-output pair values to maximize the correlation. Shadows are their 68% CB.
The equations of the red fitting lines with ‘±’ inform on the standard error of the slope. (C) Scatter plots between |LFC| of output and input genes distanced
by a minimum path length L of 1, 2 and 3 input TFs (edges) in the TFN, respectively (data from LB0.5x). Only for L = 1 do the activities of output and
input genes correlate (P-value1 > 0 and R2 > 0). (D) μ|LFC| of all genes, DEG, non-DEG, and cohorts of randomly selected genes of the same size (‘same
sized cohorts’) for KTF = 0 to 7, using merged data from all shifts (LB0.75x, LB0.5x and LB0.25x). Black error bars are the SEM and red error bars are the
95% CB of the SEM. Best fitting lines and 68% CB obtained using FITLM (MATLAB). p-values, obtained using the null hypothesis that the data is best
fit by a horizontal line, are not rejected at 10% significance level. (B) and (C) do not include a few data points to facilitate visualization. See Supplementary
Figures S14 and S18 for complete data.

to (p)ppGpp (3) exhibited abnormal short-term responses
(Supplementary Table S20). However, their mid-term re-
sponses at 180 min were no longer atypical and, instead,
followed the RNAP changes. The expression of spoT, one
of the genes responsible for ppGpp synthesis, also followed
the RNAP (Supplementary Figure S28). As such, we could
not establish a long-lasting global influence from (p)ppGpp
in response to growth-medium dilution. Nevertheless, the
LFCs of the 14 out of the 22 genes coding for rRNAs listed
in RegulonDB did reveal atypical behaviors (Supplemen-
tary Table S22).
Finally, we searched for unique behaviors in sRNAs by

analyzing the LFC of the 93 sRNAs reported in Regu-
lonDB. Their behavior was not atypical, neither at 180 min
after the perturbations (Supplementary Table S21), nor at

125min. Further, we analysed if their output genes followed
their behaviour. We found that the LFCs of genes directly
regulated by the sRNAs were not correlated with their in-
put TFs, neither at 125min, nor at 180min after themedium
shifts. Specifically, of the 93 sRNAs, 37 of them have known
output genes (in a total of 145 outputs). The RNA-seq data
provided information on the LFC of 40 of the 145 out-
puts. Finally, we searched for linear correlations between
the pairs of LFCs of sRNAs and their output genes, re-
spectively, in the short-term (125 min in LB0.5x) and in the
mid-term (180 min in LB0.5x). We found an R2 of 0.03 (P
value = 0.18) at 125 min and an R2 of 0.05 (P value = 0.10)
at 180 min, respectively. We thus cannot conclude that sR-
NAs were influential during the short- and mid-term re-
sponses to the stresses.
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Input TFs influence the transcriptional response

If the TFN influences the genes’ mid-term response to the
shift in RNAP concentration, this should cause genes with
and genes without input TFs to behave differently. Particu-
larly, since the latter should only be affected by the RNAP
abundances.
In agreement, genes with input TFs had higher μ|LFC|

than genes without input TFs (Figure 4A, Supplementary
Figure S13 and Table S6). Also, the |LFC| of output genes
and of genes coding for their direct input TFs correlate sta-
tistically (Figure 4B, Supplementary Figure S14 and Table
S7). Therefore, on average, TF–gene interactions affected
the single-gene, mid-term responses as hypothesized (Fig-
ure 1).

Input TFs influence all genes within operons

When considering the TFN topology, we have accounted
for TF–gene interactions both between the input TF and
the first gene of an operon or TU. Further, we have also ac-
counted for the interactions between the same input TF and
the other genes of the operon or TU (illustration of TUs and
operons in Supplementary Figure S11B, which follows the
standard definition of a group of two or more genes tran-
scribed as a polycistronic unit (1)).
If we had not account for all these interactions, we would

have failed to correlate the activities of genes interacting
with each other. For example, consider an operon consist-
ing of genes X1 and X2. Then, assume that gene A represses
X1 and X2, by repressing their common promoter. If X1 is
an input TF to gene C, while X2 is an input TF to gene D,
then gene A should indirectly affect both genes C and D. If
we had ignored the interaction between A and X2, because
it is not the first gene in its operon, we would explain why A
affects C, but fail to explain why A affects D.
Further, many operons contain sets of genes whose

RNAs code for subunits of the same protein complex
(73,74). However, the opposite is also true. Moreover, the
fraction of complexes encoded by proteins from different
TU’s is higher than those encoded from the same operon
(75). Thus, we need to track interactions between input TFs
and genes in any position in an operon or TU.
We tested if the positioning of the genes in the operon in-

fluenced their responsiveness to their input TFs. As a case
study, we considered operons with 3 genes. These account
for ∼ 21% of all operons with more than 1 gene (34). We
found that the genes’ positioning did not affect how they
relate to the input TFs (Supplementary Figure S16).We ob-
tained similar results for TUs (Supplementary Figure S17).
The tests of statistical significance are shown in Supplemen-
tary Tables S9-S12.

Genes expressing TFs are correlated with their nearest neigh-
bour output genes

Consider the interval between the shift in RNAP levels and
the sampling for RNA-seq (Figure 1). From these, we hy-
pothesized that, on average, at 180 min (i.e. ∼ 70 min af-
ter the RNAP changed relative to the control), mostly only
genes directly linked by input TFs should exhibit correlated
responses. Nevertheless, the genome-wide diversity in the

kinetics of gene expression and in RNA and protein life-
times will allow for correlations between genes more dis-
tanced in the TFN. The number of such correlations should
decrease rapidly with the path length between the gene pairs
considered.
Results in Figure 4C support this. Genes distanced by 1

input TF (L = 1, i.e. directly linked) have related |LFC|s,
while genes distanced by two input TFs in the TFN have
much less correlated responses (albeit still statistically sig-
nificant). Finally, we found no correlations between the
|LFC|s, of genes distanced by three input TFs (Supplemen-
tary Figure S18).
Noteworthy, the lack of correlation between genes sep-

arated by L > 1 could also be partially due to interfer-
ence from the TFs of the ‘intermediary’ genes between the
gene pairs. However, this is only a possibility when all in-
put TFs involved can change in abundance in less than 60
min, which is likely uncommon in E. coli. This is supported
by the RNA-seq data at 125 min after medium dilution
(Supplementary Figure S19), when even direct input TFs
and output genes are weakly correlated. This suggests that
this shorter time interval was insufficient for most signals to
have propagated between nearest neighbours (Supplemen-
tary Figure S19).

The number of input TFs, KTF, of a gene correlates to the
magnitude of its transcriptional response

We investigated if the genes mid-term responses are sensi-
tive to theirKTF (Supplementary Figure S20A). When aver-
aging the results from the three perturbations (Figure 4D),
we found that the average of the absolute LFCs, μ|LFC|,
increases with KTF (Supplementary Figure S22 shows the
goodness of the linear fits). The result was the same whether
considering all genes or just the DEGs (Figure 4D, Supple-
mentary Figure S21 and Table S13). Further, it holds true
even for non-DEGs (Figure 4D), which justifies also consid-
ering these genes when studying the genome-wide effects.
In agreement, we found no trend in the fraction of DEGs
when plotted against KTF (Supplementary Figure S23). For
comparison, neither at 60 min nor 125 min do the genes’ re-
sponse and their KTF correlate (Supplementary Figures S14
and S15 and Tables S7 and S8).
We verified that the relationship between μ|LFC| and KTF

at 180 min is not an artifact caused by a decrease in cohort
size with KTF. We used bootstrapping to obtain cohorts of
randomly sampled genes with increasing KTF (10000 co-
horts). We imposed a cohort size equal to the number of
genes with KTF = 7 (27 genes). The new, estimated μ|LFC|
was always within the SEM of the μ|LFC| of the cohorts of
all genes (Figure 4D). Finally, we again verified that consid-
ering only the first gene of each operon does not affect how
μ|LFC| and KTF relate (Supplementary Figure S25).

The correlation between input and output genes responses de-
creases with the number of input TFs

Most input TFs discernibly affect the output genes (Sup-
plementary Figure S14), except when KTF > 5 (perhaps
due to saturation). Nevertheless, the correlation between in-
put and output genes appears to be decreasing with KTF.
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Namely, the average slopes of the fitted lines between |LFC|
of the output and |LFC| of each input (Supplementary Fig-
ure S14) decreased with the KTF of the output gene (Sup-
plementary Figure S20B). Also decreasing was the R2 be-
tween input-output pairs (Supplementary Table S7). This
could explain why, when plotting |LFC| against the RNAP
concentration, there is a weak trend towards increased slope
with KTF (Supplementary Figures S20C and S21).

The variability in single-gene absolute LFC increases with
KTF

We also investigated if the variability in |LFC|s, as quanti-
fied by its standard deviation σ|LFC|, relates withKTF. There
should exist (at least) four sources of this variability: (a)
RNA-seq measurement noise (76,77); (b) intrinsic and (c)
extrinsic noise in gene expression (78,79), and (d) TF and
non-TF dependent regulatory mechanisms.
Overall, we observed that, from a genome-wide per-

spective, σ|LFC| increases with KTF (Supplementary Figure
S24A) similarly to μ|LFC|, and the two values are also re-
lated (Supplementary Figure S24B). Examples of the vari-
ability are shown in Supplementary Figures S24C (genes
with nullKTF), S24F (genes with twoGRs, FNR andArcA)
and S24D and S24E (genes controlled by the GRs FIS or
CRP) (see also Supplementary Table S14).

Other topological features of the TFN do not influence mid-
term responses

Globally, the TFNofE. coli has in- and out-degree distribu-
tions that are well fit by power laws (Supplementary Figures
S12E1, S12E2, S12F1 and S12F2) (80,81). This may explain
its relatively short mean path length (Supplementary Figure
S12G and Table S5).
Having established a relationship between the response

kinetics and the indegree of the TFN, we next searched for
correlations between |LFC| and other single-gene topolog-
ical traits (Methods section Transcription Factor Network
of Escherichia coli). We considered average shortest path
length, betweenness, closeness and stress centrality, clus-
tering coefficient, eccentricity, out-degree, neighbourhood
connectivity and edge-count (51). Of these, only the cluster-
ing coefficient was statistically correlated with the |LFC| (P-
value< 0.1) (Supplementary Table S20). However, it should
not be influential, since the corresponding R2 is nearly zero
(R2 = 0.01).

The numbers of activating and repressing input TFs differ in
most genes

In our original hypothesis, the mid-term response (|LFC|)
of a gene should follow from the bias in the numbers of ac-
tivators and repressors in its set of input TFs (Figure 1B4
and Supplementary Figure S11A). In detail, we predicted
that if the sum of the regulatory effect (r ) of the input TFs
(i.e. bias b = |∑ r |) is null (unbiased), then the gene should
have weak or zero mid-term LFC. Also, the |LFC| should
increase with b.
We tested this hypothesis by extracting information on

the input TFs and corresponding r values for each gene

from RegulonDB. We set r of an input TF to + 1 if it is
activating, to -1 if it is repressing, and to 0 if it is unknown
(Supplementary Figure S12B). Then, we obtained the abso-
lute sum of the regulatory effect of the input TFs for each
gene: |b|.
From the data in RegulonDB, while the gene-TF inter-

actions that are repressions and activations exist in similar
numbers, the numbers of repressor TFs exist in larger num-
bers (Supplementary Figures S12A–C). Also, of the genes
with input TFs, most (∼ 85%) have a non-zero |b| (Supple-
mentary Figure S12D and Table S16).
This can explain why so many are mid-term responsive

(Figure 3C), even though the genome-wide numbers of ac-
tivation and repression interactions are similar (Supplemen-
tary Figure S12B). It may also explain why genes with
KTF ≥ 1 have higher |LFC| than genes withKTF = 0 (Figure
4A).

The bias in the input TFs follows the number of input TFs

Using information from RegulonDB, we found that the
mean bias, μ|b|, increases with KTF (Figure 5A, light blue),
except for KTF > 5, which includes only ∼ 64 out of 4045
genes (Supplementary Table S17). The same is observed if
considering only the first gene of each operon (Supplemen-
tary Figure S29).
To test if these results were affected by local topolog-

ical specificities, we employed an ensemble approach
(Supplementary Results section Estimation of the
expectedμKTF andμ|b|using an ensemble approach), to
reduce their influence (82). We sampled genes (with re-
placement) to form cohorts with a given average KTF (from
1 to 5, due to insufficient samples for higher KTF). This
made the relationship between μ|b| and KTF more stable
(Figure 5A). Thus, from here onwards, we use the ensemble
approach to study the influence of the global logical and
topological features on the response’s dynamics to the
RNAP shifts.

The bias of the sets of input TFs can explain the mid-term
responses of individual genes

From the data in RegulonDB, using the ensemble ap-
proach (Supplementary Results section Estimation of
the expectedμKTF andμ|b|using an ensemble approach), we
formed random cohorts of genes with an imposed average
|b|. Next, from the mid-term RNA-seq data, we calculated
the average μ|LFC| of the set of cohorts with a given μ|b|. We
found that μ|LFC| increases with μ|b| (Figure 5B).
Interestingly, μ|b| and μKTF are strongly correlated in the

TFN of E. coli (Figure 5C). To assert which one controls
μ|LFC|, we assembled cohorts differing in μKTF , but not in
μ|b|. In these, μ|LFC| does not increase with μKTF (Figure
5D). We also assembled cohorts differing in μ|b|, but not in
μKTF . In these, μ|LFC| increases with μ|b| (Figure 5E). Thus,
the increase of μ|b| with μKTF (Figure 5C), is what explains
the increase in μ|LFC| with KTF (Figure 4D).

Finally, for comparison, we also investigated the relation-
ship between μ|b| and μKTF prior to the perturbation and in
the short-term (at 60 min and at 125 min after shifting the
medium, respectively Figure 1A). From Figure 5F, first, the



6814 Nucleic Acids Research, 2022, Vol. 50, No. 12

Figure 5. Effect of biasesμ|b| on themagnitude of the response of output genes. (A)μ|b| as a function ofKTF (light blue) of gene cohorts with all genes (light
blue) and of gene cohorts assembled using the ensemble approach (dark blue). Supplementary Table S17 shows the fractions of geneswith equal |b| andKTF.
Black error bars are the SEM, and red error bars are the 95%CBof the SEM.Dark blue bars not shown forKTF > 5 due to small sample sizes. (B)Mid-term
μ|LFC| as a function ofμ|b|, obtained using the ensemble approach (SupplementaryResults sectionEstimation of the expectedμKTF andμ|b|using an ensemble
approach, Supplementary Figures S30 and S31 and Table S18). Each blue cross is the average outcome from up to 24750 cohorts of 10 genes. (C)μ|b| plotted
against the corresponding μKTF , mean of KTF of the cohorts in (B). The inset shows the inverse correlation plot for the cohorts in Supplementary Figure
S30, assembled based on μKTF (Supplementary Results section Estimation of the expectedμKTF andμ|b|using an ensemble approach). Shown are best fitting
lines and 68% CB (shadow areas, barely visible), R2, RMSE, and P-value (Methods section Statistical tests c). (D) μ|LFC| of gene cohorts with increasing
μKTF , but constant μ|b| (from 1 to 5) (Supplementary Results section Estimation of the expectedμKTF andμ|b|using an ensemble approach). (E) μ|LFC| of
gene cohorts with increasingμ|b|, but constantμKTF (from 1 to 5) (Supplementary Results section Estimation of the expectedμKTF andμ|b|using an ensemble
approach). (F) μ|LFC| as a function of μ|b| prior to RNAP changes (60 min) as well as the short-term (125 min) and the mid-term responses (180 min) to
RNAP changes when shifting to LB0.5x. Each blue cross is the average outcome from up to 24829 cohorts of 10 genes. In (D) and (E), the data is merged
from the three conditions corresponding to (B). In all figures, the error bars are the SEM. Since the three conditions differ slightly in mean values (Figure
5B), the SEM is larger than when observing each condition separately.

μ|LFC| at 125 min is stronger than at 60 min. This agrees
with the expectation that shifts in RNAP suffice to shift
the |LFC| of many genes. Second, the μ|LFC| at 180 min is
stronger than at 125 min. This agrees with our expectation
that, at 125 min, input TFs numbers have not yet changed
significantly in order to enhance the |LFC| of their output
genes (Figure 1).

RNA numbers follow the RNAP concentration, not the
medium composition

Wenext increased growthmedium richness, instead of dilut-
ing it (Methods section Bacterial strains, media,growth con-
ditions andcurves, and intracellular concentrations). As be-
fore, we limited this to not alter growth rates significantly in
the first 180 min (Figure 6A and B), while altering RNAP
levels (Figure 6C).
As before (Figure 4C), at mid-term, only genes directly

linked by input TFs showed correlation in their |LFC| (Fig-
ure 6D1–D3 and Supplementary Figure S32). This supports
the previous assumption on the kinetics of transcription,

translation, and signals propagation via shifts in input TFs
numbers (Figure 1).
Meanwhile, in contrast to above, shifting cells fromLB1.0x

to the richer LB1.5x mediumwas accompanied by a decrease
in the RNAP concentration (Figure 7A). This was followed
by substantial alterations in the RNA populations, with a
large number of DEGs and high μ|LFC|(Figure 7B and C,
respectively). As previously, in the mid-term, genes with in-
put TFs reacted more strongly (Figure 7C).
These results support the initial assumption that the

changes in RNA abundances follow the RNAP concentra-
tion, rather than the medium richness.

Further increases in medium richness do not decrease RNAP
concentration and RNA numbers also do not change

Finally, we further increased growth-medium richness (to
LB2.0x and to LB2.5x). This caused no significant change in
RNAP levels and concentration (Figures 6C and 7A). Here,
we also did not observe significant changes in DEGs or
μ|LFC| at mid-term, when compared with the LB1.5x con-
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Figure 6. RNAP levels following increasing medium richness and corresponding relationships between |LFC|s of pairs of genes separated by specific path
lengths, L. (A) Growth curves from OD600 assessed every 10 min (Methods section Bacterial strains, media,growth conditions andcurves, and intracellular
concentrations), following each medium shift. (B) Growth rates at 180 min after medium enrichment. The inset shows the corresponding doubling times.
(C) Mean RNAP levels relative to the control estimated from single-cell RNAP-GFP fluorescence intensities (FITC-H) (μRNAP F ITC−H). (D1–D3) Scatter
plots between absolute LFC (|LFC|) of outputs and corresponding input genes distanced by L (path length) of 1, 2 and 3 transcription factors, respectively.
Data from the LB2.5x condition. Shown are the best fitting line and its 68% CB (blue shadow), and the R2 and RMSE of the fitted regression line, along
with its P-value at 10% significance level under the null hypothesis that this line is horizontal. From (A) to (C), the black error bars are the SEM and red
error bars represent the 95% CB of the SEM.

dition (Figure 7B and C, respectively). This is in agreement
with the assumption that the shifts in the RNAP concen-
tration caused the short-term changes in RNA abundances,
which then caused the mid-term changes.
Finally, as before,μTF

|LFC| followsμ|b| (Figure 7D and Sup-
plementary Figure S33). Moreover, it does so almost iden-
tically in the three perturbations, as expected from the orig-
inal assumptions (Figure 1).

DISCUSSION

We investigated if the mid-term responses to genome-wide
perturbations of E. coli’s TFN are mediated by its topology
and logic. We diluted LB medium since this dramatically
and reproducibly affects the RNAP concentration (26,27).
The increasingly strong nature of the dilutions facilitated
the verification of how the RNAP concentration and single-
gene, mid-term |LFC|s related. We focused on mid-term
transcriptional responses (Figure 1), since short-term re-
sponses are unlikely to have been influenced by the TFNdue
to protein folding and maturation times, etc. Meanwhile,
long-term responses were most likely affected by the TFN.
However, dissecting them would have been onerous, due to
the complicating effects of loss, backpropagation, and co-

alescence of possibly dozens of signals from origins other
than direct input TFs.
We lack information on the affinity between each gene

and their input TFs, on how the input TFs operate, and on
how the de novo presence of an input TF alters the binding
or activity of other input TFs on the same promoter. Thus,
we would have failed to predict the behaviour of individual
genes with accuracy. Instead, we predicted the responses of
gene cohorts, since their behaviour is less influenced by par-
ticular single-gene features (other than cohort-specific fea-
tures), which should average out at the cohort level. Further,
as in (18), wewere only able to correlate absoluteLFCs of in-
put and output genes (Figure 4B), likely due to limitations
in RNA-seq technology and the analysis, and/or missing
information on the TFN. Nevertheless, the present infor-
mation on input TFs and their regulatory effect sufficed to
relate the TFN with the genes’ response.
From the RNA-seq data on three time points, we pro-

vided evidence that both the TFN and the RNAP affect
the results at mid-term (∼ 180 min), and not before that.
In addition, while other factors also influenced genes’ be-
haviour at mid-term, including single-gene features, they
only had minor, local effects. In detail, first, we could not
find evidence of GRs (including �38) and (p)ppGpp be-
ing material in the global mid-term behaviour (although
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Figure 7. Genome-wide effects of increasing medium richness. (A) RNAP concentrations relative to the control, estimated from μRNAPF ITC−H divided
by mean cell area (μcellarea , used as a proxy for cell volume). (B) Venn diagrams of the DEG. (C) μ|LFC| of N genes with KTF equal to and larger than 0,
following each medium shift. Above each bar are the number of DEG. (D) μ|LFC| as a function of μ|b| after the growth-medium shifts. μ|LFC| obtained
using the ensemble approach (Supplementary Results section Estimation of the expectedμKTF andμ|b|using an ensemble approach, Supplementary Figure
S33). Each blue cross is the average outcome from up to 24536 cohorts of 10 genes. In (A) and (C), the black error bars are the SEM and the red error bars
are the 95% CB of the SEM. In (D), the small error bars are the SEM (most not visible).

(p)ppGpp may be significant in the short-term response).
Second, we excluded the medium as directly influencing
RNA abundances. Third, we excluded global network pa-
rameters, other than KTF, as being influential as well (none
of them correlated to single-gene responses). Fourth, we
did not find evidence for significant translational or post-
translational regulation. Namely, RNA and protein abun-
dances correlated well, and so did the RNA levels of input
TFs and of output genes. Finally, sRNAs did not respond
atypically to the RNAP shifts neither in the short-term, nor
in in the mid-term.
We havemade six key observations on the influence of the

logic and topology of the TFN on the mid-term response.
First, genes without input TFs were less responsive. Second,
the |LFC| of input and output genes correlated positively.
Thus, we argue that, on average, input TFs enhanced the
|LFC| of individual genes. Third, only nearest neighbour
genes in the TFN consistently correlated in |LFC|’s. Thus,
either the effects of the shift in RNAP only reached nearest
neighbour genes or they ‘dissipated’ beyond that. Since the
correlations between nearest neighbours were weaker in the
short-term than in the mid-term, the first possibility is more

likely. This observation also suggests that there is a degree
of genome-wide homogeneity in how long input TF abun-
dance take to change (likely due to physical limitations on
the rates constants controlling bacterial gene expression).
This agrees with the constraints on timing variability re-
ported in (6). Fourth, the behaviour was orderly (rather
than chaotic), with most genes responsive to the weak per-
turbations also responding to the stronger perturbations.
This suggests the existence of features (on genes and/or
the TFN) affecting the responsiveness (Supplementary Fig-
ure S34). Similarly, there is a good overlap between the sets
of genes responsive in the short- and in the mid-term, but
weak overlap to those responsive prior to the perturbation
(Supplementary Figure S35). Fifth, on average, as KTF in-
creased, the correlation between the input and each output
gene decreased. This is likely unavoidable and may be a lim-
iting factor in how many input TFs genes can have. Finally,
it is μ|b| that (partially) controls the genes’ responsiveness
to the stress, while the apparent relationship between μKTF

and μ|LFC| is due to the linear correlation between μ|b| and
μKTF . Nevertheless, the possible values ofμ|b| are limited by
the values of μKTF .
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These observations provide direct empirical evidence that
the genome-wide, mid-term, transcriptional stress respon-
siveness of E. coli depends on a global topological feature
of its TFN. Namely, by exploiting the known features of
the TFN of E. coli, we showed that the bias in the regula-
tory effect of input TFs of gene cohorts,μ|b|, acts as a major
determinant of their mean response to a stress. So far, the
existence of influence of global topological features has only
been supported by theoretical models, e.g. (82,83), and by
indirect empirical evidence, i.e. by the observation that the
abundance of input TFs correlates with the activity of their
direct output genes (18,20–22,70,84). Because of these ob-
servations, it has been assumed that the topology and logic
of TFNs should play a role. Here, we provided direct evi-
dence of this, i.e. that the TFN topology and logic are major
contributors to a global mid-term response. Our approach,
relating genome-wide dynamics and global topological fea-
tures, should now be applied to other genome-wide stresses,
as well as to the genomes of other organisms, when data on
their TFN becomes sufficient to permit such an analysis.
Expanding this research may inform on how to improve

the robustness and plasticity of synthetic circuits. Further,
as suggested in (20), bacteria subjected to stress, rather than
under optimal conditions, may be a better proxy of their
state when infecting a host. Thus, imposing stresses may be
a valuable strategy to identify new target genes for antibi-
otics for disrupting bacterial adaptability to new conditions.
The use of medium dilution as a genome-wide stress is a
good proxy for nutrient imbalance, and we identified ∼ 900
responsive genes, even for moderate nutritional stress, of
which only 58 are essential under optimal conditions. Plau-
sibly, some of the responsive genes, particularly those re-
sponsive to all 3mediumdilutions,may be essential to adapt
to poorer media, and thus are potential new drug targets.
Conversely, it may be possible to tune these genes to assist
in the performance of metabolic tasks, without disturbing
the basic biology of the cells. As such, they are promising
targets for modifications that could improve the yield and
sustainability of bio-industrial processes.
Finally, our findings can be used to develop new large-

scale, dynamic models of gene networks. These models
should be able to predict short- and mid-term transcrip-
tional responses of gene cohorts to genome-wide perturba-
tions of transcription activities. The short-term responses
should be mostly controlled by single-gene features (e.g.
RNAP-promoter binding affinity). Meanwhile, the mid-
term responses should be heavily influenced by the topology
and logic of the TFN. The new dynamicmodels could be de-
veloped starting from the schematic and predictive models
in Figures 1B and C, respectively, using empirical kinetic
parameters of bacterial RNA and protein production and
degradation.
Such dynamic models could then be used to predict how

natural TFNs perform complex transcriptional programs,
and how these programs can be modified to achieve de-
sired goals. Interesting models involving many genes in-
clude models of programs responsive to environmental
shifts, antibiotics, etc. These models could assist in iden-
tifying critical elements of the TFN during short-, mid-,
and potentially long-term stress responses. These efforts
should be facilitated by the ongoing information gathering

on single-gene features (34,85–87), including on microor-
ganisms other than E. coli.

DATA AVAILABILITY

RNA-seq *.fastq data (trimmed) and processed RNA-seq
data are deposited in NCBI GEO with accession code
GSE178281 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE178281). The raw data of the control condi-
tion (180 min, LB1.0x) was also used in (72) (GSE183139).
In Dryad, we deposited a package with flow-cytometry, mi-
croscopy, spectrophotometry, and western blot data (DOI:
10.5061/dryad.wh70rxwnp). The package also has two
*.xlsx files informing on the genes TFN topological and log-
ical parameters, RNA-seq expression, global network topo-
logical features, gene-gene interactions, and the lists of pairs
of genes separated by path lengths from 1 to 8.
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SUPPLEMENTARY RESULTS 

Expected effects of shifting RNA polymerase concentration on a gene’s transcription 
dynamics 

Present knowledge of transcription in E. coli suggests that this is a multi-step, highly regulated 

process, which usually can be well approximated by a two-step model (Reactions S1).  

The regulators are usually RNAP,  factors, and, in many cases, gene-specific input TFs, 

including global regulators. The two rate constants in (S1) differ with the input TF's concentration. 

Depending on them, in some conditions, transcription will be blocked, while in others it will be 

enhanced, compared to a basal rate (1).  

According to (S1), an RNAP can find the promoter (Pro) of gene  , which will be in state   

at that moment due to a specific set of bound/unbound input TFs, that control the rates of both 

closed (CC) and subsequent open complex (OC) formations. Supplementary Figure S11A 

illustrates forms of TF-promoter interactions that affect the propensity of transcription. 

Here, when binding to the transcription start site of the promoter region, the RNAP will attempt 

to form a CC with the DNA (2), via a reversible process. ,
,

cc Fk   and ,
,

cc Bk   are the forward and 

backward rate constants of CC formation. Once forming a CC, the RNAP can commit to OC at 

the rate ,
ock  , after which initiation is nearly irreversible. It follows elongation (which frees the 

promoter) and RNA completion, which frees the RNAP (1). 
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The effective rate of transcription, which defines the promoter strength, differs with both ,
cck   

and ,
ock   which then, combined with a reaction for RNA degradation, controls the mean RNA 

levels. Given the fast degradation rates of RNA (~1-2 min (3)), changes in mean RNA levels are 

expected to be quick once the transcription rate is altered. 
According to (S1), changing RNAP concentration will particularly affect the kinetics of genes 

with long lasting CC.  

Finally, RNA degradation as well as RNA dilution with cell division (reaction S2) is usually 

modelled as a single-step process since evidence suggests that it can be well fitted by a single 

exponential function (4). This step is not expected to be subject to significant sequence-specific 

regulation (3). 
deg dilk kRNA  



+
⎯⎯⎯⎯→                                                                                                                   (S2) 

where degk  is the RNA degradation rate and dilk  is the RNA dilution rate.  
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Given the above, shifting RNA polymerase (RNAP) concentration should quickly change the 

RNA abundances of many genes, particularly those whose step of closed complex formation has 

a significant time length. The shifts in RNA abundances then propagate to protein abundances, 

via translation. 
Other sources of variability in single-gene response will then emerge from single-TF 

properties, such as different input TFs binding affinities, and folding and maturation times, etc. 

This model is presented here to facilitate the interpretation of the results, and it does not 

intend to be a strick representation of all events occurring during the genome-wide stresses. As 

an example, this model would fail to capture the influence of ppGpp(p), non-coding RNAs, 

positive supercoiling buildup, events during transcription, and post-transcription and post-

translation regulation, among other. 

Estimation of 
TFK  and b  from empirical data using an ensemble approach 

The behavior of networks as a function of specific topological features can be studied using an 

ensemble approach. This approach consists of generating model networks imposing some 

features (e.g., total number of connected nodes) in order to study their relevance, while other 

features are randomly generated (5) to decrease the chances that the conclusions generalize 

poorly. This assists the study of responses to a global perturbation, since it is complex to filter 

abnormal responses, due to lack of knowledge about the range of possible behaviors. Also, it is 

not easy to establish if the ‘abnormality’ is in an arbitrary local topological feature of the genes of 
interest, or in the response due to an arbitrary internal parameter. Overall, we expect this 

methodology to decrease the effects of arbitrary features (but not necessarily all effects or for all 

features). 

In our hypothesis, the perturbation strength due to shifting RNAP concentration ( LFC ) on a 

gene is a function of (and, thus, can be predicted from) b  of the input TFs of that gene. 

However, since other ‘local’ factors can affect the LFC  of a gene (including its original state, its 

sensitivity to supercoiling build up, etc., we only expect our hypothesis to be true at the level of 

gene cohorts. 

Similarly, for large enough gene cohorts, we hypothesize that LFC  can be predicted from 

b  alone. Thus, we compared the behavior of cohorts of genes differing in b  using an 

ensemble approach. For this, we proceeded by comparing genes differing in b . Thus, we 

randomly selected genes, from the empirical data, to form cohorts with a given b . We then 

compared the average behavior (i.e., LFC ) of these sets of cohorts with a given b .  
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This was done in two ways (Supplementary Figure S30 and Figure 5B respectively). In one 

case, we assembled cohorts of genes with a given 
TFK  (average KTF), which obligatorily results 

in a given b  (Figure 5C). In the other, we assembled cohorts of genes with a given b . We 

found no difference in the results using the two ensemble methods (note the similarities between 

Supplementary Figure S30 (LB0.75x) and Figure 5B (LB0.75x), between S30 (LB0.5x) and 5B (LB0.5x) 

and, between S30 (LB0.25x) and 5B (LB0.25x), respectively). In detail, to obtain each of the 46 data 

points in Supplementary Figure S30, we randomly assembled 100000 cohorts of 10 genes each 

with specific 
TFK  (and, thus, b ). This was done 100 times, from which we obtained average 

values and error bars for each of the 46 data points. The same was done for 5B, except that the 

cohorts, as noted, were assembled directly based on their b .  

The pseudo-algorithm (Algorithm 1) created in MATLAB to generate, using the ensemble 

approach, the empirical data points in Supplementary Figure S30 was:  

 

1. For each RNAP shift, let LFC_data be the |LFC| (absolute of log2 of fold change) of each 

gene and KTF_data be the corresponding number of input TFs, i.e., KTF, from 0 to 5. 

2. Get the corresponding S_data, i.e., S b= , the absolute of the sum of the regulatory 

effects of the inputs of each gene. 

3. Get the fraction of genes, pi, with a given KTFi (KTF = i), with i=0:5. 

4. Sample bi from a Beta PDF (Probability Density Function), for each value of pi, using the 
MATLAB function ‘BetaPDF’ with parameter values: a = b = 0.75. 

5. Let r (set to 10000) be the number of target genes, with a given KTFi, to be randomly 

sampled with replacement.  

6. For each KTFi, define ni = bi x r, and create a set of ni  genes with KTFi, randomly sampled 

with replacement from KTF_data. Let all these new sets of values be named 

new_KTF_data.  

7. Let TM be numbers from 0.5 to 5, with an increment of 0.1, and a precision of 0. Let each 

TM value be a ‘target mean of KTF’.  
8. To find cohorts of genes with a given value of TM, set the number of iterations to 100. In 

each iteration, named h, do as follows: 

a. For each KTFi, sample with replacement from KTF_data a vector index_i with ni  

indexes of genes with KTF = i. 
b. Generate new_S_data combining the empirical S, from S_data, of all genes under 

the indexes found in all sets of index_i. The data is added in ascending order of 

sorted KTF, in accordance with point 3. 
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c. Generate, for each RNAP shift, new_LFC_data combining the empirical |LFC|, 
from LFC_data, of all genes under the indexes found in all sets of index_i. The 

data is added by in ascending order of sorted KTF, in accordance with point 3. 

d. Set m, the target number of genes of cohorts with a given value of TM, to 10. 
e. Let the number of sampling iterations be 100000. In each iteration j, do as follows: 

i. In new_sampledKTF_data save m values sampled with replacement 

from new_KTF_data. Save in ‘I(:, j)’ the indexes of the m values 

sampled. 

ii. In ‘M_KTF (1, j)’ save the mean value of new_sampledKTF_data. 

f. For each value k in TM located in position t: 
i. Save in idx_mean the indexes in M_KTF of all mean values equal to k 

with a precision of 0. 
ii. Get the indexes I(:, idx_mean) of the genes included in all sampling sets 

whose mean is k. 

iii. For each RNAP shift, calculate the mean M_LFC(t, h) of |LFC| from the 

data in new_LFC_data of the genes in I(:, idx_mean).   
iv. Calculate the mean M_S(t, h) of S in new_S_data of the genes in I(:, 

idx_mean).   
9. For each RNAP shift, get the expected mean |LFC| M_LFC_final(t) and 

SEM_LFC_final(t) for each k value in position t in TM. M_LFC_final(t) and 
SEM_LFC_final(t) are calculated, respectively, as the mean and standard deviation of 

the M_LFC(t, h) values over the h runs. 

10. Get the expected mean S M_S_final(t) and SEM_S_final(t) for each k in position t in 

TM. M_S_final(t) and SEM_S_final(t) are calculated, respectively, as the mean and 

standard deviation of the M_S(t, h) values over the h runs. 

Meanwhile, for Figure 5B, the pseudo-algorithm (Algorithm 2) used was: 

 

1. For each RNAP shift, let LFC_data be the |LFC| (absolute of log2 of fold change) of each 

gene and KTF_data be the corresponding number of input TFs, i.e., KTF, from 0 to 5. 

2. Get the corresponding S_data, i.e., S b= , the absolute of the sum of the regulatory 

effects of the inputs of each gene.  

3. Get the fraction of genes, pi, with a given Si (S = i), for all unique values found S_data in 

ascending order. 
4. Sample bi from a Beta PDF, for each value of pi, using the MATLAB function ‘BetaPDF’ 

with parameter values: a = b = 1.5. 
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5. Let r (set to 10000) be the number of target genes, with a given Si, to be randomly 

sampled with replacement.  

6. For each Si, define ni = bi x r, and create a set of ni  genes with Si, randomly sampled with 

replacement from S_data. Let all these new sets of values be named new_S_data.  
7. Let TM be numbers from 0 to 3 with an increment of 0.25, and a precision of ± 0. Let 

each TM value be a ‘target mean of S’. 

8. To find cohorts of genes with a given value of TM, set the number of iterations to 100. In 

each iteration, named h, do as follows: 

a. For each value of Si, sample with replacement from S_data a vector index_i with 
ni  indexes of genes with S = i. 

b. Generate, for each RNAP shift, new_LFC_data combining the empirical |LFC|, 
from LFC_data, of all genes under the indexes found in all sets of index_i. The 
data is added in ascending order of sorted S, in accordance with point 3. 

c. Set m, the target number of genes of cohorts with a given value of TM, to 10. 

d. Let the number of sampling iterations be 100000. In each iteration j, do as follows: 

i. In new_sampledS_data save m values sampled with replacement from 

new_S_data. Save in I(:, j) the indexes of the m values sampled. 

ii. In M_S (1, j) save the mean value of new_sampledS_data. 

e. For each value k in TM located in position t: 
i. Save in idx_mean the indexes in M_S of all mean values equal to k with 

a precision of ± 0.1. 

ii. Get the indexes I(:, idx_mean) of the genes including in all the sampling 

sets whose mean is k. 

iii. For each RNAP shift, calculate the mean M_LFC(t, h) of |LFC| from 

new_LFC_data of the genes found in I(:, idx_mean).    
9. For each RNAP shift, get the expected mean |LFC| M_LFC_final(t) and 

SEM_LFC_final(t) for each k value in position t in TM. M_LFC_final(t) and 
SEM_LFC_final(t) are calculated, respectively, as the mean and standard deviation of 

the M_LFC(t, h) values over the h runs. 

We also created tailored cohorts with imposed values of 
TFK  and b , to evaluate how KTF 

and b  independently affect |LFC|. For instance, for Figure 5E, we obtained cohorts with a given 

TFK  and different b . For this, we used the following pseudo-algorithm (Algorithm 3, obtained 

by “inserting” algorithm 2 into algorithm 1): 
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1. For each RNAP shift, let LFC_data be the |LFC| (absolute of log2 of fold change) of each 

gene and let KTF_data be the corresponding number of input TFs, i.e., KTF, from 0 to 5. 

2. Get the corresponding S_data, i.e., S b= , the absolute of the sum of the regulatory 

effects of the inputs of each gene. 

3. Get the fraction of genes, pi, with a given KTFi (KTF = i), with i=0:5. 

4. Sample bi from a Beta probability density function, for each value of pi, using the 

MATLAB function ‘BetaPDF’ with parameter values: a = b = 0.75. 

5. Let r (set to 10000) be the number of target genes, with a given KTFi, to be randomly 
sampled, with replacement.  

6. For each KTFi, define ni = bi x r, and create a set of ni  genes with KTFi, randomly sampled 

with replacement from KTF_data. Let these new sets of values be named 

new_KTF_data.  

7. Let TM be numbers from 0.5 to 5, with an increment of 0.1, and a precision of 0. Let each 

TM value be a ‘target mean of KTF’. 

8. To find and analyze cohorts of genes with a given value of TM, set the number of 
iterations to 100. In each iteration, named h, do as follows: 

a. For each value KTFi , sample with replacement from KTF_data a vector index_i 
with ni indexes of genes with KTF = i. 

b. Generate new_S_data{1,h} combining the empirical S, from S_data, of all genes 

under the indexes found in all sets of index_i. The data is added in ascending 

order of sorted KTF, in accordance with point 3. 

c. Generate, for each RNAP shift, new_LFC_data{1, h} combining the empirical 

|LFC|, from LFC_data, of all genes under the indexes found in all sets of 
index_i. The data is added by in ascending order of sorted KTF, in accordance 

with point 3. 

d. Set m, the target number of genes of cohorts with a given value of TM, to 10. 

e. Let the number of sampling iterations be 100000. In each iteration j, do as follows: 

i. In new_sampledKTF_data save m values sampled with replacement 

from new_KTF_data. Save in I(:, j) the indexes of the m values 

sampled. 
ii. In M_KTF (1, j) save the mean value of new_sampledKTF_data. 

f. For each value k in TM located in position t: 
i. Save in idx_mean the indexes in M_KTF of all mean values equal to k 

with a precision of 0. 

ii. In genes_sampled_KTF_k{1, h} save the indexes I(:, idx_mean) of the 

genes included in all sampling sets whose mean is k. 
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iii. Save in M_KTF_all_data{t, h} all values from 

new_KTF_data(genes_sampled_KTF_k{1, h}), i.e., all the KTF values 

contained in new_KTF_data of the genes under the indexes saved in 
genes_sampled_KTF_k{1, h}. 

iv. In M_S_all_data{t, h} save all the S values contained in new_S_data{1, 
h}(genes_sampled_KTF_k{1, h}). 

v. For each RNAP shift, save in M_LFC_all_data{t, h} all the |LFC| values 

from the respective new_LFC_data{1, h}(genes_sampled_KTF_k{1, 
h}). 

vi. Let Unique_S be the unique values of S found in M_S_all_data{t, h}. 
vii. In S_data_S save all the values in M_S_all_data{t, h} in ascending 

order of sorted S. 
viii. For each RNAP shift and each value Unique_Si (Unique_S=i), obtain 

M_LFC_all_data{t,h}(M_S_all_data{t, h}=Unique_Si). Let all these sets 

of |LFC| be named LFC_data_S for each shift. 

ix. Get the corresponding KTF_data_S for each value Unique_Si from 
M_KTF_all_data{t, h}(M_S_all_data{t, h}=Unique_Si). 

x. Get the fraction of genes, pi_S, with a given Unique_Si, for all unique 

values found S_data_S in ascending order. 

xi. Sample bi_S from a Beta PDF (MATLAB function ‘BetaPDF’ with a = b = 
0.75), for each value of pi_S. 

xii. Let r_S (set to 10000) be the number of target genes, with a given 

Unique_Si, to be randomly sampled with replacement. 

xiii. For each Unique_Si, define ni_S = bi_S x r_S, and create a set of ni_S  

genes with Unique_Si, randomly sampled with replacement from 

S_data_S. Let all these new sets of values be named new_S_data_S.  

xiv. Let TM_S be numbers from 1 to the maximum value of Unique_S, with a 
precision of ± 0. Let each TM_S value be a ‘target mean of S’ given the 

values in Unique_S. 

xv. To find cohorts of genes with a given value of TM_S, set the number of 

iterations to 10. In each iteration, named h_S, do as follows: 

1. For each value Unique_Si, sample with replacement from 

S_data_S a vector index_i_S with ni_S indexes of genes with 

Unique_Si. 

2. Generate, for each RNAP shift, new_LFC_data_S combining 
the empirical |LFC|, from LFC_data_S, of all genes under the 

indexes found in all sets of index_i_S. The data is added in 
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ascending order of sorted Unique_S, in accordance with point 

f.x. 

3. Get the corresponding new_KTF_data_S, from KTF_data_S, of 

all genes under the indexes found in all sets of index_i_S. The 
data is added in ascending order of sorted Unique_S, in 

accordance with point f.x. 

4. Set m_S, the target number of genes of cohorts with a given 

value of TM_S, to 10.  

5. Let the number of sampling iterations be 100000 and, in each 

iteration j_S, do as follows: 

a. In new_sampledS_data_S save m_S values sampled 

with replacement from new_S_data_S. Save in I_S(:, 
j_S) the indexes of the m_S values sampled. 

b. In M_UNIQUE_S(1, j_S) save the mean value of 

new_sampledS_data_S. 

6. For each value k_S in TM_S located in position t_S: 

a. Save in idx_mean_S the indexes in M_UNIQUE_S of all 

mean values equal to k_S with a precision of ± 0.1. 

b. Get the indexes I_S(:, idx_mean_S) of the genes 

including in all the sampling sets whose mean is k_S. 
c. In M_S_S(t_S, h_S) save the mean of S from 

new_S_data_S of the genes found in I_S(:, 
idx_mean_S).  

d. For each RNAP shift, calculate the mean M_LFC_S(t_S, 
h_S) of |LFC| from new_LFC_data_S of the genes 

found in I_S(:, idx_mean_S).  
e. Calculate the mean M_KTF_S(t_S, h_S) of KTF from 

new_KTF_data_S of the genes in I_S(:, idx_mean_S).   
xvi. For each RNAP shift, save under M_LFC_final(t,t_S,h) the expected 

mean and SEM of |LFC| for each k_S value in position t_S in TM_S. 

M_LFC_final(t,t_S,h) is calculated as the mean of the M_LFC_S(t_S, 
h_S) values over the h_S runs. 

xvii. Save under M_S_final(t,t_S,h) the expected mean S for each k_S in 

position t_S in TM_S. M_S_final(t,t_S,h) is calculated as the mean of 

the M_S_S(t_S, h_S) values over the h_S runs. 



 
 

10 
 

xviii. Save under M_KTF_final(t,t_S,h) the expected mean KTF for each k_S 

in position t_S in TM_S. M_KTF_final(t,t_S,h) iscalculated as the mean 

of the M_KTF_S(t_S, h_S) values over the h_S runs. 

9. For each position t_S corresponding to a given k_S value, do as follows: 
a. For each RNAP shift, save under M_LFC_ks and SEM_LFC_ks, respectively, the 

expected mean and SEM of |LFC| for each k_S value in position t_S. M_LFC_ks 

and SEM_LFC_ks are calculated, respectively, as the mean and standard 

deviation of the M_LFC_final(t,t_S,h) values over the h runs. 

b. Save under M_S_ks and SEM_S_ks, respectively, the expected mean and SEM 

of S for each k_S in position t_S. M_S_ks and SEM_S_ks are calculated, 

respectively, as the mean and standard deviation of the M_S_final(t,t_S,h) 
values over the h runs. 

c. Save under M_KTF_ks and SEM_KTF_ks, respectively, the expected mean and 

SEM of KTF for each k_S in position t_S. M_KTF_ks and SEM_KTF_ks are 

calculated, respectively, as the mean and standard deviation of the 

M_KTF_final(t,t_S,h) values over the h runs. 

 

Finally, from the above, one can produce the results in Figure 5B. In detail, we assembled 

gene cohorts (Supplementary Results section Estimation of the expected 
TFK  and b  using an 

ensemble approach) with a given b  (up to 24500 cohorts of 10 genes per b  value). In Figure 

5B, each blue cross is the LFC  of a set of cohorts. Visibly, LFC  increases with b . 
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SUPPLEMENTARY FIGURES 

 

 

Figure S1. Example phase-contrast images (first and third rows) and corresponding 
confocal images of E. coli cells (second and forth rows, respectively). RL1314 cells grown in 

various media (Methods sections Bacterial strains, media, growth conditions and curves and 
Microscopy). Cells were segmented in phase-contrast images using CellAging (6). 

 

 



 
 

12 
 

 

Figure S2. (Related to Figure 2E) RNAP and RNAP::GFP protein levels by Western Blot in 
LB1.0x, LB0.75x, LB0.5x and, LB0.25x media. 

(A1) RNAP abundance measured by Western Blot in LB1.0x, LB0.75x, LB0.5x and LB0.25x media using 

antibodies against β’ subunit (Methods section Protein isolation and western blotting). Absolute 

values of 3 biological replicates (Supplementary Table S2) obtained from blot images by ‘Image 

Lab’ software (version 5.2.1), from which we calculated relative values to LB1.0x. Finally, we 

obtained the mean, SEM (black error bars), and 95% confidence bounds (CB) of the SEM (red 

error bars) of the replicates.  
(A2) Blot images of 3 biological replicates (Rep) from which the RNAP abundances in A1 were 

obtained. All bands are near 155 kDa, known to correspond to the β’ subunit (7)(8).  

(B1) Same as (A1), but using antibodies against GFP alone, which is tagged to RNAP (expressed 

by cells of the RL1314 strain). Absolute values in Supplementary Table S2. 

(B2) Blot image of RpoC::GFP measured in the RL1314 and MG1655 (control) strains. In RL1314 

cells, the strongest bands are between 150 and 250 kDa, as expected, given the fusion of GFP 

(27 kDa (9)) with the β’ unit (155 kDa). No clear bands were observed in that region in the control 
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strain. Meanwhile, there is a weak band just above 25 kDa in RL1314 cells. This band might 

correspond to GFP that has been cleaved off from the chimeric protein, but it is so minor that one 

can conclude that its contribution to the total cell fluorescence is negligible. 
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Figure S3. Related to Figures 2F and 2G) Flow-cytometry and microscopy data on cell size 

and composition.  Correlation plot between cell areas (  cell area , Methods section Microscopy) 

and each of the three flow-cytometry parameters positively correlated to cell size and composition 

( FSC H − , SSC H − , Width  from the FCS-H, SSC-H and Width parameters, respectively, Methods 

section Flow-cytometry), in each condition, 180 min after shifting the medium. All data points 

were obtained from 3 independent biological replicates and are shown relative to LB1.0x (control). 

Mean cell areas were obtained from phase-contrast images of MG1655 cells grown in the same 
conditions (Methods sections Bacterial strains, media, growth conditions and curves and 

Microscopy). The best fitting lines (solid black), their 68% confidence bounds (blue shadow 

areas) and statistics (coefficient of determination (R2), root mean square error (RMSE), and P-

values at 0.1 significance level) were obtained as described in Methods section Statistical tests c.  
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Figure S4. (Related to Figures 2G and 2D) Flow-cytometry data relating cell size and 
composition with the expression levels of the RpoC sub-unit of RNAP. Correlation plots 
between FITC-H (maximum peak ‘Height’, -H, of the FITC signal), which is linearly correlated to 

RNAP-GFP levels ( FITC H − ), and each of the three flow-cytometry parameters positively 

correlated to cell size and composition ( FSC H − , SSC H − , Width  from the FCS-H, SSC-H and 

Width parameters), in LB1.0x, LB0.75x, LB0.5x and LB0.25x, at 180 min. All data is relative to LB1.0x 

(control). Mean background fluorescence levels were removed from the FITC-H signals (Methods 

section Flow-cytometry). The best fitting lines (solid black) along with their 68% confidence 

bounds (blue shadow areas) and statistics (coefficient of determination (R2), root mean square 
error (RMSE), and P-values at 0.1 significance level) were obtained as described in Methods 

section Statistical tests c. 
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Figure S5. (Related to Figures 2I and 2D) Mean concentration of RpoS plotted against the 
mean concentration of RNAP. The mean concentration of of RpoS (σ38) tagged with mCherry in 

LB1.0x, LB0.75x, LB0.5x and LB0.25x at 180 min, was measured by mean single-cell fluorescence by 

flow-cytometry (PE-Texas Red-H parameter), over mean cell area (  cell area ) (Methods section 

Microscopy). The mean RNAP concentration of RL1314 cells was obtained by mean single-cell 

fluorescence (FITC-H parameter, Methods section Flow-cytometry) over mean cell area 

(  cell area ). Mean background fluorescence levels were removed from both FITC-H and PE-Texas 

Red-H signals (Methods section Flow-cytometry). All data is relative to LB1.0x (control). The best 

fitting line (solid black) along with its 68% confidence bounds (blue shadow area) and statistics 

(coefficient of determination (R2), root mean square error (RMSE), and P-values at 0.1 
significance level) were obtained as described in Methods section Statistical tests c.  
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Figure S6. (Related to Figures 2I) crl gene expression levels in LB0.5x. Mean protein 

expression levels (  crl FITC H − ) of the crl gene, first, at 0 and then at 180 (mid-log phase) and 700 

(stationary growth phase) min in the LB0.5x medium, following dilution. The mean values are 

shown relative to 0 min.  
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Figure S7. (Related to Figure 3B) Heatmap of shifts in RNA levels. Log2 of fold changes 

(LFC) from RNA-seq following medium dilutions from LB1.0x to LB0.75x, LB0.5x and LB0.25x. The 

compressed data includes all genes. The perturbation inflicted by LB0.25x was significantly higher 

than by LB0.75x and LB0.5x, regarding the number of genes perturbed and their response strengths. 

https://en.wikipedia.org/wiki/Gene_expression
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Figure S8. (Related to Figure 3B) Shifts in RNA levels.  

(A) Kernel density estimates (Probability Distribution Function, PDF) of the distribution of genes 
with a given LFC (log2 of fold change) of RNA abundances, following the shifts from LB1.0x to 

LB0.75x, LB0.5x and LB0.25x, respectively. Non-parametric estimates of the PDF were obtained from 

data on all genes.  

(B) The violin plot shows the maximum, minimum, median, interquartile ranges and probability 

density of the distributions in (A).  

(C) Mean shifts in RNA levels, LFC , following each shift. Black error bars represent the standard 

error of the mean (SEM), while red error bars represent the 95% confidence bounds of the SEM. 

From these, the mean cannot be distinguished between the conditions. We also performed 2-

https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Probability_density_function
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sample T-tests of statistical significance between the distributions. Results in Supplementary 

Table S3 show that the LB0.75x and LB0.5x cannot be distinguished in a statistical sense. 

(D) Correlation plot of LFC  and the respective RNAP concentration shift. All values are relative 

to the control condition. The best fitting line (solid black) along with its 68% confidence bounds 

(blue shadow area) and statistics (coefficient of determination (R2), root mean square error 

(RMSE), and P-values at 0.1 significance level) were obtained as described in Methods section 

Statistical tests c. 
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Figure S9. (Related to Figure 3B) Log2 fold changes (LFCs) in RNA abundances of 20 
randomly selected genes covering the whole spectrum of fold changes observed, plotted 
against their corresponding LFCs in protein abundances. Data from the shift from LB1.0x to 

LB0.25x. We selected trios of genes whose LFC by RNA-seq was closest to -3, -2, -1, 0, +1, +2, 
and +3, respectively, to represent the entire spectrum (Methods section RNA-seq e). Events 

considered to be outliers by Tukey’s fences (10) were removed. The LFCs in protein abundances 

were obtained by flow-cytometry (YFP strain library). Mean background fluorescence was 

removed (Methods section Flow-cytometry). The dashed green lines at positions (x, y) = (0.42, 

0.20) indicate the average |LFC| of genes whose False Discovery Rate > 0.05, along with the 

corresponding estimated |LFC| by flow-cytometry (based on the fitting line). The best fitting line 

(solid black) along with its 68% confidence bounds (blue shadow area) and statistics (coefficient 

of determination (R2), root mean square error (RMSE), and P-values at 0.1 significance level) 
were obtained as described in Methods section Statistical tests c. Supplementary Table S4 
shows the list of strains measured by flow-cytometry. 
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Figure S10. (Related to Figures 3B and 3C) Number of differentially expressed genes and 
its correlation with the shift in RNAP concentration.  
(A) DEG(1) stands for Differentially Expressed Genes (4029 evaluated) (i.e., genes with False 
Discovery Rate (FDR) < 0.05), after diluting the medium to LB0.75x, LB0.5x and LB0.25x (Methods 

section RNA-seq c). DEG(2) stands for genes whose FDR < 0.05 and absolute log2 of fold 

change (|LFC|) > 0.4248 (LB0.75x), > 0.4085 (LB0.5x) or > 0.4138 (LB0.25x) (Methods section RNA-

seq d). As the results using DEG(1) and DEG(2) slightly differ, from here onwards, DEG are 

selected using the more stringent criteria DEG(2).  

(B) Number of DEG for each shift plotted against the respective RNAP concentration shift, 

estimated from the ratio between mean RNAP levels measured by FITC-H,  RNAP FITC H −  using 

RL1314 cells (Methods section Flow-cytometry), and the mean cell area (  cell area ) estimated 

from phase-contrast images of MG1655 cells (Methods section Microscopy). All values are 

relative to the control condition (LB1.0x).  

(C) Correlation plot of the mean of |LFC| (absolute log2 fold change), LFC , and the respective 

number of DEG in each shift. The best fitting lines (solid black) along with their 68% confidence 

bounds (blue shadow area) and statistics (coefficient of determination (R2), root mean square 

error (RMSE), and P-values at 0.1 significance level) were obtained as described in Methods 

section Statistical tests c. 
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Figure S11. An example operon and examples of interactions of input transcription factors 
(TFs) with a total bias of 0 or 1.  
(A) Illustrations of 6 forms of transcription regulation by sets of input TFs of an output protein. The 

input TFs regulation can be to activate (+1), repress (-1). The example also includes input TFs 

that are protein dimers. The right side of the figure shows the expected bias, i.e., overall 

regulatory effect (‘ r ’) of the set input TFs ( b ), set to equal the sum of the individual regulatory 

effect of each input TF, ‘ r ’ (shown by the black sign ‘+’ or ‘-‘, above each input TF on the left 

side). E.g., in case I, the pink OBS has a +1 effect, the blue has a -1 effect, and the orange has a 

+1 effect. Thus, b  = |+1-1+1| = +1.  

(B) Illustration of an operon expressing 4 genes (G1, G2, G3 and G4) under the control of 2 

promoters (Pro1 and Pro2). The colored arrows show the different regulations inside this operon. 

Also illustrated is a transcription unit (TU) inside the operon, controlled by one promoter, Pro3. 

The vertical black arrow at the end is a terminator while TF5 is produced by a gene not in the 
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operon. This example assumes the definitions of operon and TU in RegulonDB. Figures (A) and 

(B) created with BioRender.com. 
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Figure S12. Topology and logic of the transcription factor (TF) network, TFN, of E. coli.  
(A) Pie chart of the percentage of input TFs classified as ‘Activators’ (activate all genes they 

regulate) and ‘Repressors’ (repress all genes they regulate). ‘Both’ are the rare input TFs with 

dual effects (i.e., activate some genes and repress other, or have opposite strengths on the same 

promoter, depending on the conditions).  
(B) Pie chart of the percentage of input TFs binding sites (interactions) classified as activations, 

repressions, or unknown.  
(C) Same as (B), but for each cohort of genes defined by the genes’ KTF (number of input TFs). 

(D) Distribution of the fraction of genes with a given absolute sum of the regulatory effects, b , of 

the input TFs. Each input TF binding site is set to have a regulatory effect, ‘ r ’, equal to +1 

(activation), -1 (repression), or 0 (unknown effect).  
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(E1) In-degree (number of incoming edges) distribution.  

(E2) Scatter plot between the log10 of the In-degree and the log10 of the fraction of genes with 

corresponding In-degree.  

(F1) Out-degree (number of outgoing edges) distributions.  
(F2) Scatter plot between the log10 of the Out-degree and the log10 of the fraction of genes with 

corresponding out-degree.  

(G) Path-length (L) distribution. The path length is the number of edges/input TFs needed to 

reach one node from another. A Poisson fitting (solid red) is shown with its fitting parameters, 

coefficient of variation (R2) and root mean square error (RMSE). 

For (E1) and (F1), we show power-law fittings (solid red lines) and their fitting parameters, R2 and 

RMSE. In (E2) and (F2), the best fitting line (solid black), its 68% confidence bounds (blue shadow 

area), statistics (R2, RMSE, and P-values at 0.1 significance level) were obtained as described in 

Methods section Statistical tests c. 
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Figure S13. (Related to Figures 4A) Probability Density Function (PDF) of the number of 
genes with a given |LFC| (absolute log2 fold change) for each shift. PDFs obtained from 

genes without (light blue), and with input transcription factors (TFs) (medium blue). KTF stands for 

number of input TFs. For each distribution, we fitted a gamma ( ) function using GAMFIT of 
MATLAB which tunes the ‘Shape’ and ‘Rate’. We also performed 2-sample T-tests and 2-sample 

K-tests of statistical significance between the distributions with and without input TFs. For both 

tests, all p-values were < 0.1. 
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Figure S14. (Related to Figure 4B and Supplementary Figure S20B) Changes in RNA 
abundances of input genes plotted against those of the output genes, as a function of KTF, 
the number of input transcription factors (TFs) of the output gene. Scatter plots of |LFC| 

(absolute log2 of fold change) of each output gene with the |LFC| of each gene expressing their 

direct input TFs (i.e., input genes), following the shifts from the control (LB1.0x) to LB0.75x, LB0.5x 

and LB0.25x, for each class of genes defined by their KTF (from 1 to 7). All genes are included, 

regardless of being differentially expressed. The red line is the best fitting one. The blue line is a 

null-model fitting line and was obtained as described in Methods section Statistical tests c. The 

green line is the best fitting one after sorting the values of the pairs input-output in ascending 
order, to estimate the maximum correlation possible between the two variables. Best fitting lines 

were obtained by linear least-squares regression fit using the MATLAB function FITLM. The 

colored shadow areas represent the 68% confidence bounds of the best fitted lines. We obtained 
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the p-values of statistical significance for the red (PvEmp), blue (PvShuffled) and green (PvSorted) lines 

under the null hypothesis that the data is best fit by a horizontal line. We show the p-values when 

the null hypothesis was not rejected at 0.1 significance level. p-values and coefficients of 

determination (R2) for the red (R2Emp) and green (R2Sorted) fitted lines are shown in Supplementary 
Table S7.  
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Figure S15. (Related to Figure 4B) Changes in RNA abundances (prior to the RNAP 
changes and during the short-term) of input genes plotted against their output genes, as a 
function of KTF, the number of input transcription factors (TFs) of the output gene. Scatter 
plots of |LFC| (absolute log2 of fold change) of each output gene with the |LFC| of each gene 

expressing their direct input TFs (i.e., input genes), following the medium dilution to LB0.5x, for 

each class of genes defined by their KTF (from 1 to 7). The data regards the short-term responses 

(125 min) and the responses prior to the changes in RNAP concentration (60 min). All genes are 

included, regardless of being differentially expressed. The red line is the best fitting one. The blue 

line is the null-model fitting line and was obtained as described in Methods section Statistical 

tests c.  The green line is the best fitting one after sorting the pairs input-output in ascending 

order, to estimate the maximum correlation possible between the two. Best fitting lines were 
obtained by linear least-squares regression fit using the MATLAB function FITLM. The colored 
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shadow areas represent the 68% confidence bounds of the best fitted lines. We obtained the p-

values of statistical significance for the red (PvEmp), blue (PvShuffled) and green (PvSorted) lines under 

the null hypothesis that the data is best fit by a horizontal line. We show the p-values when the 

null hypothesis was not rejected at 0.1 significance level. p-values and coefficients of 
determination (R2) for the red (R2Emp) and green (R2Sorted) fitted lines are shown in Supplementary 

Table S8. 
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Figure S16. (Related to Figure 4B) Relationships between the changes in RNA abundances 
of input and output genes as a function of the position of the output gene in the operon. 
Scatter plots between the |LFC| (absolute log2 of fold change) of a gene expressing an input TF 

(i.e., input gene) and each of its direct output genes belonging to an operon of size 3 on the 1st, 

2nd and 3rd positions in the operon following the transcription start site. The red line is the best 

fitting line between the two variables. The blue line is the null-model fitting line and was obtained 

as described in Methods section Statistical tests c. The green line is the best fitting line obtained 

after sorting the values of the pairs input-output in ascending order to obtain the maximum 

correlation possible. All best fitting lines were obtained by linear least-squares regression fit using 
the MATLAB function FITLM. The colored shadow areas are the 68% confidence bounds for the 

best fitted lines. We also obtained the p-values of statistical significance for the red (PvEmp), blue 
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(PvShuffled) and green (PvSorted) lines under the null hypothesis that the data is best fit by a 

horizontal line. We only show the p-values when the null hypothesis was not rejected at 0.1 

significance level. All p-values and the coefficients of determination (R2) for the red (R2Emp) and 

green (R2Sorted) fitted lines are shown in Supplementary Table S9 (see also Supplementary Table 
S10).   
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Figure S17. (Related to Figure 4B) Relationships between the changes in RNA abundances 
of input and output genes as a function of the position of the output gene in the 
Transcription Unit (TU). For each shift to LB0.75x, LB0.5x and LB0.25x, we plotted the absolute of 

log2 of fold change of each output gene (|LFC| of output) on the 1st, 2nd and 3rd positions in a TU 

following the transcription start site, against the |LFC| of each gene known to express a direct 

input transcription factor (|LFC| of input) of these 3 TU genes. Red lines are the best fitting lines. 

Blue lines are the null-model fitting lines and were obtained as described in Methods section 

Statistical tests c. Green lines are the best fitting after sorting the pairs input-output in ascending 

order to obtain the maximum correlation possible. All best fitting lines were obtained by linear 
least-squares regression fit using the MATLAB function FITLM. The colored shadow areas 

represent the 68% confidence bounds for the best fitted lines. We also obtained the p-values of 
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statistical significance for the red (PvEmp), blue (PvShuffled) and green (PvSorted) lines under the null 

hypothesis that the data is best fit by a horizontal line. We only show the p-values when the null 

hypothesis was not rejected at 0.1 significance level. Supplementary Table S11 shows all p-

values and coefficients of determination (R2) of the red (R2Emp) and green (R2Sorted) fitted lines (see 
also Supplementary Table S12).  
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Figure S18. (Related to Figure 4C) Relationship between the changes in RNA abundances 
of output and input genes as a function of their distance in the Transcription Factor (TF) 
Network, TFN. Scatter plots between the |LFC| (absolute log2 of fold change) of pairs of genes 

as a function of their path length (L) (with L=1 to 7, L being the number of edges/input TFs in the 
TFN to go from one to the other), after shifting from the control condition. We included all gene 

pairs, regardless of being differentially expressed. The black lines are the best fitting ones 

(obtained by linear least-squares regression fit, MATLAB function FITLM) and the blue shadow 

areas are their 68% confidence bounds. Also shown are the coefficient of determination (R2) and 

the root mean square error (RMSE) of the fitted lines, along with their p-values of statistical 

significance (P-value1) (at 0.1 significance level, under the null hypothesis that the data is best fit 

by a horizontal line).  
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Figure S19. (Related to Figure 4C) Relationship between the changes in RNA abundances 
of output and input genes as a function of their path length prior to changes in RNAP and 
in the short-term following it. Scatter plots between |LFC| (absolute log2 of fold change) of 
output and input genes distanced by a minimum path length L of 1, 2, and 3 input TFs (edges) in 

the TFN, respectively (data from LB0.5x). The data regards the short-term responses (125 min) 

and the responses prior to the changes in RNAP concentration (60 min). We included all gene 

pairs, regardless of being differentially expressed. The colored lines are the best fitting ones 

(obtained by linear least-squares regression fit, MATLAB function FITLM) and the corresponding 

blue shadow areas are their 68% confidence bounds. Also shown are the coefficient of 

determination (R2) of the fitted lines, along with their p-values of statistical significance (Pv) (at 

0.1 significance level, under the null hypothesis that the data is best fit by a horizontal line).  
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Figure S20. (Related to Figure 4D) Strengths of the shifts in RNA abundances of cohorts of 
genes with a given number of input transcription factors (TFs), KTF.  

(A) Mean of absolute log2 fold changes (|LFC|), LFC , of gene cohorts organized according to 

the KTF of the component genes after shifting the medium. Black error bars represent the 

standard error of the mean (SEM), while red error bars represent the 95% confidence bounds of 

the SEM. Also shown is the number of genes of each class (N), and the numbers of differentially 

expressed genes (DEG) in each perturbation (Methods section RNA-seq d, assuming a False 

Discovery Rate < 0.05 and a |LFC| > 0.4248 (LB0.75x), > 0.4085 (LB0.5x) and > 0.4138 (LB0.25x)).  

(B) Scatter plot between KTF and the average slope (over all shifts) of the fitting lines between 

|LFC| of the output gene and |LFC| of each of its gene expressing a direct input TF (i.e., input 
gene) (Supplementary Figure S14). The best fitting lines along with their 68% CI and statistics 

(coefficient of determination (R2), root mean square error (RMSE), and P-values at 0.1 



 
 

43 
 

significance level) were obtained as described in Methods section Statistical tests c. A slope of 1 

is expected if the input fully explains the output.  

(C) Estimated rate of change of |LFC| with RNAP concentration for gene cohorts differing in KTF 

(set to 0 in the control).  RNAP concentration estimated from the ratio between mean RNAP 

levels measured by FITC-H,  RNAP FITC H −  (Methods section Flow-cytometry), and the mean cell 

area (  cell area ) obtained from phase-contrast images. Only DEG are included. Vertical dashed 

red lines mark RNAP concentration levels at which RNA-seq was performed. The correlation 

between the two was obtained by linear least-squares regression fit using FITLM of MATLAB. 

Shown is the best fitting line for each KTF. We also obtained p-values of statistical significance of 

the fitted regression line (at 0.1 significance level, under the null hypothesis that the data is best 

fit by a horizontal line). For all KTF, the p-value < 0.1.   
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Figure S21. (Related to Supplementary Figure S20C) RNA changes as a function of the 
shift in RNAP concentration. Scatter plots between the |LFC| (absolute log2 of fold change) of 
each gene following each change in RNAP concentration. This concentration was estimated from 

the ratio between RNAP levels measured by FITC-H (  RNAP FITC H − ) using RL1314 cells (Methods 

section Flow-cytometry), and the mean cell area (  cell area ) obtained from phase-contrast images, 

relative to the control (LB1.0x). Data for the cohorts of genes defined by KTF (number of input 

transcription factors) from 0 to 7. Only differentially expressed genes are included (Methods 

section RNA-seq d, assuming a False Discovery Rate < 0.05 and |LFC| > 0.4248 (LB0.75x), > 

0.4085 (LB0.5x) or > 0.4138 (LB0.25x)). Best fitting lines obtained by linear least-squares regression 

fit using FITLM of MATLAB. Blue shadow areas are the 68% confidence bounds. Shown are the 
coefficient of determination (R2) and the root mean square error (RMSE) of the fitted regression 

line, along with its p-value of statistical significance (P-value1) (at 0.1 significance level, under the 

null hypothesis that the data is best fit by a horizontal line). Supplementary Table S13 shows 

tests of whether the lines differ statistically. 
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Figure S22. (Related to Figure 4D) RNA shifts of gene cohorts as a function of the number 
of input transcription factors (TFs), KTF, of the component genes. Correlation plots between 

LFC , the mean of the absolute log2 fold changes (|LFC|), and KTF. From left to right, results are 

shown for all genes, for differentially expressed genes (DEG) and, for non-differentially expressed 
genes ‘non-DEG’ (Methods section RNA-seq d), assuming a False Discovery Rate < 0.05 and 

|LFC| > 0.4248 (LB0.75x), > 0.4085 (LB0.5x) or > 0.4138 (LB0.25x). LFC  obtained from data merged 

from three conditions (LB0.75x, LB0.5x and LB0.25x). The best fitting lines (solid black), their 68% 
confidence bounds (blue shadow area) and statistics (coefficient of determination (R2), root mean 

square error (RMSE), and P-values at 0.1 significance level) were obtained as described in 

Methods section Statistical tests c. Both vertical and horizontal (not visible) error bars represent 

the standard errors of the mean.  
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Figure S23. (Related to Figure 4D and Supplementary Figure S22) Fraction of differentially 
expressed genes (DEG) as a function of KTF, the number of input transcription factors 
(TFs). DEG assessed assuming a False Discovery Rate < 0.05 and absolute log2 fold changes > 

0.4248 for LB0.75x, > 0.4085 for LB0.5x and > 0.4138 for LB0.25x (Methods section RNA-seq d). Data 

obtained for each shift from the control (LB1.0x). Best fitting line (solid black) obtained by linear 

least-squares regression fit using the MATLAB function FITLM. The best fitting lines (solid black) 

along with their 68% confidence bounds (blue shadow areas) and statistics (coefficient of 

determination (R2), root mean square error (RMSE), and P-values at 0.1 significance level) were 
obtained as described in Methods section Statistical tests c. 
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Figure S24. (Related to Figure 4D) Variability of the strengths of the shifts in RNA 
abundances of genes cohorts with a given number of input transcription factors (TFs), KTF.  

(A) Standard deviation of the absolute log2 of fold change (|LFC|), LFC , of gene cohorts sharing 

the same KTF, from 0 to 7. Results are from merged data from all shifts (LB0.75x, LB0.5x and 
LB0.25x). Black error bars are the standard error of the mean (SEM), while red error bars are the 

95% confidence bounds (CB) of the SEM.  

(B) Scattered plot of LFC , following medium shifts, plotted against the respective mean of |LFC| 

( LFC ). The best fitting line (solid black) along with its 68% CB (blue shadow area) and statistics 

(coefficient of determination (R2), root mean square error (RMSE), and P-values at 0.1 

significance level) were obtained as described in Methods section Statistical tests c.  

Distribution of the fraction of genes with a given LFC, after shifting from the control (LB1.0x) to 
LB0.5x, for 4 gene cohorts: (C) Genes without input TFs; (D) Genes regulated only by FIS (KTF = 

1); and (E) Genes regulated only by CRP and, thus, KTF = 1; (F) Genes regulated by FNR and 

ArcA (KTF  = 2).  

Shown are the number of genes (N) and the mean (µ) and standard deviation (σ) of the LFC’s of 

each distribution. Supplementary Table S14 shows statistical tests comparing the distributions. 
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Figure S25. (Related to Figure 4D) Average RNA fold change of the first gene of each 
operon (including operons with only 1 gene) as a function of KTF, the number of input 
transcription factors (TFs) of the output gene. Mean of absolute log2 fold change (|LFC|), 

LFC , of all genes in the first position of the operons, following the transcription start site. Results 

are from merged data from all shifts (LB0.75x, LB0.5x and LB0.25x). Black error bars are the standard 

error of the mean (SEM), while red error bars are the 95% confidence bounds of the SEM. N 

stands for the number of genes of each cohort. 
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Figure S26. Shifts in the RNA abundances of global regulators and their output genes.  
(A) Absolute of log2 fold change (|LFC|) of the genes expressing each σ factor (rpoD, rpoN, rpoS, 

rpoH, fliA, rpoE, fecI), following each dilution (LB0.75x, LB0.5x and LB0.25x).  

(B) Mean |LFC|, LFC ,  of the N genes responsive only to σ70, σ54, σ38, σ32, σ28, σ24 and σ19, 

respectively.  
(C) |LFC| of the genes expressing each global regulator (GR) (ihfA, ihfB, fnr, arcA, fis, lrp, crp, 

narL, flhC, flhD, fur, hns) (11,12).  

(D) LFC  of the N genes that are responsive only to IHF, FNR, ArcA, Fis, Lrp, CRP, NarL, 

FlhDC, Fur and Hns, respectively.  
In (A) and (C), the red asterisks denote changes that are classified as differentially expressed in 

Figure 3C, assuming a False Discovery Rate < 0.05 and a |LFC| > 0.4248 (LB0.75x), > 0.4085 

(LB0.5x) or > 0.4138 (LB0.25x) (Methods section RNA-seq d). In (B) and (D), the black error bars are 

the standard error of the mean (SEM), while red error bars are the 95% confidence bounds of the 

SEM.   

(E) |LFC| of the genes expressing each σ factor (rpoN, rpoS, rpoH, fliA, rpoE, fecI), following 

each dilution (LB0.75x, LB0.5x and LB0.25x). Values are relative to the |LFC| of rpoD in the same 

conditions.  
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Figure S27. Shifts in the RNA abundances of global regulators and sigma factors at short- 
and mid-term response.  
(A) Absolute of log2 fold change (|LFC|) of the genes expressing each σ factor (rpoD, rpoN, rpoS, 

rpoH, fliA, rpoE, fecI), when diluting the control medium (LB1.0x) to the LB0.5x medium at 125 

(short-term response) and 180 min (mid-term response). Here, the raw count matrices at 125 and 

180 min were merged and only genes that passed the filtering were studied (Methods section 

RNA-seq). 
(B) |LFC| of the genes expressing each global regulator (GR) (ihfA, ihfB, fnr, arcA, fis, lrp, crp, 

narL, flhC, flhD, fur, hns) under the same conditions as (A).  
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Figure S28. Expression levels of the spoT gene following medium shifts from LB1.0x to 

LB0.75x, LB0.5x, LB0.25x, LB1.5x, LB2.0x and LB2.5x. Mean SpoT protein levels (  SpoT FITC H −
) at 180 

min,  from 3 biological replicates in each medium condition, measured by the mean single-cell 

fluorescence intensities (FITC channel, Methods section Flow-cytometry), after subtracting mean 

background fluorescence(s) and scaling to the control LB1.0x condition. 
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Figure S29. (Related to Figure 5A). Mean absolute biases of the sets of input transcription 
factors (TFs) of the first gene of each operon, as a function of the number of input TFs, 
KTF, of the output gene.  Mean of absolute of the sum of the regulatory effects ‘ r ’ of the inputs 

( b ) obtained from RegulonDB for all genes assessed by RNA-seq. We removed the genes with 

positions higher than 1 following the transcription start site of the operon. Black error bars are the 

standard error of the mean (SEM), and red error bars are the 95% confidence bounds of the 

SEM. 
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Figure S30. (Related to Figures 5B) Mean changes in RNA abundances of genes with an 

average KTF, number of input transcription factors (TFs), as a function of b  (mean 

absolute bias in the regulatory effects of the input TFs) estimated using the ensemble 

approach. Mean of the absolute LFC (log2 of fold change), LFC , as a function of ( )TFb K  for 

each medium shift. Cohorts are assembled based on the KTF of the genes. Each blue cross is the 

average outcome from up to 7500 cohorts of 10 genes, Supplementary Results section 

Estimation of the expected 
TFK  and b  using an ensemble approach, see also Supplementary 

Figure S31). Error bars (vertical and horizontal) are the standard error of the mean. 
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Figure S31. (Related to Supplementary Figure S30) Mean changes in RNA abundances of 
all genes with a specific KTF, number of input transcription factors (TFs), as a function of 

the average b  (absolute of overall regulatory effect (‘ r ’) of the input TFs on the output 

gene). For each shift, we plot the mean of absolute LFC (log2 of fold change), LFC , against the 

mean of b , b ,  for each cohort of all genes with KTF = 0 to 7. The error bars represent the 

standard error of the mean (SEM). We included all genes, regardless of being differentially 

expressed. The best fitting line (solid black) along with its 68% confidence bounds (blue shadow 

area) and statistics (coefficient of determination (R2), root mean square error (RMSE), and P-

values at 0.1 significance level) were obtained as described in Methods section Statistical tests c. 

Supplementary Table S18 shows the results of the statistical tests. 

 
 
 

 



 
 

55 
 



 
 

56 
 

 

Figure S32. (Related to Figures 6D1-6D3) Changes in RNA abundances of output and input 
genes plotted as a function of their distance in the Transcription Factor (TF) Network, TFN. 
Scatter plots between the |LFC| (absolute log2 of fold change) of pairs of genes as a function of 
their path length (L) (with L=1 to 7, and L being the number of edges/input TFs in the TFN to go 

from one gene to the other), after shifting from the control condition. We included all gene pairs, 

regardless of being differentially expressed or not. Black lines are the best fitting ones (obtained 

by linear least-squares regression fit, MATLAB function FITLM) and blue shadow areas are their 

68% confidence bounds. Also shown are the coefficient of determination (R2), the root mean 

square error (RMSE) of the fitted lines, and their p-values of statistical significance (P-value1) at 

0.1 significance level, under the null hypothesis that the data is best fit by a horizontal line. 



 
 

57 
 

 

Figure S33. (Related to Figure 7D) Mean changes in RNA abundances of cohorts with an 

average KTF or b  (mean number of input TFs and mean absolute bias, respectively).  

(A1-A3) Mean |LFC|, LFC , as a function of ( )TFb K . Data obtained using the ensemble 

approach (Supplementary Results section Estimation of the expected 
TFK  and b  using an 

ensemble approach). Each blue cross is the average outcome from up to 7.500 cohorts of 10 

genes.  

(B) Scatter plot of 
TFK  against the corresponding b  of the cohorts in (A1-A3). The inset shows 

the inverse, scatter plot between b  and 
TFK , for the cohorts of Figure 7D, assembled based 

on b  (Supplementary Results section Estimation of the expected 
TFK  and b  using an 

ensemble approach). Shown are best fitting lines and their 68% confidence bound (shadow 

areas, barely visible), coefficient of determination (R2), root mean square error (RMSE), and P-

value (Methods section Statistical tests c).  

(C) Cohorts with increasing 
TFK  but constant b  (from 1 to 5). 

TFK  is plotted against the 

corresponding LFC , for each b .  
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(D) b  plotted against the corresponding LFC  for cohorts with constant 
TFK  (from 1 to 5) and 

increasing b  (Supplementary Results section Estimation of the expected 
TFK  and b  using 

an ensemble approach).   
The error bars (vertical and horizontal) are the standard error of the mean. In (C) and (D), the 

data from the different conditions was merged and, since they slightly differ in mean (A1-A3), the 

SEM is larger than if in each condition separately. Also, comparatively, the SEM is much larger 

for 
TFK  and b  equal to 5, due to which we did not extend the analysis further. 
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Figure S34. Venn diagram of the number and percentage of differentially expressed genes 
following RNAP changes. Data from 180 min following the shift to LB0.25x in the light blue circle 

and data from the shift to LB2.5x in the dark violet circle, when overlapping, become dark blue. 
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Figure S35. Venn diagram of the number and percentage of differentially expressed genes. 
Data from the shift to LB0.5x at 60 (prior to the changes in RNAP), 125 (short-term response) and 

180 min (mid-term response). 
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SUPPLEMENTARY TABLES 

Table S1. Variables. Short description of the main variables used. 

 

Variable Description 

KTF Number of input transcription factors (TFs) of a gene. 

TFK  Mean of KTF of a gene cohort. 

r  Regulatory effect (+1, 0, -1) 

b r=    Bias. It equals the absolute of the sum of the regulatory effects, ‘ r ’ (each equaling +1 

or -1) of the input TFs of a gene. 

b  Mean absolute b  of a gene cohort 

LFC  Mean of |LFC| (absolute of log2 fold changes). 

TFN Transcription factor network 

GR Global regulator 

L Path length 

CC Closed complex formation 

OC Open complex formation 

SEM Standard error of the mean 

CB Confidence bounds 
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Table S2. (Related to Figure 2E and Supplementary Figure S2) Raw data of RNAP and GFP 
levels by western blotting. Shown are all the measurement values, for the three biological 
replicates, as reported by the software ‘ImageLab’ after analyzing the images obtained by 

Western Blot (Supplementary Figure S2). 

 
RNAP Replicate 1 

Sample Channel Band No. Relative Front Volume (Int) Band % Norm. Factor Norm. Vol. 
(Int) 

LB1.0x Chemi 1 0.344164 21470300 100 1.000000 21470300 
LB0.75x Chemi 1 0.341757 16063000 100 0.916722 14725306 
LB0.5x Chemi 1 0.327316 9521061 100 1.132143 10779204 
LB0.25x Chemi 1 0.321300 3072728 100 1.798396 5525982 

RNAP Replicate 2 
Sample Channel Band No. Relative Front Volume (Int) Band % Norm. Factor Norm. Vol. 

(Int) 
LB1.0x Chemi 1 0.168000 19907978 100 1.000000 19907978 
LB0.75x Chemi 1 0.162667 19135360 100 0.814673 15589056 
LB0.5x Chemi 1 0.161333 8066324 100 1.511187 12189726 
LB0.25x Chemi 1 0.152000 2059213 100 2.638734 5433715 

RNAP Replicate 3 
Sample Channel Band No. Relative Front Volume (Int) Band % Norm. Factor Norm. Vol. 

(Int) 
LB1.0x Chemi 1 0.213828 28023120 100 1.000000 28023120 
LB0.75x Chemi 1 0.215109 22070880 100 1.006164 22206921 
LB0.5x Chemi 1 0.212548 13065840 100 1.228384 16049866 
LB0.25x Chemi 1 0.207426 4816080 100 1.782460 8584472 

 
 

GFP Replicate 1 
Sample Channel Band No. Relative Front Volume (Int) Band % Norm. Factor Norm. Vol. 

(Int) 
LB1.0x Chemi 1 0.142069 28705596 100 1.000000 28705596 
LB0.75x Chemi 1 0.150345 17082868 100 1.355830 23161460 
LB0.5x Chemi 1 0.155862 12007664 100 1.460927 17542319 
LB0.25x Chemi 1 0.160000 4880930 100 1.847723 9018604 

GFP Replicate 2 
Sample Channel Band No. Relative Front Volume (Int) Band % Norm. Factor Norm. Vol. 

(Int) 
LB1.0x Chemi 1 0.236915 36092297 100 1.000000 36092297 
LB0.75x Chemi 1 0.241047 26614700 100 0.961178 25581454 
LB0.5x Chemi 1 0.245179 22808220 100 0.910526 20767477 
LB0.25x Chemi 1 0.243802 14448294 100 1.187372 17155504 

GFP Replicate 3 
Sample Channel Band No. Relative Front Volume (Int) Band % Norm. Factor Norm. Vol. 

(Int) 
LB1.0x Chemi 1 0.201422 6419160 100 1.000000 6419160 
LB0.75x Chemi 1 0.201422 3765849 100 1.281131 4824546 
LB0.5x Chemi 1 0.202607 1445384 100 2.424255 3503979 
LB0.25x Chemi 1 0.193128 1040612 100 2.320100 2414323 
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Table S3. (Related to Figure 3B and Supplementary Figure S8A-8C) Statistical test between 
the distributions in Supplementary Figure S8A-8C. P-values from the 2-sample T-test 

between the mean of the distributions (Methods section Statistical tests a).  

 

P-value 

 LB0.75x LB0.5x LB0.25x 
LB0.75x 1.00   

LB0.5x 0.09 1.00  

LB0.25x 0.95 0.24 1.00 
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Table S4. List of strains carrying an integrated YFP gene copy selected from a YFP strain 
library (Methods sections Bacterial strains, media, growth conditions and curves and Flow-

cytometry). Cells used to test for correlations between the absolute log2 of fold change in protein 

levels and RNA abundances (Supplementary Figure S9). 

 

 
Strain 

[CGSC name] 
Genotype Source 

1 
cbpM 

[SX1494] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-

ybhJ)803, λ[cI857 Δ(cro-bioA)], cbpM791-

YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC (CGSC # 13049) 

2 
tktB 

[SX1954] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-
ybhJ)803, λ[cI857 Δ(cro-bioA)], tktB792-

YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC (CGSC # 13509) 

3 
groS 

[SX1398] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-

ybhJ)803, λ[cI857 Δ(cro-bioA)], IN(rrnD-

rrnE)1, rph-1, groS791-YFP(::cat) 

Yale CGSC (CGSC # 12953) 

4 
yafD 

[SX1626] 

F-, yafD792-YFP(::cat), Δ(argF-lac)169, 

gal-490, Δ(modF-ybhJ)803, λ[cI857 

Δ(cro-bioA)], IN(rrnD-rrnE)1, rph-1 

Yale CGSC (CGSC # 13181) 

5 
bolA 

[SX1087] 

F-, Δ(argF-lac)169, bolA791-YFP(::cat), 

gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], IN(rrnD-rrnE)1, rph-1 

Yale CGSC (CGSC # 12642) 

6 
nudI 

[SX1271] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-

ybhJ)803, λ[cI857 Δ(cro-bioA)], nudI792-

YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC (CGSC # 12826) 

7 
cnu 

[SX1362] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-

ybhJ)803, λ[cI857 Δ(cro-bioA)], cnu-791-

YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC (CGSC # 12917) 

8 
mobA 

[SX1354] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-

ybhJ)803, λ[cI857 Δ(cro-bioA)], IN(rrnD-
rrnE)1, rph-1, mobA791-YFP(::cat) 

Yale CGSC (CGSC # 12909) 

9 
cpxR 

[SX1791] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-

ybhJ)803, λ[cI857 Δ(cro-bioA)], IN(rrnD-

rrnE)1, rph-1, cpxR791-YFP(::cat) 

Yale CGSC (CGSC # 13346) 

10 
yciU 

[SX1384] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-

ybhJ)803, λ[cI857 Δ(cro-bioA)], yciU796-
Yale CGSC (CGSC # 12939) 
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YFP(::cat), IN(rrnD-rrnE)1, rph-1 

11 
yffL 

[SX1283] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-

ybhJ)803, λ[cI857 Δ(cro-bioA)], yffL791-

YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC (CGSC # 12838) 

12 
recN 

[SX1220] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-

ybhJ)803, λ[cI857 Δ(cro-bioA)], recN796-
YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC (CGSC # 12775) 

13 
yceD 

[SX1638] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-

ybhJ)803, λ[cI857 Δ(cro-bioA)], yceD792-

YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC (CGSC # 13193) 

14 
rpsE 

[SX1340] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-

ybhJ)803, λ[cI857 Δ(cro-bioA)], IN(rrnD-

rrnE)1, rpsE791-YFP(::cat), rph-1 

Yale CGSC (CGSC # 12895) 

15 
mrcA 

[SX1938] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-

ybhJ)803, λ[cI857 Δ(cro-bioA)], IN(rrnD-

rrnE)1, mrcA791-YFP(::cat), rph-1 

Yale CGSC (CGSC # 13493) 

16 
napD 

[SX1339] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-

ybhJ)803, λ[cI857 Δ(cro-bioA)], napD791-

YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC (CGSC # 12894) 

17 
hyuA 

[SX1664] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-

ybhJ)803, λ[cI857 Δ(cro-bioA)], hyuA791-

YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC (CGSC # 13219) 

18 
rbsB 

[SX1190] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-

ybhJ)803, λ[cI857 Δ(cro-bioA)], IN(rrnD-

rrnE)1, rph-1, rbsB791-YFP(::cat) 

Yale CGSC (CGSC # 12745) 

19 
speC 

[SX1952] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-
ybhJ)803, λ[cI857 Δ(cro-bioA)], speC791-

YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC (CGSC # 13507) 

20 
yjhP 

[SX1874] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-

ybhJ)803, λ[cI857 Δ(cro-bioA)], IN(rrnD-

rrnE)1, rph-1, yjhP794-YFP(::cat) 

Yale CGSC (CGSC # 13429) 
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Table S5. (Related to Supplementary Figure S12) Features of the network topology. 
Network global topology parameters of the known TFN of E. coli and of (1000) randomly 

generated networks with the same number of nodes and edges but with ‘Erdös Random’ and with 

‘Scale-free’ topology (using a Power-law exponent of -1.19) (13). Data from RegulonDB (14), 
from the genes in the RNA-seq data (Figure 3). For a description of the parameters, see Methods 

section Transcription Factor Network of Escherichia coli.  

 
Parameters E. coli Erdös random Scale free 

No. nodes 4053 4053 4053 

No. edges 4471 4471 4471 

Clustering coefficient 0.06 (1.79 ± 1.51) × 10-4 (3.60 ± 1.49) × 10-4 

No. connected components 2324 521.46 ± 16.98 563 

Avg.  path length (L) 3.28 24.06 ± 4.69 3.32 

No. isolated nodes 2301 446.14 ± 17.25 485 

No. self-loops 133 1.10 ± 1.02  0 
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Table S6. (Related to Figure 4A) Associations between having input transcription factors 
(TFs) and being a DEG (differentially expressed gene). P-values obtained by a Fisher test 

(Methods section Statistical tests b) to determine if there is an association between having one or 

more input TFs and being a DEG (Methods section RNA-seq d, assuming a False Discovery Rate 
< 0.05 and absolute log2 fold change (|LFC|) > 0.4248 for LB0.75x, > 0.4085 for LB0.5x and > 

0.4138 for LB0.25x). For each condition, we use the specific values of LFC  (mean of |LFC|) and 

number of DEG. The null hypothesis is that there is random association between the two 

variables. The test rejects the null hypothesis at 0.1 significance level.  

 

Medium P-value 

LB0.75x 0.00 

LB0.5x 0.29 

LB0.25x 0.85 
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Table S7. (Related to Figure 4B, and Supplementary Figures S14 and S20B) Statistics of 
the linear fits in Supplementary Figure S14. R2Emp, R2Sorted, PvEmp, PvShuffled and PvSorted values 

for gene cohorts differing in KTF (number of known input transcription factors (TFs)) (from 1 to 7) 

and medium (LB0.75x, LB0.5x and LB0.25x), when testing in Supplementary Figure S14 the 
correlation between absolute of log2 fold change (|LFC|) of outputs genes and each gene known 

to express their input TFs.  
 

 LB0.75x 
 PvShuffled PvEmp PvSorted R2Emp R2Sorted 

KTF = 1 0.83 0.00 0.00 0.08 0.87 

KTF = 2 0.74 0.03 0.00 0.01 0.95 

KTF = 3 0.97 0.00 0.00 0.04 0.87 

KTF = 4 0.98 0.00 0.00 0.04 0.93 

KTF = 5 0.81 0.00 0.00 0.03 0.91 

KTF = 6 1.00 0.72 0.00 0.00 0.88 

KTF = 7 1.00 1.00 0.00 0.00 0.93 
 LB0.5x 
 PvShuffled PvEmp PvSorted R2Emp R2Sorted 

KTF = 1 0.96 0.00 0.00 0.11 0.88 

KTF = 2 0.82 0.00 0.00 0.02 0.92 

KTF = 3 0.63 0.00 0.00 0.06 0.88 

KTF = 4 0.86 0.01 0.00 0.01 0.96 

KTF = 5 0.91 0.00 0.00 0.04 0.85 

KTF = 6 0.97 0.00 0.00 0.03 0.88 

KTF = 7 0.96 0.10 0.00 0.01 0.93 
 LB0.25x 
 PvShuffled PvEmp PvSorted R2Emp R2Sorted 

KTF = 1 0.85 0.00 0.00 0.06 0.93 

KTF = 2 0.97 0.01 0.00 0.01 0.96 

KTF = 3 0.87 0.00 0.00 0.07 0.93 

KTF = 4 0.80 0.68 0.00 0.00 0.89 

KTF = 5 0.89 0.00 0.00 0.02 0.88 

KTF = 6 0.94 0.09 0.00 0.01 0.88 

KTF = 7 0.87 0.93 0.00 0.00 0.88 
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Table S8. (Related to Figure 4B, and Supplementary Figures S15) Statistics of the linear 
fits in Supplementary Figure S15. R2Emp, R2Sorted, PvEmp, PvShuffled and PvSorted values for gene 

cohorts differing in KTF (number of known input transcription factors (TFs)) (from 1 to 7) in LB0.5x 

medium (60 and 125 min), when testing in Supplementary Figure S15 the correlation between 
absolute of log2 fold change (|LFC|) of outputs genes and each gene known to express their input 

TFs.  
  

LB0.5x 60 mim LB0.5x 125 min 
 

PvShuffled PvEmp PvSorted R2Emp R2Sorted PvShuffled PvEmp PvSorted R2Emp R2Sorted 
KTF = 1 0.88 0.00 0.00 0.01 0.84 0.98 0.25 0.00 0.00 0.86 

KTF = 2 0.89 0.18 0.00 0.00 0.78 0.81 0.00 0.00 0.03 0.91 

KTF = 3 0.95 0.25 0.00 0.00 0.64 0.72 0.91 0.00 0.00 0.96 

KTF = 4 0.98 0.47 0.00 0.00 0.76 0.82 0.00 0.00 0.02 0.95 

KTF = 5 0.99 0.01 0.00 0.01 0.56 0.93 0.09 0.00 0.00 0.90 

KTF = 6 0.97 0.01 0.00 0.03 0.38 0.99 0.98 0.00 0.00 0.88 

KTF = 7 0.95 1.00 0.00 0.00 0.32 0.90 0.42 0.00 0.00 0.90 
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Table S9. (Related to Figure 4B and Supplementary Figure S16) Statistics of the linear fits 
in Supplementary Figure S16. R2Emp, R2Sorted, PvEmp, PvShuffled and PvSorted for results in 

Supplementary Figure S16, in various media. Data for the 1st, 2nd and 3rd genes (following the 

transcription start site) of operons of size 3, when confronting the correlation between absolute of 
LFC, log2 fold change of each of these output gene of the operon and each gene known to 

express an input transcription factor (TF) common to all 3 genes.   

  
 LB0.75x 
 PvShuffled PvEmp PvSorted R2Emp R2Sorted 

1st gene 0.98 0.00 0.00 0.06 0.90 

2nd gene 0.93 0.03 0.00 0.02 0.92 

3rd gene 0.98 0.00 0.00 0.04 0.93 
 LB0.5x 
 PvShuffled PvEmp PvSorted R2Emp R2Sorted 

1st gene 0.97 0.00 0.00 0.06 0.88 

2nd gene 0.98 0.00 0.00 0.05 0.85 

3rd gene 0.93 0.00 0.00 0.05 0.92 
 LB0.25x 
 PvShuffled PvEmp PvSorted R2Emp R2Sorted 

1st gene 1.00 0.00 0.00 0.07 0.88 

2nd gene 0.98 0.00 0.00 0.05 0.89 

3rd gene 0.90 0.00 0.00 0.04 0.93 



 
 

71 
 

Table S10. (Related to Figure 4B and Supplementary Figure S16) Analysis of Covariance of 
results in Supplementary Figure S16. We performed an analysis of covariances, ANCOVA 

(Methods section Statistical tests d) test, to assess if the red fitting lines in Supplementary Figure 

S16 have the same intercept (I) and/or slope (S). The fitting lines were calculated for the shifts 
from the control, to assess the correlation between the absolute of log2 fold change of each 

output gene belonging to an operon of size 3 (i.e., 1st, 2nd and 3rd gene in the operon following the 

transcription start site), and each gene known to express an input TF, common to the 3 genes in 

the operon. We evaluated if the fitting lines differ between the 1st, 2nd, and 3rd gene, for each shift. 

Also, we evaluated if the fitting lines differ between the different shifts, for the 1st, 2nd, and 3rd 

gene, respectively. We consider 2 lines statistically different in I and/or S at 0.1 significance level.  

  

P-value 
 LB0.75x LB0.5x LB0.25x 
 I S I S I S 

1st gene vs 2nd gene 0.85 0.31 0.42 0.51 0.53 0.31 

1st gene vs 3rd gene 0.96 0.54 0.77 0.38 1.00 0.12 

2nd gene vs 3rd gene 0.81 0.67 0.54 0.82 0.43 0.56 
 

 1st gene 2nd gene 3rd gene 
 I S I S I S 

LB0.75x vs LB0.5x 0.12 0.75 0.30 0.83 0.14 0.66 

LB0.75x vs LB0.25x 0.06 0.72 0.00 0.94 0.03 0.33 

LB0.5x vs LB0.25x 0.63 0.94 0.03 0.69 0.37 0.45 
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Table S11. (Related to Figure 4B and Supplementary Figure S17) Statistics of the linear fits 
in Supplementary Figure S17. R2Emp, R2Sorted, PvEmp, PvShuffled and PvSorted values for results in 

Supplementary Figure S17, in various shifts. Data for the 1st, 2nd and 3rd gene (following the 

transcription start site) belonging to a Transcription Unit (TU) of size 3, when confronting the 
correlation between the absolute LFC of each output gene of the TU and each gene expressing 

an input TF common to all 3 genes.    

  
 LB0.75x 
 PvShuffled PvEmp PvSorted R2 Emp R2 Sorted 

1st gene 1.00 0.00 0.00 0.05 0.89 

2nd gene 0.91 0.01 0.00 0.02 0.91 

3rd gene 0.96 0.00 0.00 0.03 0.90 
 LB0.5x 
 PvShuffled PvEmp PvSorted R2 Emp R2 Sorted 

1st gene 0.95 0.00 0.00 0.05 0.84 

2nd gene 0.96 0.00 0.00 0.05 0.81 

3rd gene 0.79 0.00 0.00 0.04 0.88 
 LB0.25x 
 PvShuffled PvEmp PvSorted R2 Emp R2 Sorted 

1st gene 0.82 0.00 0.00 0.04 0.88 

2nd gene 0.97 0.00 0.00 0.04 0.86 

3rd gene 0.88 0.02 0.00 0.02 0.92 
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Table S12. (Related to Figure 4B and Supplementary Figure S17). Analysis of Covariance 
of results in Supplementary Figure S17. Analysis of covariances, ANCOVA (Methods section 

Statistical tests d) to test if the red fitting lines in Supplementary Figure S17 have the same 

intercept (I) and/or slope (S). Fitting lines calculated for the shifts from the control, to assess the 
correlation between the absolute of LFC, log2 fold change of each output gene belonging to a 

Transcription Unit (TU) of size 3 (i.e., 1st, 2nd and 3rd gene in the TU following the transcription 

start site), and the |LFC| of each gene known to express an input TF common to the 3 genes in 

the TU. We evaluate if the fitting lines differ between the 1st, 2nd, and 3rd gene, for each shift. Also, 

we evaluate if the fitting lines differ between the different shifts, for the 1st, 2nd, and 3rd gene, 

respectively. We consider 2 lines to be statistically different in I and/or S at 0.1 significance level.  

  

P-value 
 LB0.75x LB0.5x LB0.25x 
 I S I S I S 

1st gene vs 2nd gene 0.94 0.46 0.64 1.00 0.72 0.98 

1st gene vs 3rd gene 0.79 0.69 0.88 0.72 0.61 0.32 

2nd gene vs 3rd gene 0.86 0.73 0.52 0.72 0.89 0.30 
 

 1st gene 2nd gene 3rd gene 
 I S I S I S 

LB0.75x vs LB0.5x 0.09 0.42 0.23 1.00 0.09 0.50 

LB0.75x vs LB0.25x 0.00 0.20 0.00 0.66 0.00 0.12 

LB0.5x vs LB0.25x 0.18 0.52 0.03 0.52 0.06 0.21 
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Table S13. (Related to Supplementary Figures S20C and S21) Analysis of Covariance of 
results in Supplementary Figure S21. Analysis of covariances (ANCOVA, Methods section 

Statistical tests d) to assess if the fitting lines in Supplementary Figure S21 have the same 

intercept (I) and/or slope (S). We evaluate, as a function of KTF (number of input transcription 
factors), the chance of correlation between |LFC| and the shift in mean RNA Polymerase (RNAP) 

concentration. We consider 2 lines to be statistically different in I and/or S if P-value < 0.1. 

 
P-value 

 KTF = 0 KTF = 1 KTF = 2 KTF = 3 KTF = 4 KTF = 5 KTF = 6 KTF = 7 
 I S I S I S I S I S I S I S I S 

KTF = 0 1.00 1.00               

KTF = 1 0.00 0.00 1.00 1.00             

KTF = 2 0.00 0.00 0.00 0.00 1.00 1.00           

KTF = 3 0.00 0.00 0.00 0.00 0.12 0.19 1.00 1.00         

KTF = 4 0.00 0.00 0.00 0.02 0.65 0.64 0.14 0.18 1.00 1.00       

KTF = 5 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 1.00 1.00     

KTF = 6 0.00 0.00 0.00 0.00 0.20 0.26 0.70 0.69 0.11 0.15 0.24 0.31 1.00 1.00   

KTF = 7 0.00 0.00 0.00 0.00 0.01 0.03 0.13 0.17 0.00 0.01 0.85 0.89 0.24 0.30 1.00 1.00 
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Table S14. (Related to Figure 4D and Supplementary Figures S24C-S24F) Statistical tests 
between the distributions in Supplementary Figures S24C-S24F. P-values from the 2-sample 

T-test and 2-sample KS-test confronting the distributions and the Z-test (Methods section 

Statistical tests a). For the z-test, the mean and standard deviation are from the distribution of 
genes without input transcription factors (TFs), KTF = 0. The data is from the shift to LB0.25x. 

 
P-value, 2-sample T-test 

 KTF = 0 KTF = 1, CRP KTF = 1, FIS KTF = 2, FNR & ArcA 
KTF = 0 1.00    

KTF = 1, CRP 0.88 1.00   

KTF = 1, FIS 0.00 0.02 1.00  

KTF = 2, FNR & ArcA 0.06 0.08 0.00 1.00 

P-value, 2-sample KS-test 
 KTF = 0 KTF = 1, CRP KTF = 1, FIS KTF = 2, FNR & ArcA 

KTF = 0 1.00    

KTF = 1, CRP 0.64 1.00   

KTF = 1, FIS 0.00 0.00 1.00  

KTF = 2, FNR & ArcA 0.10 0.50 0.00 1.00 

P-value, Z-test 
KTF = 0 1.00 

KTF = 1, CRP 0.89 

KTF = 1, FIS 0.00 

KTF = 2, FNR & ArcA 0.16 
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Table S15. (Related to Supplementary Figures S26A and S26C) Analysis of the potential 
role of each global regulatory in the genome-wide shifts in RNA abundances. 

 

rpoD (σ70) Likely not influential due to lack of changes in its concentration. 

rpoN (σ54) Likely not influential due to lack of changes in its concentration in 2 of 3 perturbations. 

rpoS (σ38) Likely not influential since it follows the RNAP changes (Supplementary Figure S5). 

rpoH (σ34) 
Likely not influential due to lack of changes in its concentration in the first perturbation and 

the inconsistency with changes in the LFCs of its outputs (Supplementary Figure S26B). 

fliA (σ28) Likely not influential due to lack of changes in its concentration in 2 of 3 perturbations. 

rpoE (σ24) 
Likely not influential since, while it responded to 2 of 3 perturbations, its response strength 

was inconsistent with the perturbation strengths. Also, its outputs responded inconsistently.  

fecI (σ19) Likely not influential since it did not respond to any perturbation. 

ihfA Likely not influential since its outputs did not respond consistently. 

ihfB Likely not influential due to lack of change in its concentration with the perturbations. 

fnr Likely not influential due to lack of change in its concentration with the perturbations. 

arcA Likely not influential since its outputs did not respond consistently to either arcA or RNAP. 

fis Likely not influential due to lack of change in its concentration in 2 of 3 perturbations.  

lrp Likely not influential due to lack of change in its concentration with the perturbations. 

crp Likely not influential due to lack of change in its concentration with the perturbations. 

narL Likely not influential due to lack of change in its concentration in 2 of 3 perturbations.  

flhC Likely not influential as it followed the RNAP changes and only controls 32 genes. 

flhD Likely not influential as it followed the RNAP changes and only controls 32 genes. 

fur Likely not influential due to lack of change in its concentration with the perturbations. 

hns Likely not influential due to lack of change in its concentration with the perturbations. 
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Table S16. (Related to Figures 5A and 5B and Supplementary Figure S12) Numbers of 
genes with input transcription factors (TFs) with a given overall bias. Number of genes with 

a given absolute of the sum of the regulatory effects, ‘ r ’ of inputs ( b ) from 0 to 5.  Calculated 

from data from RegulonDB. 

  
b  0 1 2 3 4 5 

No. genes 2598 996 305 107 27 8 
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Table S17. (Related to Figure 5A) Number of genes with all input transcription factors (TFs) 
having the same regulatory effect (‘ r ’). Number of genes whose absolute sum of the r  of 

inputs ( b ) equals their number of input TFs, KTF (for KTF = 0 to 7). As KTF increases, the fraction 

of genes with b  = KTF decreases. 

  
KTF No. genes No. genes with b  = KTF 

0 2343 2343 

1 703 686 

2 389 169 

3 260 61 

4 133 19 

5 115 8 

6 37 0 

7 27 0 
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Table S18. (Related to Supplementary Figure S31) Analysis of Covariance of results in 
Supplementary Figure S31. We performed an analysis of covariances, ANCOVA (Methods 

section Statistical tests d) assessing if the fitting lines in Supplementary Figure S31 have the 

same intercept (I) and/or slope (S). The fitting lines were calculated for the shifts from the control 
(LB1.0x) to other media, to assess the correlation between the mean of |LFC| (absolute of LFC, 

log2 fold change), LFC , and the mean of b  (absolute of the sum of the regulatory effects (‘ r ’) 

of inputs), for each cohort of genes with a specific KTF (number of input transcription factors 

(TFs), from 0 to 5).  We consider that 2 lines have statistically different I and/or S at a 0.1 

significance level. 

  

P-value 
 LB0.75x LB0.5x LB0.25x 
 I S I S I S 

LB0.75x 1.00 1.00     

LB0.5x 0.32 0.56 1.00 1.00   

LB0.25x 0.08 0.71 0.23 0.76 1.00 1.00 
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Table S19. Statistics of various features of the TFN topology of E. coli. Shown are the 

coefficients of determination (R2s) and corresponding p-values of statistical significance of a 

linear fit between the |LFC| (absolute log2 fold change) of each gene and its corresponding 

topological feature (defined in (15), Methods section Transcription Factor Network of Escherichia 

coli). We reject the null hypothesis that the data is best fit by a horizontal line at 0.1 significance 

level.  

 
 LB0.75x LB0.5x LB0.25x 

Topological feature P-value R2 P-value R2 P-value R2 
Avg. short path length 0.72 0.00 0.42 0.00 0.50 0.00 

Betweenness centrality 0.48 0.00 0.14 0.00 0.50 0.00 

Stress centrality 0.41 0.00 0.13 0.00 0.15 0.00 

Clustering coefficient 0.00 0.01 0.00 0.01 0.00 0.01 

Eccentricity 0.54 0.00 0.65 0.00 0.79 0.00 

Edge-count 0.26 0.00 0.27 0.00 0.73 0.00 

Out-degree 0.55 0.00 0.39 0.00 0.19 0.00 

Neighborhood connectivity 0.87 0.00 0.91 0.00 0.34 0.00 
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Table S20. Statistics of the mean behavior of the genes responsive to (p)ppGpp (16). 
Shown are the p-values from the 2-sample T-test (Methods section Statistical tests a) between 

the mean behavior of log2 fold change (LFC) of genes responsive to (p)ppGpp (16) and the LFC 

of all genes analyzed by RNA-seq.  

 

 LB0.25X 
LB0.5X 

125 min 
LB0.5X 

180 min 
LB0.75X LB1.5X LB2.0X LB2.5X 

After 5 min 0.18 0.00 0.87 0.29 0.00 0.00 0.00 

After 10 min 0.53 0.00 0.01 0.02 0.39 0.11 0.41 
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Table S21. Statistics of the behavior of sRNA. Shown are the p-values from a 2-sample T-test 

(Methods section Statistical tests a) between the mean log2 fold change (LFC) of sRNAs and the 

LFC of all genes analyzed by RNA-seq.  

 
P-value, 2-sample T-test 

 LB0.25X LB0.5X 

125 min 
LB0.5X 

180 min 
LB0.75X LB1.5X LB2.0X LB2.5X 

sRNA (93 genes) 0.39 0.1 0.32 0.13 0.23 0.24 0.40 

Number of DEG rRNAs 
sRNA 18 DEG 4 DEG 7 DEG 0 33 DEG 33 DEG 30 DEG 
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Table S22. Statistics of the behavior of rRNAs. Shown, for each shift, are the p-values from 

the 2-sample T-test (Methods section Statistical tests a) between the mean log2 fold change 

(LFC) of rRNAs and the LFC of all genes analyzed by RNA-seq.  Also shown is the number of 

DEG genes. 

 
P-value, 2-sample T-test 

 LB0.25X LB0.5X 

125 min 
LB0.5X 

180 min 
LB0.75X LB1.5X LB2.0X LB2.5X 

rRNA (22 genes) 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

Number of DEG rRNAs 
rRNA 0  0 0  0  15 DEG 0 2 DEG 
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Abstract

Closely spaced promoters in tandem formation are abundant in bacteria. We investigated

the evolutionary conservation, biological functions, and the RNA and single-cell protein

expression of genes regulated by tandem promoters in E. coli. We also studied the

sequence (distance between transcription start sites ‘dTSS’, pause sequences, and dis-

tances from oriC) and potential influence of the input transcription factors of these promot-

ers. From this, we propose an analytical model of gene expression based on measured

expression dynamics, where RNAP-promoter occupancy times and dTSS are the key regula-

tors of transcription interference due to TSS occlusion by RNAP at one of the promoters

(when dTSS � 35 bp) and RNAP occupancy of the downstream promoter (when dTSS > 35

bp). Occlusion and downstream promoter occupancy are modeled as linear functions of

occupancy time, while the influence of dTSS is implemented by a continuous step function, fit

to in vivo data on mean single-cell protein numbers of 30 natural genes controlled by tandem

promoters. The best-fitting step is at 35 bp, matching the length of DNA occupied by RNAP

in the open complex formation. This model accurately predicts the squared coefficient of

variation and skewness of the natural single-cell protein numbers as a function of dTSS.

Additional predictions suggest that promoters in tandem formation can cover a wide range

of transcription dynamics within realistic intervals of parameter values. By accurately captur-

ing the dynamics of these promoters, this model can be helpful to predict the dynamics of

new promoters and contribute to the expansion of the repertoire of expression dynamics

available to synthetic genetic constructs.

Author summary

Tandem promoters are common in nature, but investigations on their dynamics have so

far largely relied on synthetic constructs. Thus, their regulation and potentially unique

dynamics remain unexplored. We first performed a comprehensive exploration of the

conservation of genes regulated by these promoters in E. coli and the properties of their

input transcription factors. We then measured protein and RNA levels expressed by 30
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Escherichia coli tandem promoters, to establish an analytical model of the expression

dynamics of genes controlled by such promoters. We show that start site occlusion and

downstream RNAP occupancy can be realistically captured by a model with RNAP bind-

ing affinity, the time length of open complex formation, and the nucleotide distance

between transcription start sites. This study contributes to a better understanding of the

unique dynamics tandem promoters can bring to the dynamics of gene networks and will

assist in their use in synthetic genetic circuits.

Introduction

Closely spaced promoters exist in all branches of life in convergent, divergent, and tandem for-

mations [1–7]. Models of tandem promoters [8–10] have largely been based on measurements

of synthetic constructs [11–13] and predict that such promoter arrangements result in unique

transcription dynamics due to the interference between RNAPs transcribing the promoters

[9,10,14–19].

When an RNAP is committed to form the open complex (OC), a process lasting up to hun-

dreds of seconds [20–22], it occupies approximately 35 base pairs (bp), from the transcription

start site (TSS, position 0) until position -35 [23–25]. If the TSS of a neighbouring promoter is

closer than 35 bp it will not be possible for both promoters to be occupied simultaneously,

since an RNAP occupying one of them will ‘occlude’ the other, preventing it from being

reached [9]. However, if the promoters are more than 35 bp apart, this occlusion does not

occur. Instead, interference will occur when RNAPs elongating from the upstream promoter

collide with an RNAP occupying the downstream promoter [14] (in either closed or open

complex formation), forcing one of the RNAPs to fall-off (both scenarios are likely possible,

and we expect it to differ with, e.g., the binding affinity of the RNAP to the downstream pro-

moter). Meanwhile, models based on empirical parameter values suggest that collisions

between two elongating RNAPs are rare (because events such as pausing or simultaneous initi-

ations from both promoters are rare). Also, even if and when such collisions occur, they are

unlikely to result in fall-offs since the RNAPs are moving at similar speeds and in the same

direction [9,10,26].

Models suggest that both forms of interference decrease the mean RNA production rate

while increasing its noise based on the distance between promoters (dTSS), their strengths [10],

and the time spent between commitment of the RNAP to OC and escape from the promoter

region [27]. These hypotheses have yet to be empirically validated in natural tandem

promoters.

We studied how dTSS and the time spent by RNAPs on the TSSs affect gene expression

dynamics due to interference between the transcription processes of tandem promoters (Fig

1). We consider only the natural tandem promoters that neither overlap with nor have in

between another gene (positionings I and II, which differ in if the promoter regions overlap or

not) (see the other arrangements in Fig A in the S2 Appendix). The numbers of these arrange-

ments in E. coli are shown in Table H in the S3 Appendix. From the measurements of these

genes’ protein levels, we then establish a model that we use to explore the state space of poten-

tial dynamics under the control of tandem promoters (Fig 2 illustrates our workflow).

Results

E. coli has 831 genes controlled by two or more promoters in tandem formation

(RegulonDB and section ‘Selection of natural genes controlled by tandem promoters’
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in the S1 Appendix). However, to study the dynamics of genes controlled by tandem

promoters, we focused on only 102 of them, because their activity is expected to be undis-

turbed by neighboring genes in the DNA (arrangements I and II in Fig 1), for reasons

Fig 1. Interference between tandem promoters with different arrangements relative to each other. (A) Interference by an

RNAP occupying the downstream promoter on the activity of the elongating RNAP from upstream promoter. The TSSs need to be

at least 36 bp apart (the length occupied by an RNAP when in OC, [23,25]) (B) Interference by occlusion of one of the promoter’s

TSS by an RNAP on the TSS of the other promoter. The distance between the TSSs need to be � 35 bp apart. Blue clouds are

RNAPs. Black arrows sit on TSSs and point towards the direction of transcription elongation. Arrangements (I-II) of two

promoters studied in the manuscript in tandem formation are represented. The red rectangles are the protein coding regions. We

studied only the natural tandem promoters that neither overlap with nor have in between another gene (arrangements I and II,

which differ based on whether the promoter regions overlap or not). Other arrangements (not considered in this study) are shown

in Fig A in the S2 Appendix. Figure created with BioRender.com.

https://doi.org/10.1371/journal.pcbi.1009824.g001

Fig 2. Workflow. (I) We identified genes controlled by tandem promoters in Regulon DB. (II) Next, we measured the single-cell protein levels of

those genes with arrangements I and II that are tagged in the YFP strain library [28]. We also measured the mean RNA fold changes of these genes

over time (S1 Appendix, section ‘RNA-seq measurements and data analysis’). (III) We used the single-cell data to tune the model. (IV) Finally, we

used the model to explore the state space of protein expression. Figure created with BioRender.com.

https://doi.org/10.1371/journal.pcbi.1009824.g002
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described in section ‘Selection of natural genes controlled by tandem promoters’ in the S1

Appendix.

Further, these promoters do not have specific short nucleotide sequences capable of affect-

ing RNAP elongation (section ‘Pause sequences’ in the S4 Appendix). Also, the 102 genes

expressed by these promoters are not overrepresented in a particular biological process (sec-

tion ‘Over-representation test’ in the S4 Appendix). From time-lapse RNA-seq data (S1

Appendix, section ‘RNA-seq measurements and data analysis’), we also did not find evidence

that their dynamics are affected by their input transcription factors (TFs) in our measurement

conditions (section ‘Input-output transcription factor relationships’ in the S4 Appendix) nor

by H-NS in a consistent manner (section ‘Regulation by H-NS’ in the S4 Appendix). Finally,

they do not exhibit any particular TF network features (Table C in the S3 Appendix). As such,

neither input TFs nor specific nucleotide sequences are considered in the model below. In

addition to all of the above, we found no correlations between the shortest distance from the

TSS of upstream promoters from the oriC region in the DNA and expression levels (section

‘Relationship with the oriC region’ in the S4 Appendix).

Model of gene expression controlled by tandem promoters

RNAPs bind, slide along, and unbind from a promoter several times until, eventually, one

of them finds the TSS [29–30], commits to OC at the TSS, and initiates transcription

elongation.

Reactions (1A1) are a 4-step (I-IV) model of transcription [20,31]. The forward reaction in

step I in (1A1) models RNAP binding to a free promoter (Pfree), which becomes no longer free

albeit the RNAP might not yet have reached the TSS. This state, pre-finding of the TSS, is here

named Pbound and its occurrence increases with RNAP concentration, [R]. Next, as it perco-

lates the DNA, the RNAP should find and stop at the nearest TSS and form a closed complex

(CC) with the DNA (step II, Reaction 1A1). CCs are unstable, i.e. reversible [22] (reaction

1A2) but, eventually, one of them will commit to OC irreversibly [32], via step III, Reaction

1A1 [21–22]. It follows RNAP escape from the TSS, freeing the promoter (step IV, Reaction

1A1) [33–37]. Then, the RNAP elongates (Relong) until producing a complete RNA (reaction

1A3) and freeing itself.

These set of reactions usually model well stochastic transcription dynamics [20]. However,

if two promoters are closely spaced in tandem formation, they can interfere [38]. Fig 3 shows

sequences of events that can lead to interference between tandem promoters, not accounted

for by the model above.

From Fig 3, if the TSSs are sufficiently close, the occupancy of one TSS by an RNAP will

occlude the other TSS, blocking its kinetics [18]. This is accounted for by reaction 1A5, which

competes with CC formation in reaction 1a1. Its rate constant, kocclusion, is defined in the next

section. In (1A5), ‘u/d’ stands for occlusion of the upstream promoter by an RNAP on the TSS

of the downstream promoter.

Instead, if the TSSs are not sufficiently close, they will still interfere since the elongating

RNAP (Relong) starting from the upstream promoter can collide with RNAPs on the TSS of the

downstream promoter. This can dislodge either RNAP via (reaction 1A4) or (reaction 2A3),

depending on the sequence-dependent binding strength of the RNAP to the TSS [9].

Finally, once reaction 1A1 occurs, either reaction 1A3 or 1A4 occur. To tune their competi-

tion, we introduced the terms ωd and (1- ωd) in their rate constants, with ωd being the fraction

of times that an elongating RNAP from an upstream promoter finds an RNAP occupying the

downstream promoter. Meanwhile, ‘f’ is the fraction of times that the RNAP occupying the

downstream promoter falls-off due to the collision with an elongating RNAP, whereas ‘1-f’ is
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the fraction of times that it is the elongating RNAP that falls-off.
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Next, we reduced the model and derived its analytical solution. First, since Pcc completion

is expected to be faster than Pbound completion ([10] and references within) we merged them

into a single state, Poccupied, which represents a promoter occupied by an RNAP prior to com-

mitment to OC, whose time length is similar to Pbound.

Fig 3. Events leading to transcriptional interference between tandem promoters. (A) Sequence of events in transcription in isolated promoters.

A similar set of events occurs in tandem promoters, if only one RNAP interacts with them at any given time. (B / C) Interference due to the

occlusion of the downstream / upstream promoter by a bound RNAP, which will impede the incoming RNAP from binding to the TSS. (D)

Interference of the activity of the RNAP incoming from the upstream promoter by the RNAP occupying the downstream promoter. One of these

RNAPs will be dislodged by the collision. Created with BioRender.com.

https://doi.org/10.1371/journal.pcbi.1009824.g003
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Similarly, in standard growth conditions, the occurrence of multiple failures in escaping the

promoter per OC completion should only occur in promoters with the highest binding affinity

to RNAP. Thus, in general promoter escape should be faster than OC [20,32]. We thus merged

OC and promoter escape into one step named ‘events after commitment to OC’, with a rate

constant kafter. The simplified model is thus:

Pu
free!

kubind�½R�

Pu
occupied

!
kuafter

Pu
free þ Ru

elong ð1B1Þ

These two steps are not merged since only the first differs with RNAP concentration

[20,26,39]. Further, reports [40–41] indicate that E. coli has ~100–1000 RNAPs free for binding

at any moment but ~4000 genes, suggesting that the number of free RNAPs is a limiting

factor.

Finally, we merge (1A2), (1A5) and (1B1) in one multistep without affecting the model

kinetics:

Pu
free⇄

kubind�½R�

ku=d
occlusionþkuunbind

Pu
occupied

!
kuafter

Pu
free þ Ru

elong ð1C1Þ

Overall, this reduced model of transcription of upstream promoters has a multistep reaction

of transcription initiation (1C1), a reaction of transcription elongation (1A3) and a reaction

for failed elongation due to RNAPs occupying the downstream promoter (1A4).

Regarding RNA production from the downstream promoter, it should either be affected by

occlusion if dTSS � 35, or by RNAPs elongating from the upstream promoter if dTSS > 35 (Fig

3). We thus use reactions (2A1), (2A2), and (2A3) to model these promoters’ kinetics:

Pd
free⇄

kdbind�½R�
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occupied ð2A3Þ

Finally, one needs to include a reaction for translation (reaction 3), as a first order process

since protein numbers follow RNA numbers linearly (Fig F in the S2 Appendix), and reactions

for RNA and protein decay accounting for degradation and for dilution due to cell division

(reactions 4A and 4B, respectively). TF regulation is not included as noted above (Fig C and

panel A of Fig D in the S2 Appendix).

RNA!
kp
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RNA!
krd

; ð4AÞ

Prot!
kpd

; ð4BÞ
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Transcription interference by occlusion

In a pair of tandem promoters, the kocclusion of one of them should increase with the fraction of

time that the other one is occupied. Further, it should decrease with increasing dTSS between

the two promoters’ TSS. We thus define kocclusion for the upstream (Eq 5A) and downstream

(Eq 5B) promoters, respectively as:

ku=d
occlusion ¼ kmax

ocl � IðdTSSÞ � od ð5AÞ

kd=u
occlusion ¼ kmax

ocl � IðdTSSÞ � ou ð5BÞ

Here, kmax
ocl is the maximum occlusion possible. It occurs when the two TSSs completely

overlap each other (dTSS = 0) and the TSS of the ‘other’ promoter is always occupied. Mean-

while, I(dTSS) models distance-dependent interference.

We tested four models of interference: ‘exponential 1’, ‘exponential 2’, ‘step’, and ‘zero

order’ (Table 1). The first two assume that the effects of occlusion decrease exponentially with

dTSS (first and second order dependency, respectively).

Meanwhile, the ‘Step’ model assumes that interference only occurs precisely in the region

in the DNA occupied by the RNAP when in OC formation. For this, it uses a logistic equation

to build a continuous step function, where L is the length of DNA (in bp) occupied by the

RNAP in OC. As such, L tunes at what dTSS the step occurs, while m is the steepness of that

step (set to 1 bp-1).

Finally, the ‘Zero order’ model assumes (unrealistically) that interference by occlusion, is

independent of dTSS. Fig G in the S2 Appendix shows how kocclusion differs with dTSS in each

model, for various parameter values.

Finally, ω is the fraction of time that the ‘other’ promoter is occupied. It ranges from 0 (no

occupancy) to 1 (always occupied). It is estimated for upstream and downstream promoters

as:

ou ¼
kubind � ½R�

kuunbind þ kubind � ½R� þ kuafter
ð6AÞ

od ¼
kdbind � ½R�

kdunbind þ kdbind � ½R� þ kdafter
ð6BÞ

Similarly, if kmax
occupy

is the maximum possible interference due to RNAPs occupying the down-

stream promoter, koccupy is defined as:

koccupy ¼ ou � kafter � kmax
occupy � ð1 � f Þ ð7Þ

Table 1. Potential models of transcriptional interference due to promoter occlusion considered.

Interference by occlusion I(dTSS) kocclusion
Exponential 1 (“Exp1”) e� ðb1 �dTSSÞ kmax

ocl � e� ðb1 �dTSSÞ � o

Exponential 2 (“Exp2”) e� ðb1 �dTSSþb
2

�d2
TSSÞ kmax

ocl � e� ðb1 �dTSSþb
2

�d2
TSSÞ � o

Step (“Step”) 1 � 1

1þe� m�ðdTSS � LÞ kmax
ocl � 1 � 1

1þe� ðdTSS � LÞ

� �
� o, for m = 1 bp-1

Zero order (“ZeroO”) k kmax
ocl � o

https://doi.org/10.1371/journal.pcbi.1009824.t001
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Analytical solution of the moments of the single-cell protein numbers

Next, we derived an analytical solution of the expected mean single-cell protein numbers at

steady state, MP, which is later tuned to fit the empirical data. For any gene, regardless of the

underlying kinetics of transcription, kr is the effective rate of RNA production. Based on the

reactions above, the mean protein numbers in steady state will be (see sections “Analytical

model of mean RNA levels controlled by a single promoter in the absence of a closely spaced

promoter” and “Derivation of mean protein numbers at steady state produced by a pair of tan-

dem promoters” in the S1 Appendix):

MP ¼
kr � kp
krd � kpd

ð8Þ

This equation applies to a pair of tandem promoters as well. In that case, assuming that

kbind of the two tandem promoters is similar, we have:

kr ¼

kbind � ½R� � kafter � ð1 � od � f Þ
kocclusion þ kbind � ½R� þ kunbind þ kafter

þ

kbind � ½R� � kafter
kocclusion þ koccupy þ kbind � ½R� þ kunbind þ kafter

0

B
B
B
B
@

1

C
C
C
C
A

ð9Þ

To derive the other moments, we considered that empirical single-cell protein numbers in

E. coli are well fit by negative binomials [28]. Consequently, Mp and the squared coefficient of

variation CV2
P , should be related as (Equations S28 to S38 in the S1 Appendix):

log
10

CV2

P

� �
¼ log

10
ðC1Þ � log

10
MPð Þ; with C1 ¼

kp
kpd þ krd

ð10Þ

This relationship matches empirical data at the genome wide level, except for genes with

high transcription rates [42]. Additionally, we further derived a relationship (Section ‘CV2 and

Skewness of single-cell protein expression of a model tandem promoters’ in the S1 Appendix)

between MP and the skewness, SP, of the single-cell distribution of protein numbers:

log
10

SPð Þ ¼ log
10

C2ð Þ �
1

2
� log

10
MPð Þ; with C2 ¼ 2

ffiffiffiffiffi
C1

p
�

1
ffiffiffiffiffi
C1

p ð11Þ

Single-cell distributions of protein numbers

To validate the model, we measured by flow-cytometry the single-cell distributions of protein

fluorescence of 30 out of the 102 genes known to be controlled by tandem promoters (with

arrangements I and II). Measurements were made in 1X and 0.5X media (3 replicates per con-

dition) using cells from the YFP strain library (section ‘Strains and Growth Conditions’ in the

S1 Appendix). Data from past studies show that, in these 30 genes, RNA and protein numbers

are well correlated (Fig F in the S2 Appendix) in standard growth conditions. Past studies also

suggest that most of these genes are active during exponential growth (~95% of our 30 genes

selected should be active, according to data in [43] using SEnd-seq technology).

Single-cell distributions of protein expression levels are shown in Fig 4A for one of these

genes as an example. The raw data from all 30 genes (only one replicate) are shown in Fig H in

the S2 Appendix. Finally, the mean, CV2 and skewness for each gene, obtained from the tripli-

cates, are shown in Excel sheets 1 and 2 in the S2 Table. In addition, we also show this mean,

CV2 and skewness after subtracting the first, second, and third moments of the single-cell dis-

tribution of the fluorescence of control cells, which do not express YFP (Sheets 3, 4 in the S2
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Table) (Section ‘Subtraction of background fluorescence from the total protein fluorescence’

in flow-cytometry in the S1 Appendix).

Based on the analysis of the data of these 30 genes, we removed from subsequent analysis

those genes (5 in 1X and 14 in 0.5X) whose mean, variance, or third moment of their protein

fluorescence distributions are lower than in control cells (not expressing YFP), i.e., than cellu-

lar autofluorescence (Sheets 3, 4 in S2 Table). As such, only one gene studied here (in condi-

tion 1X alone) codes for a protein that is associated to membrane-related processes, which

might affect its quantification (section ‘Proteins with membrane-related positionings’ in S4

Appendix). As such, we do not expect this phenomenon to influence our results significantly.

The data from these genes removed from further analysis is shown in Fig F in S2 Appendix

alone, for illustrative purposes.

Fig 4. Single cell protein numbers by microscopy and flow-cytometry. (A) Example single-cell distributions (3 biological replicates) of fluorescence (in

arbitrary units) of cells with a YFP tagged gene controlled by a pair of tandem promoters obtained by flow-cytometry, ‘FC’. (B) Example confocal microscopy

image of cells overlapped by the results of cell segmentation from the corresponding phase contrast image. The two white arrows show the dimensions of the

image, for scaling purposes. (C) Mean single-cell protein fluorescence of 10 genes (Table G in the S3 Appendix) when obtained by FC plotted against when

obtained by microscopy, ‘Mic’. (D) Mean single-cell protein fluorescence (own measurements) plotted against the corresponding mean single-cell protein

numbers reported in [28]. From the equation of the best fitting line without y-intercept (y-intercept = 0), we obtained a scaling factor, sf, equal to 0.09.

https://doi.org/10.1371/journal.pcbi.1009824.g004
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We started by testing the accuracy of the background-subtracted flow-cytometry data by

confronting it with microscopy data (also after background subtraction, see section ‘Micros-

copy and Image Analysis’ in the S1 Appendix). We collected microscopy data on 10 out of the

30 genes (Table G in the S3 Appendix). The microscopy measurements of the mean single-cell

fluorescence expressed by these genes (example image in Fig 4B), were consistent, statistically,

with the corresponding data obtained by flow-cytometry (Fig 4C).

Next, we converted the fluorescence distributions from flow-cytometry (25 genes in 1X and

16 genes in 0.5X) into protein number distributions. In Fig 4D we plotted our measurements

of mean protein fluorescence in 1X against the protein numbers reported in [28] for the same

genes, in order to obtain a scaling factor (sf = 0.09). Using sf, we estimated MP, CV2
P , and SP of

the distribution of protein numbers expressed by the tandem promoters in (Sheets 5, 6 in S2

Table) (Section ‘Conversion of protein fluorescence to protein numbers’ in S1 Appendix).

To test the robustness of the estimation of the scaling factor, we also estimated a scaling fac-

tor from 10 other genes present in the YFP strain library [28] (listed in Table B in S3 Appen-

dix). These genes were selected as described in the section ‘Selection of natural genes

controlled by single promoters’ in S1 Appendix. Using the data from this new gene cohort

(Panel A of Fig I in S2 Appendix) reported in S3 Table, we estimated a scaling factor of 0.08,

supporting the previous result. Meanwhile, since when merging the data from tandem and sin-

gle promoters, the resulting scaling factor equals 0.09 (Panel B of Fig I in S2 Appendix), we

opted for using 0.09 from here onwards.

We also tested how sensitive the estimated scaling factor is to the removal of data points.

Specifically, for 1000 times, we discarded N randomly selected data points, and estimated the

resulting scaling factor. We then compared, for each N, the mean and the median of the distri-

bution of 1000 scaling factors (Fig J in S2 Appendix). Since the median is not sensitive to outli-

ers, if mean and median are similar, one can conclude that the scaling factor is not biased by a

few data points. Visibly, the mean and the median only start differing for N larger than 6,

which corresponds to nearly 30% of the data.

Log-log relationship between the mean single-cell protein numbers of

tandem promoters and the other moments

We plotted MP against CV2
P and SP in log-log plots, in search for the fitting parameters, ‘C1’

and ‘C2’, to estimate the rate of protein production per RNA (Eq 10). To increase the state

space covered by our measurements, in addition to M9 media (named ‘1X’), we also used

diluted M9 media (named ‘0.5X’), known to cause cells to have lower RNAP concentrations

(Fig 5A) (Section ‘Strains and growth conditions’ in the S1 Appendix), without altering the

division rate (Panels A and B of Fig K in the S2 Appendix). We note that 1X and 0.5X only

refer to the degree of dilution of the original media and not to how much RNAP concentration

and consequently, protein concentrations, were reduced by media dilution. From the same fig-

ures, we attempted stronger dilutions, but no further decreases in RNAP concentration were

observed and the growth rate decreased.

Next, from Fig 5B, most genes (of those expressing tangibly in both media) suffered similar

reductions (well fit by a line) in protein numbers with the media dilution, as expected by the

model of gene expression (Eqs 8 and 9). This linear relationship could also be interpreted as

evidence that the difference in expression of these genes between the two conditions is not

affected by TFs in our measurement conditions. Namely, if TF influences existed, and TF

numbers changed, they would likely be diversely affected by their output genes (weakly and

strongly activated, repressed, etc.) and, thus, our proteins of interest would not have changed

in such similar manners (linearly).

PLOS COMPUTATIONAL BIOLOGY Analytical kinetic model of native tandem promoters in E. coli

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009824 January 31, 2022 10 / 23

https://doi.org/10.1371/journal.pcbi.1009824


Meanwhile, as in [42,44], CV2
P decreases linearly with MP (log-log scale), irrespective of

media (R2 > 0.8 in all fitted lines), in agreement with the model (Fig 5C). Fitting Eq 10 to the

data, we extracted C1 in each condition. SP also decreases linearly with MP, irrespective of the

media (Fig 5D). Similar to above, Eq 11 was fitted to each data set and C1 and C2 were obtained

(R2 > 0.6 for all lines).

Since C1 from Fig 5C and 5D differed slightly (likely due to noise), we instead obtained C1

and C2 values that maximized the mean R2 of both plots. Using ‘fminsearch’ function in

MATLAB [45], we obtained C1 = 72.71 and C2 = 16.94 (R2 of 0.80 and 0.61, respectively) for

Fig 5C and Fig 5D, respectively.

Inference of parameter values and model predictions as a function of dTSS
We next used the model, after fitting, to predict how dTSS and the promoters’ occupancy regu-

late the moments of the single-cell distribution of protein numbers (MP, CV2
P , and SP) under

Fig 5. Relative RNAP concentrations along with the relationships between the moments of the single cell distributions of protein numbers. (A) Relative

RNAP levels measured by flow-cytometry (Section ‘flow-cytometry and data analysis’ in the S1 Appendix) in three media. (B) Scatter plot between MP in M9

(1X) and diluted M9 (0.5X) media. Also shown are the best fitting line and standard error and p-value for the null hypothesis that the slope is zero. (C) MP vs

CV2
P and (D) MP vs SP of single-cell protein numbers of genes with tandem promoters in M9 (1X) and M9 diluted (0.5X) media. The lines and their shades are

the best fitting lines and standard errors, respectively. ‘Merge’ stands for data from both 0.5X and 1X conditions.

https://doi.org/10.1371/journal.pcbi.1009824.g005
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the control of tandem promoters. We started by assuming the parameter values from the liter-

ature listed in Table 2 and tuned the remaining parameters.

To set the RNAP numbers in Table 2, we considered that the RNAPs affecting transcription

rates are the free RNAPs in the cell, and that, for doubling times of 30 min in rich medium,

there are ~1000 free RNAPs per cell [41]. Meanwhile, for doubling times of 60 min in minimal

medium, there are ~144 [40]. In both our media, we observed a doubling time of ~115 mins

(Fig 5B). Thus, we expect the free RNAP in 1X to also be ~144/cell or lower. Meanwhile, in

0.5X, we measured the RNAP concentration to be 17% lower than in 1X (Fig 5A) and no mor-

phological changes. Thus, we assume the free RNAP in 0.5X to equal ~120/cell.

Next, we fitted the Eqs (8) and (9) relating dTSS with log10 (MP) in all interference models

(Table 1), using the data on MP in 1X medium (Fig 6A) and the ‘fit’ function of MATLAB. For

this, we set kmax ¼ kmax
occupy ¼ kmax

ocl , for simplicity, as well as realistic bounds for each parameter to

infer. To avoid local minima, we performed 200 searches, each starting from a random initial

point, and selected the one that maximized R2. Results are shown in Table 3.

Next, we inserted all parameter values (empirical and inferred) in Eqs (10) and (11) to pre-

dict CV2
P and SP in 1X medium (Fig 6B and 6C). Also, we inserted the same parameter values

and the estimated RNAP numbers in 0.5X medium in Eqs (8–11) to obtain the analytical solu-

tions for MP, CV2
P and SP for 0.5X medium (Fig 6D,6E and 6F).

From Fig 6, the data is ‘noisy’, which suggests that it is not possible to establish if the models

are significantly different. As such, here we only select the one that best explains the data,

based on the R2 values of the fittings. Table 3 shows the mean R2 for MP, CV2
P , and SP when

confronting the model with the data. Overall, from the R2 values, the step model is the one that

best fits the data. Meanwhile, the ‘ZeroO’ model is the least accurate, which supports the exis-

tence of distinct kinetics when dTSS is smaller or larger than 35 nucleotides, which is the length

of the RNAP when committed to OC on the TSS [23–25].

In summary, the proposed model of expression of genes under the control of a pair of tan-

dem promoters is based on a standard model of transcription of each promoter, which are sub-

ject to interference, either due to occlusion of the TSSs or by RNAP occupying the TSS of the

downstream promoter. The influence of each occurrence of these events is well modeled by

linear functions of TSS occupancy times, while their dependency on dTSS is modeled by a

Table 2. Parameter values imposed identically on all models.

Parameter description Parameter Value References

Inverse of the mean time to complete OC kafter 0.005 s-1 Differs between promoters. Since empirical data lacks, we used the data

from in vivo single RNA measures for Lac-Ara-1 [20].

RNA and protein dilution due to division kdil ¼
lnð2Þ

D
1.005× 10−4 s-1 Legend of Fig H in the S2 Appendix.

RNA degradation krdeg 2.3 × 10−3 s-1 [28]

RNA decay due to dilution from cell

division and due to degradation

krd = krdeg + kdil 2.4 × 10−3 s-1 From row 2.

Protein degradation kpdeg 2.93 × 10−5 s-1 [46], estimates it to be from ~6×10−5 to ~2×10−5. We used the value in

[47], in that interval.

Protein decay due to dilution by cell

division and degradation

kpd = kpdeg
+ kdil

1.3 × 10−4 s-1 From rows 2 and 5.

Fall-off probability of the RNAP occupying

the downstream promoter

f 50% (0.5) Set here (likely sequence-dependent)

Protein production rate constant kp =

C1×(kpd+krd)
0.18 s-1 C1 is estimated here.

Free RNAP per cell [R] 144/cell in 1X and 120/cell

in 0.5X media

See main text.

https://doi.org/10.1371/journal.pcbi.1009824.t002
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continuous step function. If dTSS is larger than 35 bp, effects from the RNAP occupying the

downstream promoter can occur, else occlusion can occur.

We then confronted the analytical solutions of the step model with stochastic simulations

(Section ‘Stochastic simulations for the step inference model’ in the S1 Appendix). We first

assumed various dTSS, but fixed kbind, for simplicity. Visibly, MP, CV2
P , and SP of the stochastic

simulations are well-fitted by the analytical solution, supporting the initial assumption that

CV2
P , and SP follow a negative binomial (Fig M in the S2 Appendix).

However, natural promoters are expected to differ in kbind as they differ in sequence

[48,49]. Thus, we introduced this variability and studied whether the analytical model holds.

To change the variability, we obtained each kbind from gamma distributions (means shown in

Table 3 and CVs in Table I in the S3 Appendix). We chose a gamma distribution since its val-

ues are non-negative and non-integer (such as rate constants). Meanwhile, all parameters of

the step model, aside from kbind, are obtained from Tables 2 and 3. For dTSS � 35 and dTSS >

35, and each CV considered, we sampled 10000 pairs of values of kbind�[R], and calculated M,

CV2 and S for each of them. Next, we estimated the average and standard deviation of each sta-

tistics. From Fig N in the S2 Appendix, if CV(kbind)<1, the analytical solution is robust. In that

the standard error of the mean is smaller than MP/3. Notably, for such CV, the strength of the

Fig 6. Empirical data and analytical model of how dTSS influences the single-cell protein numbers of genes controlled by tandem promoters. (A) Mean,

(B) CV2, and (C) S of single protein numbers in the 1X media as a function of dTSS. (D), (E), and (F) show the same for the 0.5X media, respectively. Each red

dot is the mean from 3 biological repeats for a pair of promoters (S2 Table). The dots were also grouped in 3 ‘boxes’ based on their dTSS. In each box, the red

line is the median and the top and bottom are the 3rd and 1st quartiles, respectively. The vertical black bars are the range between minimum and maximum of

the red dots. In A, all lines are best fits. In B, C, D, E, and F, all lines are model predictions, based on the parameters used to best fit A. The insets show the R2

for each model fit and prediction.

https://doi.org/10.1371/journal.pcbi.1009824.g006
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two paired promoters would have to differ unrealistically by more than 2000%, on average

(Table I in the S3 Appendix). Thus, we find the analytical solution to be reliable.

From our estimation of kp, we further estimated a protein-to-RNA ratio,
MP

MRNA
¼

kp
kpd

. From

Eq 8 and Table 2, we find that
kp
kpd

~ 1418 in both media, which agrees with previous estimations

(~1832 in 27]).

Next, we used the fitted model to predict (using Eqs 8 to 11) the influence of promoter

occupancy (ω) on the MP, CV2
P and SP of upstream and downstream promoters. We set dTSS to

20 bp to represent promoters where � 35, and to 100 bp to represent promoters with dTSS >

35. Then, for each cohort, we changed ω from 0.01 to 0.99 (i.e., nearly all possible values). In

addition, we estimated these moments when kocclusion, koccupy, and ω are all set to zero (i.e., the

two promoters do not interfere), for comparison.

From Fig 7, a pair of tandem promoters can produce less proteins than a single promoter

with the same parameter values, if dTSS � 35, which makes occlusion possible. Meanwhile, if

dTSS > 35, tandem promoters can only produce protein numbers in between the numbers pro-

duced by one isolated promoter and the numbers produced by two isolated promoters. In no

case can two interfering tandem promoters produce more than two isolated promoters with

equivalent parameter values. I.e., according to the model, the interference between tandem

promoters cannot enhance production.

Meanwhile, the kinetics of the upstream (Fig 7A and panel A of Fig O in the S2 Appendix)

and downstream promoters (Fig 7B and panel B of Fig O in the S2 Appendix) only differ in

that the downstream promoter is more responsive to ω.

Finally, consider that the model predicts that transcription interference should occur in

tandem promoters, either due to occlusion if dTSS � 35 occupancy or due to occupancy of the

downstream promoter if dTSS > 35. Meanwhile, in single promoters, neither of these phenom-

ena occurs. Thus, on average, two single promoters should produce more RNA and proteins

than a pair of tandem promoters of similar strength. Using the genome wide data from [28] on

Table 3. Parameter values inferred for each model.

Interference model Inferred parameter values Average R2

(M, CV2, S)

1X medium

Average R2

(M, CV2, S)

0.5X medium

Exponential 1 kbind�[R] = 1.09 × 10−2 s-1 × (cell vol)-1

kbind = 7.53 × 10−5 s-1

kunbind = 0.84 s-1

kmax = 677.7 s-1

b1 = 5.08 × 10−2 bp-1

0.21 (Fig 6A–6C) 0.09 (Fig 6D–6F)

Exponential 2 kbind�[R] = 9.71 × 10−3 s-1 × (cell vol)-1

kbind = 6.74 × 10−5 s-1

kunbind = 0.80 s-1

kmax = 554.8 s-1

b1 = 7.92 × 10−8 bp-1

b2 = 1.47 × 10−3 bp-2

0.25 (Fig 6A–6C) 0.12 (Fig 6D–6F)

Step kbind�[R] = 6.62 × 10−3 s-1 × (cell vol)-1

kbind = 4.60 × 10−5 s-1

kunbind = 0.49 s-1

kmax = 313.4 s-1

L = 35.11 bp (by best fitting, which corresponds to 35 bp)

0.35 (Fig 6A–6C) 0.15 (Fig 6D–6F)

zero order kbind�[R] = 4.63 × 10−3 s-1 × (cell vol)-1

kbind = 3.22 × 10−5 s-1

kunbind = 0.57 s-1

kmax = 6.48 s-1

-0.007 (Fig 6A–6C) -0.12 (Fig 6D–6F)

https://doi.org/10.1371/journal.pcbi.1009824.t003
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protein expression levels during exponential growth we estimated the double of the mean

expression level (it equals 183.8) of genes controlled by single promoters (section ‘Selection of

natural genes controlled by single promoters’ in the S1 Appendix). Meanwhile, also using data

from [28], the mean expression level of genes controlled by tandem promoters equals 148 (esti-

mated from the 26 that they have reported on), in agreement with the hypothesis. Nevertheless,

this data is subject to external variables (e.g., TF interference). A definitive test would require

the use of synthetic constructs, lesser affected by external influences.

Regulatory parameters of promoter occupancy and occlusion

Since the occupancy, ω, of each of the tandem promoters is responsible for transcriptional

interference by occlusion and by RNAPs occupying the downstream promoter, we next

explored the biophysical limits of ω. Eqs 6A and 6B define the occupancies of the upstream

and downstream promoters, ωu and ωd, respectively. For simplicity, here we refer to both of

them as ω. Fig 8A shows that ω increases with the rate of RNAP binding (kbind�[R]), but only

within a certain range of (high) values of the time from binding to elongating (k� 1
after). I.e.,

RNAPs need to spend a significant time in OC, if they are to cause interference, which is

expected. Similarly, ω changes with k� 1
after, but only for high values of kbind�[R]. I.e., if it’s rare for

RNAPs to bind, the occupancy will necessarily be weak.

In detail, from Fig 8A, ω can change significantly within 10−2 < kbind×[R] < 10 s-1 and 10−2

< k� 1
after < 102 s. For these ranges, we expect RNA production rates (kr, Eqs 5A, 5B, 6B, 7 and 9)

to vary from ~10−5 (if dTSS � 35) and ~10−4 (if dTSS > 35) until 10 s-1. In agreement, in E. coli,
promoters have RNA production rates from ~10−3 to 10−1 s-1 when induced [20–21,39,50–51]

and ~10−4 to 10−6 s-1 when non-fully active [28]. Thus, ω can differ within realistic intervals of

parameter values.

Next, we estimated kocclusion, the rate at which a promoter occludes the other as a function

of dTSS and ω using Eqs 6A and 6B. kmax is shown in Table 3. To model I(dTSS) we used the

step function in Table 1. Overall, kocclusion changes linearly with ω, when and only when dTSS �

35 (Fig 8B).

Fig 7. Mean protein numbers produced as a function of other promoter’s occupancy. MP of the single-cell distribution of the number of proteins produced

(A) by the upstream promoter alone, and (B) by the downstream promoter alone. Results are shown as a function of the fraction of times that the upstream

(0.01 � ωu� 0.99) and the downstream (0.01 � ωd � 0.99) promoter are occupied by RNAP. The null model is estimated by setting kocclusion, koccupy, and ω to

zero.

https://doi.org/10.1371/journal.pcbi.1009824.g007
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State space of the single cell statistics of protein numbers of tandem

promoters

We next studied how much the single-cell statistics of protein numbers (MP, CV2
P , and SP) of

the upstream, ‘u’, and downstream, ‘d’, promoters changes with ωu, ωd, and dTSS. Here, ωu and

ωd are increased from 0 to 1 by increasing the respective kbind (Eqs 6A and 6B).

From Fig 9A, if dTSS � 35 bp, reducing ωd while also increasing ωu is the most effective way

to increase Mu, since this increases the number of RNAPs transcribing from the upstream pro-

moter that are not hindered by RNAPs occupying the downstream promoter. If dTSS > 35 bp,

the occupancy the downstream promoter, ωd, becomes ineffective.

Oppositely, from Fig 9B, if dTSS � 35 bp, increasing ωd while also decreasing ωd, is the most

effective way to increase Md since this increases the number of RNAPs transcribing from the

Fig 8. Promoter occupancy ω estimated for the step model. (A) ω as a function of the rate constant for a free RNAP to bind to the unoccupied promoter

(kbind�[R]) and of the time for that RNAP to start elongation after commitment to OC, k� 1
after . The horizontal black line at ω = 1, is the maximum fraction of time

that the promoter can be occupied (i.e., the maximum promoter occupancy). (B) kocclusion plotted as a function of ω and dTSS. Since kocclusion increases with ω if

and only if dTSS � 35, it renders the simultaneous occupation of both TSS’s impossible.

https://doi.org/10.1371/journal.pcbi.1009824.g008

Fig 9. Mean protein expression as a function of both promoters’ occupancy. Expected mean protein numbers due to the activity of: (A) the upstream

promoter alone, (B) the downstream promoter alone, and (C) both promoters. MP is shown as a function of the fraction of times that the upstream (0 � ωu �

1) and the downstream (0 � ωd � 1) promoters are occupied by RNAP, when dTSS > 35 (yellow) and dTSS � 35 (dark green) bp.

https://doi.org/10.1371/journal.pcbi.1009824.g009
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downstream promoter does not interfere by RNAPs elongating from the upstream promoter.

If dTSS > 35 bp, the occupancy the upstream promoter, ωu, becomes ineffective.

Finally, from Fig 9C, regardless of dTSS, for small ωd and ωu, as the occupancies increase, Mt

increases quickly and in a non-linear fashion. However, as both ωd and ωu reach high values, Mt

decreases for further increases, if dTSS � 35 bp. Instead, if dTSS > 35 bp, Mt appears to saturate.

From Fig P in the S2 Appendix, CV2
P and SP behave inversely to MP.

Relevantly, in all cases, the range of predicted protein numbers (Fig 9C) are in line with the

empirical values (~10−1 to 103 proteins per cell) (Fig 4D).

Discussion

E. coli genes controlled by tandem promoters have a relatively high mean conservation level

(0.2, while the average gene has 0.15, with a p-value of 0.009), suggesting that they play particu-

larly relevant biological roles (section ‘Gene Conservation’ in the S1 Appendix). From empiri-

cal data on single-cell protein numbers of 30 E. coli genes controlled by tandem promoters, we

found evidence that their dynamics is subject to RNAP interference between the two promot-

ers. This interference reduces the mean single-cell protein numbers, while increasing its CV2

and skewness, and can be tuned by ω, the promoters’ occupancy by RNAP, and by dTSS. Since

both of these parameters are sequence dependent [21,31] the interference should be evolvable.

Further, since ω of at least some of these genes should be under the influence of their several

input TFs, the interference has the potential to be adaptive.

We proposed models of the dynamics of these genes as a function of ω and dTSS, using empiri-

cally validated parameter values. In our best fitting model, transcription interference is modelled

by a step function of dTSS (instead of gradually changing with dTSS), since the only detectable dif-

ferences in dynamics with changing dTSS were between tandem promoters with dTSS � 35 and

dTSS > 35 nucleotides (the latter cohort of genes having higher mean expression and lower vari-

ability). We expect that causes this difference tangible is the existence of the OC formation. In

detail, the OC is a long-lasting DNA-RNAP formation that occupies that strict region of DNA at

the promoter region [24,31]. As such, occlusion should share these physical features. Because of

that, when dTSS � 35, an RNAP bound to TSS always occludes the other TSS, significantly reduc-

ing RNA production. Meanwhile, if dTSS > 35, interference occurs when an RNAP elongating

from the upstream promoter is obstructed by an RNAP occupying the downstream promoter.

Meanwhile, contrary to dTSS, if one considers realistic ranges of the other model parameters,

it is possible to predict a very broad range of accessible dynamics for tandem promoter

arrangements. This could explain the observed diversity of single-cell protein numbers as a

function of dTSS (Fig 6). At the evolutionary level, such potentially high range of dynamics may

provide high evolutionary adaptability and thus, it may be one reason why genes controlled by

these promoters are relatively more conserved.

One potentially confounding effect which was not accounted for in this model is the accu-

mulation of supercoiling. Closely spaced promoters may be more sensitive to supercoiling

buildup than single promoters [52–54]. If so, it will be useful to extend the model to include

these effects [26]. Using such model and measurements of expression by tandem promoters

when subject to, e.g. Novobiocin [55], may be of use to infer kinetic parameters of promoter

locking due to positive supercoiling build-up.

Other potential improvements could be expanding the model to tandem arrangements

other than I and II (Fig 1), to include a third form of interference (transcription elongation of

a nearby gene).

One open question is whether placing promoters in tandem formation increases the robust-

ness of downstream gene expression to perturbations (e.g., fluctuations in the concentrations of
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RNAP or TF regulators). A tandem arrangement likely increases the robustness to perturbations

which only influence one of the promoters. Another open question is why several of the 102 tan-

dem promoters with arrangements I and II appeared to behave independently from their input

TFs (according to the RNA-seq data), albeit having more input TFs (1.62 on average) than

expected by chance (the average E. coli gene only has 0.95). As noted above, we hypothesize that

these input TFs may become influential in conditions other than the ones studied here.

Here, we also did not consider any influence from the phenomenon of “RNAP coopera-

tion” [56]. This is based on this being an occurrence in elongation, and we expect interactions

between two elongating RNAPs to rarely affect the interference between tandem promoters

[9]. However, potentially, it could be of relevance in the strongest tandem promoters.

Finally, a valuable future study on tandem promoters will require the use of synthetic tan-

dem promoters (integrated in a specific chromosome location) that systematically differ in

promoter strengths and nucleotide distances. This would allow extracting parameter values

associated to promoter interference to create a more precise model than the one based on the

natural promoters (which is influenced by TFs, etc). Similarly, measuring the strength of indi-

vidual natural promoters would contribute to this effort.

Overall, our model, based on a significant number of natural tandem promoters whose

genes have a wide range of expression levels, should be applicable to the natural tandem pro-

moters not observed here (at least of arrangements I and II), including of other bacteria, and

to be accurate in predicting the dynamics of synthetic promoters in these arrangements.

Currently, predicting how gene expression kinetics change with the promoter sequence

remains challenging. Even single- or double-point mutants of known promoters behave

unpredictably, likely because the individual sequence elements influence the OC and CC in a

combinatorial fashion. Consequently, the present design of synthetic circuits is usually limited

to the use of a few promoters whose dynamics have been extensively characterized (Lac, Tet,

etc.). This severely limits present synthetic engineering.

We suggest that a promising methodology to create new synthetic genes with a wide range

of predictable dynamics is to assemble well-characterized promoters in a tandem formation,

and to tune their target dynamics using our model. Specifically, for a given dynamics, it is pos-

sible to invert the model and find a suitable pair of promoters with known occupancies and

corresponding dTSS (smaller or larger than 35), which achieve these dynamics. A similar strat-

egy was recently proposed in order to achieve strong expression levels [57]. Our results agree

and further expand on this by showing that the mean expression level can also be reduced and

expression variability can further be fine-tuned.

Importantly, this can already be executed, e.g., using a library of individual genes whose

expression can be measured [28]. From this library, we can select any two promoters of inter-

est and arrange them as presented here, in order to obtain a kinetics of expression as close as

possible to a given target. Note that these dynamics have a wide range, from weaker to stronger

than that of either promoter (albeit no stronger than their sum, Fig 9C). Given the number of

natural genes whose expression is already known and given the present accuracy in assembling

specific nucleotide sequences, we expect this method to allow the rapid engineering of genes

with desired dynamics with an enormous range of possible behaviours. As such, these con-

structs could represent a recipe book for the components of gene circuits with predictable

complex kinetics.

Materials and methods

Using information from RegulonDB v10.5 as of 30th of January 2020 [58], we started by

searching natural genes controlled by two promoters (Section ‘Selection of natural genes
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controlled by tandem promoters’ in the S1 Appendix). Next, we studied their evolutionary

conservation and ontology (Sections ‘Gene conservation’ and ‘Gene Ontology’ in the S1

Appendix) and analysed their local topological features within the TFN of E. coli (Section ‘Net-

work topological properties’ in the S1 Appendix).

RNA-seq measurements were conducted in two points in time (Section ‘RNA-seq measure-

ments and data analysis’ in the S1 Appendix), to obtain fold changes in RNA numbers of genes

controlled by tandem promoters with arrangements I and II, their input TFs, and their output

genes (Fig 1). We used this data to search for relationships between input and output genes.

Next, a model of gene expression was proposed, and reduced to obtain an analytical solu-

tion of the single-cell protein expression statistics of tandem promoters (Sections ‘Derivation

of mean protein numbers at steady state produced by a pair of tandem promoters’ and ‘CV2

and skewness of the distribution of single-cell protein numbers of model tandem promoters’

in the S1 Appendix). This analytical solution was compared to stochastic simulations con-

ducted using the simulator SGNS2. (Section ‘Stochastic simulations for the step inference

model’ in the S1 Appendix).

We collected single-cell flow-cytometry measurements of 30 natural genes controlled by

tandem promoters (Section ‘Flow-cytometry and data analysis’ in the S1 Appendix) to validate

the model. For this, first, from the original data, we subtracted the cellular background fluores-

cence (Section ‘Subtraction of background fluorescence from the total protein fluorescence’ in

the S1 Appendix). Then, we converted the fluorescence intensity into protein numbers (Sec-

tion ‘Conversion of protein fluorescence to protein numbers in the S1 Appendix). From this

we obtained empirical data on M, CV2, and S of the single-cell distributions of protein num-

bers in two media (Sections ‘Media and chemicals’ and ‘Strains and growth conditions’ in the

S1 Appendix). Flow-cytometry measurements were also compared to microscopy data, sup-

ported by image analysis (Section ‘Microscopy and Image analysis’ in the S1 Appendix), for

validation.

Comparing the data from RegulonDB (30.01.2020) used here, with the most recent

(21.07.2021), we found that the numbers of genes controlled by tandem promoters of arrange-

ments I and II differed by ~4% (from 102 to 98). Regarding those whose activity was measured

by flow-cytometry, this difference is ~3% (30 to 31). Globally, 163 TF-gene interactions dif-

fered (~3.4%) while for the 98 genes controlled by tandem promoters of arrangements I and

II, only 10 TF-gene interactions differ (~2.7%). Finally, globally the numbers of TUs differed

by ~1%, promoters by ~0.6%, genes by ~1%, and terminators by ~15% (which did not affect

the genes studied, as they changed by ~4% only). These small differences should not affect our

conclusions.

Finally, a data package is provided in Dryad [59] with flow-cytometry and microscopy data

and codes used. The RNAseq data has been deposited in NCBI’s Gene Expression Omnibus

[60] and are accessible through GEO Series accession number GSE183139 (https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE183139).

Dryad DOI

10.5061/dryad.bnzs7h4bs.
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S1 Appendix: Extended Materials and Methods 

Selection of natural genes controlled by tandem promoters  

We define a pair of tandem promoters as two promoters in a head-to-tail formation transcribing the 

same gene, as in [1]. In order to find them in the genome of E. coli, from RegulonDB, we obtained the 

lists of all known transcription units (TUs), promoters (defined as stretches of 60 upstream and 20 

downstream nucleotide sequences from a TSS), gene sequences, TFs, and terminators [2]. 

From the list of TUs (3560), we extracted all genes (510) under the control of two and only two promoters 

in tandem formation with known TSS and DNA strand (information from the promoters’ list). Then, we 

calculated the nucleotide distance between their pair of TSSs (dTSS) and obtained the start and end 

positions of their sequence in the DNA. As a side note, we found additional 321 genes controlled by 

more than two promoters in tandem formation, which are not accounted for as they are not included in 

the model, for simplicity. 

Next, we removed all genes with another gene or promoter sequence (associated to a TU) located in 

the opposing strand anywhere between the start of the upstream promoter and the end of the gene 

sequence (186 out of 510) since their dynamics may be subject to interference from convergent RNAPs 

[1,3,4]  

Out of the remaining 324 genes, only 152 are in the first position of a TU or in a TU with only one gene. 

Since evidence suggests that the existence of multiple genes in a TU influences their transcription 

significantly, due to premature terminations, distance to the promoter etc. [5,6], we opted for keeping 

only those 152 genes. Subsequently, from the list of terminators, we obtained their start and end 

positions and DNA strand and filtered out (9 out of 152) genes with a terminator sequence in between 

the beginning of the upstream promoter and the end of the gene sequence, due to potential enhanced 

premature terminations. Finally, from these, we only considered promoter pairs (102 out of the 143 

genes) such that no gene is coded in the regions containing them or the space in between them (Fig 

1), so that elongation of other genes do not perturb their transcription.  

Finally, of these 102 genes, we measured the expression levels at the single-cell level of 30 of them 

(Table A in S3 Appendix) using a YFP strain library [7]. These genes are of the categories ‘I’ (9 genes) 

and ‘II’ (21 genes) in Fig 1. Their dTSS range from 84 to 173, and from 3 to 73 nucleotides, respectively. 

Selection of natural genes controlled by single promoters  

To select natural genes controlled by single promoters in the genome of E. coli, from RegulonDB, we 

obtained the lists of all known transcription units (TUs), promoters, gene sequences and terminators [2]. 

From the list of TUs (3560), we extracted all genes (1760) under the control of one and only one 

promoter with known TSS and DNA strand (information from the promoters’ list). Next, we filtered out 

all genes with another gene or promoter sequence (associated to a TU) located in the opposing strand 



anywhere between the start of the promoter and the end of the gene sequence (446 out of 1760) since 

their dynamics may be subject to interference from convergent RNAPs [1,3,4] Out of the remaining 

1314 genes, only 649 are in the first position of a TU or in a TU with only one gene and no other 

promoter sequence (associated to another TU) between the promoter and the end of the gene of 

interest. Since evidence suggests that the existence of multiple genes in a TU influences their 

transcription significantly, due to premature terminations, distance to the promoter etc. [5,6], we opted 

for keeping only those 649 genes. Subsequently, from the list of terminators, we obtained their start and 

end positions and DNA strand and filtered out (36 out of 649) genes with a terminator sequence in 

between the promoter and the end of the gene sequence, due to potential enhanced premature 

terminations. Finally, of these 613 genes, we obtained data on the expression levels of 126 genes from 

[7], which we used to compare expression levels of genes controlled by tandem promoters and genes 

controlled by single promoters. 

Meanwhile, for purposes of validating the scaling factor between protein fluorescence and numbers, of 

these 613 genes, we measured the expression levels at the single-cell level of 10 of them, randomly 

selected (Table B in S3 Appendix) [7]. 

Gene Conservation 

From a list of 5443 reference bacterial genomes [8], we used the Rentrez package [9] to obtain which 

genes are present in each genome. Next, we removed those genomes without gene entries (1310). 

Using the remaining genomes, we estimated the evolutionary conservation of each gene in the genome 

of MG1655 (GCF_000005845.2_ASM584v2), including those controlled by tandem promoters, by the 

ratio between the number of genomes where the gene is present, and the total number of genomes 

considered. Fig Q in S2 Appendix shows the conservation levels as a function of dTSS of the tandem 

promoters controlling the genes’ expression. 

Gene Ontology (GO) 

For gene ontology representations, we performed overrepresentation tests using the PANTHER 

Classification System [10], which finds statically significant overrepresentations using Fisher’s exact 

tests. For p-values < α (here set to 0.05), the null hypothesis that there are no associations between 

the gene cohort and the corresponding GO of the biological process is rejected, which we interpret as 

the gene cohort being associated with corresponding GO of the biological process.  

Network topological properties 

By ‘network topological property’ we refer to some feature of a gene that is related to how that gene is 

integrated with the network formed by TFs linking genes. We used Cytoscape [11] to extract these 

features for the genes controlled by tandem promoters from the known transcription factor (TF) network 



of E. coli, using information from RegulonDB v10.5 on all known transcription factors (TFs) and their 

binding sites [2].  

Next, for the two cohorts of genes with dTSS larger or not than 35 bps, based on definitions in [12], we 

calculated (Table C in S3 Appendix) the mean and standard error of each cohort’s average shortest 

path length (minimum number of edges between pairs of genes), clustering coefficient (fraction of input 

nodes to a node that are also linked), eccentricity (maximum non-infinite shortest path length between 

the node and another node in the network), edge count (number of edges/nodes that are connected to 

the node), indegree (number of incoming edges), neighbourhood connectivity (average connectivity of 

all nearest neighbours), and outdegree (number of outgoing edges).  

For each feature, we also obtained a p-value, which is the probability that the genes of the cohort have 

a smaller mean than the mean from all genes of E. coli. This probability is estimated from 105 cohorts 

assembled from random samples from all genes with replacement, using a non-parametric bootstrap 

method. The sample size is equal to the size of the cohort being compared with. 

Media and chemicals 

Measurements were performed in Luria-Bertani (LB) and M9 media (standard and diluted). The 

chemicals, such as tryptone, sodium chloride, agarose, MEM amino acids (50X), MEM Vitamin solution 

(100X), Glucose and antibiotic chloramphenicol, etc. were purchased from Sigma Aldrich. Yeast extract 

was purchased from Lab M (Topley House, Bury, Lancashire, UK). The components of LB medium 

were 10 g tryptone, 10 g NaCl, and 5 g yeast extract in 1000 mL distilled water. For M9 medium, the 

components were 1x M9 Salts, 2 mM MgSO4, 0.1 mM CaCl2; 5x M9 Salts with 34 g/L Na2HPO4, 15 

g/L KH2PO4, 2.5 g/L NaCl, 5 g/L NH4Cl supplemented with 100X vitamins, 0.2% Casamino acids and 

0.4% glucose. We also used ‘0.5X’ and ‘0.25X’ media by diluting the M9 medium to 1:1 and to 1:3 

respectively, using autoclaved distilled water [13-16]. 

Strains and growth conditions 

To measure RNA polymerase (RNAP) levels at different medium, we used the RL1314 strain with RpoC 

endogenously tagged with GFP (generously provided by Robert Landick), which was engineered from 

the W3110 strain (used here to measure background fluorescence).  

To measure single-cell protein levels of genes controlled by tandem promoters, we used genes 

endogenously tagged with the YFP coding sequence from the YFP fusion library [7]. These were 

purchased from the E. coli genetic stock center (CGSC) of Yale University, U.S.A. (Table B in S3 

Appendix), which has wild type MG1655 cells as the reference genome (and thus was used to measure 

cellular background fluorescence). Measurements of protein levels using this library are expected to be 

precise for a wide range of expression levels, given evidence for strong correlation in single gene 

expression levels when measured by RNA-fish, RNA-seq, mass spectrometry and flow cytometry (taken 

using the YFP library) [7]. The lesser accurate estimations occur for the weakest expressing genes 



[7][17], due to their values being near the level of cellular autofluorescence. For this reason as well, we 

do not consider all of the 30 genes in our analysis as described in the Results section. 

From a glycerol stock (-80°C), cells were streaked on LB agar plates with the appropriate antibiotics 

and incubated at 37°C overnight. From the plates, a single colony was picked, inoculated in LB medium 

and supplemented with appropriate antibiotics and incubated at 30°C overnight with shaking at 250 rpm. 

Next, overnight cultures were diluted into freshly prepared tailored media (see ‘Media and Chemicals’), 

with appropriate antibiotics with an O.D600 of 0.03 (Optical Density, 600 nm; Ultrospec 10, Amersham 

biosciences, UK) and allowed to grow at 30°C with shaking at 250 rpm until reaching the mid-

exponential phase (O.D600 ~0.4-0.5). At this stage, measurements of protein levels were conducted 

using flow-cytometry and/or microscopy. 

Growth curves 

Growth curves were measured by O.D600 using a spectrophotometer (Ultrospec 10; GE Healthcare). 

From the overnight culture, cells were diluted (1:10000) into the respective fresh media and allowed to 

grow while shaking (250 rpm). O.D.’s were recorded for 450 min. every 30 min. We performed 3 

biological replicates for each condition. We found negligible variability between replicates. The results 

shown are the averages and standard error of the mean. 

Microscopy and image analysis 

When reaching the mid-exponential growth phase, cells were pelleted by centrifugation (10000 rpm for 

1 min), and the supernatant was discarded. The pellet was re-suspended in 100 µL of the remaining 

medium Next, 3 µL of cells were placed in between 2% agarose gel pad and a coverslip and imaged 

using a confocal microscopy with a 100X objective. The fluorescence was measured with a 488 nm 

laser and a 514/30 nm emission filter. Phase-contrast images were simultaneously acquired for 

purposes of segmentation and to assess health, morphology, and physiology. 

Using the software CellAging [18], from phase contrast images, we segmented cells semi-automatically, 

correcting errors manually. Next, phase-contrast and corresponding fluorescence images were aligned 

to extract single-cell fluorescence intensities (example image in Fig 4B). We then performed 

background subtraction, i.e., from each cell’s total fluorescence we subtracted the mean fluorescence 

of control cells, not expressing YFP. 

RNA-seq measurements and data analysis  

We searched for correlations between the LFCs over time of genes controlled by tandem promoters 

(‘Tg’) and the LFCs over time of their output genes (‘Og’) as well as their input genes (‘Ig’).  

Given known rates of RNA and protein production and degradation in E. coli [7, 19-22], we expect 

changes in RNA numbers to take at least 60 min. on average, to propagate to protein numbers. Thus, 



we performed RNA-seq of cells in exponential growth phase at moments ‘0 min’, and then 20 and 180 

mins. later. We then calculated LFCs between 0 and 20 min, and between 0 and 180 min.  

Specifically, to assess if LFCs in Ig propagate to Tg, we compared changes in Ig between moments 0 

and 20, with changes in Tg between moments 0 and 180 min. Similarly, to assess LFCs in Tg propagate 

to Og, we compared changes in Tg between moments 0 and 20, with changes in Og between moments 

0 and 180 min. Results are shown in Panels A and B of Fig D in S2 Appendix. 

Sample preparation 

For RNA-seq experiments, single colonies of K12 MG1655 cells were picked from LB Agar plates and 

inoculated into 5 ml of LB medium. Cultures were grown overnight with shaking at 250 rpm. Next, these 

cultures were diluted to O.D600 of 0.05 in fresh LB medium and incubated, with a 250 rpm agitation. 

RNA-seq was performed over time (0, 20 and 180 min). Total RNA from 3 independent biological 

replicates in each medium was extracted using RNeasy kit (Qiagen). RNA was treated twice with DNase 

(Turbo DNA-free kit, Ambion) and quantified using Qubit 2.0 Fluorometer RNA assay (Invitrogen, 

Carlsbad, CA, USA). Total RNA amounts were determined by gel electrophoresis, using a 1% agarose 

gel stained with SYBR safe (Invitrogen). RNA was detected using UV with a Chemidoc XRS imager 

(Biorad).  

Sequencing was performed by GENEWIZ, Inc. (Leipzig, Germany). The RNA integrity number (RIN) 

was obtained with the Agilent 4200 TapeStation (Agilent Technologies, Palo Alto, CA, USA). Ribosomal 

RNA depletion was performed using Ribo-Zero Gold Kit (Bacterial probe) (Illumina, San Diego, CA, 

USA). RNA-seq libraries were constructed using NEBNext Ultra RNA Library Prep Kit (NEB, Ipswich, 

MA, USA). Sequencing libraries were multiplexed and clustered on 1 lane of a flow-cell. Samples were 

sequenced using a single-index, 2x150 bp paired-end (PE) configuration on an Illumina HiSeq 

instrument.  Image analysis and base calling were conducted with HiSeq Control Software (HCS).  Raw 

sequence data (.bcl files) were converted into fastq files and de-multiplexed using Illumina bcl2fastq 

v.2.20. One mismatch was allowed for index sequence identification. 

Data analysis 

RNA-seq data analysis pipeline was: i) RNA sequencing reads were trimmed with Trimmomatic [23] 

v.0.39 to remove possible adapter sequences and nucleotides with poor quality. ii) Trimmed reads were 

mapped to the reference genome, E. coli MG1655 (NC_000913.3), using the using the STAR aligner 

v.2.5.2b, which outputs BAM files [24]. iii) Then, ‘featureCounts’ from the Rsubread R package v.1.34.7 

was used to calculate unique gene hit counts [25]. iv) These counts were used for the differential 

expression analysis. Genes with less than 5 counts in more than 3 samples, and genes whose mean 

counts are less than 10 were removed from further analysis. We used the DESeq2 R package v.1.24.0 

[26] to compare gene expression between groups of samples and calculate p-values and log2 of fold 

changes using Wald tests (function nbinomWaldTest). P-values were adjusted for multiple hypotheses 

testing (Benjamini–Hochberg, BH procedure, [27]). 



Flow-cytometry and data analysis 

We measured single-cell fluorescence using a ACEA NovoCyte Flow Cytometer (ACEA Biosciences 

Inc., San Diego, USA). Upon reaching the mid-exponential phase (OD~0.4-0.5), cells were diluted 

(1:10000) into 1 mL of phosphate buffer saline (PBS) solution and vortexed for 5 s. For a single run, 

50000 events were collected at a flow rate of 14 µL/minute and a core diameter of 7.7 mm using the 

Novo Express software using a blue laser (488 nm) for excitation. We obtained the height of the 

fluorescein isothiocyanate channel (FITC-H) (530/30 nm filter). A PMT voltage of 600 volts was set for 

FITC. To avoid background signal from particles smaller than bacteria, the detection threshold was set 

to 5000 for FSC-H analyses. Three biological replicates were performed per condition.  

We applied unsupervised gating [28] to the flow-cytometry data, setting the fraction of single-cell events 

used in the analysis, α, to 0.99. We proved to be enough to remove non-cell events due to debris, 

doublets, fragments, cell clumps, and other undesired events. Reducing α did not change the results 

qualitatively.  

To remove outliers from the flow-cytometry distributions, we applied secondary gating. In detail, we 

sorted the data based on FITC-H values and calculated the difference between consecutive samples. 

Then, we obtained the indices of those differing by more than 10000 (approximately 10 times the mean 

fluorescent level observed). Next, we obtained the minimum of those indices to define the upper bound. 

Finally, values above this index were considered an outlier and discarded. In all measurements, never 

more than 10000 events were discarded, thus, more than 40000 were used for the analysis. 

Subtraction of background fluorescence from total protein 
fluorescence in flow-cytometry 

First, we collected mean background fluorescence from distributions of cells not carrying YFP. Then we 

measured the distributions of fluorescence of cells carrying the protein tagged with YFP. Having this, 

the protein fluorescence ‘g’ of a gene is obtained by subtracting mean background fluorescence ‘bg’ 

from the (total ‘T’) measured fluorescence. For the mean (M) protein fluorescence from a cell population, 

we write: 

( ) ( ) ( )M g M T M bg= −         (1) 

Similarly, the variance ‘Var’ is obtained by: 

( ) ( ) ( )= −Var g Var T Var bg        (2) 

The CV2 of the distribution protein fluorescence of a gene after background subtraction is: 



( )
( )

( )
2

2=
Var g
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         (3) 

Finally, the third moment of protein fluorescence and the skewness after background subtraction are 

given by: 

( )3 3 3( ) ( )  = −g T bg         (4) 
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g
S g
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         (5) 

After background subtraction, any genes with negative means, variance or third moment, will not be 

included in the data (except in Fig F in S2 Appendix for illustrative purposes). 

Conversion of protein fluorescence into protein numbers 

To convert protein fluorescence into protein numbers, we made a correlation plot between the mean 

protein fluorescence measured in our lab (after background subtraction) and the mean protein numbers 

reported in [7] for the same genes. We fitted a line to the data points by forcing the intercept with the Y 

axis to be at zero. The slope of the fitted line is used as a scaling factor (~0.09) with an R2 value of 0.68 

(Fig 4D). For protein fluorescence to protein numbers correction only the mean gets changed whereas 

the normalised moments CV2 and S remain unchanged. 

Analytical model of mean RNA levels controlled by a single 
promoter in the absence of a closely spaced promoter 

From Reactions 1c1 and 1a4 in the main manuscript, for an isolated promoter, one would have: 

 bind after
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k R k
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elongk
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At steady state Poccupied is: 
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Since necessarily:  

1free occupiedP P+ =          (10) 

From equations 9 and 10: 
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Note that, by definition (main manuscript, equations 6a and 6b), the fraction of time that an RNAP is 

bound to the promoter, ω, should equal Poccupied in (12). Meanwhile, at steady state, Relongbecomes: 

0elong
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From equations 12 and 14: 
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At steady state, the mean RNA numbers, MRNA, is: 
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n
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From equations 15 and 16s: 
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From S18, the RNA numbers at steady state do not depend on kelong. 

Derivation of mean protein numbers at steady state 
produced by a pair of tandem promoters 

For the upstream promoter, from (1c1), (1a3), and (1a4) in the main manuscript, at steady state: 
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From this and equation 6b in the main manuscript: 
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Meanwhile, for the downstream promoter, from reactions (2a1), (2a2), and (2a3) in the main manuscript, 

at steady state: 
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Having this, since at steady state the RNA numbers produced by a pair of tandem promoters should 

equal the sum of RNA numbers from the upstream (S20) and downstream (S22) promoters, we have: 
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Thus, the mean protein numbers is: 
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If the upstream and downstream promoters have similar strengths, i.e., if d u
bind bindk k , 
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equation above becomes: 
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Here, the symbols “u” and “d” are removed, as they no longer imply potentially different amounts. Having 

this, let kr be the effective transcription rate constant of a pair of tandem proteins. It should equal:  
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Thus, from equation 25 and 26: 
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CV2 and skewness of the distribution of single-cell protein 
numbers of model tandem promoters 

The distributions of protein numbers in E. coli cells, can, in general, be well approximated by a Gamma 

or by a negative binomial distribution [7]. We assume here a negative binomial distribution. For a given 

number of events, if r is the number of failures, p is the probability of success per event, and an ‘event’ 

is an attempt to produce a protein, then the mean, variance, and skewness of the single-cell distribution 

of protein numbers should equal: 
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The relationship between the mean, CV2 could be written as: 
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Substituting (S28) and (S29) in (S31) 
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Rewriting the above equation by assuming a scaling factor C1 as: 

1
1

1
=

−
C

p
          (33) 

2 1=P
P

CCV
M           (34) 

Taking log10 on both sides 



( ) ( )2
10 10 1 10log log ( ) log= −P PCV C M       (35) 

From [17], C1 is approximated as  

1

1

1 1

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= 

+
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p RNA
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        (36) 

1
p

pdk
 =  and 

1
RNA

rdk
 =  are the lifetimes of proteins and RNAs, respectively. The above equation is 

rewritten as: 

1 = 
+

p pd

pd pd rd

k k
C

k k k
         (37)  

1 =
+

p

pd rd

k
C

k k
         (38) 

From (S28) and (S30), the relationship between the mean, skewness could be written as: 

1
1
+

−
=P

P

p
pS

M
         (39) 

The equation can be rewritten assuming constant C2 as: 

2
1
1
+

=
−

pC
p

          (40) 

2=P
P

CS
M

          (41) 

Taking log10 on both sides 

( ) ( ) ( )10 10 2 10
1log log log
2

= − P PS C M      (42) 



The constants C1 and C2 are related as follows. From equation 33:  

1

11= −p
C           (43) 

Inserting S43 in S40: 

1
2

1

12

1

−

=
CC

C

          (44) 

The equation can be rewritten as 

2 1
1

12= −C C
C

         (45) 

Stochastic simulations for the step inference model 

Stochastic simulations of the models were done using the stochastic gene network simulator SGNS2 

[29]. These stochastic models were compared to the analytical solutions to assess how much variability 

can there be in  bindk R  without the analytical solution deviating too much.  

First, to compare analytical and stochastic solutions, we set dTSS between 0 and 180 with an increment 

of 30. For each dTSS, we calculated the occlusion rate constant (kocclusion) for upstream and downstream 

promoters (Equations 5a and 5b in the main manuscript). The other parameters are listed in Tables 2 

and 3 in the main manuscript. To obtain protein numbers at steady state, we have set the simulation 

time to 105 seconds and performed 1000 runs per condition. From these runs, for each condition, we 

calculated the mean, CV2 and skewness, along with their standard errors using bootstrapping (104 

resampling with replacement). Additional runs would slightly decrease the deviation between the two 

solutions. 
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S2 Appendix: Supporting Figures 

Fig A. Other arrangements of tandem promoters in E. coli. Unlike the arrangements I and II in Fig 

1 in the main manuscript, the arrangements here (III-XI) allow for overlaps with or in between other 

gene(s). The red, green, and blue rectangles are DNA regions coding for RNA. These arrangements 

are not considered in this study. Figure created with BioRender.com. 



 

Fig B. Local alignment scores. Local alignment scores between known pause sequences and the 

sequences in between the tandem promoter regions (grey bars). Also shown by red circles are the 

alignment scores between each pause sequence and randomly generated sequences with the same 

dTSS as the natural genes. The minimum alignment score to be considered significant is shown by a 

dashed black line. Finally, the blue vertical dashed line at dTSS = 35 bp shows the separation between 

genes subject to occlusion or not. 



 

 

Fig C. Correlation of the moments of the single-cell protein numbers between genes and their 
input TFs. Scatter plots between the moments of the single-cell protein numbers (in log10 scale) of 
genes regulated by tandem promoters (‘Tandem’) and their input TFs. (A) Mean, (B) CV2, and (C) 
Skewness. The blue line is the best linear fit, and its shadow is the standard error of the fit. The p-value, 
P is the probability that the slope of the line equals 0. If P < 0.05, there is a statistically significant 
correlation. The genes used in these results are listed in Table E in S3 Appendix. The axes differ widely 
in scales between the figures to facilitate visualization of the relationships. 

Fig D. Correlation of RNA fold changes of genes and their input TFs. Correlation plots between 

the LFCs of the RNA numbers of genes controlled by tandem promoters with their input and output 

genes. (A) LFCs (from 0 to 20 min) of 29 genes expressing input TFs plotted against the corresponding 
LFCs (from 0 to 180 min) of the genes controlled by tandem promoters. (B) LFCs (from 0 to 20 min) of 

genes controlled by tandem promoters plotted against the corresponding LFCs of their output genes 

(from 0 to 180 min). A total of 43 TF-gene interactions were analysed. RNA-seq measurements 

described in section “RNA-seq Measurements and Analysis in S1 Appendix”. The black line is the best 

linear fit and the grey shadow area is the standard error of the fit. The blue horizontal lines inside the 

boxes are the median, the top of the boxes are the 3rd quartile (Q3) and the bottom of the boxes are 

the first quartile (Q1). The error bars at the top and bottom range from (Q3+1.5*IQR) to (Q1-1.5*IQR), 



with an interquartile range: IQR = Q3 – Q1. The three box plots correspond to the data points with LFCs 

< 0, LFC between 0 and 0.5, and LFC > 0.5. Related to Table E and F in S3 Appendix. 

 

 

Fig E. Relationship between expression levels of the genes controlled by tandem promoters and 
the distance in nucleotides (bp) from the upstream promoter and the Oric region in the DNA. 
Data from 25 genes for the 1X condition. Also shown in a linear fit and the corresponding 1 standard 

error of the fit (shadow area). The p-value, P, is the probability that the slope of the line equals 0. 

 

 
Fig F. Correlation plot between the mean single-cell RNA levels (MRNA) and the mean single-cell 
protein numbers (MP). Both data are obtained from Ref. [28] in main manuscript and are processed to 
include only genes controlled by tandem promoters (classes I and II, Table H in S3 Appendix). The line 
is the best linear fit to the data, and its shadow area is the standard error of the fit. The p-value, P is the 
probability that the slope of the line equals 0. Since P < 0.05, we conclude that MRNA and MP are 
significantly correlated. The black balls correspond to 4 genes that were not considered when fitting the 
line, due to being outliners. In our own data, cells carrying these same 4 genes exhibited a fluorescence 
that was equal or lower than the cellular background fluorescence in either 1X or 0.5X media.  
 



 

Fig G. Models of transcription interference. Models of transcription interference between RNAPs in 

tandem promoters as a function of the dTSS between them. (A) ‘Exponential 1’ as a function for different 

values of ‘b1’. (B) ‘Exponential 2’ as a function at different values of ‘b2. (C) Continuous ‘step-like’ 

function for different values of ‘L’ (which is the dTSS at which the step occurs). (D) Zero order polynomial 

for different values of 
max
oclk . See Table 1 in the main manuscript for the definitions of these models and 

variables within. 

 



 
Fig H. Protein florescence distributions. Protein florescence distributions of genes controlled by 
tandem promoters measured by flow-cytometry. Each protein is tagged with a YFP (YFP strain library). 
Only 1 of 3 biological replicates is shown per gene. (A) M9 medium (1X). (B) Diluted M9 medium (0.5X). 
‘MG1655’ are control cells, not carrying YFP. Protein fluorescence is shown in arbitrary units. 

 



 

Fig I. Estimation of scaling factors using data from genes controlled by single promoters. A) 
Mean single-cell protein fluorescence (own measurements of genes controlled by single 
promoters) plotted against the corresponding mean single-cell protein numbers reported in 
[28]. From the equation of the best fitting line without y-intercept (y-intercept = 0), we obtained 
a scaling factor, sf, equal to 0.08. B) Same as (A) but the own measurements are of both single 
promoters and tandem promoters, merged. From the equation of the best fitting line without y-
intercept (y-intercept = 0), we obtained a scaling factor, sf, equal to 0.09. 

 

 
Fig J. Sensitivity test. Mean and median of scaling factor varies as a function of number of data points 

randomly dropped. 



 

Fig K. Growth curves and doubling times. A. Optical density (OD600) curves of E. coli MG1655 cells 

grown in 0.25X,0.5X and 1X media (section ‘Media and Chemicals’ in S1 Appendix). B. From these 

curves, the doubling time was estimated to be ~112 min in 0.5X and ~118 min in 1X. We used 115 min 

doubling time in the models. The estimation is made using the formula 
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( )
( )

( )2 1
2
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ln 2

ln
D t t

OD t
OD t

=  −
 
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 

 , with t2 and t1 being the end and start times (in minutes), 

respectively. They are marked by two vertical dashed black lines. The error bars denote the standard 

error of the mean. Ref. [28] in main manuscript reported ~150 min using 96 well-plates in the same 

conditions. The fact that we used culture tubes may explain the difference. 

 

 

Fig L. Mean R2 of the step interference model. Mean R2 of the step interference model to the 1X data 

in Fig 6A, 6B, and 6C, as a function of L (dTSS at which the step of the step function occurs). The Mean 



R2 is visibly maximized at L = 35, which marked by a grey dashed line. Relates to Fig 6 in the main 

manuscript. 

Fig M. Confronting the solutions of the analytical and stochastic model. (A) log10 of mean protein 

numbers, (B) log10 of CV2 of protein numbers and (C) log10 of Skewness of protein numbers as a function 

of dTSS. The blue line is the analytical solution of the step model. The blue dots are the mean results of 

stochastic simulations of the step model. The parameters used are shown in Tables 2 and 3 in the main 

manuscript. See Section ‘Stochastic simulations for the step interference model’ in S1 Appendix. 



 



 

Fig N. Solutions of the analytical model for different levels of variability of  bindk R . (Top) 

Mean, (Middle) CV2 and (Bottom) S of single-cell protein numbers produced by tandem promoters when 

dTSS ≤ 35 (left) and dTSS > 35 (right). The green bar is the analytical solution with 

 ( ) 0bindCV k R = . The other bars are from analytical solutions for various degrees of variability 

of  bindk R  of each promoter. 

 

Fig O. Variability and skewness in single-cell protein numbers produced from an upstream and 

from a downstream promoter as a function of promoter occupancy of the other promoter. 2
PCV  

and SP of the single-cell distribution of the number of proteins produced (A1 and A2) by the upstream 

promoter alone, and (B1 and B2) by the downstream promoter alone. Results are shown as a function 

of the fraction of times that the upstream (0.01 ≤ ωu ≤ 0.99) and the downstream (0.01 ≤ ωd ≤ 0.99) 

promoter are occupied by RNAP. The null model is estimated by setting kocclusion, ksitting, and ω to zero.  

 



 

 

Fig P. Variability and skewness in single-cell protein numbers as a function of promoter 
occupancy. Expected variability (CV2) and skewness (S) of the single cell distribution of protein 

numbers due to the activity of, respectively: (A1 and A2) the upstream promoter alone, (B1 and B2) the 

downstream promoter alone, and (C1 and C2) both promoters. Shown is CV2, S as a function of the 

fraction of times that the upstream (0 ≤ ωu ≤ 1) and the downstream (0 ≤ ωd  ≤ 1) promoters are occupied 

by RNAP, when dTSS > 35 (yellow) and dTSS ≤ 35 (dark green) bp. 

 

 

 

 
 



Fig Q. Gene conservation levels. (A) Correlation between dTSS (bp) of the pairs of tandem promoters 

and the evolutionary conservation level of the gene that they express. The line shown is the best linear 

fit to the data, and its shadow is the standard error of the fit. (B) Box plot of the gene conservation levels 

of the cohorts of genes with dTSS > 35 and with dTSS ≤ 35, along with genes other than those in tandem 

formation. The horizontal black line inside each box marks the median, the top of the box shows the 3rd 

quartile (Q3), and the bottom of the box shows the first quartile (Q1) of each gene cohort. The error bar 

above the box marks the range of values within (Q3+1.5*IQR), while the error bar below the bottom 

shows the range of values within (Q1-1.5*IQR). Here, IQR = Q3 – Q1.   

 



S3 Appendix: Supporting Tables  

Table A. List of genes controlled by tandem promoters.  

S. No 
Configuration (see 

Fig 1 main 
manuscript) 

Gene Promoters (upstream/ 
downstream) 

Distance between 
TSS’s (bp) 

1 I aspS aspSp1/aspSp 84 

2 I bolA bolAp2/bolAp1 85 

3 I cspI cspIp/cspIp2 100 

4 I glmU glmUp2/glmUp1 103 

5 I gltA gltAp1/gltAp2 97 
6 I hchA hchAp2/hchAp 150 
7 I ispU ispUp1/ispUp2 117 
8 I tig tigp1/tigp3 129 
9 I  nuoA nuoAp1/nuoAp2 173 

10 II acnB acnBp/acnBp2 45 
11 II bhsA bhsAp9/bhsAp 14 
12 II cirA cirAp2/cirAp1 13 
13 II csgD csgDp1/csgDp2 9 
14 II cspA cspAp1/cspAp2 51 
15 II dapB dapBp2/dapBp1 55 
16 II fabI fabIp/fabIp1 3 
17 II fadR fadRp/fadRp2 11 
18 II fkpA fkpAp1/fkpAp2 26 
19 II gpmA gpmAp2/gpmAp 38 
20 II lysU lysUp1/lysUp2 8 
21 II mfd mfdp1/mfdp2 36 
22 II osmC osmCp1/osmCp2 10 
23 II pfkA pfkAp2/pfkAp1 48 
24 II pfkB pfkBp2/pfkBp1 28 
25 II phoH phoHp1/phoHp2 73 
26 II serC serCp2/serCp 16 
27 II sohB sohBp1/sohBp2 17 
28 II ucpA ucpAp2/ucpAp1 7 
29 II ugpB ugpBp2/ugpBp1 48 
30 II xdhA xdhAp/xdhAp2 8 



List of genes controlled by tandem promoters whose single-cell protein numbers were measured by 

flow-cytometry using cells of the YFP strain library. Also shown are their promoters in tandem formation, 

their configuration, and the distance in base pairs (bp) between their TSSs. 

Table B. List of strains of the YFP strain library observed by flow-cytometry. 
 

S. No. Strain name  Genotype Source 

1 acnB 
[SX1900] 

F-, acnB791-YFP(::cat), Δ(argF-lac)169, gal-490, Δ(modF-
ybhJ)803, λ[cI857 Δ(cro-bioA)], IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13455) 

2 argP 
[SX1436] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], argP794-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
12991) 

3 aspS 
[SX1044] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], aspS793-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
12599) 

4 bhsA 
[SX1979] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], bhsA791-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13534) 

5 bolA 
[SX1087] 

F-, Δ(argF-lac)169, bolA791-YFP(::cat), gal-490, Δ(modF-
ybhJ)803, λ[cI857 Δ(cro-bioA)], IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
12642) 

6 cirA 
[SX1509] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], cirA791-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13064) 

7 csgD 
[SX1465] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], csgD791-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13020) 

8 cspA 
[SX1097] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], IN(rrnD-rrnE)1, cspA791-YFP(::cat), rph-1 

Yale CGSC 
(CGSC # 
12652) 

9 cspI 
[SX1106] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], cspI797-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
12661) 

10 dapB 
[SX1910] 

F-, dapB792-YFP(::cat), Δ(argF-lac)169, gal-
490, Δ(modF-ybhJ)803, λ[cI857 Δ(cro-bioA)], IN(rrnD-
rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13465) 

11 fabD 
[SX2002] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], fabD793-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13557) 

12 fabH 
[SX1474] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], fabH795-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13029) 

13 fabI 
[SX1038] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], fabI796-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
12593) 

14 fadR 
[SX1521] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], fadR795-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13076) 

15 fkpA 
[SX2015] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], IN(rrnD-rrnE)1, fkpA791-YFP(::cat), rph-1 

Yale CGSC 
(CGSC # 
13570) 

16 fur [SX1916] F-, Δ(argF-lac)169, fur-791-YFP(::cat), gal-490, Δ(modF-
ybhJ)803, λ[cI857 Δ(cro-bioA)], IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13471) 



17 glmU 
[SX1004] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], IN(rrnD-rrnE)1, rph-1, glmU792-YFP(::cat) 

Yale CGSC 
(CGSC # 
12559) 

18 gltA 
[SX1925] 

F-, Δ(argF-lac)169, gltA791-YFP(::cat), gal-490, Δ(modF-
ybhJ)803, λ[cI857 Δ(cro-bioA)], IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13480) 

19 gpmA 
[SX1553] 

F-, Δ(argF-lac)169, gpmA791-YFP(::cat), gal-
490, Δ(modF-ybhJ)803, λ[cI857 Δ(cro-bioA)], IN(rrnD-
rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13108) 

20 hchA 
[SX1988] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], hchA791-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13243) 

21 ispU 
[SX1052] 

F-, ispU796-YFP(::cat), Δ(argF-lac)169, gal-490, Δ(modF-
ybhJ)803, λ[cI857 Δ(cro-bioA)], IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
12607) 

22 lysU 
[SX1127] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], IN(rrnD-rrnE)1, rph-1, lysU793-YFP(::cat) 

Yale CGSC 
(CGSC # 
12682) 

23 mfd 
[SX1072] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], mfd-791-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
12627) 

24 mreB 
[SX1466] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], mreB791-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13021) 

25 nagC 
[SX1561] 

F-, Δ(argF-lac)169, nagC791-YFP(::cat), gal-490, 
Δ(modF-ybhJ)803, λ[cI857 Δ(cro-bioA)], IN(rrnD-rrnE)1, 
rph-1 

Yale CGSC 
(CGSC # 
13116) 

26 nlpA 
[SX1615] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], IN(rrnD-rrnE)1, rph-1, nlpA791-YFP(::cat) 

Yale CGSC 
(CGSC # 
13170) 

27 nuoA 
[SX1772] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], nuoA791-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13327) 

28 osmC 
[SX1758] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], osmC791-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13313) 

29 pepD 
[SX1530] 

F-, pepD792-YFP(::cat), Δ(argF-lac)169, gal-490, 
Δ(modF-ybhJ)803, λ[cI857 Δ(cro-bioA)], IN(rrnD-rrnE)1, 
rph-1 

Yale CGSC 
(CGSC #13085) 

30 pfkA 
[SX1349] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], IN(rrnD-rrnE)1, rph-1, pfkA791-YFP(::cat) 

Yale CGSC 
(CGSC # 
12904) 

31 pfkB 
[SX1761] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], pfkB792-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13316) 

32 phoH 
[SX1752] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], phoH791-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13307) 

33 serC 
[SX1390] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], serC791-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
12945) 

34 sohB 
[SX1707] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], sohB791-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13262) 

35 tig 
[SX1140] 

F-, Δ(argF-lac)169, tig-791-YFP(::cat), gal-490, Δ(modF-
ybhJ)803, λ[cI857 Δ(cro-bioA)], IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
12695) 



36 ucpA 
[SX1211] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], ucpA791-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
12766) 

37 ugpB 
[SX1574] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], IN(rrnD-rrnE)1, ugpB791-YFP(::cat), rph-1 

Yale CGSC 
(CGSC # 
13129) 

38 wrbA 
[SX1718] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], wrbA791-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13273) 

39 xdhA 
[SX1671] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], xdhA792-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13226) 

40 yccJ 
[SX1975] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], yccJ791-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13530) 

41 yccT 
[SX1368] 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], yccT792-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
12923) 

42 
aldA 

[SX1901] 
 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], aldA791-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13456) 

43 
elaB 

[SX1695] 
 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], elaB792-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13250) 

44 
feoA 

[SX1781] 
 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], IN(rrnD-rrnE)1, feoA791-YFP(::cat), rph-1 

Yale CGSC 
(CGSC # 
13336) 

45 
gcvT 

[SX1674] 
 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], gcvT792-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13229) 

46 
glpD 

[SX1550] 
 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], IN(rrnD-rrnE)1, glpD792-YFP(::cat), rph-1 

Yale CGSC 
(CGSC # 
13105) 

47 
pepN 

[SX1519] 
 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], pepN794-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13074) 

48 
wrbA 

[SX1718] 
 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], wrbA791-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13273) 

49 
ybeL 

[SX1822] 
 

F-, Δ(argF-lac)169, ybeL794-YFP(::cat), gal-490, Δ(modF-
ybhJ)803, λ[cI857 Δ(cro-bioA)], IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13377) 

50 
ydfG 

[SX1986] 
 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], ydfG791-YFP(::cat), IN(rrnD-rrnE)1, rph-1 

Yale CGSC 
(CGSC # 
13541) 

51 
yjbQ 

[SX1859] 
 

F-, Δ(argF-lac)169, gal-490, Δ(modF-ybhJ)803, λ[cI857 
Δ(cro-bioA)], IN(rrnD-rrnE)1, rph-1, yjbQ792-YFP(::cat) 

Yale CGSC 
(CGSC # 
13414) 

 

Table C. Average ‘network’ properties of genes with 1 or more TFs.  

Network 
properties 

Genes controlled by tandem 
promoters with dTSS ≤ 35 

Genes controlled by 
tandem promoters 
with dTSS > 35 

All promoters 
of genes with 1 
or more TF 
interactions 



Mean ± 
SEM 

Random set from 
all genes  
Mean ±SEM (p-
value) 

Mean 
± SEM  

Random set 
from all genes 
Mean ±SEM 
(p-value) 

Mean ± SEM 

Average 
Shortest 
PathLength 

0.31 ± 0.16 0.17 ± 0.11 (0.23) 0.13 ± 
0.05 

0.17±0.08 
(0.60) 

0.17 ±0.01 

Clustering 
Coefficient 

0.09 ± 0.03 0.11 ± 0.03 (0.68) 0.10 ± 
0.03 

0.11 ± 0.03 
(0.62) 

0.11 ± 4.34×10-3 

Eccentricity 0.56±0.31 0.25 ± 0.20 (0.22) 0.15 ± 
0.06 

0.26 ± 0.16 
(0.73) 

0.26 ± 0.03 

Edge Count 5±1.64 4.64 ± 3.4 (0. 33) 3.3 ± 
0.83 

4.64 ± 2.73 
(0.67) 

4.63 ± 0.43 

Indegree 2.33±0.48 2.32 ± 0.34 (0.52) 2.02 ± 
0.17 

2.31 ± 
0.27(0.83) 

2.32 ± 0.04 

Neighborhood 
Connectivity 

161.76 ± 
29.09 

131.95 ± 21.74 (0.20) 134.63 
± 15.1 

131.87 ± 17.36 
(0. 44) 

131.91 ± 2.74 

Outdegree 2.66 ± 1.34 2.33 ± 3.4 (0.30) 1.28 ± 
0.83 

2.31 ± 2.71 (0. 
59) 

2.32 ± 0.43 

Shown are the network properties for genes controlled by tandem promoters at a distance dTSS ≤ 35 
bp and at a distance dTSS > 35 bp. For comparison, we show the same properties, when averaged 
from all genes of E. coli’s TF network. Genes without TF’s are not considered. Note that all p-values 
are larger than 0.05. 

 

Table D: Genes controlled by tandem promoters without input TFs.  

S. No. Gene  Availability in the YFP strain library  
1 ampH   

2 ansP   

3 aroK   

4 aspS ✓ 

5 bepA   

6 cfa   

7 cobU   

8 crfC   

9 degQ   

10 fkpA ✓ 

11 ispU ✓ 

12 lpp   

13 mepS   

14 mfd ✓ 

15 narU   



16 opgG   

17 panD   

18 pfkB ✓ 

19 serW   

20 tig ✓ 

21 ucpA ✓ 

22 xapR   

23 ybgI   

24 ygiM   

25 yheO   

26 yobF   

Genes controlled by tandem promoters without input TFs. Those genes whose proteins are tagged 
with YFP in the YFP strain library are marked with the symbol ‘✓’. 
 

Table E. Genes controlled by tandem promoters regulated by one and only one input TF.  

  Tandem 
promoter’s genes  

Availability in YFP 
strain library Input TF  Availability in YFP 

strain library 

1 argR   argR   
2 cvpA   purR   
3 cysK   cysB ✓ 

4 dapB ✓ argP ✓ 

5 fabI ✓ fadR ✓ 

6 fadR ✓ fadR ✓ 

7 fliL   flhdC   
8 ftnB   cpxR ✓ 

9 glgS   crp   
10 glk   cra   
11 glmU ✓  nagC ✓ 

12 gpmA ✓ fur ✓ 

13 hchA ✓ h-ns   
14 ibaG   mlrA ✓  
15 iraP   csgD ✓ 

16 leuL   leuO   
17 livK   lrp   
18 lysU  ✓ lrp   
19 mqsR   mqsA   
20 ompA   crp   
21 ompX   fnr   
22 osmB   rcsB ✓ 

23 pfkA  ✓ cra   



24 phoH  ✓ phoB   
25 potF   ntrC   
26 slyB   phoP   
27 sohB  ✓ crp   
28 wza   rcsaB   
29 xdhA  ✓ fnr   
30 ydbK  ✓ soxS   
31 yeaG   ntrc   
32 yhbT   csgD ✓ 

33 yqjA   cpxR ✓ 

When the proteins of these genes and of their input TFs can be measured using strains of the YFP 
strain library, they are flagged with the symbol ‘✓’. 

Table F. Genes controlled by, and only by, a TF expressed by tandem promoters. 

  
Genes controlled 
by tandem 
promoters 

Availability in 
YFP strain 
library 

Genes regulated by the protein 
expressed by the gene 
controlled by tandem promoters 

Availability in 
YFP strain 
library 

1 argR   argA  ✓ 
2 argR   argB   
3 argR   argC   
4 argR   argE  ✓ 
5 argR   argF   
6 argR   argH   
7 argR   argI   
8 argR   argR   
9 argR   artI   

10 argR   artJ   
11 argR   artM   
12 argR   artP  ✓ 
13 argR   artQ   
14 argR   lysO   
15 bolA ✓ ampC   
16 bolA ✓  dacC   
17 bolA ✓ mreB ✓ 

18 bolA ✓  mreC   
19 bolA ✓ mreD   
20 csgD ✓ dgcC   
21 csgD ✓ iraP   
22 csgD ✓ nlpA ✓ 

23 csgD ✓ pepD ✓ 

24 csgD ✓ wrbA ✓ 

25 csgD ✓ yccJ ✓ 

26 csgD ✓ yccT ✓ 



27 csgD ✓ yhbS   
28 csgD ✓  yhbT   
29 evgA   frc   
30 evgA   oxc  ✓ 
31 evgA   yegR ✓ 

32 evgA   yegZ   
33 evgA   yfdE   
34 evgA   yfdV   
35 evgA   yfdX   
36 fadR ✓  accA   
37 fadR ✓ accD   
38 fadR ✓ fabD ✓ 

39 fadR ✓ fabG   
40 fadR ✓ fabH ✓ 

41 fadR ✓ fabI ✓ 

42 fadR ✓ fadM   
43 fadR ✓ fadR ✓ 

44 xapR   xapA   
45 xapR   xapB   

 

Table G. Protein levels and dTSS of 10 genes as measured by Microscopy and Image Analysis.  

Gene TSS distance (dTSS) Mean single-cell protein level 
(Microscopy) 

xdhA 8 0.04 
csgD 9 0.64 
serC 16 0.24 
sohB 17 0.37 
pfkA 48 2.8 
dapB 55 0.57 
aspS 84 1.72 
gltA 97 3.02 
hchA 150 0.74 
nuoA 173 2.04 

Related to Fig 4C in the main manuscript. 

Table H. Number of genes controlled by a pair of tandem promoters in each configuration.  

Configuration Number (in 
RegulonDB) 

Present in the YFP strain library 
(measured here by flow-cytometry) 

I 40 9(9) 

II 62 21(21) 

III 7 3 



IV 4 1 

V 6 2 

VI 0 0 

VII 3 1 

VIII 2 2 

IX 4 1 

X 0 0 

XI 9 2 
Other 6 0 

Related to Fig 1 in the main manuscript and Fig A in S2 Appendix. 

Table I. Coefficient of variation, CV, of the gamma distribution.  

CV  
(  bindk R ) 

 

 

u
bind
d
bind

k R
Mean abs

k R

   −
  

    
 

 

 

 
100%

u
bind
d
bind

u
bind

k R
abs

k R
Mean

k R

   −
  

    
 

 
 
 

 

0.01 7.52 × 101 1.14 % 
0.1 7.64 × 10-4 1.16 × 101 % 
0.25 1.86 × 10-3 2.98 × 101 % 
0.5 3.63 × 10-3 7.33 × 101 % 
0.75 5.27 × 10-3 1.99 × 102 % 

1 6.62 × 10-3 2.05 × 103 % 
1.25 7.81 × 10-3 5.15 × 104 % 
1.5 8.66 × 10-3 1.95 × 107 % 
1.75 9.41 × 10-3 6.19 × 1012 % 
2.0 9.89 × 10-3 1.48 × 1015 % 
2.25 1.04 × 10-2 1.77 × 1017 % 
2.5 1.10 × 10-2 6.60 × 1018 % 
2.75 1.12 × 10-2 4.00 × 1024 % 
3.0 1.20 × 10-2 6.03 × 1030 % 

Coefficient of variation, CV, of the gamma distribution from which  bindk R  of each promoter in 

tandem configuration is sampled from. Also shown is the resulting expected mean absolute difference 

in  bindk R between the upstream and downstream promoters. Furthermore, the last column 

shows how much larger (in percentage) is one of the  bindk R  values compared to the other. 

Table J. Location of the tandem promoters relative to the oriC. 



Genes controlled 
by tandem 
promoters 

Distance between 
the upstream TSS 

and the oriC 
aspS 1975043 
bolA 3471395 
cspI 2286932 
glmU 10418 
gltA 3170977 
hchA 1890114 
ispU 3730960 
nuoA 1520409 

tig 3470751 
acnB 3794225 
bhsA 2756725 
cirA 1678802 
csgD 2822400 
cspA 205855 
dapB 3897456 
fabI 2574623 
fadR 2690839 
fkpA 448219 

gpmA 3138074 
lysU 428830 
mfd 2751716 

osmC 2369148 
pfkA 181499 
pfkB 2119421 
phoH 2840879 
serC 2968165 
sohB 2596460 
ucpA 1381073 
ugpB 333318 
xdhA 925487 

 

 

 

 

 

 



S4 Appendix: Supplementary Results 

Pause sequences 

We investigated if the nucleotide sequence of and in between the natural tandem promoters is coding 

for specific sequences known to perturb RNAP elongation. There are several events that compete with 

stepwise elongation. However, arrest, misincorporation and editing, pyrophosphorolysis, and premature 

termination are too rare in optimal growth conditions (rate constants listed in [1]) to be influential in 

several genes, and/or are not sequence dependent. Only sequences known to enhance transcriptional 

pausing [2] could fit both of these requirements. In E. coli, the mean rate of non-sequence specific 

pauses is 1 per 100 base pairs. These last 3 s on average [3-4]. However, a few sequences can 

enhance pausing frequency and/or duration (up to 15 or more seconds) [5] via various mechanically 

processes, which explains their variability in half-life and frequency of occurrence. For example, ‘his’ 

pauses occur when the assembling RNA forms a hairpin-like loop, while ‘ops’ pauses do not require it. 

Likely because of it, his pauses have longer half-life [6]. We searched in (and in between) the sequences 

of the 102 pairs of tandem promoters for the 14 sequences (each 12 nucleotides long) known to 

enhance pausing [7] (section ‘Sequences prone to causes transcriptional pauses’ in S1 Appendix) but 

found none. Thus, sequence-dependent transcriptional pausing should not be a common phenomenon 

in the tandem promoters of arrangements I and II. Even when allowing for 3 or less mistakes (sequence 

gaps, misalignments, duplicates, etc.), we only found 5 matches in the 30 of the 102 tandem promoter 

pairs studied with protein measurements below (Fig B in the S2 Appendix, note the 5 bars crossing the 

threshold). 

Over-representation test  

We performed an over-representation test to search for biological functions (as defined in [8,9] that are 

overrepresented by genes controlled by tandem promoters (using PANTHER 14 [10]). While based on 

a Fisher test, some biological processes appear to be overrepresented in our genes of interest (e.g., 

regulation of catabolic processes), none of them were significant to ‘FDR correction’ (FDR < 0.05, [10]. 

As such, we failed to identify a biological process significantly associated to genes controlled by tandem 

promoters (S1 Table). 

Input-output transcription factor relationships 

From time-lapse RNA-seq data, we assessed if the 102 genes controlled by tandem promoters 

(arrangements I and II, Fig 1) are affected by their input TFs. To facilitate this, we considered only those 

that have one and only input TF. I.e., we did not consider the 26 genes that do not have known input 

TFs (Table D in S3 Appendix), neither the 43 genes that have more than one input TF, making the 

detection of input-output relationships problematic. As such, of the 102, we considered only 33 genes 

(Table E in S3 Appendix). In these, we did not observe influences from input TFs (Fig C, Panel A in Fig 



D in the S2 Appendix). Finally, and similarly, we observed genes whose only input TF is expressed by 

tandem promoters (Table F in S3 Appendix). Again, we found no correlation (Panel B in Fig D in the S2 

Appendix). Note that, while we did not find influences from TF interactions in the conditions of our 

measurements, we expect these interactions to become active in other conditions (e.g., stress 

conditions).  

Proteins with membrane-related positionings 

From RegulonDB [11], of the 30 genes measured by flow-cytometry (Table A in S3 Appendix), only 3 

are known to be related to membrane transportation and binding: bhsA, which is an outer membrane 

protein that is involved in copper permeability, stress resistance and biofilm formation, cirA, which is 

also an outer membrane transporter, and ugpB which is a periplasmic binding protein. Such membrane 

localizations could affect their quantification by YFP fusion, potentially by enhancing effects from avidity 

due to weakened diffusion. 

However, none of these proteins significantly affect our results since, first, cirA and ugpB were removed 

from our analysis of the 1X condition, after preprocessing (gating, background subtraction and protein 

number conversion) (marked in red in S2 Table). Meanwhile, all three genes were removed from our 

analysis of the 0.5X condition after preprocessing (marked in red in S2 Table). Specifically, their removal 

was due to lack of expression above background autofluorescence. 

Relationship with the OriC region 

From EcoCyc [12], the OriC region has a length of 232 base pairs and is located in positions 3 925 744 

and 3 925 975 in the DNA of E. coli. We calculated the shortest distance between the TSS of the 

upstream promoter and the Oric region. These positions in the DNA are shown in Table J in the S3 

Appendix. Meanwhile, the corresponding protein expression levels of these genes in the 1X condition 

are shown in the S2 Table. Finally, we show a Fig E in the S2 Appendix of these distances from OriC 

plotted again log10 Mp which shows that the two quantities do not correlate statistically. 

Regulation by H-NS 

From RegulonDB [11], we investigated how many of the 102 genes controlled by tandem promoters 

(arrangements I and II) and how many of 30 of them observed by flow-cytometry are expected to be 

regulated by H-NS. 

Of the 102 genes, 14 are regulated by H-NS (14%). Meanwhile, of the 30 genes, 5 are regulated by H-

NS (17%). From this, we conclude that H-NS is not consistently a master regulator of these genes. 

Nevertheless, of 4698 genes in E. coli, only 4 % are regulated by H-NS. This is significantly lower than 

in the case of the genes controlled by tandem promoters (p-value < 0.05 based on a Fisher test). As 



such, one could argue that H-NS regulation does occur higher than expected by chance. Future studies 

of the dynamics of those genes during environmental changes may thus be of interest.  
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