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Relex Solutions’ Plan product is architecturally a giant stateful monolith with an in-memory data-

base. A system is considered a monolith if all its services need to be deployed together. The 

database has been kept in-memory because of the data amount the application needs to process 

and how much faster the performance is when the data is kept in-memory. The Plan architects 

are looking into taking Kubernetes as an orchestration and lifecycle managing tool. Having an 

orchestrator in place would provide several benefits, such as automatic scheduling workloads 

onto a shared pool of resources and better isolation between customers. Kubernetes orchestra-

tion is part of bigger architecture initiative to modularize Relex Plan more in attempts to make the 

monolith more flexible. This thesis is about finding solutions for keeping the operations smooth 

with Kubernetes and Apache Helix. Literature review and design science will be used as main 

methodologies for the research. 

With Helix role rebalancer and Kubernetes’ Statefulset, we can easily scale out and scale in with 

graceful shutdown. Autoscaling would be well supported by having a resource pool in Kuber-

netes. Creating pods with Statefulset, make sure each of the pods has a persistent identifier, so 

rescheduling and restoring pods in Kubernetes native way is covered, while Helix rebalancer 

takes care that the cluster has wanted number of Plan roles, so there’s minimal interruption to 

the users. Zero downtime would require backwards compatibility for database schema updates, 

this must be implemented on the product side. The backwards compatibility would technically be 

a requirement if Kubernetes-native rolling update deployment strategy, with zero downtime, is 

wanted to take into use in the future. The solution can be applied to other monolithic software 

architecture with similar setup.  

Keywords and terms: Kubernetes, Apache Helix, CI/CD, DevOps, monolith, in-memory applica-

tion, deployment orchestration, scale-out, scale-in 

The originality of this thesis has been checked using the Turnitin OriginalityCheck service. 
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1 Introduction 

 

Before containerization, cloud and microservices, the traditional software architectures 

were monolithic. Even nowadays, software might start as monoliths as at the beginning 

of the project it’s easy and simple to develop, test and deploy. At the start of a software 

business, the requirements and needs might be very simple, a piece of software might 

fulfil just a single need at the beginning of its lifetime. Thus, it’s easy to make a fast profit 

with monolithic software architecture at the beginning of a project. However, as the busi-

ness grows and more stakeholders come into the picture, the requirements increase, and 

different needs need to be considered in the whole infrastructure. Eventually, monoliths 

might become hard to maintain, especially since they are usually not that flexible, and 

adopting new technologies and software trends might become very expensive (Atlassian, 

2023).   

 

Some well-known software businesses have started as monoliths but eventually remod-

elled their system into microservices, e.g., Netflix, Amazon, and eBay. For the last dec-

ade, microservices seem to have been the trend, however, for some businesses monolithic 

architecture still makes sense and is even necessary. Microservices might be more popu-

lar, but it hasn’t totally replaced monolithic architecture.  

 

This thesis is a commission for Relex Solutions company, whom have a product with 

monolithic architecture with similar characteristics of supercomputing while also taking 

more cloud computing tools and frameworks into use to match modern needs and de-

mands. These needs not only come directly from customers, but by the company’s own 

goals and motivation to deliver high-quality software. With healthy DevOps culture in 

place, it naturally raises the need for shifting testing and operations left in the develop-

ment cycle. Good CI/CD can lead to more robust software and shorter lead time, thus 

keeping the customers happy while also getting valuable feedback faster. It’s important 

to make sure the feedback loops are short when working with an Agile project. The com-

missioner’s product, which this thesis is focusing on, is slowly moving towards using 

Kubernetes orchestration. They are interested to know what would be required for the 

system to run smoothly, without any downtime, in Kubernetes. What would the architec-

tural design look like from operations point of view when they want to keep the existing 

Apache Helix cluster management. How would Plan environment's lifecycle management 

work with the Kubernetes orchestrator? How to handle Plan cluster orchestration with the 

Kubernetes platform? 
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As part of this work, I will propose solutions on how the product would work with Ku-

bernetes with the requirements the commissioner and the software itself has. Literature 

review and design science will be used as main methodologies for this research. 

 

Chapters 1-5 of this thesis consist of more theoretical background information on this 

topic, explaining DevOps and its concepts, cloud computing and distributed data system. 

Chapter 6 is about the software tools used by the commissioner and the necessary back-

ground information of them. Chapter 7 is introducing the commissioner, the product, and 

its architecture this thesis will be focusing on. Chapters 8-9 include detailed research 

questions and methods I’m going to use, and the ending design results that have been 

gone through with commissioner’s experts and been approved by them.  
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2 DevOps by CALMS model 

 

The focus in DevOps is not the tooling, but the people. In working environment, com-

pany’s culture shapes DevOps and gives it its foundation (Freeman, 2019). There are 

many things that can define a company culture that also shape and characterizes organi-

zation. 

Company culture describes the shared values, goals, attitudes and practices that 

characterize an organization. Aspects such as working environment, company 

policies and employee behaviour can all contribute to company culture.  (Daley, 

2022) 

Essentially, one could say, that without proper and healthy company culture, good 

DevOps practices are not achievable. CALMS is an abbreviation of Culture, Automation, 

Lean, Measurement and Sharing. Figure 1 below illustrates how DevOps is built in 

CALMS.  

 

 

Figure 1. Culture is the very base of DevOps (Nikhil, 2020). 

Communication, collaboration, and cross-functionality are central in good DevOps cul-

ture, as briefly explained previously the whole DevOps came to be because developers 

and operators were not able to collaborate smoothly. Sociologist Dr. Ron Westrum has 

defined three categories, shown in below Table 1, of organizational cultures as part of his 

research “A typology of organizational cultures”. Pathological culture type describes 

power-oriented organization where the focus is on personal gain and needs. Rule-oriented 
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bureaucratic types focus on more department level gains. Finally, the performance ori-

ented, generative type focuses on collective mission not so much individual, employee or 

department, gains (Westrum, 2004). The research showed that a company with good in-

formation flow optimising culture predicts good outcomes. Google’s DevOps Research 

and Assessment group also recommends companies to follow the generative type of cul-

ture (Google Cloud: Cloud Architecture Center, 2023).  

 

 

Table 1. Ron Westrum’s typology model shows how organizations process information 

(Westrum, 2004). 

When the Culture, the base part, is covered we can then start to look at the other items in 

CALMS framework. Automation is probably one keyword that pops up right away in 

people’s minds when talking about DevOps. Automation is a good way to tackle repeti-

tive and boring tasks. Automation executes actions more accurately and thoroughly than 

humans. Continuous Integration and Continuous Delivery (CI/CD) goes often hand in 

hand with DevOps, but we’ll go more into CI/CD later in the chapter. One can list things, 

actions and items in the development lifecycle that are seen as wasteful actions that don’t 

bring any value to the customer. The idea is to eliminate this waste and that is called the 

Lean way of working.  

 

In short, Lean thinking was invented on Toyota’s premises. The principle in Lean is to 

have “relentless reflection” and continuously improve, the terms used for these are hansei 

and kaizen, respectfully (Liker, 2016). In order to continuously improve, we have to 

somehow measure our doings, that way we can also prove that we have actually improved 

at all. Measurements are important in DevOps, key performance indicators should be 

monitored and there are plenty of tools to help you collect data (Wiedemann, et al., 2019). 

The bigger question might usually be what to measure, or how the measured data should 

be analysed. Finally, we come to the Sharing part of CALMS framework. DevOps as a 

community is important, sharing the information and knowledge in the organization, pro-

actively communicating inside a team but also cross-team and even across departments.  
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2.1 Fail fast, shift left 

 

Failing fast is terminology often seen in the agile and lean world. It is quite essential in 

DevOps lifecycle model, illustrated in Figure 2 below, and also supports the idea of shift-

ing operations left.   

To fail fast means to have a process of starting work on a project, immediately 

gathering feedback, and then determining whether to continue working on that 

task or take a different approach—that is, adapt. If a project is not working, it is 

best to determine that early on in the process rather than waiting until too much 

money and time has been spent. (Salimi, 2023) 

 

 

Figure 2. Lifecycle model in DevOps with no clear start and end (Yıldırım, 2019). 

According to Freeman (2019); shift left, sometimes also “moving left”, the term origi-

nates from 1990s testing, to advocate testing as early during development as possible. In 

the waterfall process (Figure 3), testing happened very late in development which made 

failures, defects, and bugs very expensive to fix. So essentially, people wanted the testing 

phase to “shift left”, earlier in development. Nowadays the term isn’t solely associated 

with testing anymore, but with other specializations like security and operations as well.  

 

Figure 3. Waterfall development process (Freeman, 2019). 

So as said, the main idea in shifting left, is basically moving certain work leftward in the 

development process. Freeman points out that this philosophy is more about prevention 

than reaction. We want to prevent potential system failures, not detect them and then try 
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to fix them. According to a paper released by IBM in 2008, the cost of discovering a 

defect later in the development process can be up to 30 times more expensive, details in 

Figure 4 below (Briski, et al., 2008). The DevOps lifecycle model, as presented previ-

ously in Figure 2, shows that there’s no clear start and end, it’s looping indefinitely, which 

relates to the next Section about continuous integration and delivery. 

 

 

Figure 4. Cost of defect (Briski, et al., 2008). 

 

2.2 CI/CD 

 

Continuous integration and continuous delivery, CI/CD, practise is very much part of 

DevOps, but as DevOps focuses more on the culture itself, CI/CD focuses on the software 

development life cycle and advocates automation (Steven, 2018).  

 

In previous Section “Fail fast, shift left”, we actually touched a little bit on the CI/CD 

topic already. It was pointed out that we want to shift operations left, leaving from the 

classical linear waterfall model as the cost of a defect discovered late in that model is too 

expensive. Automating CI/CD helps shorten the feedback loops. Mukherjee writes in At-

lassian documentation about the business value of continuous delivery, that the automa-

tion of continuous delivery helps organizations gain velocity and lower their time-to-mar-

ket length. Mukherjee however mentions that “speed itself is not a success metric. With-

out quality, speed is useless” (Mukherjee, 2023). Figure 5 shows the big picture of CI/CD 

and what they encapsulate. Continuous integration refers to automatic build and test 

phases. Continuous delivery includes automatic acceptance testing, deployment to stag-

ing and smoke testing, while production deployment being manual operation. Continuous 

deployment would be automating the production deployment as well. In the following 

sections, I will explain CI/CD in more detail and the value it brings to software develop-

ment and organization.    
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Figure 5. Big picture of CI/CD (Pittet, 2023). 

Continuous integration is about making sure that the software is always in a deployable 

state, i.e., the code compiles without errors and the code quality can be assumed to be 

good as in that the code passes whatever quality gates have been agreed upon beforehand 

(Rossel, 2017). The integration build might include multiple software components which 

will be combined into a software system.  

 

With CI we reduce risks by making the software’s health measurable which is done by 

including continuous testing and inspection into the automated integration process. Con-

tinuous testing goes hand-in-hand with CI/CD. When CI runs multiple times a day, along 

with the incorporated testing, the chance of discovering defects when they are introduced 

is bigger compared to late testing in SDLC (Duvall, et al., 2007).  

 

In software development, there is this “it works on my machine” problem, that the CI 

essentially also tackles. Basically, developers may have very different kinds of local set-

ups and bunch of environment variables they have set up, which means that one can’t 

really trust that something that works in the colleague’s machine would work for every-

one else as well. CI build and testing should be done in a clean environment, and should 

essentially be an independent but repeatable run. Repeatability here means that the same 

process and scripts are used on a continual basis, this helps reduce assumptions on e.g., 

the configuration (Duvall, et al., 2007; Belmont, 2018). Continuous integration allows 

keeping tap on any regressions that the new code might have.  

Continuous Integration can help reduce assumptions on a project by rebuilding 

software whenever a change occurs in a version control system. (Duvall, et al., 

2007) 
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The automation part, in this context making anything continuous, obviously reduces re-

petitive manual processes that might be human error-prone as well. Developers should be 

trusting the CI build, as it should establish confidence in the software and make the project 

more transparent, hence giving more visibility. Developers should be assured that the CI 

build would essentially catch issues better than when running builds locally (Belmont, 

2018).  

 

The CD part in CI/CD is more often regarded as “Continuous Delivery” but sometimes 

also “Continuous Deployment”. Obviously, deployment and delivery are two different 

words, so one should know that in software development “Continuous Delivery” and 

“Continuous Deployment” also mean different things. We should actually be talking 

about CI/CD/CD instead of just CI/CD, but as it is hard to achieve Continuous Deploy-

ment, and sometimes not even wanted, we tend to talk about Continuous Integration and 

Continuous Delivery. 

 

Continuous Delivery means that the artifacts produced by the CI are automatically de-

ployed to the testing and/or staging environment. It is an extension of continuous integra-

tion, which would mean that one would have automated testing, integration and now also 

an automated release process (Pittet, 2023). The release process isn’t truly fully auto-

mated yet with only continuous delivery. Referring back to Figure 5, the deployment part 

was still done manually in continuous delivery. As briefly mentioned before, Continuous 

Deployment also automates the production deployment i.e., all the changes, that have so 

far passed all the way to staging, are released automatically to customers or production 

as we tend to say in the software development world. If we look at below Figure 6, con-

tinuous delivery encapsulates development, testing and staging, and continuous deploy-

ment adds production to it. The figure also gives some details on these different environ-

ments.  
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Figure 6. General depiction of different environments in CI/CD.  

Likewise, here by automating CD, we minimize risks and reduce manual work. Software 

deployment becomes easier and the team doesn’t have to spend too much time preparing 

for release activities. The releases can happen more often as well after the complexity of 

it is taken away. When continuous deployment is part of an automated process as well, 

the development can also continue without release pauses. Compared to monthly, quar-

terly or yearly releases, customers could get improvements on a daily basis. The prereq-

uisite is of course that the quality is kept up to standards as well, it’s not a good thing to 

aim for quantity over quality releases. The many stages of continuous deployment are 

trying to support agile ways of working, with many quality assurance gates. The downside 

could be the increase in complexity and the bureaucracy that often comes with it. If your 

product is very small or something like a static or dynamic company webpage, putting 

complex continuous deployment stages would most likely not bring much value if at all.  

  

Development

•Used by developers

•Tests integration

•No customer data

Testing

•Used for quality assurance

•Organization might have 1-n number of these

•No customer data 

Staging

•Usually mirror of production environment (or as close as it is possible to get one)

•User acceptance testing by customer/manager. Any final testing needed before going production

•Release candidate/"Next version"

•Limited customer data

Production

•Currently released version

•Accessible to customers/end users (live)

•Full customer data
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3 Cloud Computing 

 

Cloud and cloud computing has many definitions and the meaning of cloud has been 

debated over. The origin of “cloud computing” as a term dates back to 1996, however at 

that time the meaning was very different as it is now. Back then the term “creators” were 

looking for how to market their telecommunication business with slogans (Regaldo, 

2011). Cloud was a metaphor drawing of internal networking infrastructure with several 

combined services and technologies. This was surrounded by the customer’s facilities. 

Telecomm companies didn’t want to give out too much information about the internal 

structure or confuse the customers with unnecessary details, hence the cloud (Fogarty, 

2012).   

 

For today’s definition, instead of me trying to explain cloud computing in my own words, 

I believe it’s better of giving a definition from a trustworthy source. The National Institute 

of Standards and Technology (NIST) gives the following definition for cloud computing: 

Cloud computing is a model for enabling ubiquitous, convenient, on-demand 

network access to a shared pool of configurable computing resources (e.g., net-

works, servers, storage, applications, and services) that can be rapidly provi-

sioned and released with minimal management effort or service provider inter-

action. This cloud model is composed of five essential characteristics, three ser-

vice models, and four deployment models (NIST, 2011). 

The five essential characteristics stated by NIST, briefly summarized into key points, are 

the following: 

1. On-demand self-service: Consumer can single-handedly provision resources. 

2. Broad network access: Capabilities are available over the network. 

3. Resource pooling: Computing resources are pooled and dynamically assigned us-

ing a multi-tenant model. 

4. Rapid elasticity: Capabilities provisioned and released by demand. 

5. Measured service: Resource usage monitoring, controlling and reporting. Auto-

matic optimizing.  

 

3.1 Service Models 

There are three traditional service models defined by NIST: Infrastructure as a Service 

(IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). Each of these have 

their own abstraction levels where the lower levels are incorporated in the higher ones, 
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see Figure 7. The figure illustrates that the lowest abstraction level in these three tradi-

tional service models is IaaS, the highest one being SaaS, leaving PaaS in the middle. 

(Ruparelia, 2016) 

 

Figure 7. Abstraction levels SaaS > PaaS > IaaS. 

The below Figure 8 will help one understand better what is included in each service 

model. I recommend referring to it when reading the following subsections about each 

service model presented. 

 

Figure 8. Cloud service model comparison (Kobilinskiy, 2019). 
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3.1.1 IaaS: Infrastructure as a Service  

The lowest abstraction level is IaaS, where the customer is provided with hardware (serv-

ers and storage), virtualization and/or networking. The customer does not control the ac-

tual infrastructure but is allowed to manage operating systems, deployed applications and 

middleware (NIST, 2011).  

 

IaaS is usually billed by usage. Companies might get IaaS providers in order to expand 

their capacity, e.g., they can rent datacenters instead of building one themselves. Compa-

nies might also need temporal capacity, in which case building one themselves would 

make even less sense. With IaaS’ billing model, customers pay only for what they’re 

using (Roundtree, et al., 2014).  

 

The usage, however, can be billed very differently depending on the provider and their 

billing model. Companies might be afraid that they are unable to control their usage and 

how carefully they might need to monitor it. For example, the usage might be measured 

by resources like processor and memory (Roundtree, et al., 2014). Some examples of IaaS 

providers are Amazon EC2, Azure Virtual Machine, OpenStack 

 

3.1.2 PaaS: Platform as a Service 

In addition to what was mentioned in IaaS, PaaS includes the operating system, middle-

ware and runtime to the provided service. The aforementioned are controlled by the pro-

vider, the customer has still control over the data itself and applications that are deployed 

(NIST, 2011).  

 

Having a PaaS helps developers focus on the development work, they don’t have to use 

their time to build, configure or update the servers. Another driver for adopting PaaS is 

when organizations still want to develop their own application but don’t want to take care 

of the complications of maintaining their own infra and platform, hence deciding on PaaS.  

Challenges for PaaS might include the lack of flexibility with providers, when one can’t 

find a platform set suitable for their use. Security is also one thing to keep in mind as the 

service provider might have administrative access to your application through the opera-

tive system that they manage (Roundtree, et al., 2014). Examples of PaaS providers are 

Google App Engine, Microsoft Azure, IBM Cloud Platform. 
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3.1.3 SaaS: Software as a Service 

SaaS builds on top of both IaaS and PaaS. With the SaaS model, one could say that 

everything is handled and comes from the provider and customer gets to use the 

application that is running on cloud infrastructure. Provider handles everything including 

the application installation, maintenance and the underlying infrastructure (Ruparelia, 

2016; NIST, 2011).  

 

SaaS is a very popular service model as Web-based applications consumption has risen 

over the years. There are challenges with SaaS as well, such as the latency in the environ-

ments when a customer is geographically located far away from the actual application 

host site. Multitenancy also raises an issue if there’s a need to do customization between 

customers. The security concern is also very apparent in SaaS, the provider has to be 

careful when handling customer data (Roundtree, et al., 2014). Examples of SaaS appli-

cations are Microsoft 365, Zoom, Netflix. 

3.2   Deployment Models 

For deployment models, NIST lists four types. Private cloud, community cloud, public 

cloud and hybrid cloud. The names of the models describe how they are provisioned and 

are quite self-explanatory. A private cloud is used exclusively by a single organization. 

Community cloud is for communities in organizations with shared concerns e.g., security 

requirements and policy. Public cloud is openly used by the general public. Hybrid cloud 

composes of two or more cloud infrastructures just mentioned. they’re bound together to 

enable data and application portability (NIST, 2011).     

3.3 Monolith and Microservice architecture 

In today’s software architecture, there are both monolithic and microservices. The popu-

lar trend favours microservice architecture as it is more scalable and flexible, and goes 

well with modern software development methodologies (ElGherani, 2022). Examples of 

companies that started with monolithic architecture but have then implemented micro-

service architecture are Netflix and eBay. However, monolithic architecture is not disap-

pearing and there are still distinct benefits and drawbacks on both architecture models 

which I will be explaining more in detail in the following sections. Figure 9 below gives 

good high level description of what is the difference between monolithic and microservice 

architecture. Microservice architecture consist smaller functionalities, services. While all 

monolith’s functionality is in one process.  
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Figure 9. Monolith vs Microservice (Fowler & Lewis, 2014). 

3.3.1 Monolithic architecture 

When searching for a definition of monolith, Merriam-Webster gives the following: “a 

single great stone often in the form of an obelisk or column” and “a massive structure”. 

The idea is basically the same when we talk about monoliths in software architecture, it’s 

something that is composed of one single piece, all the modules/components and their 

functionality is in one enormous application. Essentially, a system is considered a mono-

lith if all its services need to be deployed together.  

 

There are three types of monolithic systems: Single process, modular and distributed 

monolith. A single process monolith is a system where all the code is deployed as one 

process. Single process monolith, depicted in Figure 10 in its simplicity, might have sev-

eral instances behind a load-balancer for horizontal scaling, but it is still considered as 

single process (Fowler & Lewis, 2014; Newman, 2021). 
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Figure 10. Single-process monolith (Newman, 2021) 

  

Modular monolith, can be considered as subset of single-process monolith. In a modular 

monolith there are individual modules, each of which can be worked on separately, but 

for deployment, these modules still have to be combined. Figure 11 below illustrates what 

modular monolith could look like with single of decomposed database.  

 

Figure 11. Modular monolith depictions (Newman, 2021). 

 

Then as a third, distributed monolith. A pretty good description of a distributed monolith 

is that it’s basically a microservice, it consists of multiple services, but for some reason, 

the entire system must still be deployed together. Distributed monolith is not an ideal 

type, as it comes with downsides of both microservice and single-process monolith with-

out actually bringing enough perks of them. This kind of highly coupled architecture typ-

ically appears in cases when information hiding and cohesion of business functionality 

was not considered enough (Newman, 2021).  
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The benefits of having a monolith are essentially that it is supposed to be simple. Simple 

to develop and test end-to-end, easy deployment and horizontal scaling. Monolith also 

makes code reusing easier compared to distributed system.  

 

Monolithic architecture is most suited for simple systems, when it gets more complex and 

larger the maintainability also becomes harder and the application is also slower to start 

up. The entire monolith application has to be basically redeployed on each update, not 

ideal for continuous delivery. The reliability also is in jeopardy, bugs like memory leaks 

might affect the whole system. While monoliths can scale quite nicely horizontally, they 

can basically only scale in that one dimension. It is also hard to keep up with modern 

technologies and software languages as one would need to consider the whole system 

(Richardson, 2023).   

  

3.3.2 Microservice architecture 

Microservice alone could be defined as an application that is independently deployed, 

scaled and tested. Microservice has single responsibility as it only does one thing. The 

services should be loosely coupled which means that one service can be changed without 

touching anything else, this guarantees independent deployability. Microservice architec-

ture is a collection of these individual small applications, services, that then combined 

build a bigger application (Fowler & Lewis, 2014). 

 

For these individual services to communicate with each other for collaborating and han-

dling requests, they must use interprocess communication (IPC) mechanisms. IPC mech-

anism can be divided into response-based (synchronous) like REST or gRPC Remote 

Procedure Call (gRPC) that are based on HTTP, or message-based (asynchronous) pro-

tocols like Advanced Message Queuing Protocol (AMQP) or Simple Text Oriented Mes-

sage Protocol (STOMP) (Richardson, 2023).  

 

Development of microservices is organized around business capabilities which goes very 

well with DevOps and Agile principles. It advocates having cross-functional teams that 

work with these business capability-oriented services. The ideal cross-functional team 

can implement, build, test and operate a service. People would not be grouped based on 

their core competency aka. functional teams, e.g., Java developers in one team, front-end 

developers in one and database admins in other. This traditional way of grouping is not 

bad, but it creates silos which can slow down development and deployment. Cross-func-

tional teams tend to be more efficient and flexible thanks to a wider range of expertise, 

however, siloed teams might provide a better sense of ownership of something. Individual 

expertise in cross-functional teams can also become a bottleneck. Business capability 
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with cross-functional teams reinforces boundaries for service which keeps it independent 

(Fowler & Lewis, 2014). One can see the similarities of cross functional teams and their 

designed microservice, or at least the similar design ideology between them.  

 Any organization that designs a system (defined broadly) will produce a design 

whose structure is a copy of the organization's communication structure. 

(Conway, 1968) 

Microservice, like its name, is supposed to be a relatively small application which makes 

it easier for developers to understand. The small size also affects positively on the start-

up time. As the services are independent, the fault isolation is better. Unlike in monolithic 

architecture issues like memory leaks won’t be fatal to the whole system. Having a mi-

croservice architecture also removes the technology stack limitations that monolith archi-

tecture has. An entire new tech stack can be chosen with new services, and rewriting the 

old ones is easier (Richardson, 2023).  

While a single service might be easy to understand is more manageable, microservice 

architecture does bring a lot of complexity as it is a distributed system. The system as a 

whole is big and complex, requests that span multiple services must be implemented and 

tested which is not easy. Deployment will also be more complex as the system is now 

made out of several different services. 

The book Microservice Architecture (Nadareishvili, et al., 2016) introduces characteris-

tics to be considered when implementing microservice architecture. I won’t go into the 

detailed character definition in this thesis, but encourage interested ones to check the book 

out. Simply put, the book defines these layered characteristics (architectural phases): 

modularized, cohesive and systemized, and uses them to create a maturity model (Figure 

12). This maturity model categorises benefits according to the phase and goals, either 

speed or safety. The model shows the impact and priority of benefits as the system’s scale 

and complexity increase and also the activities that should be taken care of during each 

phase. 
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Figure 12. Maturity model for microservice architecture goals and benefits 

(Nadareishvili, et al., 2016). 

 

3.4 Containers and containerization  

The container term comes up quickly when developing cloud applications. Containers are 

standardized packages of computational environments that have the application code and 

all the dependencies needed to run the software service, such as frameworks and libraries. 

A container is something that can be easily shared and used. Containers allow us to vir-

tualize both the operating system and the hardware by wrapping them up (Schenker, et 

al., 2019).  

 

Containers are frequently compared to Virtual Machines. Both technologies allow the 

isolation of the application from other services and from the underlying hardware. Below 

Figure 13 compares these two technologies.  
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Figure 13. VM vs Containers (Getz, 2021). 

Virtualization simulates the physical hardware (CPU, disk and memory) and represents 

individual machines. Virtualization has its own guest operative system and Kernel, it is 

known as hardware-level virtualization. Containerization whereas simulates the operative 

system on the machine, not the entire physical machine. Containerization allows multiple 

applications to share the same OS kernel (Shejwal, 2022).  

 

Containers make deployments easier by solving two core problems: configuration and 

infrastructure management. With containers, it is easy to develop and test with a similar 

configuration as what is running in production. Infrastructure management is made easier 

as one can run multiple containers in one machine. Organizations don’t have to bother 

themselves by choosing the exact size of a machine, instead larger machine can be pur-

chased for running several containers on it (Barlett, 2023).  

 

Container managers are a way to manage the life cycle of a container. The six phases in 

the container lifecycle are: Acquire, Build, Deliver, Deploy, Run and Maintain. Acquiring 

the base layer container image of the application starts the lifecycle. Build phase includes 

packing in the container image all the necessary application components and libraries, 

which after the image is published in a public or private repository. During Delivery 

phase, the built application is delivered to production. Delivery phase might include con-

tainer image vulnerability scanning as well. Deploy phase involves of actual deployment 

of the application to production, and taking care of updates. Management system and 

runtime environment are set during Run step. Any health check, scaling and recovery 

policies are supposed to be in place for the container after this step. At the end of the 

lifecycle is Maintain, where the application monitoring and any needed maintenance are 



-20- 

 

taken care of. The system might try to manage failures at run-time for example by con-

tainer restart. Otherwise, the developers might debug and fix the failure offline and the 

container lifecycle is re-started again to put out a new containerized version of the appli-

cation (McGee, 2016; Casalicchio & Iannucci, 2020). Below Figure 14, depicts the con-

tainer’s lifecycle.  

 

 

Figure 14. Container lifecycle. Manager provides API to support the lifecycle phases and 

Orchestration (yellow part) makes it possible to automate certain phases in the lifecycle 

(Casalicchio & Iannucci, 2020).  
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Container orchestration tools allow automatization of the Deploy, Run and Maintain 

phases of the container lifecycle, i.e., it automates container task regarding provisioning, 

resource management and service management.  The below Figure 15 lists various func-

tionalities that container orchestration tool can handle for container scheduling, resource 

and service management. 

 

Figure 15. Orchestration tool can handle scheduling, resource management and service 

management tasks (Isenbeg, 2017). 

The de-facto choice of tools for container or cluster management and orchestration are 

Docker and Kubernetes, respectively (Docker, 2023; Google Cloud A, 2023). Docker also 

has its own orchestrator called Docker Swarm. This thesis will mostly focus on Kuber-

netes and another tool called Apache Helix, which will be introduced properly in the later 

part.   
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4 Distributed (data) system 

 

There have been several different definitions of what a distributed system is. For this 

thesis purpose, the loose characterization given in Distributed Systems book (Van Steen 

& Tanenbaum, 2017) is good enough: “A distributed system is a collection of autonomous 

computing elements that appears to its users as a single coherent system”. The quoted 

definition includes two features that are characteristic in a distributed system. The first 

feature is that the system contains independent computing elements (nodes), that can be 

software processes or hardware devices. The second feature from the definition refers that 

the users, both people and applications, think that they are using a single system. Other 

characteristics of a distributed system include resource sharing, simultaneous processing, 

scalability, easy error detection and node transparency in the means of easy communica-

tion between the nodes (Zettler, 2023). With a group of nodes we have clusters, there 

exists dedicated cluster management software that helps coordinate tasks in the cluster.  

 

The opposite of distributed system is a centralized system, where all computing is done 

by a single computer in one location. The main difference is that in a centralized system, 

clients can easily congest the network as all the nodes access the central node where the 

system state is kept. Basically, a centralized system can fail from a single point. This all 

might sound familiar with the description of monolithic and microservice architecture in 

the Cloud computing chapter as cloud computing and microservice are types of distrib-

uted systems (Van Steen & Tanenbaum, 2017). Benefits of having distributed system 

include but are not limited to high availability, scalability and low latency.  

 

High availability is valuable to have for organizations disaster recovery plan. High avail-

able environment means that there’s minimal service interruption if some member of a 

cluster malfunctions, otherwise these high available environments should operate without 

unplanned outages and during specified operating hours (Piedad & Hawkins, 2001). Ba-

sically, the other members in the cluster can act as a backup if one or more members come 

down. A failover process happens, which during the system transfers all the traffic to a 

member that has been so far redundant or on standby mode. While HA is supposed to 

have minimal downtime, a step further from that can be thought to be Fault Tolerant, 

where the goal is to have zero downtime.  

 

Scalability. Scaling includes both vertical and horizontal scaling. Vertical scaling, aka. 

scaling up, basically means that we are scaling to a higher load, buying a more powerful 

machine is one way to scale up. Scaling horizontally, aka. shared-nothing architecture 

allows spreading the load of a single machine to multiple machines. If a single server gets 
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overloaded with requests it will become a bottleneck and affect the performance (Van 

Steen & Tanenbaum, 2017). 

 

Low latency rate is important for users and businesses. Organization can have servers at 

various locations so users can be served from the geographically closest datacenter – this 

allows network packages to travel faster to the client (Kleppman, 2017).  

 

In the following sections, I will briefly explain more about replication, partitioning and 

object storage. The concept of replication and partitioning is good to comprehend for 

understanding some of the tools and architecture I’ll introduce later. In replication and 

partitioning, a database is used as an example, but the concept itself is not exclusive to 

data distribution. 

 

4.1 Replication 

Replicating data in a distributed system means that we are copying the same data to mul-

tiple machines connected via a network. Replicating helps reduce latency and increases 

both availability and read throughput, the last one meaning that more nodes/machines can 

serve read queries (Kleppman, 2017).  

 

4.1.1 Leader and Follower 

Nodes that store a copy of the database are called replicas. The leader or primary replica 

is considered to be the one which receives the requests from the client to write new data. 

The new data will be written to the local storage of the leader replica. The leader will send 

the data change to all the other replicas, aka. followers or secondaries, which will apply 

the changes in their own local copy. Both leader and follower can be read but only leaders 

accept writes from clients (Kleppman, 2017). This is illustrated in the following Figure 

16. 

 

Figure 16. Leader-Follower replication (Kleppman, 2017). 



-24- 

 

 

4.1.2 Synchronous and Asynchronous replication  

Replication can happen synchronously or asynchronously. Figure 17 shows in sequence 

diagram how synchronous replication happens. The leader in the synchronous replication 

will wait to receive confirmation from both of its followers until it will report success to 

the user. Whereas in asynchronous replication, Figure 18, the leader doesn’t wait for the 

follower’s confirmation.  

 

Figure 17. Leader-based synchronous replication. Adaption of (Kleppman, 2017). 

 

Figure 18. Leader-based asynchronous replication. Adaption of (Kleppman, 2017). 



-25- 

 

Not all the followers have to use one type of replication, unlike in the diagrams above, 

there can be a mix of asynchronous and synchronous followers, and this is the advised 

way. Synchronous replication makes sure that the follower’s data matches with the 

leader’s data. If the leader replica were to crash for any reason, the followers would still 

have the up-to-date data as backup. The downside of the synchronous replication is that 

if one of the followers has crashed, the writing process will be stuck. Semi-synchronous 

replication, Figure 19, can help to migrate such a problem. 

 

In semi-synchronous replication, one of the followers is synchronous and the rest are 

asynchronous. A system relying solely on synchronous replication wouldn’t really work 

in practice, as one follower failing would halt the whole system. With a semi-synchronous 

configuration, the async follower will be made to synchronous if the original synchronous 

follower becomes unavailable (Yoshinori, 2014).  

 

Fully asynchronous configuration is also possible, but it is considered as less robust as 

the writes that haven’t been processed by the followers will be lost if the leader fails. Of 

course, the flip side is that leader would never be in a halt even if all its followers fail 

(Kleppman, 2017). If a leader replica goes down for some reason, a similar failover pro-

cess happens that was mentioned in the high availability section earlier. Basically, some 

other follower replica will be promoted to take the leader role.  

 

 

Figure 19. Semi-synchronous replication. 
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4.2 Partitioning 

Simply replicating one copy of the same data to multiple different nodes might not be the 

ideal nor sufficient solution with very large datasets. In such cases, partitioning – breaking 

data into smaller parts, comes handy. Partitioning supports scaling out better, with the 

goal of spreading data and query load to different nodes. Each partition can be considered 

as a small database on its own, but the database can support operations that affect multiple 

partitions. A piece of data usually belongs only to one partition. A big dataset can be 

distributed across many disks when we place different partitions on different nodes, 

which allows distributing the query load to multiple processors (Kleppman, 2017).  

 

Everything mentioned in the replication section applies to partitioning. For fault toler-

ance, we might want to store multiple replicas of partitions in different nodes. A single 

node can store more than one partition also. Figure 20 illustrates an example of how 

would partitioning and replication work together in the leader-follower model. The figure 

shows how each node has one leader of a certain partition and followers of other parti-

tions, the followers of the same leader are spread on the other nodes (Kleppman, 2017).  

 

 

Figure 20. Partitioning and replication (Kleppman, 2017). 

 

When the data is partitioned to different nodes, how does a client know which node it’s 

supposed to connect to when making a request? How does the service discovery happen?  
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Figure 21. Ways to route request to the correct node (Kleppman, 2017). 

The above Figure 21 shows some examples of how to make the service discovery happen:  

1. Client connects to a random node which will either handle the request directly if it 

owns the partition or forwards the request to the correct node. 

2. Routing tier that has the information about the partitions. It will forward all the requests 

from the client to the correct node.  

3. Clients know already which partition is assigned to which node so they can connect 

directly.  

Essentially there is still the problem of how does the routing decision-making component 

know about the changes that might happen in the partitions to node assignment? The 

changes are caused by manual or automatic rebalancing, which essentially happens when 

e.g., more CPU, RAM or disks are added. Some services can be used to keep track of the 

cluster metadata (Kleppman, 2017). I will introduce one of those services, Apache 

ZooKeeper, in the later chapter.   

 

4.3 Distributed Object Storage 

File storage is a more traditional type of storing data. The data is stored in a hierarchical 

structure, with directories and folders. One would need a correct path to find a piece of 

data. File storage is good for storing small amounts of data and making it easily accessible 

to multiple users. The third type of storing is block storage, where files are broken and 

stored as separate blocks. Unlike file storage, block storage doesn’t use single path to data 

which benefits the performance. Block storage can be good when e.g., handling a large 

amount of transactional data, but it can be expensive. (Google Cloud B, 2023).  

 

Object storage is an architecture model of data storage for storing unstructured data in a 

format called objects. The data is perceived as units that also include metadata and unique 
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identified used to locate and access the said unit. These units are placed in a storage pool, 

a flat data environment which can be scaled easily by adding more storage devices to 

increase the size of the pool. The objects can be easily located and accessed through REST 

API. In addition to the mentioned benefits, object storage provides good data durability 

and resiliency as the data can be replicated and stored across several devices and geo-

graphical regions. Nowadays distributed storages are usually hosted on cloud services. 

The downside of object storage is that it’s not good for constantly changing dynamic data, 

as one would need to rewrite the entire object when the data changes (Google Cloud B, 

2023). Examples of object storage services are Amazon S3 and Azure Blob Storage. 
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5 Tools 

 

This chapter will explain in high detail cluster management and orchestration tools, 

Zookeeper, Helix and Kubernetes, that are related to this thesis. These tools are used by 

the commissioner which is why it is good to understand the basics before jumping into 

the commissioner’s architecture in later chapters.   

5.1 ZooKeeper 

I mentioned very briefly about ZooKeeper in an earlier section saying that it’s a tool for 

managing cluster metadata. Here’s a more detailed definition given on ZooKeeper’s home 

page: “ZooKeeper is a centralized service for maintaining configuration information, 

naming, providing distributed synchronization, and providing group services”, (Apache 

ZooKeeper, 2023). ZooKeeper acts as a coordination service, to which nodes will register 

themselves to. The mapping of partitions to nodes is maintained by the tool, and other 

services/actors that need this information can subscribe to it. ZooKeeper will then notify 

the subscribers whenever a node is added or removed or if ownership of the partition is 

changed (Kleppman, 2017). Below Figure 22 illustrates how ZooKeeper works on a high 

level in the context of service discovery.  

 

 

Figure 22. Zookeeper keeps track of partitions and nodes (Kleppman, 2017). 

ZooKeeper works on a leader-follower basis, which was previously described in Subsec-

tion 4.1.1. Clients can connect to any node for reading data, but writing happens only 

through leader nodes. ZooKeeper uses a shared hierarchal namespace organized like a 

regular file system to coordinate distributed processes.  Data registers called znodes, sim-

ilar to files and directories, reside in the namespace. High throughput and low latency can 

be achieved with ZooKeeper as its data is kept in-memory. ZooKeeper itself is actually 

meant to be replicated over multiple servers/hosts just like the distributed processes 
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ZooKeeper coordinates. A cluster of ZooKeeper nodes are called an ensemble. The up-

dates to ZooKeeper are ordered with stamps that reflect the overall order of the transac-

tions (ZooKeeper, 2022).  

 

 

Figure 23. Zookeeper servers share state, logs and snapshots. Adaption from 

(ZooKeeper, 2022). 

Each Znode stores some data which may or may not have children associated with it. The 

metadata is maintained as a stat structure and these data include version number which is 

increased whenever some data is updated, access control list and timestamp. ZooKeeper 

uses an atomic broadcast system which keeps total ordering, meaning that the order of 

the sent transactions is the same across servers i.e., local replicas never diverge. Atomicity 

also means that changes are treated as a single operation, they are grouped and processed 

together, i.e., a group of write operations must all be committed or all rejected/rolled back, 

regardless of failures (Kleppman, 2017). 

 

 

Figure 24. ZooKeeper service components (ZooKeeper, 2022). 

Clients can get notified of znode changes with ZooKeeper Watchers. To avoid the an-

tipattern of polling events continuously, ZooKeeper has its own service mechanism where 

clients can get notifications from. Instead of a poll/pull model, Zookep Watcher imple-

ments a push model, where registered clients get notifications “pushed to them” when 

something changes in that particular znode. Watcher is one-time use, so a new watcher 

has to be set to the znode after the previous one has been triggered. Figure 25 below is an 
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example where Client1 is interested to get a notification when another node joins the 

cluster. An ephemeral node (deleted after the creator’s session ends) will be created to 

ZooKeeper path or members when a new node joins. Client2 joins and creates this ephem-

eral node called Host2 which triggers the watcher. Client1 sets new similar watcher after 

Client2 has joined (Haloi, 2015).  

 

 

Figure 25. Sequence example of two clients and ZooKeeper with watches and notifica-

tions (Haloi, 2015). 

 

5.2 Helix 

Apache Helix is a cluster management framework; it allows automatic management of 

distributed resources hosted on nodes within a cluster. From Apache Helix’s own home 

page: “Helix automates reassignment of resources in the face of node failure and recov-

ery, cluster expansion, and reconfiguration”. The nodes inside of a cluster are independent 

and mostly isolated. These nodes can be made aware of other services with communica-

tion mechanisms, but they wouldn’t need to know about the whole system. In order to 

manage certain tasks and actions easily, a manager tool can be introduced.  

 

Apache Helix was developed at LinkedIn. Helix is a generic cluster management system 

that abstracts common cluster management tasks. LinkedIn people defined the following 

common tasks for running and maintaining distributed data system (DDS): Resource 
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management, fault tolerance, elasticity and monitoring. See the following Table 2 for 

more detailed definition of each mentioned task. 

 

Task Definition 

Resource management DDS provided resource (database, index, 

etc.) must be divided between cluster’s 

nodes. 

Fault tolerance Node failure doesn’t crash the whole 

DDS, the system shouldn’t lose data and 

read and write operations should still be 

available. 

Elasticity Cluster grows and adds more nodes ac-

cording to the demand and growing of 

workloads. The resources of DDS get re-

distributed accordingly to the new nodes. 

Monitoring Cluster monitoring gives important health 

metrics and helps noticing fault tolerance 

problems. Follow-up actions are required 

afterwards, e.g., lost data re-replication or 

data re-balancing across nodes. 

Table 2 Common tasks for running and maintaining DDS, defined by experts in LinkedIn 

(2012). 

Helix provides set of pluggable interfaces for declaring DDS’s correct behaviour. Ac-

cording to the conference publication “Untangling Cluster Management with Helix” 

(Gopalakrishna, et al., 2012) the key of the design of pluggable interfaces is augmented 

finite state machine (AFSM) and the optimization module. 

 

5.2.1 AFSM – Augmented Finite State Machine 

The DDS uses AFSM to encode the possible valid states, legal transitions and related 

constraints that it can have. A good real-life example of a finite state is a traffic light. A 

traffic light has states of red, yellow, and green, and the transitions are red-yellow-green 

and green-yellow-red. An example of a constraint could be the pedestrian traffic light, 

which shows red until someone pushes the pedestrian button. Another example of con-

straint, closer to the topic, is that we define that a partition can only have one leader. 

Helix’s AFSM works on partition level (Gopalakrishna, et al., 2012).  
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5.2.2 Optimization module 

The DDS can also use an optimization module to specify goals for ideal resource distri-

bution in the cluster. Unlike AFSM, the optimization module can optimize on partition, 

node, resource, and cluster levels. The optimization can be of two types: transition goal 

or placement goal. The emphasis is on the goal word, as Helix tries to achieve its goals 

but not by ignoring the cluster correctness. The cluster’s correctness is not dependent on 

transition or placement goals (Gopalakrishna, et al., 2012).  

 

With transition goals, the DDS is able to tell Helix how to prioritize multiple replica tran-

sitions. Helix maintains the correctness of DDS during transitions and throttling by choos-

ing the ordering of the transitions. Basically, Helix has a transition preference list. Place-

ment goals let Helix know how should it place replicas on nodes as there’re multiple 

choices. Load balancing can be achieved for example with the placement goals 

(Gopalakrishna, et al., 2012).  

 

5.2.3 Helix execution and the modes 

I have now described how DDSs behaviour is declared in Helix with AFSM and an opti-

mization module. Helix monitors continuously the DDS state and orders transitions on it 

whenever it’s necessary. This way, it makes sure that the declared behaviour is being 

followed during run-time. 

 

 

Figure 26. Helix’s execution algorithm (Gopalakrishna, et al., 2012). 

According to the LinkedIn people (Gopalakrishna, et al., 2012), the key feature of the 

Helix transition algorithm is that the same algorithm can be applied to all different 

changes and across all DDSs. The conference paper shows the algorithm, Figure 26, and 

unravels the algorithm in detail, which I recommend reading from the paper itself if one 
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wants to have deep understanding. The algorithm reads the current state of DDS and com-

putes its target state. The current state will most of the time already match with the target 

state and nothing will happen. Only if the cluster changes for some reason (e.g. adding or 

removing partitions) will the state be different. Helix uses “Controller, Scalable, Decen-

tralized Placement of Replicated Data”-algorithm, abbreviated as CRUSH. It is an im-

provement of the RUSH algorithm and helps Helix achieve load-balancing goals. In a 

nutshell, CRUSH distributes data according to a weighted hierarchy on available storage 

transitions and then according to the requirement, adds additional replica transitions 

(Weil, et al., 2006). The algorithm takes account of pending transitions and computes a 

set of valid transitions accordingly. These valid transitions are computed for maximizing 

the number of transitions that can be done in parallel. Helix will add transitions to the set 

according to the priority order declared by DDS in the optimization goals. Using the 

CRUSH algorithm Helix will fill the set while taking throttling optimization goals into 

account.  When the transitions are completed, the call-back notifies Helix to remove the 

transitions from pending transitions in their respective partitions list (Gopalakrishna, et 

al., 2012). 

 

Helix has three different modes so the users are not forced to use the default CRUSH 

algorithm but instead, it’s possible to give application the control of placement and the 

state of the replica. The default mode of execution is AUTO, which as mentioned, uses 

the CRUSH algorithm. With AUTO mode, the state and placement of the replica is de-

cided solely by Helix. The conference paper mentions that this mode is mostly used for 

applications where replica creations is inexpensive. SEMI-AUTO is the second mode of 

Helix, here the application gets to decide the placement of the replica, but Helix is still 

taking care of the states of the said replicas. This mode is used when replica creation is 

expensive which is common with DDSs that have a lot of data. The third mode offered is 

CUSTOM, which allows DDS to take full control of the placement and state of each 

replica. Helix coordinates the DDSs state moving from the current to the final state de-

fined by the DDS itself. The application uses an interface provided by Helix to offer cus-

tom functionality to handle cluster changes. The CUSTOM mode is used in cases when 

it’s necessary for multiple resource coordination or when additional logic is used to de-

cide the replica’s final state (Gopalakrishna, et al., 2012).  

 

5.2.4 Helix roles with ZooKeeper 

Remembering Figure 22 in the ZooKeeper section, Helix takes the role of the routing tier 

in the image, using ZooKeeper to detect any changes in the DDS states. Helix has three 

roles which communicate with each other using ZooKeeper: participant, spectator and 
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controller. The roles help Helix categorize the nodes logically according to their func-

tionality. Participants are nodes hosting the distributed resources. The Participant’s cur-

rent state is observed by Spectator nodes, which also do the request routing. Hence, the 

Spectators need to know the information of the partition’s host instance and its state to 

route the request to the correct endpoint. The Controller is a node that both observes and 

controls Participant nodes. Controller is Helix’s core node, which does the transition co-

ordination in the cluster, the finite state machine is hosted in the controller and the exe-

cution algorithm is also run in it (Apache Helix, 2023; Gopalakrishna, et al., 2012).  

 

Figure 27. Helix Roles with ZooKeeper (Apache Helix, 2023). 

ZooKeeper in Helix provides a communication channel between the controller and spec-

tators. This channel is perceived as a queue in Zookeeper and the producers and consum-

ers on this queue are controllers and participants. “Producers can send multiple messages 

through the queue and consumers can process the messages in parallel” (Gopalakrishna, 

et al., 2012). Figure 28 below illustrates the interaction between these three Helix roles. 

After participants come alive, they wait for new messages in the message queue. 

ZooKeeper maintains the partition replicas’ current and target/ideal states. Helix provides 

External view for spectators that is a combined view of all nodes’ current state.  The 

Participants get sent messages by the controller when it gets notified about the difference 

in the states, the message indicates the required state transition as a task which the Partic-

ipant will perform. Depending on the tasks completion outcome the current states will be 

updated by the participants. The spectators get notified by the Helix agent if there are 

changes in the External view. A notified change will be read by the Spectators which will 

then perform their required duties. As a reminder and quick recap, a list of participants 

and spectators is maintained in ZooKeeper by Helix. Controller will be notified by 

ZooKeeper also if any node dies, so the controller can deal with it accordingly (Apache 

Helix, 2023; Gopalakrishna, et al., 2012).   
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Figure 28. Interaction between Controller, Participant and Spectator roles (Apache 

Helix, 2023). 

5.3 Kubernetes (K8s/Kube) 

Kubernetes is a well-known open-source platform for orchestrating containerized appli-

cation deployment, including automated scheduling and scaling the application when nec-

essary. Kubernetes was originally developed by Google and it was open-sourced in 2014 

(IBM, 2023). Kubernetes in its essence is supposed to give developers more agility, ve-

locity and efficiency. These ideas I have explained already in Section  3.4 Containers and 

containerization, but let me give you a brief recap in the context of Kubernetes.  

 

The idea of adopting Kubernetes and containers is to encourage us to build distributed 

systems with immutable infrastructure. The principle in the immutable system in this con-

text is to not modify the artefact, container image, once it’s created. A brand new image 

is created instead of having incremental updates for the old one. With a single operation, 

the old image will be replaced with the newly built one that contains updates and fixes 

for the application. It is easy to rollback to the old image if needed as that one is still in 

the registry. There’s also a better record of how the new image was built so debugging is 

also easier (Hightower, et al., 2017). Just like Apache Helix, Kubernetes also uses declar-

ative configuration to define the state of the application, and similarly, with Helix, Ku-

bernetes also monitors these states and takes corrective actions if something goes wrong.  

 

Kubernetes itself is a very big topic, and an entirely separate thesis could be probably 

made just on all of its functions, services etc. Obviously, going through the whole tool 
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won’t make sense and is not necessary, hence I have picked certain main topics of it that 

give some basic understanding of the tool related to this thesis’ content.  

 

 

5.3.1 Basics 

To understand Kubernetes architecture, we have to first know some basic Kubernetes-

related glossary, the following Table 3 has definitions from Kubernetes’ own documen-

tation. 

 

Term Definition 

Container Image that usually runs an application or 

service. Typically, a Docker image. 

Control plane “Container orchestration layer that ex-

poses the API and interface to define, de-

ploy, and manage the lifecycle of contain-

ers”. Dubbed as the brain of the Kuber-

netes cluster. Historically known as mas-

ter/head node. 

Node Worker machine that has local daemons, 

processes that run in the background. 

Pod Smallest Kubernetes object and also the 

simplest. A set of running containers en-

capsulated by Pod. 

Table 3 Basic Kubernetes glossary (Kubernetes A, 2023). 

 

The Kubernetes workflow in a simple form, illustrated in below Figure 29 starts with 

client interacting with the Control plane’s API server component with an HTTP request. 

The Control plane delegates the work to worker nodes that carry out the tasks. Client is 

never interacting directly with the worker node.  

 

 

Figure 29. Basic Kubernetes workflow (Kebbani, et al., 2022). 
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The client is using Kubectl, Kubernetes’ own command line tool, for sending the requests. 

Instructions sent to the control plane can be written in imperative syntax, which are basi-

cally shell commands. The other way to do it is through declarative syntax by either writ-

ing JSON or YAML files. YAML language is more popular among Kubernetes usages 

because it uses simple “key:value” syntax. While imperative syntax is rather easy, and 

some operations can only be done by it, declarative YAML files suit better for any bigger 

and repetitive operations. The YAML files can be version controlled and it also supports 

multiple resource declaration (Kebbani, et al., 2022). A simplified architecture view of 

Kubernetes components and their interaction with each other can be seen illustrated in 

below Figure 30. The following Subsections will explain the parts in more detail. 

 

Figure 30. Simplified Kubernetes architecture view (Philippe, 2023). 

 

5.3.2 Pods and Pod scheduling preference 

The simple definition of pod was given already in the previous Subsection’s Kubernetes 

glossary. Pods represent the basic building blocks you can have in Kubernetes and they’re 

the smallest deployable artifacts in the Kubernetes cluster. Basically, when you have a 

pod, the containers in it always belong to one same worker node/machine. Containers are 

designed to only run one process, this keeps them easily manageable. Pod is a higher 

construct that allows tying containers together so they can be managed as one single unit. 

With pods, we can avoid putting multiple processes in one container to manage the group 

easier (Lukša, 2018).  

 

Pods can have topological spread constraints configured, which allow controlling how 

the pods are spread across e.g., regions, zones and nodes, also known as failure-domains 
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or some other topology type defined by user (Kubernetes B, 2023). On top of topology 

spread constraints, one can set node affinity and anti-affinity properties to pods, which 

would make them be attracted or repelled by certain Kube nodes. These affinity and anti-

affinity properties can be set as preference or hard requirement. Pods can have tolerations 

specified to them, where user would specify a key, value and effect. The matching spec-

ification will be added as taint for a node. With taints and tolerations, we can ensure that 

Kube scheduler won’t be scheduling pods to unwanted nodes (Kubernetes C, 2023).    

  

5.3.3 Control plane components 

We mentioned the API server component already in the basics chapter, which exposes 

the Kubernetes API. The API server, also known as kube-apiserver, is stateless and relies 

on another component, etcd – a database engine, to store the states of the resources. Kube-

apiserver can be scaled out freely thanks to it being stateless. The datastore etcd is 

NOSQL distributed database that stores the cluster state information such as what docker 

image is used, the pods’ names, which machine the containers belong to and how many 

containers have been created. This etcd datastore is its own project not developed by Ku-

bernetes, but something that is needed in Kubernetes setup in order for it to work. Essen-

tially, whenever a client is calling read or write operations, the request is proxied through 

the kube-apiserver to or from etcd (Kebbani, et al., 2022). The below figure is a “zoomed-

in” illustration of Figure 29’s Kubernetes master node.  

 

Figure 31. Kube-apiserver acts as a proxy between the client and the etcd datastore 

(Kebbani, et al., 2022). 

Control plane also contains a Kube scheduler, Kube controller manager and cloud con-

troller manager.  The Kube scheduler selects a node for newly created pods without 

nodes. Controller processes are run in the Kube controller manager. Controller regulates 

the state of a system by tracking at least one type of Kubernetes resource. The controllers 
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make the resource’s current state come closer to its ideal state; the controller manages the 

control loop, regulating the state of the system continuously. Cloud controller manager 

lets one link a specific cloud provider’s API to one’s cluster. The components that interact 

with the cloud platform are separated by the cloud controller manager from components 

only interacting with the cluster (Kubernetes A, 2023).  

  

5.3.4 Node components 

The worker nodes have components that run on every node. These components provide 

Kubernetes runtime environment and maintain the running pods, i.e., these components 

take care that the instructions received from the client are executed accordingly and end 

up in containers running in worker nodes (Kubernetes, 2023; Kebbani, et al., 2022). 

Kubelet makes sure containers are run in a pod and is considered a daemon itself. Kubelet 

is the one that interacts with the worker node’s local container engine daemon like 

Docker. It is good to keep in mind that Kubelet is only able to manage containers Kuber-

netes has created, so if one bypasses Kubernetes and manually creates containers on the 

worker nodes, Kubelet cannot manage these. This is due to the fact that manual actions 

won’t be reflected on the PodSpecs configuration stored in the etcd datastore, which is 

essentially provided to Kubelet. Another component run on a worker node is the kube-

proxy. The proxy component partly makes the service discovery possible, so clients are 

able to interact with a set of pods made available on the network (Kebbani, et al., 2022). 

This concept is part of the Kubernetes Service method which I will explain in the follow-

ing subsection. Kube-proxy maintains the nodes’ network rules.  

 

Now that we have gone through the Kubernetes basics and explained the important com-

ponents, it is much easier to understand the Kubernetes architecture depicted in below 

Figure 32. One can see that the API server has a crucial role even though it’s essentially 

just a REST API. The figure is showing a single master and worker cluster, by adding 

more nodes in both groups we can achieve high availability.    
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Figure 32. Kubernetes cluster architecture (Patel, 2021). View Appendix A for a larger 

version. 

   

5.3.5 Service 

Kubernetes has its own method for making network application’s service discoverable 

and it is called Service in Kubernetes. From one of the earlier chapters, we learned a little 

bit about Pod networking and IP addresses and how easy the cluster inner communication 

is, it is generally advised to avoid relying on IP addresses for accessing a pod directly. 

The pods are ephemeral meaning that the IP addresses essentially change whenever a pod 

is recreated. The solution is to use Kubernetes Service resource, which as most of the 

Kube objects, can be deployed by using shell commands or declarative files (Kebbani, et 

al., 2022).  The Service component essentially makes it possible to have a static IP ad-

dress, and this happens by putting a Service in front of each pod to act as a traffic-serving 

proxy. The Service gets a static DNS during its creation which won’t change as long as 

the Service is in the cluster. The Service creator’s job is to tell it which pods the said 

Service is supposed to serve traffic to, and this can happen for example with selectors and 

labels. Service will select pods according to the labels assigned to them (Patel, 2021; 

Kebbani, et al., 2022) 
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Figure 33. A simple depiction of Services exposing pods (Kebbani, et al., 2022).  

Kubernetes uses a round-robin algorithm for load balancing, which means that requests 

are load balanced evenly to the number of pods that are behind the Service. E.g., From 

the above Figure 33 if we think of Service A as a load balancer with the three pods (A, 

B, D) behind it, each of the pods will receive 33% of the Service’s requests. Service B 

would divide it 50/50 among the two pods (C, E) behind it. There are different types of 

Services, which I won’t however elaborate more on in this thesis.  

 

5.3.6 StatefulSet 

One way to divide applications is to categorize them into stateful and stateless applica-

tions. Stateless applications don’t store past knowledge of old transactions, it doesn’t need 

to maintain the state and losing it is acceptable. Transactions in stateless applications can 

be thought of as vending machines, there’s one request and a single response to it. When 

in need to save state and refer to past transactions, we have Stateful applications. Stateful 

applications save the history and context, past transactions affect the current transactions, 

e.g., online banking (Red Hat, 2020).  

 

Kubernetes StatefulSet is a Kube native way to manage stateful applications. It is a work-

load resource that helps manage the deployment and scaling of a set of Pods. The pods of 

StatefulSet have a sticky identity, meaning that while they’re created from the same spec-

ifications, each pod has its own persistent identifier that is kept across rescheduling. Ba-

sically, the pods are guaranteed to be unique and ordered. The pods have an ordinal index: 

when we have N number of replicas in StatefulSet, the pods will be assigned integer or-

dinal starting from 0 and ending with the final pod being N-1. When the pods are being 

deleted, the process starts in reverse order so from {N-1..0} (Kubernetes D, 2023).   
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6 Product Architecture 

 

This thesis is a commission to Relex Solutions company where I have been working as 

DevOps engineer before and during my master studies. We will hereafter refer the com-

pany as Relex. Relex focuses on developing software solutions for supply chain and retail 

planning management. They have a product called Plan which is a distributed system with 

a monolithic architecture. The product has the capability to run multiple monolithic in-

stances simultaneously for a single application. In practice, this means running multiple 

Plan instances with slightly differing configurations, or 'roles', in a single clusterized ap-

plication, this is how scaling out is made possible. Relex is planning to start to use Ku-

bernetes as an orchestration platform for this Plan product. In this chapter, I will describe 

the current architecture and explain the motivation for Plan to move to use Kubernetes.  

 

While this thesis focuses more on cloud computing, the Plan product itself is something 

that started with supercomputing qualities. Due to the requirement to keep up with mod-

ern times, needs and solutions, the project is slowly adopting cloud computing technolo-

gies and frameworks.  

 

The Plan product is a SaaS solution that is run in a private cloud. It is a single-process 

JVM monolith, illustrated in Figure 34, that has been built mostly with Ruby, Java, and 

Scala. It has the user interface layer, business logic and data access layers. Plan is consid-

ered as data-intensive application as it processes a lot of data. One thing to highlight about 

the product is that it also has an in-memory database as seen in the below figure, hence 

all the processing is done in-memory. The application itself is surrounded by multiple 

supporting services.  
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Figure 34. Relex Plan’s monolithic architecture. 

The product has kept its monolithic form and in-memory database over the years and will 

keep it so for a non-foreseeable period. There are a lot of dependencies in and between 

the data, splitting it wouldn’t be conventional. Relex’s solution allows in-memory calcu-

lation which vastly improves the performance and shortens the query time. In its simplic-

ity: “data is queried when it’s within the computer’s random access memory (RAM), as 

opposed to being read on and off physical disks”, explains Falck (2013), co-founder of 

Relex, in his article of “Big Data – Big Talk or Big results?”.  If we’d put supercomputing 

and cloud computing on the opposite sides of a spectrum of large-scale computing sys-

tems, Relex Plan’s characteristics are actually closer to supercomputing, as illustrated in 

below Figure 35. 
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Figure 35. Relex Supply Chain Management (SCM) in the spectrum of large-scale com-

puting systems, where supercomputing and cloud computing are the opposite ends.  

 

6.1 Plan Roles and Helix 

The Plan monolith has roles, see Table 4, that can be configured to cluster settings when 

scaling out. These roles allow for running multiple monolithic instances simultaneously 

for a single application. Helix coordinates which of the potential roles are active for which 

instance, i.e., if multiple instances have a role that can be active in only one instance at a 

time. Helix decides which instance acts as the active role, making all the rest instances 

with the same role go into a passive mode (for that particular role). The passive instances 

won’t perform the functionality of that required role, but in case something happens for 

the active node, they’re ready to take the responsibility and become “active” or the leader. 

This way the high availability is also implemented in the Relex Plan.   

 

Role Description 

Transactor Writes commits to the distributed object storage. A single Plan instance 

is active with this role at a time. 

Worker Defines a worker instance that handle jobs. There can be multiple Worker 

instances.   

Backend Serves the user requests; acts as a backend that receives traffic from 

routing components. Many backend instances can be active at the same 

time. 

Scheduler Schedules and partitions jobs to worker instances. Only one active. Com-

bined with Transactor in declarative-roles mode.  

Authenticator Provides internal authentication. Only one active. 

Table 4.  Relex Plan cluster instance roles. 
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For Helix, the resources that its managing in this product are the roles, users that log in 

to the system and scheduled jobs. Each of these resources have their own state that are 

determined in the resource’s state model. E.g., State model of 2 states for role X could be 

stopped and running. Remembering that Helix itself has types: participant, spectator and 

controller. The Plan’s roles are participants in the Helix cluster, each configured role hav-

ing its own participant which belongs to its own Helix cluster, e.g., Plan with one instance 

and three roles: transactor, worker and backend would have three Helix clusters, one for 

each role. Helix controller manages the states of the participants.  

 

In Plan, the Helix does not split the resources into multiple partitions, which removes the 

trouble of needing to distinguish the difference between partition and resource. Plan al-

ways has one partition of each resource. Even though partitioning doesn’t exactly happen, 

replication is still used. As described in the role table, Plan can have multiple worker and 

backend roles, when scaling out the resource is replicated. 

 

It is important to note that there are basically two different clusters and not to get them 

mixed up: The Helix cluster defined in Helix, hereafter referred to as either as “Helix 

cluster” or “sub-cluster” and Plan cluster, which is basically one environment, with one 

or more instances. An example depicted in below Figure 36, shows a situation where we 

have one Plan cluster (one environment), with two instances. The two instances have 

slightly different roles, hence they also have a different amount of sub-clusters (Helix 

participants). The figure also shows how there’s only one Transactor activated even 

though two instances has that role, which is due to the constraint that there can be only 

one active transactor. This leaves the Plan-instance-2’s Transactor in standby mode, ready 

to take over in case Plan-instance-1 fails for any reason.  
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Figure 36. One environment with two instances, each of them having their own roles. 

There’s two ways (modes) to configure the Plan application role distribution, one way is 

role-based and another way is to define declarative-roles. For role-based configuration, 

the roles are manually assigned for each instance before they are created. In declarative-

roles we declare how many instances with certain roles we want to have, e.g. Two in-

stances with worker-role, and Helix manages the assignment. For this thesis, it is enough 

to know the very basics of roles and the mentioned difference between the two role 

modes.  

6.2 Distributed commits – component communication 

Together with local in-memory database, Plan also has distributed database – object stor-

age. Figure 37 shows the simplest form of transaction in a Plan, with only one active 

instance. Transactor writes a new snapshot and sends it to object storage and will then 

proceed to update the timestamp, to ZooKeeper as well. The timestamp in this case is the 

time of each transaction, a unique ID that allows identification of the elapsed time be-

tween two requests. The timestamps will be used for comparing the order of the transac-

tions, as in which is older and newer. Thus, when a node detects that there are new 

changes available, it’ll retrieve it from object storage.  
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Figure 37. Plan single instance transaction.  

For multiple instances to make changes to the distributed database the single instance 

with an active Transactor role writes all the changes to the database, other instances send 

changes to that Transactor over gRPC protocol. Instances with Worker and Backend roles 

send change requests to the Transactor instance which rebases (if needed) the changes on 

top of the current database state and commits them into the database. Transactor writes a 

snapshot to the local server disk and then proceeds to upload it to the object storage. When 

the upload operation is complete, the cluster state in the ZooKeeper cluster is updated to 

reflect this change. Other instances in the same cluster observe this change in the 

ZooKeeper state and download the required snapshots from object storage after 

ZooKeeper notifies that there’s a new change. Basically, timestamp comparison is done, 

and if the ZooKeeper timestamp is newer than the current, the instance will get the new 

changes from object storage. The more complex transaction logic is depicted in below 

Figure 38 with two instances.  
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Figure 38. High level picture of transaction in Plan, depicted here with two instances lo-

cated in different servers. 

To refer back to subsection 4.1.1 Leader and Follower, the transactor model used in Plan 

is basically leader-follower type of replication, where the active Transactor-role repre-

sents the leader, who solely is allowed to make changes to the system. All the other in-

stances are followers, who receive the information of new changes and can ask them from 

the leader. For a more detailed sequence-based diagram of the multi-node transaction 

depicted earlier, please look at Figure 39. 
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Figure 39. Sequence diagram of transaction in Plan with two instances. Worker role 

transfers user made changes to Transactor, which writes it to the local database and up-

loads it asynchronously to object storage. Worker node will receive information of new 

available snapshot, fetches it from object storage and loads it to the local database. 

 

6.3 Updates and migration 

The current architecture requires Plan to have some downtime so that data migration can 

be done to the database. In practice what happens is that the Helix role called Mainte-

nanceParticipant joins the cluster, and tells all the Plan roles to go to OFFLINE in order 

to run the data migration tool. Data migrations need to be done in case some database 

structure, schema changes, has happened. With the current architecture, the application 

will be stopped to run the migrations. The downtime is necessary for the migration run 

because otherwise, users would experience errors if database updates were done for live 
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instances. The root cause of the errors is that the current updates are not backwards com-

patible and hence with the current update and migration model, we can’t really have no-

downtime updates. 

 

6.4 Motivation for Kubernetes orchestration 

Relex Plan production environments run on bare metal servers and operators do capacity 

planning manually, which requires a lot of effort and is error-prone. Having an orchestra-

tor in place would provide several benefits, such as automatic scheduling workloads onto 

a shared pool of resources. Better isolation between customers. Giving development 

teams end-to-end ownership of their service.  

 

Many things are currently custom-built or done manually, which the Kubernetes platform 

would essentially bring relief to by reducing the amount of work needed to manage the 

growing number of product environments.  The common pool of resources is a big driver 

to use Kubernetes. When there’s a common pool of resources, Kubernetes’ scheduling 

and eviction concepts are very useful to categorize node types and constrict which nodes 

accept what kind of pods and the amount of them. These can be used to differentiate 

server types, e.g., we can use certain hardware types only for large customers that may 

need entire nodes' worth of capacity. Topology spread constraints can be used to further 

control where specific workloads are scheduled within multiple regions and zones. For 

example, this could be used to schedule a Plan workload in the correct data center where 

its ZooKeeper instance is located. Overall, this resource pool concept benefits end users 

through better reliability and fewer outages and maintenance breaks.  

 

The long-term goal seems to be to essentially build some type of PaaS solution that’ll be 

used for setting up and orchestrating product environments. The below Figure 40 illus-

trates what the Kubernetes architecture looks like with a multi-node setup.  
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Figure 40. Kubernetes architecture with Plan of two instances, which reside on different 

servers (nodes). The roles listed in the plan containers are just example of how the distri-

bution might go in multi-node setup. 
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7 Research questions and methodology 

 

This thesis's main theme or topic is to ensure smooth operations with a monolith Plan 

using Kubernetes with the existing Helix cluster management. This is scoped into two 

main research questions: 

1. How would Plan environment's lifecycle management work with the Kubernetes 

orchestrator?  

2. How to handle Plan cluster orchestration with the Kubernetes platform? 

The questions are more on a higher level as the product's enterprise architecture is too big 

to handle entirely. We will tear down these two questions into more manageable pieces - 

scenarios, that the client is interested in finding solutions to as part of this thesis. How 

does Plan work in Kubernetes "world" when we want to: 

1. Add a new instance to an existing cluster 

2. Stop an instance 

3. Restore instance 

4. Empty a server 

5. Update Plan while taking into account database schema changes 

6. Rollback an update 

 

The main methodologies used in this research are literature review and design science, 

for the latter I'll be adhering more loosely and mainly use it as guidance for the research 

process. As Kubernetes is a well-documented tool, existing literature regarding it will be 

used, including but not limited to the official Kube documentation and other book publi-

cations. The concrete outcome of this work are several solution design diagrams with 

documented description of them, these are evaluated and approved by Relex Plan people 

that are overseeing this work and acting as the product experts and instructors. These 

outcome characteristics and the needed process for it are similar to what is defined in 

design science methodology (Hevner, et al., 2004). 
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Figure 41. Information Systems (IS) Research framework used in design science meth-

odology (Hevner, et al., 2004).  

 

The design science defines seven research guidelines that applies in my research, see the 

following Table 5 for application details. The above Figure 41 shows the high-level 

framework that is used in the design science, where in this thesis’ case the commissioner, 

Relex and the product Plan represent the left side “Environment” of the figure. The right 

side of the figure are basically the literature review sources that I am using, but also the 

existing foundations and methods that Relex Plan has, and what the “Technology” is built 

on, which I have introduced in Chapters 1-7. The middle part of the Figure 41 is repre-

sented in this thesis by the actual research work. 
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Table 5. Design Science Methodology guidelines (Hevner, et al., 2004), and how they are 

applied in this thesis work. 

This thesis will be done by working closely with the Relex experts, consisting of archi-

tects and senior developers. Weekly meetings will be organized to discuss about the ear-

lier mentioned scenarios, so the work is basically done in small one-week iterations. The 

meetings will act as platform of discussing the matter but also for evaluating and giving 

feedback on my suggested solutions. 
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8 Design suggestions 

 

Originally, we had an idea to make a custom Kubernetes operator for Helix Admin API 

which would then be used via Kubernetes API to manage Plan orchestration. This idea 

was scratched eventually in favour of using Kubernetes’ StatefulSet object, explained in 

Subsection 5.3.6. Figure 42 shows the original design ideation with Helix Admin as Op-

erator. The reason why this idea was abandoned was that it would have needed more 

effort to make the operator while StatefulSet is basically a ready-made solution and native 

to Kubernetes, which is a big plus. We should use as much of Kubernetes’ own solutions 

as possible when trying to adopt Kubernetes orchestration in the company’s DevOps. The 

updated design, Figure 43, was already partly shown in Figure 40 in Subsection 6.4. But 

the following figure can be viewed for simplified high-level design. 

 

 

Figure 42. Original rough high-level design.  

 

 

Figure 43. Updated high-level design. 

8.1 Adding new instance – Scaling out 

Setup: We have an existing Plan cluster running in Kubernetes, how do we add a new 

Plan instance? 

 

This scenario is quite simple as there are no Helix operations needed. We can simply tell 

the StatefulSet to have more replicas, as depicted in the following sequence diagram, 

Figure 44. With certain node affinity and/or taint rules, it can be made sure that the sched-

uler knows which server the new instance is placed to. 
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Figure 44. Scaling up the StatefulSet to have more replicas. Message reaches container 

runtime which does that actual setup.  

8.2 Stopping an instance – Scaling in 

Setup: We have an existing running cluster of Plan, minimum two instances. We want to 

scale in by 1 instance.  

  

The target is to always do shutdowns gracefully, meaning that we won’t abruptly close 

anything but wait till the instance is ready to be shut down. This kind of operation requires 

Helix operations. We want to make sure that Plan has time to prepare itself for shutdown, 

meaning that it will finish any ongoing work but at the same time also make sure that 

graceful shutdown is applied to Kubernetes components. There are basically two shut-

down processes: Plan and Kubernetes. 

  

The Plan side of shutdown has to be done with a pre-stop hook that Kubernetes provides. 

This is due to the fact that in Kubernetes’ own shutdown process, the connections will be 

terminated, which are most likely still needed on Plan’s side for its own graceful shut-

down. According to the Plan experts, Plan’s graceful shutdown process might take days 

if there’s a lot of data to process, hence pre-stop hook and the custom grace period is a 

good combination. The custom grace period defines the time that is given to both the 

prestop hook and Kube’s graceful shutdown in total. Regardless of if everything went 
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accordingly, the Container Runtime will be told to send a KILL command to stop every-

thing at the end of grace period. Figure 45 below shows the timeline depiction.  

 

 

Figure 45. Graceful shutdown’s timeline from Kubernetes’ point of view, an adaption of 

(Polencic, 2020). 

Plan is being informed that one of its instances will be shutdown, so it tells itself (or that 

particular instance) to start shutting down itself. In the Helix subcluster, Helix controller 

will be telling its participants to start moving to OFFLINE state. In Plan, certain roles 

have a “Lame duck” state that is between OFFLINE and ONLINE; this state basically 

acts as a buffer for ongoing tasks to finish while already denying any new users and jobs. 

The details of what happens during the pre-stop hook are depicted in below Figure 46. 

 

In theory, grace-period could be set for months, as Kubernetes is aware of its hook’s status 

through the handlers; when Plan finishes its shutdown Kube will start its own process of 

shutting down the pod. Though setting the grace-period for too long means that if pre-

stop phase gets stuck, Kube will not send KILL command until the grace period ends, and 

manual intervention is needed. This has it’s good and bad sides; abrupt shut downs might 

not ever be wanted and we want to actually handle situation manually case-by-case. Bad 

side is that some better monitoring might be wanted to set in place, so operation admins 

can react faster. Either way, the grace-period should be sensible number; if Plan’s maxi-

mum worst case shut down time takes e.g., three days, maybe give couple days of buffer 

time on top of it and not set the timer for weeks or months. Essentially, the company has 

its service level agreements with customers, so there’s no point for ridiculously long 

grace-periods. 
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Figure 46. Partial sequence diagram of scaling Plan instances down by one. Note the 

Pod numbering, as mentioned in StatefulSets the stopping starts in reverse order {N-

1…0}. In this example, Plan application is using declarative-roles. Refer to Appendix B 

for the whole diagram. 

In some rare cases, more forceful stops are required, where we basically tell Kubernetes 

to kill the instance without any grace-period for the Plan itself, this is depicted in Figure 

47. This scenario should always be avoided as it can lead to database corruption or other 

errors if there are ongoing processes, and the instance is just shut. It’s basically the same 

as pulling a plug.  
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Figure 47. Forceful scale in as sequence diagram. Stopping instance by sending KILL-

command without grace-period.  

 

8.3 Restoring instance 

The instance restoring we depict here is basically the high availability case. Let’s say we 

have a case of server hardware failure, which takes down some Plan instance and makes 

it impossible for it to automatically recover in the now damaged server. What would hap-

pen in this case is that the Helix will get the information of Plan role imbalance and it will 

reassign the role that went down with the instance. The role placement is not random, but 

there’s a rebalancing algorithm that calculates the best place, instance, for the role to be 

reassigned to. The StatefulSet controller will recreate the missing instance, which is pos-

sible because as it was mentioned earlier in Subsection 5.3.6, with StatefulSets the pods 

get a sticky persistent ID, so the controller knows exactly which pod went down and can 

restore or re-create the same pod. Kubernetes schedules the restored pod-instance to some 

new node from the resource pool that fulfils requirements or preferences (node-affinity, 

taints, topology constraints) that have been set. An example case is depicted in below 

Figure 48, where a hardware failure causes Plan-instance-3, or pod-3, to go down. The 

role earlier assigned to that instance gets reassigned to somewhere else until Plan-in-

stance-3 gets recreated. To illustrate the sticky id, the Figure 48 doesn’t have Plan-in-

stance-2, Plan-instance-3 is restored as Plan-instance-3. In reality, for a regular instance 
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restoring, when Kube detects that there’s a pod missing it would try to recreate a missing 

instance pod with correct ordinal number, in this case pod-2 or Plan-instance-2. 

 

 

Figure 48. Instance restoring. Server C breaks, Helix rebalances the Plan role to some 

other instance, Plan-instance-1, in another server. Kubernetes’ StatefulSet restores the 

Plan-instance-3 to another node-server picked from the pool, Server E. Helix notices that 

Plan-instance-3 is restored so it moves the backend role back to the instance.  

For this kind of hardware failure depicted in above Figure 48, it is necessary to have a 

human operator to fix or replace the damaged server and eventually, when that happens, 

it will go back to the resource pool to be used. One thing that could happen, though prob-

ably it would be quite a rare case, is that for some reason the restored server is deemed 

more suitable for the Plan instance that got originally rescheduled for the new server. 

Thus, when the original server is restored, Kubernetes moves the instance back to it. This 

is depicted in the next Figure 49. A case why this might occur is that the installed “best-

option” server is very customer specific so the resource pool itself has only so many of 

them. Hence, when one breaks, the instance is rescheduled to “second-best-option”. 

When the server is restored, the top preference can be fulfilled again.  
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Figure 49. Server C restored from Figure 48 rare case. Operator fixes the broken Server 

C, and Kubernetes deems it more suitable for the Plan-instance-3 than the Server E that 

it was assigned to, so rebalancing happens, and the instance is moved back to its origi-

nal server C. 

 

8.4 Emptying server - Moving instances to another server 

Emptying a server is about moving living instances to another server. This case has sim-

ilarities with the previous use case when the whole server goes down and the instances 

were forced to be restored in another server. Instead of forcefully shutting the server and 

the instances along with it, we do the moving more nicely.  

 

For Relex, availability is important, so it must be kept in mind that the moving should be 

done gradually and that there shouldn’t be performance issues on the users’ side when the 

moving is done for the live environments. This would mean that we’d essentially need to 

scale out in the target server first and then drain the source server. By initiating node 

draining, Kubernetes can be told to evict all the pods from the node. This is rather com-

mon to do for performing various maintenance tasks for the server, e.g., a kernel update 

or hardware maintenance.  
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Let’s describe step by step what should happen when server emptying is done for mainte-

nance purpose: 

 

1. Figure 50, taint rule is defined for the to-be-maintained server/node, so when we 

scale out, that particular server won’t be picked by the scheduler. 

 

 

Figure 50. Taint rule defined to to-be-maintained server. 

2. Figure 51, Plan is scaled out by the number of existing instances, e.g., if there are 

originally two instances, we scale out to four. This way we can assure the perfor-

mance stays the same for the users. The new instances are scheduled to some new 

server from the source pool that fills the preferences.  

 

 

Figure 51. Scale out by number of existing instances. 

3. Figure 52, the to-be-maintained server is drained. Drain command does the fol-

lowing: cordons the server so it is non-schedulable, deletes the pods in order by 

gracefully terminating them. Completion of draining basically decommissions the 

server, which will wait for human actor to initiate some maintenance. 
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Figure 52. Drain to-be-maintained server. Sequence diagram from (Kubernetes E, 2023) 

4. Figure 53, StatefulSet will try to recreate the pods deleted when we drained the 

server. As the old server is on the taint list (and also non-schedulable), the pods 

will be scheduled to some other server. As StatefulSet pods have the sticky id, the 

pods with exact same id are recreated, i.e., StatefulSet knows which pods are miss-

ing and it knows to recreate them. 
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Figure 53. StatefulSet reschedules missing pods to another server from the resource pool. 

5. Figure 54, StatefulSet is called again to scale Plan back down to its original in-

stance number. The scaling down is done in reverse ordinal order, so in this case, 

the instances created at step 2, will be removed. 

 

 

Figure 54. Scale back in as instances moved successfully.  

6. Figure 55, eventually when the decommissioned server’s maintenance is done, the 

server is uncordoned, so it can accept scheduling and is ready to be used again. 

The taint should also be removed if we’d like the server to be used again by the 

Plan in this scenario.  
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Figure 55. Server maintenance done, it is uncordoned and taint rule is removed. 

8.5 Plan application update 

As a stateful application, Plan update is a rather difficult topic. On the other hand, we 

want to make sure users don’t experience downtimes when an application is being up-

dated, and on the other hand, we want to ensure that the application works during and 

after the upgrade. Essentially non-disruption updates are quite hard to achieve, and could 

be a thesis topic of its own, but some higher-level design of zero downtime and minimal 

disruption can be thought of.   

 

The initial problem to tackle here is that Plan experts would essentially want to use rolling 

updates with Kubernetes. However, how rolling updates with StatefulSets work is that it 

updates the pods one by one, this way it can be ensured that there will never be a case 

when all the pods are down at the same time, thus technically zero downtime is achieved. 

Some restrictions can be put that at least n-number of pods has to be always up, we will 

come back to this later in Subsection 8.6.1. Now, for the problematic part, as mentioned 

already in Section 6.3, Plan requires the other nodes to go OFFLINE so any migrations 

can be run for the new version, otherwise the database can become corrupted due to back-

wards incompatible changes. 

 

Suggested solution for getting the rolling-updates is to make the database always back-

wards compatible with gradual updates or what can be also called additive migrations. 

The basic concept is illustrated very well in the following Figure 56.  
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Figure 56. Introducing interim versions to achieve backwards compatible zero downtime 

version updates with rolling-updates. Adaption of (Ivon, 2023). 

With these interim versions, we can maintain backwards compatibility and hence there is 

no need for the Plan to go offline for the migrations. The data migration starts when the 

interim version 1 is running and it should be ready by the time the final, or new version 

in the above figure, version is deployed. The interim version 2, where we still write to old 

schema, is needed precisely in the case of having rolling-update kind of strategy where 

portion of users are still seeing the previous interim version 1. Rolling update is a gradual 

update itself, but for the Kubernetes pods that are the Plan instances. It’s important to 

understand that it’s separate concept, albeit having some similarities, from database 

schema gradual update. The use cases described in the following subsections, with illus-

trations of both the user interface and database view, can help one understand the back-

wards compatibility.  

 

It is good to mention here that if the interest is only getting non-disruptive database up-

dates and migrations, Kubernetes is not a necessity. The backwards compatibility is pre-

requisite for using Kube’s rolling-update, as users are using two different product ver-

sions at the same time (more of this in Subsection 8.6 Deployment Strategy). To get the 

backwards compatibility without rolling-update, the so called interim-versions can be ig-

nored, but some kind of triggers need to be implemented that copies data from old to new 

schema before any insert, deletion or update happens (Ivon, 2023).  

 

8.5.1 Adding a column to database schema 

Figure 57 illustrates the first two phases of a gradual schema update. In the initial situation 

(Application version 1.0) we have a table with n-number of users. This table has a non-

null constraint on both ID and Name (* indicates not null constraint). In the next version 

update (version 1.1), the user interface is still the same but an additional column “Email” 

has been added to the database. This new column accepts null values at this point which 

allows users, who still don’t see the newly added column, to add a new person to the list. 
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Figure 57. Adding a column Part 1.  

 

In the next interim version show in Figure 58, the user interface is updated to have the 

new “Email” column, values matching with what the database has. Now the application 

users are able to modify the email field as well. A tool is run after this version update to 

fill the null values with some default value, in this illustrated case it is place-

holder@email.com. In the “final” version, the read from the old database is removed and 

non-null constraint has been given to the Email field. Final version is fully reliant on the 

new schema. 

 

 

Figure 58. Adding a column Part 2.  

 

mailto:placeholder@email.com
mailto:placeholder@email.com
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8.5.2 Deleting a column from database schema 

Another example is when something from a schema is deleted. In the illustrated case of 

Figure 59, it depicts Email column deletion and the first interim version of that process. 

The initial situation is basically where we left off in the previous demonstration when we 

added the column. There’s now a table “User” with columns ID, Name and Email, all 

which have non-null constraints. The table has an n-number of separate users. For the 

first interim version, the non-null constraint is removed from the Email column on the 

database side, so we allow the Email field to be null for new user additions. 

 

 

Figure 59. Deleting a column Part 1.  

In the interim version 2, show in Figure 60, the whole Email column is removed from the 

UI side. At this point, when adding new users the Email value will receive null in the 

Database side (which is accepted) as users won’t be able to fill the Email value on the UI 

anymore. In the final version, the Email column is finally removed from the Database as 

well.  
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Figure 60. Deleting a column Part 2. 

 

8.5.3 Renaming a column in database schema 

This use case is quite classically depicted when thinking of additive migrations. There 

exists a field “Name” in the current/old application version, and we want to rename it so 

it would actually contain the “Firstname” and then another added field would contain 

“Surname”. Instead of modifying the Name field, we should just add new fields Firstname 

and Surname. While at first, we have three fields in parallel (Name, Firstname and Last-

name), it helps us to support backwards compatibility and thus ensure availability for 

users of the old system.  

 

Again, the initial situation depicted in below figure Figure 61: There’s a table of users, 

with ID and Name fields, both with non-null constraints. In the interim version 1, both 

“Firstname” and “Surname” columns will be added, both of which still accept null values. 

Any new user additions can already contain these new values.  
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Figure 61. Renaming a column, Part 1. 

 

For the interim version 2, Figure 62, the non-null constraint is removed from the “Name” 

field; any new additions to the table can skip the Name value (providing null). The mi-

gration tool populates the values for the new columns “Firstname” and “Lastname”, by 

referring to the “Name”-column. For the final version, the “Name”-column is removed 

from both UI and database, as there’s no need for it anymore.  

 

 

Figure 62. Renaming a column, Part 2.  

 

8.5.4 Rollback 

While the gradual upgrade allows backwards compatibility, rolling back essentially still 

causes data loss. With additive migrations, theoretically, there shouldn’t be a need to do 

actual rollback in the database. If we think about banking and bank transactions, one 
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doesn’t exactly do rollbacks to the previous state, but instead adds actions to reach a sim-

ilar state as previously, this is the core idea of additive transactions or migrations. There 

was already an example of this in the earlier use cases. The initial state of the use case of 

adding a new column, Section 8.5.1 Adding a column, was the end state of the use case 

of deleting a column, Section 8.5.2 Deleting a column, we just did the actions backwards. 

If for some reason there’s still a need to manually set the database into its previous state, 

it should be accepted side-effect that there will be data loss happening.  

 

8.6 Deployment Strategy 

While not exactly requested by the commissioner, when researching about zero downtime 

upgrades, the deployment and release strategies naturally came up. So far, there have been 

mainly considerations to get the rolling update deployment strategy, when moving to use 

Kubernetes orchestration. As it has been established, continuous availability and stable 

performance throughout the update are important for customers, which means that we 

must scale out by the number of existing instances (briefly mentioned in Subsection 8.4) 

and then scale back in after the updates are done.  

 

Canary deployment could also be considered as well since it seemed that feature testing 

and release quality were big topics and worries. Canary would allow testing functionality 

with a small group of actual end-users. I will be describing how rolling update and Canary 

would work in Kubernetes from Plan’s point of view.  

 

8.6.1 Rolling update 

In the rolling update strategy, the pods themselves are gradually updated (replaced) to the 

next version. Note here that this is a slightly different gradual update concept than what 

was explained in the previous section, where it focused on gradually updating version A 

to version B with intermediate versions in between.  

 

The rolling update in Kubernetes basically means that we update the pods step-by-step, a 

certain amount of pods at a time. And with StatefulSet, the update always starts in reverse 

ordinal number; Pod with the highest number is deleted first and re-created with the new 

template. Kuberenetes’ default pod management policy is “OrderedReady”, which means 

that the pods are both deleted and updated one by one, as depicted in following Figure 

63. 
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Figure 63. RollingUpdate strategy in Kubernetes for StatefulSets (Lukša, 2023). 

 

Figure 64. Default rolling update strategy with OrderedReady pod management policy. 

Pods are updated one by one in reverse ordinal order (Lukša, 2023).  

OrderedReady -strategy, show in Figure 64, is good if there are dependencies between 

the pods, so it would be necessary to make sure the previous instance is ready before 

starting the setup of the next one. In other words, the pod updating would be done se-

quentially. For Relex Plan, the Plan roles are dependent on each other, but those are man-

aged by Helix so the pod manager doesn’t have to handle that. OrderedReady -strategy 

would be quite slow for Plan to use, as each pod would still have to go through the grace-

ful shutdown, which as mentioned previously, might take days in the worst scenario Fol-

lowing Figure 65 shows the timeline view of regular OrderedReady rolling update with 

the scale out and scale in needs of Plan for keeping the performance and availability sta-

ble. 
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Figure 65. Timeline of rolling update with OrderedReady policy. 

We can make the update slightly faster by enabling the “MaxUnavailableStatefulSet” fea-

ture flag and specifying the “maxUnavailable” property value. Like its name hints al-

ready, it specifies how many pods are allowed to be unavailable at once. With this prop-

erty, one can control the availability and in a way the speed of the updates. In this partic-

ular use case, we are scaling out 100% in order to use the maxUnavailable to speed up 

the updates as it will allow us to update multiple pods in parallel while keeping the same 

performance as normally. In below Figure 66, the setup is the same as previously, but 

now with maxUnavailability set as 50%. The scale-out and scale-in still happen one-by-

one but Kube will now update half the pods in parallel at once.  

 

 

Figure 66. Timeline of rolling update with OrderedReady policy and maxUnavailable 

property. Pods version update happens in parallel while adhering to the maxUnavailable 

rule.  

With maxUnavailable, we can use some parallelization during pod updates, which helps 

us save some time. The scale-out and scale-in phases are however still done one-by-one 

in the sequential model, which still takes quite a lot of time. For StatefulSets, there’s 

another option pod management policy, which is “Parallel”.  

Parallel pod management tells the StatefulSet controller to launch or terminate 

all Pods in parallel, and to not wait for Pods to become Running and Ready or 
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completely terminated prior to launching or terminating another Pod. This op-

tion only affects the behavior for scaling operations. Updates are not affected. 

(Kubernetes D, 2023) 

This allows Kube to do scaling in parallel as well, it only affects the scaling operation, 

which is why it should be used together with the maxUnavailable property if one wants 

updates to be done in parallel as well. With Parallel pod management policy and 

maxUnavailable property, it is possible to cut time-to-ready length, as represented in the 

bottom graph in Figure 67. 

 

 

Figure 67. Timeline of rolling update with Parallel policy. The policy only affects the 

scaling operations, so the pod update (top) still happens sequentially. Together with the 

maxUnavailable property (bottom), we can make both scaling and updating happen in 

parallel.  

 

8.6.2 Partitioned rolling update (Canary) 

Canary update strategy could be considered if one wants to first test the reliability and 

quality of the new product version with a smaller subset of users before releasing it fully. 

The name of the Canary update comes from how miners used to use birds to help them 

alert of toxic gas. 

The name for this technique originates from miners who would carry a canary 

in a cage down the coal mines. If toxic gases leaked into the mine, it would kill 

the canary before killing the miners. A canary release provides a similar form of 
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early warning for potential problems before impacting your entire production 

infrastructure or user base. (Sato, 2014) 

What happens is that the application traffic is split between the older version and the 

newly deployed version. The split percentage can be controlled and thus allowing a type 

of rolling update. In Kubernetes, they call it “Partitioned rolling update”, see Figure 68. 

With StatefulSets’ rolling update, it is not possible to pause the deployment but by its 

partition parameter, the StatefulSet can be split into two partitions that can be updated 

separately.  

   

 

Figure 68. Timeline of partitioned rolling update aka. Canary deployment strategy. Al-

lows more control over updates (Lukša, 2023). 

For Relex Plan, that also needs the gradual version update itself to make the zero down-

time migrations possible, the Canary deployment would look something like the follow-

ing depiction in Figure 69. The backwards compatibility with partitions is shown in Fig-

ure 70. 

 

Figure 69. Relex Plan Canary deployment with 5 instances partitioned in two.  
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Figure 70. Depiction of how the backwards compatibility is kept with Canary deploy-

ment. The users that are routed to the old version can only interact with the old database 

schema, while the other user group using the newer version is already writing to the 

new one. 

When used properly, the Canary model can be an efficient way to test out new features 

with actual end users while making sure there’s an easy way to rollback. Basically, it’s 

the same mindset as having alpha and beta version testers. The drawback is however that 

it will probably cause performance issues as we are splitting the resources. One idea 

would be to scale-out before partitioning, but it’s a topic of its own of how long one would 

want to support two versions in parallel. Perhaps Canary could be used sparingly, only to 

test out major changes and features, but then this comes back to the point of using Canary 

if you are not really using it.  
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9 Conclusion 

 

Kubernetes lifecycle management would improve Relex Plan’s lifecycle management by 

providing a good platform for it with its resource pooling capabilities. Deployment strat-

egies like rolling update and canary can also be handled by Kube, and either of these 

strategies would be beneficial for the continuous integration and delivery or continuous 

deployment if that’s ever wanted. The automated lifecycle management and cluster or-

chestrations both benefits and provides well to the “fail fast and shift left” DevOps ideol-

ogy.  

 

The product would however need to improve for Kubernetes orchestration to have a pos-

itive return of investment, whether we are looking at monetary numbers or developer 

hours needed for the setup work. This thesis didn’t even take into account all the network-

ing and security-related issues that would be needed to solve for Plan to work acceptably 

in Kube.  

 

The main issue to be solved would be getting Plan schema updates backwards compatible, 

so version upgrades and updates can be done gradually. With backwards compatibility, 

the Plan upgrades can truly be non-disruptive for customer user experience, which should 

be one of the highest priorities along with high availability and eventually targeting for 

fault-tolerant system. To solve these issues, Kubernetes is not a must, the company could 

develop their own in-house PaaS system from scratch to fill their lifecycle and orchestra-

tion needs. Plan’s backwards compatibility is also basically a prerequisite to taking Ku-

bernetes’ natively supported deployment strategies into use. But I think that the work for 

getting in-house lifecycle management and cluster orchestration as good as what we could 

achieve with Kubernetes, would most likely require too much effort. It seems that the 

architect experts in Relex are looking into containerizing Plan regardless, so Kubernetes 

most likely would come into the picture anyways in that case as it is the software indus-

try’s de-facto tool for container deployment and orchestration. However, Plan’s particular 

need for an in-memory database, which has significant performance benefits compared 

to a split database, makes it hard to transform from monolithic to microservice architec-

ture. The database split, to model microservice architecture, is an ongoing discussion in 

the company.  

 

To generalize that the ideal ultimate goal is to have a continuous deployment with auto-

mated version upgrades and autoscaling; In Plan’s case, prerequisite being the database 
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schema’s backwards compatibility for zero downtime experience, building and support-

ing the deployment strategy and orchestration with Kubernetes would be able to fulfil the 

need smooth operation needs.   
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