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ABSTRACT

Tommi Salonen: Credit valuation adjustment wrong-way risk modelling of foreign exchange sensi-
tive derivatives
Master of Science Thesis
Tampere University
Master’s Degree Programme in Industrial Engineering and Management
September 2023

In derivatives pricing credit valuation adjustment (CVA) is used to quantify the counterparty
credit risk. Wrong-way risk refers to possibility that the counterparty’s insolvency probability is
increasing at the same time as the value of the contract increases. The methods used to model
CVA often assume that probability of default and exposure are independent of each other, and
thus the wrong-way risk is not considered. However, market crises, for example the eurozone debt
crisis of 2010, have shown that the assumption of market-credit independence is often violated.
The observation is supported by empirical studies, both on historical data and market-implied
data. The market is pricing wrong-way risk, which can be seen, for example, in the spreads of
credit default swaps quoted in different currencies referring to same entity. The regulator also
recognizes the existence of wrong-way risk and requires measures to monitor and manage it.

In this thesis CVA wrong-way risk modelling is studied in the case of a cross-currency basis
swap and a systemically significant counterparty. By nature, wrong-way risk is portfolio-specific
and difficult to model, and as the topic of WWR is relatively new, there are no established practices.
The goals of this thesis are:

(i) Identify methods of modelling credit value adjustment wrong-way risk of derivatives contract
having foreign exchange risk factor.

(ii) Model CVA WWR in realistic market setting with an example contract where bilateral collat-
eral is posted and compare results with simple CVA model where WWR is ignored.

Two methods were selected for wrong-way risk modeling, one of which is based on a constant
correlation of the error components of the models used for stochastic modeling of the exchange
rate and default probability, and the other on the relative, instant jump of the exchange rate at the
time of default of the counterparty. A joint model of these methods is derived, which is examined in
the empirical part of the work from the point of view of a cross-currency basis swap. A sensitivity
analysis is performed with key parameters of the methods.

Based on the results of the empirical part, the constant correlation method is not producing
a significant wrong-way risk effect in the case of the modelled contract, when collateral is used.
Instead, the assumed relative jump in the exchange rate at the time of default of the counterparty
causes a significant relative change in the value of the CVA compared to the model without wrong-
way risk. The effect is particularly large in the case of a collateralized contract, as the lagged
collateral is not able to reduce the jump-at-default effect. The results are in line with previous
literature: linear correlation alone does not cause a significant wrong-way risk to the collateralized
portfolio but jump-at-default can be a significant source of additional risk. In managerial decisions
the possibility of jump-at-default should not be ignored.

Keywords: CVA, WWR, jump-at-default, FX

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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Mahdollisuutta vastapuolen maksukyvyttömyystodennäköisyyden kasvamiseen yhtäaikaisesti
sopimuksen arvon kasvaessa kutsutaan luottoarvokorjauksen (engl. credit valuation adjustment,
CVA) vääräsuuntaisuus (engl. wrong-way) riskiksi. Luottoarvokorjauksen mallintamiseen käytettä-
vät menetelmän usein olettavat maksukyvyn ja altistuman (engl. exposure) olevan toisistaan riip-
pumattomia, eli wrong-way riskiä ei huomioida. Markkinakriisit, esimerkiksi euroalueen velkakriisi
2010, osoittavat riippumattomuusoletuksen olevan väärä. Väitettä tukevat empiiriset tutkimukset
paitsi historiadatasta, myös markkinadatasta. Markkinat siis hinnoittelevat wrong-way riskiä, mikä
ilmenee esimerkiksi eri valuutoissa noteerattujen, samaan kohteeseen viittaavien luottotappioris-
kien vaihtosopimusten hintojen spreadeissa. Myös sääntelijä tunnistaa wrong-way riskin olemas-
saolon ja edellyttää toimenpiteitä sen monitoroimiseen sekä hallintaan.

Edellä mainitut syyt motivoivat mittaamaan wrong-way riskiä, jonka mallintamista ja suuruutta
tutkitaan tässä työssä valuuttakurssijohdannaisen ja systeemisesti merkittävien vastapuolien ta-
pauksessa. Wrong-way riski ilmenee eri syistä eri sopimustyypeissä ja sen tunnistaminen sekä
mallintaminen on monimutkaista. Aiheen ollessa suhteellisen tuore, vakiintuneita menetelmiä ei
ole ja menetelmäkenttä on hajanainen. Tämän työn tavoitteina onkin:

(i) Tunnistaa kirjallisuudesta menetelmiä CVA:n wrong-way riskin mallintamiseen valuuttajoh-
dannaissopimuksessa.

(ii) Mallintaa CVA wrong-way riskiä esimerkkisopimuksella, jossa on käytössä kahdensuuntai-
nen vakuus ja verrata tuloksia CVA-laskentaan ilman wrong-way riskiä.

Wrong-way riskin mallinnukseen valikoitui kaksi menetelmää, joista toinen perustuu valuut-
takurssin ja konkurssitodennäköisyyden stokastiseen mallintamiseen käytettävien mallien virhe-
komponenttien vakiomääräiseen korrelaation ja toinen valuuttakurssin suhteelliseen, välittömään
hyppyyn vastapuolen konkurssihetkellä. Työssä käytettävä malli johdetaan näiden menetelmien
yhteismalliksi, jota tarkastellaan empiirisesti cross-currency basis swap -sopimustyypin näkökul-
masta. Tuloksille suoritetaan herkkyystarkastelu mallien keskeisten parametrien suhteen.

Empiirisen osan tulosten perusteella vakiomääräinen korrelaatio ei aiheuta merkittävää wrong-
way riskiä mallinnetun sopimuksen tapauksessa, kun sopimus on kollateralisoitu. Sen sijaan ole-
tettu suhteellinen hyppy valuuttakurssissa vastapuolen konkurssihetkellä aiheuttaa merkittävän
suhteellisen muutoksen CVA:n arvossa verrattuna malliin ilman wrong-way riskiä. Vaikutus on eri-
tyisen suuri kollateralisoidun sopimuksen tapauksessa, sillä edellisen päivän altistuman perus-
teella vaihdettu kollateraali ei vähennä konkurssihetkellä tapahtuvan hypyn vaikutusta. Tulokset
ovat linjassa aikaisemmassa kirjallisuudessa saatujen tulosten kanssa, joiden perusteella pelkkä
lineaarinen korrelaatio ei aiheuta kollateralisoituun portfolioon merkittävää wrong-way riskiä, mut-
ta konkurssihetkellä markkinariskifaktorissa tapahtuva hyppy voi olla merkittävä lisäriskin lähde,
jonka mahdollisuutta ei tulisi jättää huomioimatta.

Avainsanat: CVA, WWR, jump-at-default, FX

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1. INTRODUCTION

In financial risk management field counterparty credit risk has been one of the hot topics

for years. Failures of large derivatives dealers during the financial crisis, namely Lehman

Brothers in 2008, increased attention to derivatives counterparty risk. Derivatives coun-

terparty risk is characterized by introducing a component of market risk in addition to

credit risk (Glasserman and Yang 2018). This feature makes the derivatives counterparty

risk difficult to measure, since uncertainties both in market variables and credit must be

considered. In derivatives pricing credit valuation adjustment (CVA) is commonly used

tool for quantifying this risk (Glasserman and Yang 2018). According to the Bank for

International Settlements (BIS) (2011a) during the financial crisis only one-third of coun-

terparty credit risk related losses were due to actual defaults and rest was attributed to

mark-to-market (MtM) valuation changes due to CVA losses.

Over-the-counter (OTC) derivatives are commonly used instruments by banks to transfer

risks. OTC derivatives have huge global market value, the gross value estimated at the

end of 2022 to be 2.7 trillion United States dollars (USD) (Basel Committee on Banking

Supervision 2023). OTC derivatives are traded between two counterparties, without a

central clearing house which exposes trades to apparent counterparty risk. According to

Atkeson et al. (2015) banks participate OTC market to hedge their underlying risk ex-

posures. The authors also list second incentive for banks to participate OTC markets:

trading profits gains from intermediation services, which are possible due to price disper-

sion in the market. They note that some banks act endogenously as dealers, being large

enough to do so, and others as customers.

This thesis is done from a viewpoint of a European bank, which is using OTC deriva-

tives only for hedging purposes and thus acting as a customer in the market. Some

counterparties of the bank’s derivatives transactions are assumed to be dealers, acting

as intermediates in the market with high systemic importance. Systemically important

financial institutions (SIFIs) are not only large but have also high interconnectedness and

many cross-border activities (Castro and Ferrari 2014). Need for measuring and as-

sessing systemic importance of financial institutions became clear to regulators after the

financial crisis, and since 2011 the Financial Stability Board has published a list of global

systemically important banks (G-SIBs) using the methodology established by the Basel

Committee on Banking Supervision (Bongini, Nieri, and Pelagatti 2015). By definition,
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a failure of some of these institutions could potentially have adverse consequences for

global economy (Basel Committee on Banking Supervision 2018).

Since a failure of G-SIB might affect global economy, there is a possibility that default

of this kind of counterparty might affect market parameters. For example, a failure of

a systemically important eurozone bank could affect foreign exchange (FX) rate of euro

(EUR) against USD. This in turn would decrease or increase value of a derivative contract,

where the underlying is given exchange rate. If the counterparty of this contract is the

bank which failed and it defaults the contract, it implies that there’s a dependency structure

between value of the contract and default.

In simple CVA calculation settings it is usually assumed that an exposure to counterparty

via a portfolio of contracts with it and the counterparty’s probability of default (PD) are

independent. However, in the case described above it would no longer be reasonable as-

sumption, if there is correlation or even a causal relation between default and exchange

rate. The lack of independence can pose wrong-way risk (WWR) if exposure and PD

increase at the same time, or right-way risk (RWR) if the relationship is negative. Accord-

ing to Ruiz (2015, p. 169) correct modelling of RWR and WWR is essential for financial

institution since without them the institution cannot understand what is the true amount

of carried risk, and the pricing of derivatives is erroneous, when CVA is used to adjust

the prices for counterparty risk. For practitioner an important question is how high is the

potential error made by ignoring the dependency structure. To answer this question, a

fitting modelling method for the dependency structure must be chosen and results of it

must be compared with the model where the dependency structure is ignored. The given

analysis in the context of FX risk factor is the main practical contribution of this thesis.

The field of CVA modelling and especially the field of WWR is highly dispersed and there

is no standard way of modelling and measuring CVA with WWR. By nature, WWR man-

ifests differently in contracts having different underlyings so in WWR measurement both

counterparty and contract type characteristics must be taken into account. In this thesis

the focus is on measuring CVA wrong-way risk of derivatives deals with foreign exchange

(FX) exposure where the counterparty is in domestic currency union (eurozone) and has

high systemic importance. The goals of the thesis are:

(i) Identify methods of modeling credit value adjustment wrong-way risk of derivatives

contract having FX risk factor.

(ii) Model CVA WWR in realistic market setting with an example contract where bilat-

eral collateral is posted and compare results with simple CVA model where WWR

is ignored.

The choices to focus on eurozone G-SIBs and OTC contracts with FX underlyings stem

mainly from the assumed viewpoint the CVA is measured from. On the other hand, WWR
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of FX contracts made specifically with this kind of counterparties are not yet discussed

in the literature. Thus, there is also an academic motivation in addition to practical one

behind the objectives of the thesis.

This thesis is organized to theoretical and empirical part. The theoretical part aims to

answer a research question, which is derived from the first goal described above. The

question is: How CVA WWR should be modelled in OTC derivatives contracts made with

eurozone G-SIB, when the underlying risk factor is USD/EUR FX rate and both parties

post collateral? To answer this question, in the second chapter details of CVA are dis-

cussed. In the third chapter characteristics which drive the model choice are described, a

brief review of WWR models is conducted and the choice of modelling approach is made.

The fourth chapter concludes the theoretical part of the work by deriving the model(s) of

choice under relevant assumptions by using literature.

The empirical part of the thesis is motivated by a research question derived from the

second goal: How significant is the WWR effect in the example contract based on the

selected model(s) compared to a CVA model without WWR and how it is affected by

modelling assumptions? The example contract is a plain vanilla cross-currency basis

swap. In the fifth chapter the selected model is calibrated with real-world data and in the

sixth chapter it is used with the example contract to calculate illustrative CVA WWR values

with two different modelling approaches. The values are compared with CVA values of a

model without WWR, to understand better how large the effect of WWR in the given case

is. Connection with the real-world data comes from calibration of the formulated model(s),

which is done with market-implied values of a single day. Historical data is used only for

comparison purposes, not for the actual calibration procedure.

The empirical results of simulations are reported in the sixth chapter in table and in graph-

ical form. The idea of the simulation part is to answer the second research question by

empirical means: using computer simulation of stochastic processes, observing results of

the simulations and inducing an answer to the question. Since the calibration is done with

data of single day, a sensitivity analysis of results is reported in the sixth chapter, to test

the robustness of the results against market parameters. Finally in the seventh chapter

the thesis is concluded with a discussion about managerial implications and some ideas

for future research are given.
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2. CREDIT VALUATION ADJUSTMENT WRONG-WAY

RISK

In this chapter general ideas around derivatives credit loss are discussed. First math-

ematical foundation and intuition of credit valuation adjustment is built and in following

sections each basic component of credit loss are analyzed further in the context of this

thesis. Finally the topic of wrong-way risk introduced.

2.1 Basic components of credit valuation adjustment

We are considering a case of a bank having a portfolio of derivative contracts with coun-

terparty C. The portfolio’s value at time t can be seen as a payoff of defaultable claim1

Π(t) and we fix the portfolio’s time horizon T ∈ R+. The mark-to-market value of the

portfolio at time t is V (t) and exposure to C due to Π at any future time t is given by

V (t)+ = max{V (t), 0} (Pykhtin and Sokol 2013). We will denote the loss which bank

suffers if C defaults at time t by Lt, and the fraction of the exposure which bank is able to

recover after default at time t, the recovery rate, by Rt. Now, if we knew for sure that the

counterparty would default at time t, we could calculate the loss in this case as

Lt = (1−Rt)V (t)+

by following Zhu’s and Pykhtin’s (2007) loss formulation. However, the default time of C is

unknown and thus we introduce the random variable τ to model it (Brigo and Vrins 2018).

We fix a filtered probability space (Ω,G,Gt = (G)0≤t≤T ,Q) where all information, includ-

ing τ , will be defined: A generic outcome ω of a random experiment in the set of all

possible outcomes Ω is a piece of information we are considering, an event, if it belongs

to the σ-field G. All the information available up to time t is represented by σ-field Gt and

the family σ-fields satisfying also t ≥ 0 is called filtration. (Brigo and Masetti 2005, p. 4)

In particular we are interested if the default of C occurs before the maturity T of the

portfolio Π. For this purpose we define the indicator function 1{·}, which takes value in

1A defaultable claim is an asset, or a combination of assets, of which payoff is paid by counterparty
which has a risk of default.
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case the argument is true and value zero otherwise (Zhu and Pykhtin 2007). Now the

value of the loss at random default time τ is

Lτ = (1−Rτ )1{τ≤T} V (τ)+.

Since we are interested in the value of the potential loss today, and not at random time τ

in the future, we must calculate the discounted loss L∗. The present value of the loss is

given by

L∗
τ = (1−Rτ )1{τ≤T}D(0, τ)V (τ)+,

where D(t1, t2) is a chosen discount factor from time t2 to time t1. However, now default

time τ and also the processes underlying the exposure V (·)+ are stochastic so to arrive at

the formula of the CVA the expected value of L∗
τ must be considered. For this purpose we

set the expectation operator considering all available information up to time t as Et[·] :=
E[·|Gt] following the notation of Brigo and Masetti (2005, p. 5), because we assume that

all information we are considering is Gt-measurable.

CVA tells how much value of the default free OTC portfolio should be adjusted in order to

take the counterparty’s default risk into account (Antonelli, Ramponi, and Scarlatti 2021).

This definition is further clarified in the section 2.1.2. From a perspective of risk-neutral

pricing framework, CVA can be seen as a price of hedging counterparty credit risk (Zhu

and Pykhtin 2007). In risk-neutral pricing martingale is an essential concept. A martingale

is a random process Y that at any time t1 < t2 satisfies a condition

E [Yt2|Ft1 ] = Yt1 ,

which means that given all the available current information, the expected value of a

martingale process is the current value of the process (Joshi 2003, p. 155). The idea

of the risk-neutral pricing is that with a change of probability measure from the physical

measure2 P to the risk-neutral measure Q we do not need knowledge of the expected

rate of return under P: The valuation can be done by taking the expected value under Q
discounted with a corresponding numéraire, which with Q is the risk-free rate of return

(Joshi 2003, p. 158). Thus the expected rate of an asset under Q is the risk-free rate

used for discounting.

Since CVA is a pricing adjustment made to derivatives portfolio and derivatives are in gen-

eral priced by using risk-neutral dynamics, it is natural that CVA is also priced under the

domestic risk neutral-measure Q, where the rate of return is the domestic risk-free rate.

2The physical probabilities, or real-world probabilities, are the ones estimated from the historical data.
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In sequel Q is used to denote the domestic risk-neutral measure. Following Brigo and

Vrins (2018) we assume arbitrage free and complete market and choose the numéraire

corresponding to discount factor to be the money market account

Bt := e
∫︁ t
0 rsds,

where r is the short rate process defining the risk-free rate. The deflator B is defined

from time t = 0 forward, B := (Bt)t≥0, and it has dynamics

dBt = rtBtdt.

The discount factor has now form D(0, t) = 1/Bt. It follows from no-arbitrage assumption

that all tradeable, non-divident paying assets discounted with Bt are martingales under

the associated probability measure Q (see for example Brigo and Vrins 2018). By utiliz-

ing this property the unilateral CVA can be expressed as risk-neutral expectation of the

discounted loss

CVA = EQ [L∗
τ ] = EQ

[︃
(1−Rτ )1{τ≤T}

V (τ)+

Bτ

]︃
, (2.1)

where EQ denotes E0[·]-expectation under Q (Zhu and Pykhtin 2007). In the unilateral

framework only counterparty’s default risk in Π is considered whereas bilateral CVA would

also consider the bank’s own default risk, which would require calculation of the debt value

adjustment (DVA) (Brigo, Capponi, and Pallavicini 2014). In this thesis only unilateral

CVA3 is discussed, and possibility of own default in the horizon T is ignored.

In practice there are three main components of credit risk embedded in this formula: loss

given default (LGD), probability of default (PD) and exposure at default (EAD), which

is discounted with risk free account. These components are further discussed in next

subsections from the perspective of this thesis.

2.1.1 Loss given default

If bank’s counterparty defaults it is reasonable to assume that full value of the credit is

not necessarily lost but some proportion of it will be recovered (Hull and White 1995).

This proportion is generally expressed as a fraction of exposure at default and it is called

recovery rate. The loss given default at time t can be expressed in terms of recovery rate

LGDt = 1 − Rt and this complement format is frequently used in the literature (Bastos

2010).

3For a review of WWR in bilateral CVA see for example Scherer and Schulz (2016).
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In practice loss given default is usually assumed to be constant over time (see for example

Ruiz 2015, p.134). Under this assumption equation (2.1) can be simplified:

CVA = (1−R)EQ
[︃
1{τ≤T}

V (τ)+

Bτ

]︃
. (2.2)

The assumption can be questioned since recovery rates seem to follow business cycle

and decrease in recessions (Bruche and González-Aguado 2010). Especially with loan

securities relying on static LGD values is heavily criticized (Frye 2003). Instead of using

constant LGD it could be, for example, forecasted (Bastos 2010).

However, in the case of default-risky derivatives the whole term structure of recovery rate

should be modelled until the maturity of the derivative to make use of time-dependence

and, in addition, using observed historical recovery rates would not be in line with risk-

neutral pricing. Using market implied recovery rates, extracted for example from credit

default swap4 (CDS) spreads, is difficult due to identification problems, since probability

of default is also part of the same equation (Das and Hanouna 2009). Das and Hanouna

show that the identification problem can be tackled, but for purposes of this thesis other

two main components of credit risk, PD and EAD, are more important and thus the topic

of estimating recovery rates is not discussed further.

2.1.2 Exposure at default

Exposure is a metric which tells "how much we are owed" (Ruiz 2015, p. 21) at time t. At

default time τ exposure is the positive net present value5 NPV+(·) := max{NPV(·), 0}
of the residual payoff of Π(t) remaining before maturity T measured at default time τ

(Brigo and Masetti 2005, p. 7). Within NPV(·) all netting-set level factors reducing or

increasing the amount we are owed to are assumed to be taken in account. For ex-

ample, collateralization by margining and netting are tools for counterparty risk reduc-

tion (Pallavicini, Perini, and Brigo 2011) which can affect the residual value. Usage of

these tools is controlled by contractual factors like credit support annex (CSA) (Pallavicini,

Perini, and Brigo 2011).

Exposure measured at default time τ , the exposure at default, is used in the general

counterparty risk pricing formula:

4A single-name credit default swap is a financial instrument providing a protection for the holder of the
instrument against default of the reference entity, which can be a country or company. The protection leg
pays periodic payments for the holder of until the end of contract or default of the reference entity. In case of
default, the seller pays protection leg holder a a compensation which depends on the value of a reference
instrument after the default. (Blanco, Brennan, and Marsh 2005)

5Net present value is a sum of cash flows in the portfolio, where each cash flow is discounted with a
corresponding discount factor.
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EQ [Π(t)] = EQ [ΠDF (t)]− (1−R)EQ [︁
1{τ≤T}D(t, τ)NPV(τ)+

]︁
, (2.3)

where ΠDF (·) is similar claim as Π(·) but with a default-free counterparty (Brigo and

Masetti 2005, pp. 6–7) having no risk of default before T . If we use the same definition of

exposure V (τ)+ = NPV(τ)+ in (2.2) and plug in the general discount factor D(t, τ) we

can see how CVA formula (2.2) is part of the special case of the general pricing formula:

EQ [Π(0)] = EQ [ΠDF (0)]−CVA,

where the time of measurement is current time t = 0. This explains why CVA is intuitively

defined as adjustment for the current value of the default-free portfolio required to take

the default risk into account (Antonelli, Ramponi, and Scarlatti 2021).

Another important exposure metric is the expected positive exposure (EPE), which tells

"how much we can be owed on average" (Ruiz 2015, p. 21). If we assume that the

discounted positive exposure and default time are independent, the definition of EPE is

given by

EPE⊥(t) := EQ
[︃
V (t)+

Bt

]︃
, (2.4)

where ⊥ denotes that the quantity is calculated under independence assumption of expo-

sure and default time (Brigo and Vrins 2018), also known as market-credit independence

(Ruiz 2015, p. 167).

2.1.3 Probability of default

The indicator term 1{τ≤t} of equation (2.2) is connected to the probability of default: Fol-

lowing Li and Mercurio (2016) the cumulative default probability Pτ (·) of counterparty

before time t is given by risk-neutral expectation

Pτ (t) := Q[τ ≤ t] = EQ [︁
1{τ≤t}

]︁
and it satisfies Pτ (0) = 0. The risk neutral survival probability of the counterparty is

obtained as 1− Pτ (t) (Brigo and Vrins 2018).
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CVA can now be written by applying the law of iterated expectations6 to (2.2) as

CVA = (1−R)EQ
[︃
1{τ≤T}

V (τ)+

Bτ

]︃
= (1−R)EQ

[︃
EQ

[︃
Pτ (T )

V (τ)+

Bτ

⃓⃓⃓⃓
Ht

]︃]︃
,

(2.5)

where Ht = σ(Pτ (u), 0 ≤ u ≤ t) is a subfiltration Ht ⊆ Gt having enough information to

determine the potential occurrence of counterparty credit event prior to t (Brigo and Vrins

2018).

According to Brigo and Vrins (2018) the outer expectation in (2.5) can be written as an

integral and the argument of inner expectation can be simplified, if τ admits density. In

our case the integral is with respect to the probability of default and the expression of CVA

becomes

CVA = (1−R)

∫︂ T

0

EQ
[︃
V (t)+

Bt

⃓⃓⃓⃓
τ = t

]︃
dPτ (t). (2.6)

Following the same notation as Li and Mercurio (2016) the density function of survival

probability is

pτ (t) :=
d

dt
Pτ (t),

and by writing the integral with respect to time we finally obtain the general CVA formula:

CVA = (1−R)

∫︂ T

0

EQ
[︃
V (t)+

Bt

⃓⃓⃓⃓
τ = t

]︃
pτ (t)dt. (2.7)

If we make again the same independence assumption as used in definition (2.4) we can

define the independent CVA as

CVA⊥ := (1−R)

∫︂ T

0

EQ
[︃
V (t)+

Bt

]︃
pτ (t)dt = (1−R)

∫︂ T

0

EPE⊥(t)pτ (t)dt (2.8)

6The law of iterated expectations, or the tower law, says that for a general random variable X and time
s < t the expected value can be written as

E[X|Js] = E[E[X|Jt] | Js],

where J is a sub σ-algebra (Joshi 2003, p. 155) See for example Allen, Morris, and Shin 2006 for more
about iterated expectations.
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according to Brigo and Vrins (2018). The reason why the assumption is not applicable to

the case of this thesis is discussed next.

2.2 Statistical dependency and wrong-way risk

The assumption of market-credit independence is common in CVA calculations (Hull and

White 2012), even though the dependency between counterparty risk and exposure is one

of the key drivers of CVA (Brigo and Vrins 2018). According to Zhu and Pykhtin (2007)

banks’ counterparty credit risk originates mainly from interest-rate derivatives and they

claim that the dependency structure is less material in FX and interest rate contracts, so

banks are comfortable to make the independence assumption. However there is empirical

evidence of significant dependency between default risk and exchange rate (Ehlers and

Schönbucher 2006; Pykhtin and Sokol 2013). Thus it is more likely that the complexity of

integrating the dependency structure modelling into CVA framework is the actual reason

why the WWR effect is not explicitly addressed in CVA calculation, as Brigo and Vrins

(2018) point out. In the case of this thesis, with collateralized FX derivative transaction and

systemic counterparty, the impact of the dependency to CVA is even more pronounced

as will be discussed in the chapter 3.

The market-credit dependency is sometimes referred as market-credit correlation (Ruiz

2015, p. 383). However, correlation is a linear measure of dependency7 and thus it might

oversimplify the modelling of dependency and lead to exposure miss-calculations as dis-

cussed by Ruiz (2015) and in context of FX derivatives by Chung and Gregory (2019).

Chung and Gregory mention that in specific market-credit dependency cases there might

be causal linkage, in which case the relation cannot be correctly captured with an ordinary

correlation based modelling. An example of causal effect affecting CVA is an assumed

jump in market risk factor’s value immediately at the default time. If the exposure at the

default time V (t)+ is affected by the arrival of default, CVA must be measured conditional

on default as in equation (2.6). In this thesis market-credit dependency refers to any type

of dependency structure between exposure and default time or default probability, which

might driven by correlation, causal effects or both.

7There are also nonlinear correlation frameworks for CVA, for example using a stochastic correlation
modelling instead of constant correlation (Kumar, Markus, and Hari 2021).
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3. WRONG-WAY RISK IN DERIVATIVES WITH FOREIGN

EXCHANGE RISK FACTOR

According to Gregory (2015, chapter 17) WWR is by its nature often specific and unavoid-

able consequence of financial markets. Thus, it is important to understand the context

where WWR is analyzed and set underlying assumptions accordingly. Some simplifying

assumptions are necessary, since all details cannot be included in a tractable framework,

because exposure calculations alone are already computationally heavy. In the process

of setting simplifying assumptions it is necessary to understand which features of the

portfolio and its dynamics are the most essential for maintaining description of counter-

party credit risk which is detailed enough. In practice the process is rather iterative and

may benefit from numerical sensitivity analysis with respect to underlying assumptions in

addition to literature-based qualitative method.

In sequel the assumed portfolio structure is discussed in detail. The nature of the portfolio

sets some basic requirements for a modelling approach, both in sense of underlying risk

factor and due to contractual reasons. The discussion of modelling approaches is built

on the requirements, in a way that only those which fulfill the requirements are reviewed

in more detail. Finally, the choice of modelling approach is made by comparing found

modelling approaches and identifying which might fit best to the case of the portfolio and

is tractable enough to be implemented. As already discussed, the choice of modelling

approach is heavily dictated by assumptions made of the portfolio and thus the model

may not fit universally to all WWR CVA cases, especially if other than FX risk factor is

considered.

3.1 Cross-currency swap and direction of transactions

The most obvious question about portfolio structure is of what kind of instruments is it

constructed. In this thesis the market-risk factor considered is the FX risk so naturally

the focus is on FX derivatives. We are considering a bank using OTC FX derivatives to

to hedge FX risk connected to foreign currency. For simplicity it is assumed that there is

only one foreign currency hedged, USD, and thus the only underlying FX risk factor is the

USD/EUR pair. More detailed analysis of FX risk is in section 3.5.
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In addition it is assumed that the portfolio is constructed of only one type of FX derivatives,

cross-currency basis swaps. The cross-currency basis swap is a contract in which the

counterparties simultaneously exchange the same value, the principals, measured by

FX spot rate in different currencies (Baba 2009). During the contract, the swap term,

which begins from the initial transaction and ends at the maturity, counterparties pay

each other agreed rates regularly. Finally at the maturity of the contract, the principals are

exchanged back. In this construction the bank is effectively giving a loan in one currency

and borrowing one in another currency with same counterparty and agreement to unwind

(Baba and Sakurai 2011). A cross-currency basis swap could be used for example to

hedge FX risk related to funding made in foreign currency, since principal exchanges are

fixed at the interception (Baba 2009). However, the exposure to counterparty credit risk

is relatively high, usually higher than interest rate swap, due to the exchange of principals

(Duffie and M. Huang 1996).

As noted, the cross-currency basis swap fits well for hedging a funding made in foreign

currency, which motivates one more assumption about the portfolio: all transactions are

made to hedge foreign currency risk, that is, the bank is always the "lender" of USD

"funds" and borrower of EUR funds in the swaps. This direction assumption simplifies

structure of the portfolio, but more importantly, it follows that the exposure to counterparty

is monotonic function of the underlying FX risk in a cross-currency basis swap portfolio,

because cross-currency basis swap’s cash flows are linear with respect to FX rate.1 Fur-

ther, the direction assumption has some interesting implications from the perspective of

market-credit dependency, namely in some cases it guarantees that only WWR or RWR

is present. This assumption is not as heavy as it may first seem, because for a firm trying

to manage assets and liabilities only in domestic currency, this is the only direction where

foreign currency swaps would be made.

As an illustrative example, consider a bank issuing a bond denominated in USD. The

bank receives N dollars, and the coupons are linked to the Secured Overnight Financing

Rate (SOFR)2 with added premium. The bank is willing to hedge the USD/EUR FX risk

of the liability, so it enters a cross-currency basis swap with same notional and payment

schedule as the loan, with mirrored flows. In the swap the bank "loans" N USD and

"borrows" X0N EUR, where Xt is the USD/EUR spot rate. According to Baba (2009) the

market convention is to quote the contract in terms of interest rates as Euro Inter-bank

Offered Rate (Euribor) plus α basis points versus SOFR3. When the periodicity is three

1However, instruments having cash-flows that are linear functions of the underlying market risk factor are
no longer linear, when CVA is taken into account in the valuation (Zwaard, Grzelak, and Oosterlee 2021).

2There is an ongoing paradigm shift from interbank offered rates (IBORs) to a new set of overnight risk-
free rates (RFRs), the main one being SOFR. Older literature often refers to the London Interbank Offered
Rate (LIBOR) when USD denominated liabilities are considered. For further discussion about the IBOR to
RFR transition, see for example Schrimpf and Sushko (2019).

3Based on the no-arbitrage argument a so-called long-term covered interest parity (CIP) condition can
be derived, which connects long-term interest rate differentials between currencies (Popper 1993). In fact,
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months, the bank is paying floating rate Euribor plus α and receiving floating SOFR every

three months. The bank can use the SOFR flow to pay coupons of the bond. At the

maturity the bank is obligated to return X0N EUR and receives N USD from the swap

and pays N USD to bond holders. Thus, if the cross-currency swap notional and schedule

match exactly to the bond, the bank has no FX risk exposure during the contract.

According to Baba (2009) similar economic effect is achieved with FX swaps, where the

principal exchange at maturity is done at pre-agreed FX forward rate and during the con-

tract no interest is paid. However, in this thesis the focus is on cross-currency swaps,

since they are more liquid for maturities of one year or more (Baba, Packer, and Nagano

2008) which implies they fit better in hedging funding in foreign currency than FX swaps.

In addition, cross-currency swap’s cash flows typically mimic bond payment streams (Pop-

per 1993). Among different types of cross-currency swap instruments, the cross-currency

basis swap is the most liquid (Baba and Sakurai 2011), so it was chosen to be the main

instrument to be analyzed.

3.2 Collateral posting

According to Brigo et al. (2011) continuously changing exposure of one counterparty

to another makes collateral management difficult in the case of counterparty credit risk.

They add that frequent collateral posting is essential in reducing credit exposure and that

the type of collateral posted should not be correlated to the value of the transaction. The

requirement of independence is rather obvious, since correlation could impose another

source of wrong-way risk. In this thesis collateral is assumed to be cash in domestic

currency, so risk mitigation effect of collateral is "pure" from the bank’s own perspective.

Collateral posting is subject to margin agreement, which specifies thresholds and min-

imum transfer amounts (Pykhtin 2009). The International Swap and Derivatives Asso-

ciation (ISDA) is a central authority forming agreement standards in the field of OTC

derivatives: the ISDA master agreement specifies general terms between counterparties

governing transactions at counterparty level (Bliss and Kaufman 2006). The details of

collateral posting are written in a legally enforceable margin agreement, the ISDA credit

support annex (CSA), under the ISDA master agreement (Pykhtin 2009).

In the ISDA framework two types of collateral flows are recognized: intial margin (IM) and

variation margin (VM) (Andersen, Pykhtin, and Sokol 2017). In regulation VM is intended

to cover current exposure, while IM is reflecting the potential future exposure (Basel Com-

mittee on Banking Supervision 2011b). The common type of IM is fixed flow in beginning

the basis spread α, also known as cross-currency basis spread, measures the market implied deviation
from the parity condition and more negative it is, the higher the demand for USD liquidity is relative to the
funding currency EUR (Baba and Sakurai 2011). Detailed discussion about the cross-currency basis and
historical violations of CIP condition are presented by Borio et al. (2016).
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of the contract, but other types of IM are also possible. For example, IM may be adjusted

to reflect the closeout risk (Andersen, Pykhtin, and Sokol 2017), which refers to addi-

tional costs arising after counterparty default (Gregory 2015, chapter 11). The closeout

risk can be modelled and measured with value-at-risk (VaR) approach after which IM can

be re-margined if necessary (Andersen, Pykhtin, and Sokol 2017). While IM is becom-

ing mandatory in OTC markets through banking regulation (Basel Committee on Banking

Supervision 2011b), historically IM has been rare in OTC markets and used mainly by

central counterparties (CCPs) being dominated by use of VM (Gregory 2015, chapter 6).

In addition, according to Andersen et al. (2017) dynamic IM without VM can only weakly

reduce expected exposure in cross currency swap trades. In this thesis IM is ignored and

only VM is considered in the collateralized exposure calculations. Typically VM, the reg-

ularly adjusted collateral, is designed to follow the value of the portfolio between parties

quite closely (Andersen, Pykhtin, and Sokol 2017). For the value of the portfolio often

used proxy is MtM value of the underlying transactions and thus VM is sometimes called

MtM margin (Gregory 2015, chapter 6).

It is possible that both parties are not collateralized, but only one is required to post col-

lateral with unilateral agreement or the margin thresholds are set to be highly asymmetric

(Andersen, Pykhtin, and Sokol 2017). In this thesis the collateral posting is assumed

to be bilateral and symmetrical, so that both parties are required to post collateral with

similar terms. For simplicity 0-0 threshold is assumed, so the MtM-measured portfolio

value is exactly matched at each collateral transfer, implying that the maximum allowed

exposure against counterparty is 0. The CSA will typically cover also a number of other

parameters such as minimum transfer amounts and rounding (Gregory 2015, chapter 6).

These parameters of CSA are more relevant for non-cash collateral (Gregory 2015, chap-

ter 6) so they are ignored in this thesis. In addition, the issue of netting rights after default

coordinated by ISDA master agreement is not further discussed. This choice is motivated

by the decision to focus on directional portfolio, in which case the netting effect would be

minimal.

In practice there is delay in collateral posting after margin call, which is typically limited

to one day (Brigo, Capponi, Pallavicini, and Papatheodorou 2011). The lag after the

margin call before receiving collateral is effectively part of the margin period of risk (MPoR)

(Pykhtin 2009). The concept of MPoR is specifically related to default event, while the lag

occurs every time the collateral call is made. The assumed collateral lag value in this

thesis is one day.

3.3 Margin period of risk

MPoR defines the length of time from the last successful margin call to the point of time

when losses after default have crystallized (Andersen, Pykhtin, and Sokol 2017). The
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events unfold over MPoR can be divided into pre-default and post-default events. Besides

of above discussed ordinary lag, including possible dispute of collateral call by collateral

giver and settlement time of collateral transaction, there is also a contractual grace period

in which the counterparty will not yet be deemed to be default. (Gregory 2015, chapter

6) According to Andersen et al. (2017) the potential event of default (PED) must be

formally communicated to collateral giver and it marks the start of grace period. Following

Andersen et al. in this thesis PED is the true default time τ which is not the same as

official default time in contractual terms. An interesting factor which might affect pre-

default window length of G-SIBs under the United States Bankruptcy Code is the ISDA

Resolution Stay Protocol, which restricts some default rights temporary to let regulators

better handle financial distress of a systemically important bank (see for example ISDA

2015 universal resolution stay protocol 2015).

If the collateral is not received in the grace period the counterparty is contractually in

default and post-default events unfold (Gregory 2015, chapter 6): First, the counterparty

will be informed of the event of default and the early termination date (ETD) of transactions

will be designated by the bank (Andersen, Pykhtin, and Sokol 2017). ETD, also known

as the closeout date, is the valuation date of the portfolio claim in MtM terms (Gregory

2015, chapter 6). The portfolio claim value includes unpaid trade flows and collateral.

After the portfolio claim is adjusted by the held collateral amount, the residual value will

be submitted as a claim to counterparty’s insolvency, which will usually be challenged by

the insolvency representative. It might need a lengthy bankruptcy court resolving process

before the realized recovery rate will be known. (Andersen, Pykhtin, and Sokol 2017)

When defining the end of MPoR not all sources arrive in the same conclusion, since in

some authors like Andersen et al. (2017) focus on ETD observation date and others on

successful replacement of underlying transactions, like Gregory (2015). It can be argued

that approach of Andersen et al. is somewhat more universal, since it doesn’t take a

stand on how the bank will proceed with their position after ETD. On the other hand, as

discussed in chapter 1, many OTC market participants use derivatives mainly for hedging

purposes. The hedging use is also an assumption in this thesis, so it is reasonable to

include time needed to re-hedge the position in MPoR, since the bank remains exposed

to unfavorable market variable evolutions until the successful replacement of transactions

or macro-hedging of the defaulted portfolio has been performed. In the hedging use of

derivatives re-hedging the position is necessary, because MtM-value of an asset or liability

hedged will continue to evolve still after the counterparty has defaulted the derivative

contract(s).

It is clear that modelling all the details of pre- and post-default periods is not necessarily

feasible or even useful as there are multiple short delays and uncertainties in every step.

In fact, according to Gregory (2015, chapter 6) MPoR is commonly used as a fairly simple

parameter which is intended to include all these short delays, and is set conservatively
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in Basel regulation rather than being modelled in the most realistic way. According to

him some typical choices for length of MPoR are from 10 to 20 days. While it might

be tempting to use same MPoR for every counterparty it should be noted in case of

certain counterparties, for example G-SIBs, it is not reasonable to assume that market

conditions remain stable after the default event. Gregory (2015, chapter 11) discusses

the conditionality of MtM volatility on default event and notes that MPoR length can be

used to consider this effect, if it’s not explicitly quantified in the exposure simulation.

All in all, MPoR generally in CVA calculations is a "catch-all" parameter, which is intended

to collapse the essence of the close-out risk arising from pre- and post-default events into

a single number. In doing so, it should not be interpret literally as the actual time that it

may take to re-hedge the portfolio (Gregory 2015, chapter 6), but as a proxy which reflects

the risk connected to the events and time unfolding in the case of default. However, in

case of this thesis the more detailed treatment of MPoR events, related to potential WWR

effects near default event, will be discussed further: it depends on the choice of modelling

approach which part of close-out risk will be explicitly assessed, and which part will be

allocated for MPoR. According to Gregory (2015, chapter 11) it is essential to find right

balance between benefits and diminishing returns of more detailed MPoR modelling.

3.4 Systemic counterparties

Another important consideration in CVA calculations is the counterparty the bank has

contracts with. It is obvious that credit quality of the counterparty is one of the parame-

ters when measuring counterparty credit risk associated with derivatives. In this thesis

one step is taken further since the WWR considered is the most relevant for a subset of

potential counterparties, G-SIBs. One could argue that the modelling approach should

be made independent from the type of counterparty, to keep number of models manage-

able. However, systemically important institutions are fundamentally different form other

potential counterparties, due to potential adverse consequences for global economy after

one’s failure (Basel Committee on Banking Supervision 2018). Why this affects WWR

modelling is discussed further in section 3.7.

There is no full consensus how systemic importance of bank should be measured. In

the Basel framework the systemic risk classification is based on indicators of size, in-

terconnectedness, substitutability, complexity and cross-jurisdictional activity (Foglia and

Angelini 2021). Some other proposed methodologies are for example risk measures

of interconnectedness, like conditional value-at-risk measuring marginal contribution of

an institution to the overall systemic risk (Adrian and Brunnermeier 2011) and marginal

expected shortfall (Acharya, Engle, and Richardson 2012). Foglia and Angelini (2021)

present a methodology connecting both cross-sectional and temporal dimensions of sys-

temic risk, aiming to bridge the gap between systemic importance and systemic risk mea-
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sures. While the debate about triggers and measurement methodology of systemic im-

portance is still ongoing (Foglia and Angelini 2021) according to Elliott and Litan (2011)

the common concern is the potential failure of some financial institution systemically im-

portant enough to damage whole economy, for example due to losses for large amount

of creditors.

Since the purpose of this thesis is not to deep-dive methodologies of measurement of sys-

temic risk or evaluation of systemically important financial institutions, a proxy is needed

to understand which counterparties should be deemed systemically important. In this

thesis the list of global systemically important banks published by the Financial Stability

Board which is based on the methodology of the Basel Committee is used for this pur-

pose. While the methodology is criticized for example due to lack of transparency (Foglia

and Angelini 2021) and arbitrary of weights of indicators (Benoit et al. 2017), the list is

commonly available and updated regularly. The systemic risk is not constant (Elliott and

Litan 2011) and the list of G-SIBs evolves from year to year. In this thesis the latest

issue of the list is used, which is at the time of writing the one published in November

2022 (Financial Stability Board 2022). While the CVA values are not measured explicitly

against any of these banks, the list is used as a reference to set directional levels of credit

risk related parameters in the chapter 5. The sensitivity of CVA against these parame-

ters is measured, so the assumption of systemic counterparty affects more the modelling

choices in this thesis than the actual measurement results, since the measurements are

made with multiple parameter levels.

3.5 Jump diffusion and FX risk factor

In previous sections some assumptions about the portfolio were set, including the main

market risk factor considered, the FX risk. There is an extensive literature documenting

evidence of abrupt FX rate movements, both observed from historical time series and

implied from prices of financial instruments. To tackle the modelling of abrupt risk factor

movements, jumps attached to the process dynamics are often presented in the literature.

Some of this literature is reviewed next.

Pioneering work of market risk factor jumps is the one by Merton (1976) related to eq-

uity option pricing. In his paper he deviates from the so-called local Markov property of

the stock price dynamics used in the Black and Scholes (1973) pricing formula. Merton

adds a jump component modelled by Poisson-driven process, which allows stock price

to change in a short time interval more than the pure geometric Brownian motion (GBM)

used in the Black-Scholes model (BS) would. This idea is extended to currency options

by Borensztein and Dooley (1987). They use a jump method to model prices of out-of-the-

money FX options, which would require high value change of underlying to be of value at

maturity. As Bates (1996) explains, values of currency options are systemically mispriced
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if the GBM assumption is made. The violation of the BS assumptions in currency options

can be observed for example by plotting BS model implied volatilities against the spot rate

divided by the strike of the option, which tends to exhibit a U-shaped curve, known as the

volatility smile4. Whereas most of the option pricing literature consider occurrences of

high-frequency jumps as noted by Farhi et al. (2009), like Bakshi et al. (2008) who find

evidence of jump risk pricing in currency options, the currency crashes considered in this

thesis are of far lower frequency. An empirical model aiming to incorporate both high fre-

quency jumps and low frequency crashes in currency markets is presented by Chernov

et al. (2018). Farhi and Gabaix (2016) explain smirks, non-symmetric implied volatil-

ity smiles, in currency options with a model of exchange rates where countries’ different

exposures to a possible global disaster are considered.

Another highly relevant event connected to currency crashes in case of CVA measure-

ment is a default of financial institution having high level of systemic importance in the

currency area. According to Pykhtin and Sokol (2013) a default of systemically impor-

tant financial institution could rapidly affect the currency of the area and thus imply rapid

FX movements. Since defaults of this scale are uncommon, it is not easy to estimate

magnitude of possible movements from historical data. However, according to Ehlers and

Schönbucher (2006) a specific market instruments, quanto credit default swaps can be

used to extract market implied information about the possible jump size of FX rate in case

of default of specific counterparty. The quanto credit default swap is a credit default swap

instrument referring to a potential default of a given entity, with a payoff denominated

in different currency than the assets of the given entity.5 If the spreads of normal and

quanto CDS instruments referring to same counterparty differ, the quanto basis spread

implies that the market might be pricing jump-at-default risk (Brigo, Pede, and Petrelli

2019). Thus, both historical and market implied information indicate that a default of G-

SIB could move FX rate of domestic currency rapidly, typically devaluating the domestic

currency, which affects the risk of currency derivative transactions made with the given

counterparty. In eurozone, if one is receiving dollars from systemically important counter-

party in cross-currency transaction and paying euros, a failure of the counterparty might

rapidly increase the USD/EUR FX rate, which means that the exposure in the transaction

will increase rapidly at the same time when the counterparty fails. The devaluation effect

in a the framework of sovereign CDS of eurozone countries is studied by Augustin et al.

(2020). Due to assumptions of the previous chapters about the portfolio, namely direction

of transactions and a type of counterparty considered, the euro devaluation at default is

exactly the type of WWR relevant in the case of this thesis.

4This is not how the volatility smiles of OTC FX options are constructed in practice since the strike-
price pairs are not directly observable (Reiswich and Uwe 2012). In addition, it is more common to quote
currency option in terms of its first derivative with respect to the spot exchange rate, known as delta (Farhi,
Fraiberger, et al. 2009).

5The quanto CDS is discussed more in the model calibration chapter 5. Theory of quanto CDSs is
explained in detail for example by Augustin et al. (2020).
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3.6 Requirements for the modelling approach

The requirements set here are a set of basic constraints which a modelling approach

should satisfy to be considered. The requirements are quite vague on purpose and stem-

ming mainly from practicalities of derivatives pricing. More detailed analysis of the meth-

ods are based on assumptions and requirements set in previous sections.

The requirements are:

(i) The model is in line with arbitrage-free pricing.

(ii) The model must combine the default or probability of default of a counterparty and

FX movement.

(iii) The model must generalize to different counterparties and constructions of the port-

folio without complete re-calibration. In other words, it cannot be really portfolio

specific.

The first requirement is motivated by the fact that the derivatives pricing is in general

performed with arbitrage free methods, so it is sensible to perform pricing adjustments in

same manner. The second requirement is to make sure that the chosen method is capa-

ble of measuring WWR effect in currency derivative transactions. The last requirement is

solely practical: there is little value in a WWR model if the pricing process of derivatives

becomes too complicated to be calibrated and performed daily. In addition, results of

complicated model might be difficult to communicate and interpret.

3.7 Review of WWR modelling approaches

According to Brigo and Vrins (2018) there are two main approach categories, one popu-

lar among practitioners and other proposed by academic researchers, to address WWR:

Static approaches to WWR couple the credit and market risk components after the sim-

ulation process, while dynamic approaches require taking the dependency structure into

account already during the dynamic simulation of the credit risk and exposure.

Brigo and Vrins (2018) note that in the industry the static approaches are popular because

they are more tractable and less computationally heavy alternative than the dynamic ap-

proaches proposed by many researchers. However, static approaches in general lack

the level of theoretical justification provided by dynamic ones: they are not arbitrage-free,

which contradicts with widely used assumptions in derivatives pricing. In addition, they

point out that the way how static approaches handle coupling of credit risk and exposure

is rather artificial. Thus, approximations provided by static approaches are less in line

with actual market data, but they avoid time-intensive simulations of dynamic approaches

which can be infeasible if amount of market factors and exposures is huge. In particular,

static copula approaches avoid joint modelling of exposure and credit since the coupling
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of the distributions is done a posteriori via a copula6(Pykhtin and Rosen 2010; Cherubini

2013). While static approaches have some attractive practical properties they are not

considered in this thesis, because they lack sound theoretical justification and does not

fulfill the requirement of being in line with arbitrage-free pricing.

In the dynamic approaches the coupling of credit and market risk is done a priori and

thus the joint dynamics must already be defined during the exposure simulations. Ac-

cording to Brigo and Vrins (2018) on can distinguish two distinct setups among dynamic

approaches: The first class of dynamic models are the structural models focusing on

the counterparty’s balance sheet. The basic idea in these approaches deriving from the

Merton (1974) credit model is to consider the default occur as soon as the value of the

firm drops below the firm’s assets, represented by a pre-defined barrier (Brigo and Vrins

2018). These models are applied to CVA for example by Brigo and Pede (2019). Cali-

bration of the models may not be possible against traded instruments and the calibrated

structural models might fail to reproduce credit quantities observed in markets (Eom, Hel-

wege, and J.-z. Huang 2004). In addition structural models are more commonly used

with equity linked instruments (Chung and Kwok 2016) than with FX derivatives. Struc-

tural models are by nature really counterparty specific and thus they do not satisfy the

requirement of generality. Instead of structural models, reduced-form models are consid-

ered in this thesis.

The reduced-form modelling framework considers the default likelihood of counterparty

(Brigo and Vrins 2018) instead of counterparty’s balance sheet. The default probability is

in these models driven by a default intensity, a counterparty spesific quantity expressing

the rate of default time, given that the counterparty has survived up till that time (Ghamami

and Goldberg 2014).7 Thus, the default intensity is driving the probability of default, which

is in reduced-form models expressed as a function of the intensity. In the dynamic frame-

work stochastic intensity models are the most popular way to incorporate WWR in CVA

(Brigo and Vrins 2018). The stochastic intensity can be made a function of the expo-

sure itself (Hull and White 2012) or a market risk factor driving the exposure, like FX

rate (Chung and Gregory 2019). The stochastic models are calibrated so that the default

probabilities implied by the model agree with market observed default probabilities, which

can be extracted for example from corporate bond spreads or credit default swap spreads

of the corresponding counterparty (Ghamami and Goldberg 2014).

A problem with models having the default intensity a function of exposure is that the cal-

6Copula is a cumulative distribution function generating a multivariate distribution from univariate ones
(Aas et al. 2009), hence coupling the distributions a posteriori.

7In credit risk literature hazard rate is commonly used as a synonym of default intensity. In this thesis the
default intensity is used to highlight the fact that it is the quantity driving the rate of default probability, while
hazard rate is used as term for a deterministic function calibrated against market information and used as
a part of default intensity function. In addition, if the default intensity is deterministic, it is equal to hazard
rate in the framework of this thesis.
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ibration is then highly portfolio structure specific: The calibration will arrive to different

results with different instruments, because payoffs of the instruments will affect the inten-

sity model parameters. In addition, collateral agreements complicate the calibration even

further (Hull and White 2012). It is unlikely that the calibration could be done with respect

to risk-neutral probability measure, and with historical calibration with respect to physi-

cal measure the correct form of relationship is might not be present in time series, if the

structure has changed or the portfolio has complex derivatives with optionality structures.

Thus, making the intensity a function of exposure does not full fill the requirements set for

the modelling approach.

More simple approach to WWR with stochastic intensity framework is to assume corre-

lation between random components of market-credit dependency: for example, one can

specify a linear correlation structure between FX rate and default intensity, which is then

used to modify the error components of the stochastic simulations (Kumar, Markus, and

Hari 2021). An advantage of this kind of approach that there is only one WWR parameter

to be calibrated per counterparty and market risk factor pair and it is not portfolio specific.

Also, if the stochastic intensity framework is already implemented, the WWR implemen-

tation only requires the generated random numbers to be multiplied by the correlation

factors given by the Cholesky decomposition (Kumar, Markus, and Hari 2021). The lin-

ear correlation approach is popular due to its simplicity, but it is criticized because it is in

producing only a weak WWR effects in general (Ehlers and Schönbucher 2006; Chung

and Gregory 2019; Kumar, Markus, and Hari 2021), and is not able to reproduce prices

observed in derivatives market (Brigo, Pede, and Petrelli 2019). In this thesis linear cor-

relation model is used as a benchmark version of the WWR implementation, compared

with a jump-at-default approach introduced next.

Finally, the WWR effect can also be present in the structure of the processes of market

variables. A popular approach for WWR when FX risk factor is present is to add a jump

component to the basic dynamics of the FX process, which occurs at the default time of

the counterparty. This modelling approach was first proposed by Ehlers and Schönbucher

(2006) for quanto CDS pricing. The approach fits well to CVA measurement of portfolios

with FX risk because the jumps are theoretically sensible and empirically proven feature

of FX rates, observed both from historical and market implied data, as is explained in

section 3.5. Like with the constant correlation approach, in the jump-at-default approach

there is only one parameter to be calibrated per counterparty and FX rate pair, a jump

size. Obviously, calibrating this parameter with counterparty specific historical data is

not possible, but in some cases market implied calibration is (Brigo, Pede, and Petrelli

2019). The jump-at-default approach, satisfying the requirements and being theoretically

justifiable framework is the second method chosen to be considered in this thesis. Since

the jump component can be added to the dynamics of FX risk factor and the constant

correlation method requires only recalculation of the error term, both methods can be
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implemented at the same time in a framework consisting stochastic default intensity model

and a FX model with a jump. In sequel, a model combining both features in the assumed

portfolio structure is derived and the effect of both WWR frameworks is compared with a

CVA without WWR effect.
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4. DERIVATION OF WRONG-WAY RISK MODEL

In this chapter the chosen modelling approach is explained by presenting the assumed

foreign exchange rate and default intensity processes. Joint modelling of given processes

is necessary to capture the potential market-credit dependency, which in the chosen ap-

proach can be constant correlation or jump-at-default based. Since a cross-currency

basis swap has cash flows in two different currencies, the risk neutral pricing in both do-

mestic and foreign currency are required. For simplicity, the numéraires corresponding

domestic and foreign risk neutral measures ensuring risk-neutrality are assumed to be

deterministic and independent of other processes. It is a reasonable assumption as risk-

free rate credit dependency has commonly rather limited numerical impact (Brigo and

Alfonsi 2005).

Underlying market risk factor(s) must be modelled to price a derivative contract at future

times as required by exposure calculations. Since the chosen contract type is a cross-

currency basis swap, which has two legs paying floating interest rates, one could choose

to model the forward rates with stochastic processes. However, as Li and Mercurio (2016)

note, FX fluctuations are the main contributor of CVA in cross-currency swaps, with inter-

est rates having limited effect. In addition, the chosen WWR approach is focused on FX

effect and thus both cash flow projections and discounting in this thesis are assumed to

follow deterministic term structure.

Both FX rates and floating rates are directly connected to exposure. In addition to expo-

sure, probability of default is essential part of CVA as is explained in chapter 2. Incorpo-

rating stochastic processes in default probability estimation is not completely necessary

in jump-at-default approach (Chung and Gregory 2019). However, it allows to compare

effects of the jump-approach with one of the most popular WWR approaches, which cor-

relates a measure called default intensity with chosen market risk factor(s). The default

intensity is introduced in section 4.1.

The presented formulas in this chapter are mostly based on articles of Li and Mercurio

(2016) and later Chung and Gregory (2019), whose approach is less restrictive and allows

to incorporate more sophisticated exposure modelling, including lagging collateral and

MPoR.
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4.1 Default time and intensity process

Let Q be the domestic risk neutral measure as defined in the chapter 2 in probability

space (Ω,G,Gt,Q). To tackle modelling of discrete default-event in continuous setting we

define the Azéma’s supermartingale Sτ
t , which can be interpreted as stochastic survival

probability given default-free information:

Sτ
t := EQ [︁

1{τ>t} |Ft

]︁
= Q [τ > t|Ft] (4.1)

where Ft ⊆ Gt is a filtration, which includes all default free information available at time t.1

In other words, Ft is not rich enough to determine if default occurred before t. Together

with subfiltration of the default indicator Ht it defines the total information Gt := Ft ∪ Ht

available at time t. (Brigo and Vrins 2018)

By applying the law of iterated expectations, we can connect the Azéma’s supermartin-

gale to risk neutral default probability Pτ (t) as

EQ [Sτ
t ] = EQ [︁

EQ [︁
1{τ>t} |Ft

]︁]︁
= EQ [︁

1{τ>t}
]︁
= Q [τ > t] = 1− Pτ (t). (4.2)

The formula EQ [Sτ
t ] = 1 − Pτ (t) is known as the calibration equation since it allows

to calibrate risk neutral expectation of Sτ
t if the deterministic default probability function

Pτ (·) is known.

We will work under a special case of Azéma’s supermartingale process Sτ
t known as the

Cox construction (or stochastic intensity framework): Following Brigo and Vrins (2018)

the survival process is chosen in the construction to be

Sτ
t := e−Λt , (4.3)

where Λt :=
∫︁ t

0
λsds is the martingale hazard process. The positive Ft-adapted stochas-

tic process λt is known as intensity process (Brigo and Vrins 2018). Furthermore, Γt :=

− lnSτ
t is the hazard process (Coculescu and Nikeghbali 2012).

Azéma’s supermartingale process (Sτ
t )t≥0 in the Cox construction is a decreasing stochas-

tic process, because the intensity process λt is assumed to be positive. This property en-

sures that the random default time τ is a (Ft)-pseudo-stopping time2 (Nikeghbali and Yor

2005). According to Coculescu and Nikeghbali (2012) every pseudo-stopping time satis-

fies the condition where hazard process and martingale hazard process are equivalent:

1See Coculescu and Nikeghbali 2012 for extensive review of default time filtered processes.
2Stopping time is a random time of which passing can be determined from the information set Ft avail-

able at time t. Thus the event of passing the stopping time is in the information set: {τ < t} ∈ Ft. (Joshi
2003, p. 143)
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Λ = Γ, which is satisfied by Cox construction, since

Γt = − lnSτ
t = − ln e−Λt = Λt.

This is an important property, since it allows us to use default-free valuation techniques

in defaultable claim valuation.

Another important property in Cox framework is that we can easily sample random default

time τ from the survival process: Let ξ be a random variable uniformly distributed on [0, 1]

and independent of information F∞. According to Brigo and Vrins (2018) the default time

is

τ = sup {s : Sτ
s < ξ},

the first passage time s when the survival process Sτ
t is below ξ, because

Sτ
t = Q [τ > t|Ft] = Q

[︁
e−Γt > ξ|Ft

]︁
.

By simulating survival process and for each simulation path sampling from uniform dis-

tribution, we could determine explicit default time, if it occurred in the time frame of the

simulation path.

Instead of simulating explicit default times, we can discard the default time completely in

CVA calulations by using Azéma’s supermartingale: Assume that the exposure process

of the portfolio V + and short-rate process Bt are Ft-predictable3 and 1{τ≤T} V (τ) is Q-

integrable. With the given assumptions we can apply the key lemma (see Lemma 3.1.3

Bielecki et al. 2011) which states that for every t ≥ T we have

1{t<τ} EQ
[︃
1{τ≤T}

V (τ)+

Bτ

⃓⃓⃓⃓
Gt

]︃
= 1{t<τ} e

Γt EQ
[︃∫︂

]t,T ]

V (u)+

Bu

d(1− Sτ
u)

⃓⃓⃓⃓
Ft

]︃
, (4.4)

which means that we don’t need the full information set Gt to measure the left side of the

equation, but we can discard the explicit default time and use instead the Ft-measurable

information about default probabilities embedded in the Azéma’s supermartingale. Apply-

ing the key lemma to the CVA formula (2.2) from t = 0 forward yields

3In other words, the exposure process V + cannot depend on the explicit value of τ . For example, it
may not include credit instruments referring to the default of the counterparty, but it may well be depend on
credit worthiness quantities, like the default intensity λ which is Ft-measurable (Brigo and Vrins 2018).
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CVA = (1−R)EQ
[︃
1{τ≤T}

V (τ)+

Bτ

]︃
= −(1−R)EQ

[︃∫︂ T

0

V (t)+

Bt

dSτ
t

]︃
, (4.5)

because

eΓ0 = − lnSτ
0 = − ln 1 = 0.

The discounted exposure values V (·)+
B

are calculated without default information, as Ft-

predictability of both processes is assumed.

Now that we have connected the survival probability to risk neutral default probabilities

and constructed a default time, we have necessary tools to tackle default probability cali-

bration, default time modelling and risk-neutral valuation of defaultable assets. In addition,

complete credit model requires defining the (stochastic) intensity process λt.

For modelling the stochastic intensity dynamics we have alternatives: As Brigo et al.

(2019) note, local volatility models or square root processes, like versions of the Cox-

Ingersoll-Ross (CIR) processes4 can be used. Another popular choice for modelling the

intensity process is Ornstein-Uhlenbeck (OU) process (Brigo and Vrins 2018), of which

the exponential version is often used for credit risk purposes (Brigo and Pede 2019; Brigo,

Pede, and Petrelli 2019). In this thesis the scaled exponential version of the OU process

is used, to avoid negative intensities (Brigo, Pede, and Petrelli 2019) and make the cali-

bration process intuitive.

We begin by defining the ordinary OU process. The Ornstein-Uhlenbeck process Yt is a

univariate continuous Markov process obtained as a solution of a stochastic differential

equation

dYt = a(m− Yt)dt+ σdW (t), Y0 = y (4.6)

where a is the mean reversion speed, m is the long-term mean, σ ≤ 0 is a volatility

parameter and Wt is a Wiener process (Maller, Müller, and Szimayer 2009). The Wiener

process, or standard Brownian motion, increments over positive time steps ∆t are dis-

tributed normally with mean 0 and variance ∆t

Wt+∆t −Wt ∼ N(0,∆t), W0 = 0

and the increments are independent of previous increments (Joshi 2003, p. 100). Ac-

cording to Maller et al. (2009) a solution the stochastic differential equation (4.6) can be

4See Alfonsi (2005) for extensive review of CIR processes and their discretization schemes.
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obtained by using a scaled time-transformed Wiener process W(1−e−2at)/(2a) with incre-

ments distributed normally

W(1−e−2a(t+∆t))/(2a) −W(e2at−1)/2a ∼ N(0, (e2a∆t − 1)/2a), W0 = 0.

By applying results of Doob (1942) the solution of the a stochastic differential equation

(4.6) is then

Yt = Y0e
−at +m(1− e−at) + σW(1−e−2at)/(2a). (4.7)

As explained by Maller et al. (2009) the process Yt has a mean-reverting property, which

means that when Y is over (under) the long-term mean level m it tends to move downward

(upward) due to negative (positive) coefficient of dt.

In our setting we model the stochastic intensity under the risk-neutral martingale measure

with an exponential OU process5 scaled with a deterministic function

λt = h(t)eZt , (4.8)

where h(t) is a scaling function known as hazard rate. Hazard rate is expressed by using

the deterministic default probability Pτ (·) as

1− Pτ (t) = e
∫︁ t
0 h(s)ds. (4.9)

The stochastic component Zt is defined by an OU process

dZt = a(m− Zt)dt+ σλdW
λ, Z0 = z, (4.10)

where the corresponding Wiener process dW λ is under the risk-neutral dynamics and

σλ is intensity volatility. By applying the Itô’s lemma6 to the equation (4.10) we get the

dynamics of the exponential OU process

deZt = a

(︃
m+

σ2
λ

2a
− Zt

)︃
eZtdt+ σeZtdW, Z0 = z,

where the term m +
σ2
λ

2a
acts as an equilibrium level of the process (Mejía Vega 2018),

same way as m is the equilibrium level of the normal OU process (4.10).

5The exponential OU process is applied to commodity prices by Schwartz (1997) and is known as
Schwartz one-factor model (Mejía Vega 2018).

6see for example Joshi (2003, p. 110)
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The conditional expectation of λT measured at time t ≥ s ≥ 0 is

EQ[λt|Fs] = EQ [h(t)|Fs]EQ [︁
eZt

⃓⃓
Fs

]︁
= h(t)EQ [︁

eZt
⃓⃓
Fs

]︁
, (4.11)

because h(t) is assumed deterministic and uncorrelated with eZt . According to Schwartz

(1997) the conditional distribution of Zt measured at time s is normally distributed with

mean

EQ [Zt|Fs] = e−a(t−s)Zs +m
(︁
1− e−a(t−s)

)︁
,

and variance

VQ [Yt|Fs] =
σ2
λ

2a

(︁
1− e−2a(t−s)

)︁
,

which can be confirmed from the equation (4.7).

Since Zt is normally distributed, eZt is log-normally distributed with conditional expecta-

tion

EQ [︁
eZt

⃓⃓
Fs

]︁
= exp

[︃
EQ [Zt|Fs] +

1

2
VQ [Zt|Fs]

]︃
= exp

[︃
e−a(t−s)Zs +m

(︁
1− e−a(t−s)

)︁
+

σ2
λ

4a

(︁
1− e−2a(t−s)

)︁]︃ (4.12)

as explained by Schwartz (1997). Even if we consider the initial level of the exponential

OU process at level Z0 = 0 and the same equilibrium level σ2
λ

2a
= 0 the conditional

expected value (4.12) remains time-dependent.

For our purposes it is convenient, if the expected value of the intensity process conditional

on information available at the measurement time t = 0 remains at the level of hazard

rate

EQ[λt|F0] = h(t),

because then we could calibrate the deterministic h(t) directly against credit spreads

and the calibrated model would agree with market information. However, from equation

(4.12) we can see that the conditional expected values of the exponential OU model are

time-dependent. Instead it is more practical to set the equilibrium level m +
σ2
λ

2a
to zero

and obtain a value for m, which will make the exponential OU process on a long term
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approach value 1. The value for m is then

m = −σ2
λ

2a
.

The exact values of the exponential OU process eZt can be calculated as with the normal

OU process in the formula (4.7) as

Zt = Z0e
−at +m(1− e−at) + σλe

−atW(e2at−1)/2a, (4.13)

where W(1−e−2at)/(2a) is the scaled time-transformed Wiener process (Mejía Vega 2018).

In an iterative simulation process the next value of the process will be updated based on

the previous realization and the Wiener process increments are sampled from a standard

normal distribution, where the variance is scaled. By using the incremental updating

formula of the exponential OU process (see for example Mejía Vega 2018), the exact

solution of the default intensity over constant time-step ∆t given information Ft−1 is

λt = h(t)eZt ,

Zt = Zt−1e
−a∆t +m(1− e−a∆t) + σλ

√︃
1

2a
(1− e−2a∆t)εt, Z0 = 0,

m = −σ2
λ

2a
,

(4.14)

where Zt−1 is the previous realization of the process in the discrete time grid and εt is

an error term, which in case of zero correlation is identically and independently normally

distributed with mean 0 and variance 1. The intensity process is perturbed from the

deterministic term structure h(t) by stochastic process eZt .

Hazard rates themselves are not observable, but prices of the credit default swap in-

struments referring to the default event of the counterparty are, if they exist. Thus CDS

spreads are commonly used to calibrate the deterministic hazard rate function7. On the

other hand our definition of hazard rate in the Cox framework ties hazard rate and default

intensity together: by using the definition of Azéma’s supermartingale in the stochastic

intensity framework (4.3), the calibration equation (4.2) and our definition of the hazard

rate (4.9) we have

e−
∫︁ t
0 h(s)ds = 1− Pτ (t) = EQ [Sτ

t ] = EQ
[︂
e−

∫︁ t
0 λsds

]︂
. (4.15)

7A simple way to calibrate hazard rate is to assume it remain constant over the CDS maturity T . Then,
if the recovery rate R of the CDS is known the risk neutral average hazard rate is h̄(T ) = S(T )/(1− R),
where S(·) is the observed CDS spread (Hull and White 2012). See chapter 5 for details.
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In fact, according to Brigo and Vrins (2018) approximating stochastic intensity with deter-

ministic hazard rate, that is λt ≈ h(t), gives usually satisfactory results in CVA pricing.

However, with correlation based WWR framework using the given approximation is not

possible, because it requires stochastic modelling of default intensity.

4.2 FX risk factor dynamics

In this section the dynamics of the FX risk factor model are defined. Together with the

stochastic intensity model of previous section it allows to model two different types of

market-credit dependency: correlated default intensity and FX-rate, and FX jump at de-

fault. In the following we work with respect to the total filtration Gt in which the default

time τ is a stopping-time. Thus, passage of the default time can be determined from the

information set available at time t.

Let Xt be the spot foreign exchange rate at time t measured as value of one unit of foreign

currency in domestic currency. Following Li and Mercurio (2016) we set the construction

of the FX model as

Xt := XB
t ·MJ

t , (4.16)

where XB
t is a baseline FX-model without a jump-feature and MJ

t is a jump martingale

process. We assume that the magnitude of the jump J ∈] − 1,∞[ is constant and the

jump of the process Xt happens only when counterparty defaults at time τ . The arrival of

jump is then modelled with a default indicator

Dt := 1{t≤τ}, t ≤ 0, (4.17)

which is Gt-measurable, and in addition a compensator term

dAt = 1{t≥τ} = (1−Dt)λtdt, (4.18)

must be attached to it for the jump process to be martingale (Brigo and Pede 2019). The

jump martingale process dynamics are then given by

dMJ
t = J(dDt − dAt) = J(dDt − (1−Dt)λtdt), (4.19)

Where the compensator term At is in the case of a positive FX jump J > 0 a decreasing

drift term, which is pulling Xt downwards until the default appears and the process Xt

jumps J percents.
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For the baseline model we assume a geometric Brownian motion process

dXB
t = µB(t)Xt + σXXtdW

X
t , X0 = x, (4.20)

with deterministic drift µB(t) set by no-arbitrage considerations, constant volatility σX for

FX-rate and Wiener process WX
t . It can be shown that then the drift term is

µB(t) = r(t)− r̂(t) (4.21)

if r(t) and r̂(t) are deterministic functions representing domestic and foreign economy

risk-free short rates (Brigo, Pede, and Petrelli 2019). The notation ·̂ denotes processes

and variables in foreign-currency economy. Since we assume that the short rates will

follow exactly the deterministic term structures, the money market accounts are defined

by differential equations

dBt = r(t)Btdt, B0 = 1,

dBt
ˆ = r̂(t)Bt

ˆ dt, B0̂ = 1.

By using (4.10), (4.16), (4.19), (4.20) and (4.21) we can express the complete market-

credit model dynamics with two stochastic differential equations:

dZt = a(m− Zt)dt+ σλdW
λ
t , z0 = 0

dXt = (r(t)− r̂(t)− λtJ(1−Dt))Xtdt+ σXXtdW
X
t + JXt−dDt, X0 = x

(4.22)

where x is the initial FX-rate at time t = 0. The construction is same as used by Brigo

and Pede (2019).

In addition to the jump-at-default component, another source of dependence between

FX and credit can be introduced in (4.22) as instantaneous constant correlation ρX,λ ∈
[−1, 1] between two Brownian motion processes

EQ[dWX
t dW λ

t ] = ρX,λdt.

For simulation purposes it is more convenient to express the FX model in solved form

instead of stochastic differential equations. By integrating (4.19) we get for the jump

martingale component

MJ
t =

(︁
1 + J 1{t≥τ}

)︁
e−

∫︁min {τ,t}
0 λsJds, (4.23)
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as explained by Li and Mercurio (2016). From (4.23) we can see that at the default time

τ the process Xt will jump proportionally to the level of the rate. In other words, MJ
t

is a proportional scaling factor of the baseline model. The baseline model’s differential

equation has a well-known solution of a GBM model

XB
t = X0e

(r(t)−r̂(t)− 1
2
σ2
X)t+σXdWX

t , (4.24)

obtained by integrating (4.20).

4.3 Collateral modelling

Collateral can increase or decrease value of the portfolio and thus affect the credit expo-

sure positively or negatively. Value of a collateralized portfolio at time t is given by

V (t) = NPV(t)− C(t), (4.25)

where C(t) is the collateral balance after the last collateral posting. Since we are consid-

ering only variable margin, the collateral balance can be expressed as

C(t) = max{NPV(t− δ)−HC , 0} −min{−NPV(t− δ)−HB, 0} (4.26)

where δ > 0 is the collateral settlement lag, HB is the collateral threshold of the bank

and HC the collateral threshold of the counterparty. (Chung and Gregory 2019) We are

considering zero thresholds for both parties, so the value of the collateralized portfolio,

obtained from (4.25) and (4.26), reduces to

V (t) = NPV(t)− NPV(t− δ), (4.27)

which is an intuitive result, as held collateral at time t in two-way CSA agreement is the

total price of trades in the portfolio measured at margin call time. In practice collateral is

always lagged, and hence collateral account cannot perfectly track price of the portfolio,

under and overshooting regularly, as price of derivatives in the portfolio change continu-

ously.

4.4 CVA for European-style FX contracts with MPoR

To make the exposure expression V (·)+ more explicit, we must make more assumptions

about the portfolio construction underlying the exposure. The objective of this thesis is to

model CVA WWR with an example contract, which has FX underlying, and the chosen
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contract type is a cross-currency basis swap as explained in 3.1. One essential property in

the valuation of this kind of contract is that the price of the contract is not path-dependent,

as the contract does not include any option components with early-exercise rights. Deriva-

tive contracts without early-exercises optionalities are called European-style derivatives

(Li and Mercurio 2016). In following we assume that the V (·)+ includes only European-

style FX contracts, because it allows us to discard the explicit default time modelling and

still include jump-at-default component in the FX-process (Li and Mercurio 2016). Thus

we can model the exposure with slight modifications made to the jump martingale process

(4.23) and still calculate CVA with (4.5).

As explained by Li and Mercurio (2016) the key is to consider the jump martingale process

as if the counterparty defaulted at time τ = t. This applied to (4.23) and (4.16) gives the

default-conditional FX-process

Xt|τ=t :=
[︁
XB

t ·MJ
t

⃓⃓
τ = t

]︁
= XB

t (1 + J) e−
∫︁ t
0 λsJds,

obtained by observing that 1{t≥t} = 1 and min{t, t} = t and recalling that the baseline

model XB
t is assumed to be independent of default. More precisely, the baseline model

must be scale invariant, which means that a scaling made to the baseline model at time

t induces a constant scaling of same size to all values of XB
t after t (Li and Mercurio

2016).8 Due to the scalability assumption, we can consider the post-default FX process

by letting the baseline process evolve ∆ time units after the default:

(Xt+∆|τ=t)∆≥0 = XB
t+∆ (1 + J) e−

∫︁ t
0 λsJds. (4.28)

The post-default FX process is an important tool, because it can be used to obtain directly

the exposure value after MPoR, if we assume that the FX process continues to follow

baseline process in the MPoR window. The pre-default FX process can be obtained

similarly by using (4.23) as

(Xt−∆|τ=t)∆>0 = XB
t−∆e

−
∫︁ t−∆
0 λsJds. (4.29)

Now we have tools to represent the portfolio value in a form required by (4.5). Let

NPV(t,Xt) denote NPV of a portfolio at time t with FX rate Xt. Following Ruiz (2015,

p. 72) we assume that the MPoR window length is constant in time and denote it with

MPoR ≥ 0. Then we can define the default conditional collateralized portfolio value by

using (4.27), (4.28) and (4.29) as

8The scalability assumption is satisfied by common stochastic models, like Black-Scholes model the
Merton (Merton 1976) jump-diffusion model and Heston (Heston 1993) stochastic volatility model (see for
example Li and Mercurio 2016).
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VMPoR(t) := NPV(t+MPoR, Xt+MPoR |τ=t)− NPV(t− δ,Xt−δ|τ=t), (4.30)

where the FX rate in the first term is the post-default FX process

Xt+MPoR |τ=t = XB
t+MPoR (1 + J) e−

∫︁ t
0 λsJds, (4.31)

and the FX rate in the second term is the pre-default FX process

Xt−δ|τ=t = XB
t−δe

−
∫︁ t−δ
0 λsJds.

The CVA for collateralized portfolio of European-style FX deals with MPoR is then

CVA = −(1−R)EQ
[︃∫︂ T

0

VMPoR(t)
+

Bt

dSτ
t

]︃
, (4.32)

obtained by combining (4.5) and (4.30).

4.5 CVA discretization

To make the simulation of exposure values in (4.32) tractable, the formula must be dis-

cretized. In this section the discretization is formulated for the default conditional exposure

VMPoR(·)+, but same discretization applies to general Ft-measurable V (·)+.

Following Chung and Gregory (2019) we set the exposure grid with M time steps in

interval t ∈ [0, T ] as

{ti; i = 0, 1, . . . ,M}, (4.33)

where step size ti+1 − ti could potentially be variable.9 Ideally one would calculate the

exposure daily (Ruiz 2015, p. 35) and in our case it is a natural choice since the margin

call frequency is also daily. Even time-step frequency also simplifies notation used to

express the exposure when collateral is considered.

For Monte Carlo simulations10, the general CVA formula (2.7) must be adapted to time

discretized form, which follows the time grid (4.33). We will use the rectangle rule for

discretization of the integral, where each exposure V + is calculated at the exact step ti.

9In practice it is common to use unevenly spread time buckets in which time points are close together
near beginning and spread out so that the exposure calculation task remains computationally feasible, when
portfolio maturity is long and amount of trades is high (Ruiz 2015, p. 50).

10see chapter 6 for discussion about the Monte Carlo method
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Following Chung and Gregory (2019), the integral of equation (4.5) can then be approxi-

mated as sum

CVA ≃ −(1−R)EQ

[︄
M−1∑︂
i=0

VMPoR(ti)
+

Bti

(︂
Sτ
ti+1

− Sτ
ti

)︂]︄
. (4.34)

By recalling linearity of expectation and the definition (4.3) of the Azéma’s supermartin-

gale in the Cox construction Sτ
t = e−

∫︁ t
0 λsds yields

CVA ≃ (1−R)
M−1∑︂
i=0

EQ
[︃
VMPoR(ti)

+

Bti

(︂
e−

∫︁ ti
0 λsds − e−

∫︁ ti+1
0 λsds

)︂]︃
. (4.35)

If we assume that the instantaneous correlation between exposure V (t)+ and default

intensity λt is zero, which in our setting means that ρX,λ = 0, we can decompose the

expectation as

CVA ≃ (1−R)
M−1∑︂
i=0

EQ
[︃
VMPoR(ti)

+

Bti

]︃
EQ

[︂
e−

∫︁ ti
0 λsds − e−

∫︁ ti+1
0 λsds

]︂
, (4.36)

which simplifies further to

CVA ≃ (1−R)
M−1∑︂
i=0

EQ
[︃
VMPoR(ti)

+

Bti

]︃(︂
e−

∫︁ ti
0 h(s)ds − e−

∫︁ ti+1
0 h(s)ds

)︂
,

by using the deterministic default intensity obtained by setting eZt = 1 and observing from

(4.8) that the intensity is then

λt = h(t). (4.37)

The same discretization of CVA in the deterministic intensity setup is observed directly

from (2.6) by using (4.15), which connects default probability curve to hazard rate function

as

Pτ (t) = 1− e−
∫︁ t
0 h(s)ds. (4.38)

Even though (4.35) is an approximation the only error with respect to the analytical formula

(4.32) comes from the discretization of the integral. If we let number of time-steps M in

the interval t ∈ [0, T ] become very large, the right side of (4.35) converges to the exact
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value of CVA.11

4.6 Exposure in cross-currency swap

In this section cross-currency swap exposure valuation components are explained. The

valuation and theory behind it is explained only briefly, as the focus of this thesis is not

in derivative instrument valuation. More detailed explanations can be found for example

from Boenkost and Schmidt (2005), Brigo et al. (2013), and Burgess (2018).

Using the same notation as before, the immediate delivery rate of two currencies in the

market is the spot exchange rate, in the modelling framework represented by the process

Xt. As explained in section 3.1, the vanilla cross-currency swap (CCS) construction has

an exchange of principals in the interception of transaction t = 0 and at the maturity of

the contract t = T . Usually the principal amounts, known as domestic notional Ndom and

foreign notional Nfor, are set to be Nfor = Ndom/X0, which means that the amounts are

fair (Boenkost and Schmidt 2005). The side in the contract receiving domestic currency

notional at the interception is the domestic trade leg and the side receiving foreign cur-

rency is the foreign trade leg. Typically these notional amounts are rebalanced during

the lifetime of the contract (Burgess 2018), but for simplicity the notional resets are not

considered in this thesis.

As explained in section 3.1, both parties pay interest during the contract, which in case

of a cross-currency basis swap (CCBS) are floating rates for both legs. Thus CCBS can

be understood as an exchange of floating rate bonds, because the cash flows of CCBS

mimic cash flows of bonds in contract currencies (Boenkost and Schmidt 2005). Let

ΠCCS,dom(t,Xt) be the value of domestic leg at time t and with FX spot rate Xt. Then

from the viewpoint of the party paying the domestic leg, the value of the foreign leg is

ΠCCS, for(t,Xt) = −ΠCCS, dom(t,Xt) (4.39)

as explained by Kumar et al. (2021).

Domestic leg pays n cash flows at dates t1 < t2 < · · · < tn, at year fractions ∆dom.

Following Burgess (2018) and (2021) we can express the present value of coupons at

time t as

ΠCpn,dom(t) = Ndom

n∑︂
j=1

1tj≥t rdom(tj)∆domDdom(t, tj), (4.40)

11Approximations which are made by simplifying the analytical form of CVA are presented for example by
Li and Mercurio (2016). These approximations do not necessarily converge to the exact value of CVA when
M grows, but they can significantly simplify simulations and calculations.
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where rdom(tj) is the interest rate fixed for the coupon period ending at tj and starting at

tj −∆, and Ddom(t, ti) is a discount factor for given cash flows. For CCBS12 the interest

rate is defined as

rdom(tj) = ldom(tj) + sdom, (4.41)

where ldom(tj) is a forward rate for period [tj − ∆, tj] and sdom is a spread over the

floating rate. Forward rate is a projected interest rate for future time window (Boenkost

and Schmidt 2005). Usually the spread s is added only over the floating rate of one leg

(Burgess 2018) and if the CCBS price is set fair it is the same as the cross-currency basis

spread α, as explained in section 3.1. The discount factor D(t, tj) is not necessarily same

as the risk-free rate of given currency: for example, collateralization affects the discount

factor (Burgess 2017).

In (4.41) we implicitly assume that the forward interest rates ldom(·) follow a determin-

istic term structure over time. Since we assume deterministic interest rates also in the

modelling approach, the assumption is in line with other modelling choices. To keep the

valuation consistent with arbitrage-free pricing the future cash flows of foreign currency

must be converted to domestic currency by using forward FX rate, which is dependent on

spot FX rate: According to Burgess (2017) the forward FX rate process Ft(T, ·) measured

at time t for time T is implied from discount factors and the spot FX rate 13 as

Ft(T,Xt) = Xt
Dfor(t, T )

Ddom(t, T )
. (4.42)

Thus, the FX forward rate changes among the FX process Xt even though discount

factors follow deterministic term structure in the modelling framework.

By applying (4.42) and (4.40) the price of foreign currency leg coupons can be expressed

as

ΠCpn,for(t,Xt) = Nfor

m∑︂
j=1

1tj≥t Ft(tj, Xt)rfor(tj)∆forDdom(t, tj)

= Nfor

m∑︂
j=1

1tj≥tXtrfor(tj)∆forDfor(t, tj),

(4.43)

where m is number of cash flows the foreign leg pays at dates t1 < t2 < · · · < tn, at

12The value of fixed-float or fixed-fixed CCS can be obtained as a special case of the float-float CCS,
where the coupon rate is set to be fixed r(tj) = r for one or both legs (Burgess 2018)

13Due to imperfections it might be that the forward price replication argument used to imply forward rates
does not exactly match observed prices (see for example Cornell and Reinganum 1981 for empirical study
of observed differences).
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year fractions ∆for. We will use spread only for the domestic currency leg, so the interest

rate of foreign notional is set to be rfor(tj) = lfor(tj). The foreign currency coupons

are discounted with domestic discount factor, because they are converted to domestic

currency with forward FX rate.

By using (4.42) the price of notional exchanges of domestic currency is according to

Burgess (2018) given by

ΠExch,dom(t) = Ndom 1t=0⏞ ⏟⏟ ⏞
Upfront exchange

−NdomDdom(t, T )⏞ ⏟⏟ ⏞
Final exchange

, (4.44)

when notional resets are not considered. Similarly, the value of foreign currency notional

exchanges is

ΠExch,for(t,Xt) = NforX0 1t=0 −NforFt(T,Xt)Ddom(t, T )

= NforX0 1t=0 −NforXtDfor(t, T ),
(4.45)

where both exchanges are converted to domestic currency. Now the value of the CCBS

at time t for the party paying the domestic leg is observed by combining (4.40), (4.43),

(4.44) and (4.45) as

ΠCCS, dom(t,Xt) = ΠExch,dom(t)− ΠExch,for(t,Xt)− ΠCpn,dom(t) + ΠCpn,for(t,Xt) (4.46)

by applying results of Burgess (2018) in our framework.

If the portfolio with a counterparty consist only one CCBS transaction, the counterparty is

holding the foreign leg and we are calculating CVA at the interception of the transaction,

the default conditional exposures can then be observed by using CCBS value function

(4.46) in place of NPV in (4.30) as NPV (t,Xt) := ΠCCS, dom(t,Xt), which yields

VMPoR(t)
+ = max

{︁
ΠCCS, dom(t+MPoR, Xt+MPoR |τ=t)− ΠCCS, dom(t− δ,Xt−δ|τ=t), 0

}︁
(4.47)

for an exposure of collateralized CCBS calculated at time t+MPoR with simulated default

conditional FX process up to t + MPoR and other market information available at the

interception of the transaction.
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5. DATA AND MODEL CALIBRATION

In this chapter, the model defined in chapter 4 is calibrated. After the portfolio structure is

defined the components to be calibrated are:

(i) the intensity model (4.14),

(ii) the FX model’s baseline component (4.24),

(iii) the FX model’s jump martingale component (4.23),

(iv) the cross-currency swap valuation model (4.46), and

(v) the discretized CVA WWR model (4.35).

First three components define the stochastic hybrid model for market credit dependency,

which is aiming to capture the wrong-way risk effect. The stochastic hybrid model requires

joint calibration of the components, namely the jump martingale process and constant

correlation, together modelling the WWR effects. Thus, calibration of these components

is separated in this chapter into own section 5.3.

For counterparty specific parameters illustrative values are used, since the objective is to

remain at general level. The example contract is a one year cross-currency basis swap

with domestic currency being EUR and foreign USD. The holder of EUR leg receives

semi-annual USD coupons based on USD SOFR and pays quarterly EUR coupons based

on 3-month Euribor. The calibration is done against general market data observed on

31.3.2023 and 360-day calculation convention is used. The data sources and details are

described in appendix A.

5.1 Intensity process calibration

In the stochastic intensity process (4.14) we have two parameters to be calibrated and

the deterministic hazard rate function to be matched against observed credit default swap

spreads. Intensity model parameters can be calibrated by using maximum likelihood

estimation against historical CDS data (Kumar, Markus, and Hari 2021). The hazard rate

function values are not directly observable from market. However, according to Hull and

White (2012) the risk neutral average hazard rate h(T )¯ over time frame [0, T ] can be

estimated by using the credit triangle approximation
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h̄(T ) =
S(T )

1−R
, (5.1)

where S(T ) is the observed single name credit default swap spread for maturity T .1

For illustrative purposes, we will assume a constant hazard rate h of 3%, the intensity

volatility σλ of 50%, and mean reversion a of 0.01%, motivated by Brigo et al. (2019)

and the fact that similar hazard rate values can be extracted from CDS quotes referring

to a systemically important European bank. Figure 5.1 shows a single simulation path of

stochastic intensity with given parameter values and empirical mean of 100 000 simulation

paths.
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Figure 5.1. One simulation path of stochastic default intensity and mean of 100 000
simulation paths.

As we can see, the process fluctuates a lot due to high value of volatility parameter. How-

ever, it tends to revert toward the hazard rate function. The empirical mean of the intensity

agrees well with the hazard rate, which indicates that the modelling choice of selecting

the equilibrium level to be m = −σ2
λ/2a is successfully ensuring that the expected value

of the intensity remains near the value of the deterministic hazard rate function h(t).

The figure 5.2 shows the survival probability process derived from the same stochastic

intensity path shown in the figure 5.1.

1A more rigorous method than assuming constant hazard rate over any time horizon T is to bootstrap
the hazard rate curve from CDS spreads and assume constant hazard rate between subsequent CDS
maturities (Castellacci 2008).
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Figure 5.2. Survival probability function derived from the stochastic intensity simulation

As we can see, the fluctuation effect of stochastic intensity is damped when a transfor-

mation to survival probability is performed and in the survival probability decreases fairly

linearly.

5.2 FX process calibration

In the FX process we have two components, as explained in chapter 4. The baseline

model (4.24) has two parameters, the initial FX rate X0 and volatility σX , to be calibrated,

and two deterministic functions: domestic and foreign risk-free short rates, r(t) and r̂(t)

respectively. These are calibrated against market data: initial FX rate from FX quotes,

FX volatility with implied volatility of USD/EUR FX option and risk-free rates against yield

curves.

The initial FX rate observed on the valuation date is extracted from the European Central

Bank’s (ECB) Euro foreign exchange rates Time series (European Central Bank 2023). In

the ECB’s dataset the euro is the currency and the US dollar is the valuation currency, so

the quotes are EUR/USD. We are using the euro as a valuation currency, so the reciprocal

of the data is used. The observed initial FX rate X0 at 31.3.2023 is 0.91954. USD/EUR

FX history is shown in figure 5.3.

While the risk-neutral FX volatility can be calibrated by using implied volatilities of FX

options, we can estimate the historical volatility under the real-world probability measure
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Figure 5.3. The USD/EUR FX rate time series from 1.4.2020 till 31.3.2023

P for comparison purposes. The estimation can be done from daily log returns of the FX

rate. The FX rate log-return summary statistics are presented in appendix A. Figure 5.4

presents a histogram of the log returns. As we can see from the histogram and appendix,

log returns are not exactly normal in the given time frame, but the shape of the distribution

resembles more the Student’s T-distribution, with thick tails. The minimum value of the

return, −3.5% shows that large intraday changes in relative value of USD/EUR FX rate

are possible, but quite rare. The annualized volatility estimated from the log returns is

0.0967. The implied volatility of at-the-money FX-option with remaining maturity of one

year is approximately 0.805, which will be used as a value of parameter σX .

For discounting domestic currency (EUR) cash flows, the Euro short-term rate (CSTR)

is used as reference rate, as it is the standard near risk-free rate for the euro (Huerga

et al. 2022). Foreign currency (USD) cash flows are discounted with the SOFR2. The

risk-free term structures can be derived from the markets prices of derivatives linked to

given risk-free rates, for example from overnight index swaps and futures (Schrimpf and

Sushko 2019). Figure 5.5 shows continuously compounded risk-free rate term structure

for different tenors interpolated from the derivative quotes. As we can see, the dollar

2The SOFR is a secured risk-free rate, as it reflects conditions in collateralized markets whereas CSTR
reflects uncollateralized conditions (Schrimpf and Sushko 2019). The rationale for using secured rate as a
basis for risk-free rate in the USA markets is discussed in the Federal Reserve Bank of New York’s (2018)
report.
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Figure 5.4. The USD/EUR FX rate log return histogram of FX rates from 1.4.2020 till
31.3.2023

area interest rates are higher, which will affect the drift term of the baseline model (4.24).

The drift of the FX process is then downward sloping as can be seen from figure 5.6.

The figure shows also how the jump compensator term At in (4.19) affects the drift of

the USD/EUR rate pulling it downward, because the assumed jump-at-default would be

positive.

5.3 Wrong-way risk effect calibration

The wrong-way risk effect of the hybrid model is summarized by two parameters: the jump

parameter J of the jump martingale process (4.23) representing the expected devaluation

of the domestic currency upon default, and the instantaneous correlation ρX,λ between

diffusion components of the intensity and FX processes. Obviously, both parameters are

counterparty-dependent, and nature of the counterparty can heavily affect estimates of

these parameters. Thus, instead of calculating the CVA value for single counterparty,

multiple values of CVA are calculated in the next chapter for different values of both pa-

rameters for illustrative purposes. This gives also an idea of CVA’s sensitivity against both

parameters.

Ideally, one would estimate both parameters risk-neutrally from market data for each
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Figure 5.5. Interpolated risk-free continuously compounding rates term structures for
domestic and foreign currency on 31.3.2023

counterparty in order to price CVA with WWR. The risk-neutral market implied calibra-

tion of the jump parameter can be done if there exists credit-default instruments denom-

inated in domestic and foreign currency linked to same debt instrument issued by the

counterparty (Du and Schreger 2016). An intuition is that if there exists a basis spread

Sfor(T )−Sdom(T ) between par spreads of CDS contracts denoted in foreign currency Sfor

and domestic currency Sdom, it must be explained by some driver of the default intensity

(Ehlers and Schönbucher 2006). It is shown in the literature that the value of CDS de-

nominated in different currency than the assets of the systemically important reference

entity is typically higher than the CDS denominated in the same currency as the assets

of the entity (Ehlers and Schönbucher 2006; Pykhtin and Sokol 2013; Du and Schreger

2016; Brigo, Pede, and Petrelli 2019; Augustin, Chernov, and Song 2020). The CDS de-

nominated in the non-domestic currency of the reference entity is called a quanto CDS

contract (Du and Schreger 2016).

Full derivation of the calibration formula under foreign and domestic risk-neutral measures

are not provided here. However, the idea is to explain the difference in values of intensities

λ and λ̂ by expressing prices of CDS contracts under our modelling assumption (Brigo,

Pede, and Petrelli 2019). It can be shown by using a change of measure argument

that under our modelling assumptions the default intensity under the foreign risk-neutral

measure Q̂ is given by
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Figure 5.6. FX process drifts obtained by setting σX = 0, h(t) = 0.03 and assuming that
the jump does not occur in the time window. The process with jump has a higher absolute
drift value due to the martingale drift component compensating the potential (upward)
jump of the FX process.

ĥ = (1 + J)h

for constant hazard rate h(t) = h (Chung and Kwok 2016). Using the credit triangle

approximation (5.1) yields then

J =
Sfor − Sdom

Sdom

as an easy-to-use approximation formula for the relative jump factor.

The correlation parameter can also be estimated from the credit spreads by using a

heuristic formula provided by Elizalde et al. (as cited in Brigo et al. 2019):

Sfor(T )− Sdom(T )

Sdom(T )
≈ J + σXσλρ

Imp
X,λA(T ), (5.2)

where ρImp
X,λ denotes implied correlation and A(T ) is the risky annuity of a domestic cur-

rency denominated CDS contract with tenor T , which can be expressed as
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A(T ) ≈ 1− e−T (r(T )+h̄(T ))

r(T ) + h̄(T )

by using the credit triangle approximation for the hazard rate (Chung and Gregory 2019).

The correlation parameter can then be decomposed from the jump effect by subtracting

(5.2) of different tenors (Brigo, Pede, and Petrelli 2019): the jump parameter cancels out

and by rearranging we get

ρImp
X,λ ≈ 1

σXσλ(A(T2)− A(T1))

(︃
Sfor(T2)− Sdom(T2)

Sdom(T2)
− Sfor(T1)− Sdom(T1)

Sdom(T1)

)︃
, (5.3)

where T2 > T1. Regardless of the heuristic nature of the correlation approximation (5.3)

Brigo et al. (2019) find it to work acceptably and suggest that it can be used to produce

rough approximations for the correlation parameter.

Another way of estimating the instantaneous correlation parameter is to measure a his-

torical correlation between log-returns of the FX rate and the CDS spread Sdom(t). Based

on studies of Brigo et al. (2019), and Chung and Gregory (2019) one will not necessary

expect the historical correlation to agree with the implied one calculated with (5.3): Brigo

et al. (2019) use a time window of 50 days for linear correlation and obtain that the abso-

lute value of the historical correlation tends to be higher than the model implied. Chung

and Gregory obtain similar results, and in case of neglecting the jump effect in (5.2) they

report correlations over the boundaries [−1, 1] which suggests that the implied correla-

tion alone is not sufficient to explain the observed quanto basis spreads between Sfor and

Sdom.

5.4 Cross-currency swap valuation model inputs

As discussed in section 4.6 the CCBS valuation requires forward floating rates ldom and

lfor for coupon periods, the spead sdom for the domestic leg and CSA-specific discount

factors Dfor and Ddom, which can be constructed as explained by Burgess (2017). We

assume that the collateral is posted in EUR cash by both parties. The derived CSA

discount curves are presented in figure 5.7. The figure shows clearly how higher interest

rate expectations in the foreign currency area affect the discount factors.

The domestic coupons are based on three-month Euribor and foreign on the SOFR rate.

The rates are fixed for each period in the beginning of the interest period3 so the first

coupon period rates are already known at the interception of the transaction. However,

3In practice, the interest rate is fixed for the coupon period from the floating rate observed few bank days
before beginning of the period.
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Figure 5.7. Interpolated CSA discount curves on 31.3.2023 for domestic and foreign
currency cash flows under the Euro cash collateralization

for next coupon periods the rates must be forecasted. The Euribor forward rates can be

bootstrapped for example from futures prices (Bernoth and Hagen 2004) and SOFR rates

as explained earlier in this chapter. Interpolated forward rate curve of three-month Euribor

and SOFR are shown in figure 5.8. The rates are simple annual rates, whereas the SOFR

rate in figure 5.5 was presented in the continuously compounded form as required by the

baseline FX model.

After the valuation model construction, the spread sdom over the domestic leg floating rate

can be set. One can simply use the CCBS valuation formula (4.46) with parameters t = 0

and Xt = X0 and numerically set the value of sdom so that the value of the swap is near

0 at the interception of the transaction. With this method sdom ≈ −0.047194 is obtained.

From figure 5.8 and the CCBS coupon formula (4.40) we can see that the domestic leg

coupons are negative with the given sdom value.

5.5 CVA calculation inputs

Since the stochastic hybrid model is already calibrated in previous sections, the dis-

cretized CVA formula (4.35) has only the risk-free rate process in Bt to be calibrated

and the recovery rate R to be chosen. In addition, the default conditional exposure of

CCS (4.47) has the margin period of risk parameter MPoR to be set.
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Figure 5.8. Interpolated forward rate curves on 31.3.2023 for coupon rates

The recovery rate is assumed constant as explained in section 2.1.2. The value is chosen

to be 0.3, which can be understood as a fraction of the exposure in case of default that

can be recovered until the end of MPoR window. As the CVA formula (4.35) is a linear

function of R, the value of recovery rate does not affect the relative effect of WWR on

CVA. However one must take into account that if the credit triangle approximation (5.1)

is used to extract hazard rates, the observable recovery rate might affect CVA values

through the dynamics of FX rate and default intensity (4.22).

The money market account Bt is chosen to have a initial value 1 at time t = 0. The

corresponding short rate is assumed to follow deterministic term structure of domestic

risk-free rate r(t). Thus we can use same term structure of CSTR as a proxy of risk-free

rates as is used in section 5.2 for the FX model.

The value of MPoR can potentially affect value of CVA of a collateralized portfolio ma-

terially in case of adverse market movements after the default. During the MPoR the

counterparty is not posting collateral, so the exposure can increase significantly as the

value of the instruments in the portfolio deviates from the pre-default values. The value

of MPoR is chosen to be 10 days. The background of MPoR assumptions is explained in

section 3.3.
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6. SIMULATION AND CVA MEASUREMENT

In this chapter the simulation results are presented and discussed. In first two sections

some technical details of the simulations are explained briefly. In the third section the

exposure simulation and results are explained and in the fourth section main results of

CVA WWR measurements are presented. In the final section sensitivity analysis of results

is conducted against few main parameters of the models.

6.1 Monte Carlo approach

The Monte Carlo approach, a method based on the law of large numbers and asymptotic

theorems, is used for decades to address problems with unobtainable closed form solu-

tions and chains of events with known transition probabilities (Metropolis and Ulam 1949).

Nowadays Monte Carlo techniques are used in many application areas considering quan-

titative problems, including the fields of economics and finance1 (Kroese et al. 2014). In

the field of quantitative finance, first applications of the Monte Carlo method considered

option pricing problems (Boyle 1977). In the risk management the Brownian Monte Carlo

method is an essential part of exposure calculation engines (Ruiz 2015, chapter 3).

Monte Carlo method in this thesis is used to approximate the risk-neutral expectation in

the discretized CVA formula (4.35). Recall that the expectation of an arbitrary measurable

function f(·) of a random variable Y is given by integral

E[f(y)] =
∫︂

f(y)g(y)dy, (6.1)

where g(y) is associated continuous density function. According to Joshi (2003, p. 191),

the Monte Carlo method allows to approximate the integral (6.1) as a long run average,

because the law of large numbers says that

lim
j→∞

1

N

N∑︂
j=0

f(Yj) = E[f(Y )], (6.2)

where Yn is a sequence of random draws of Y . By using the central limit theorem it can

1For an extensive review of Monte Carlo methods in applied finance see (Glasserman 2004).
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be shown that the distribution of the numerical Monte Carlo error tends to the standard

normal distribution with large values of N and the error measured with standard deviation

is order of
√
N (Boyle 1977). Thus, to decrease the standard deviation by factor of then,

we have to take hundred times more samples of f(Y ). According to Ruiz (2015, p. 33),

typical values of N in counterparty credit risk calculations range from 1 000 to 10 000.

We calculate a Monte Carlo estimate for each point ti of the time grid with samples

of two normally distributed random variables W λ
ti

and WX
ti

for default intensity and FX

process respectively. Thus the input of scalar valued "function" within the expectation,

with fixed deterministic values of other parameters, is a random vector
(︁
W λ

ti
,WX

ti

)︁
. To

obtain correlated Brownian motions, we can simulate a 2-dimensional random vector

W =
(︁
W (1),W (2)

)︁
with standard normal independent draws W j and take a linear com-

bination

Y = ρW (1) +
√︁
1− ρ2W (2) (6.3)

to obtain another Brownian motion Yt, which is correlated with W (1) with the linear corre-

lation coefficient ρ (Joshi 2003, p. 262). The expectation formula (6.1) extends same way

to a scalar function f(·) when Y is a random vector, so the Monte Carlo method applies

through the law of large numbers (6.2) similarly.

In this thesis 10 000 paths are simulated for each CVA calculation. As explained by

Chung and Gregory (2019), the exposure calculation must be run twice to calculate the

collateralized portfolio values. The exposure engine calculates two N × M matrices,

which have N = 10000 values for each ti. The subtraction in the CCBS exposure formula

(4.47) is performed element-wise for each post- and pre-default value simulated for time

step ti and floored with zero. Now the Monte Carlo estimate for the collateralized post-

default CCBS exposure at time ti is obtained by averaging over all 10 000 values for

VMPoR(ti)
+. For uncollateralized portfolio same values are obtained simply by setting the

pre-default term representing the collateral balance to zero.

However, unless we can assume an independence of default probabilities and exposure,

the averaged post default exposures cannot be used directly to calculate the CVA, be-

cause the expectation in CVA formula (4.35) cannot be decomposed to (4.36) in general

case, since the weight given by the default probability might be correlated with the expo-

sure. In the discretized CVA formula (4.35) the average is taken of the discounted default

conditional exposure at time ti weighted with associated default probability over time step

ti+1 − ti.
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6.2 Technical implementation

The numerical results are simulated with a self-written exposure engine, which allows to

obtain both collateralized and uncollateralized exposure values for the specified contract

type. As explained in the previous section the exposure calculation is ran twice: the first

run is made to evaluate the post-default process in (4.30) for each ti and the second

run to evaluate pre-default values with same simulated random numbers, which are the

lagged collateral account values under our assumptions. The collateralized exposure is

then simulated as follows:

1. Generate N ×M random numbers from the standard normal distribution and sim-

ulate the intensity process with given parameter values.

2. Generate N ×M random numbers from the standard normal distribution, use the

correlation formula (6.3) to obtain correlated Brownian motion and simulate the FX

process with given parameter values conditional on jump value J = j, where j is

the constant relative FX jump size.

3. Simulate MtM value of the contract for each entry of the N × M matrix: Calcu-

late the MtM value of CCBS for each step ti, by estimating becoming cash flows at

ti+1, ti+2, . . . , ti=M form the contract and discount them to point ti with correspond-

ing CSA discount factor.

4. Collateral account value (the pre-default MtM): Redo steps (2.) and (3.) but with a

jump value J = 0.

5. Discounted exposure matrix: Subtract the collateral matrix from the post-default

MtM matrix and discount with risk-free discount factor values.

6. Calculate CVA: Calculate element-wise product of the discounted exposure matrix

and the intensity process matrix. Calculate mean of each entry ti in M dimension

and then sum along N dimension. Multiply with (1−R) to obtain the CVA number.

This is a lot more efficient method than explicit simulation of default times2, since we

obtain with a 360-step partition and 10 000 simulation paths 3 600 000 post-default values

of collateralized portfolio, instead of single default in approximately 3 percent3 of simulated

paths. However, the used method is also time-consuming, since each time step for both

runs the NPV of the portfolio must be evaluated, which requires projection and evaluation

of all the future cash flows of the contract(s).

All scripts used to produce numerical results are written with Python by using well-known

libraries NumPy (Harris et al. 2020) and pandas (McKinney 2010). The graphs are pro-

duced with the Matplotlib graphics environment (Hunter 2007).

2The default time simulation can also be performed a lot more efficiently than naïvely simulating all
exposure paths (see for example Ruiz 2015, p. 171).

3Here we assume constant default intensity of 3 percent and maturity of one year.
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6.3 Exposure simulation results

In this section few exposure graphs are presented, to understand how the CCBS’s de-

fault conditional exposure component behaves in the CVA formula over time in the given

market environment.

The post-default profiles for collateralized and uncollateralized portfolio when WWR effect

is not considered are presented in figure 6.1. The exposure profiles are obtained by
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Figure 6.1. Default conditional expected positive exposure without WWR

simulating 10 000 paths from (4.47) with WWR parameters set to zero (J = 0, ρX,λ = 0).

The x-axis starts from the first close-out date, that is 0+MPoR. The simulated FX values

are extended to cover the whole period, which means that to obtain given profile for a

portfolio with maturity T one must simulate FX process from t = 0 up to t = T +MPoR.

The expected exposure profiles in 6.1 jag, because interest payments affect the exposure.

The jags are only downwards, because as we can see from forward rate curves 5.8 and

from selected domestic currency leg spread value, the coupon rates in the domestic leg

are negative. As we can see from the figure, collateral is able to decrease the expected

exposure significantly when WWR is not considered.

Same graphs are presented in figure 6.2, but this time with FX jump at default (J = 0.05)

on. From the figure we can see how the jump at default affects the post-default expected

exposure level through the post-default FX process term in (4.30) when compared to 6.2.
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Figure 6.2. Default conditional expected positive exposure with proportional FX jump
J = 0.05 at default time of counterparty

The same effect is present for both uncollateralized and collateralized case, because the

lagged collateral is not able to tackle the WWR effect of jump-at-default.

In figure 6.3 the WWR effect of linear correlation ρX,λ = 0.5 on default conditional expo-

sure is compared with an exposure values without WWR effect. The correlation effect is

obtained by adjusting the FX process’ Brownian motion with the intensity process’ Brow-

nian motion based on formula (6.3) as

WX
ti

= ρW λ
ti
+
√︁

1− ρ2W, (6.4)

where W component is an independent and standard normal Brownian motion. As we

can expect, the correlated and uncorrelated exposure profiles on are practically same

on average, because the simulated Brownian motion for the correlated FX process from

(6.4) is still normally distributed WX
ti

∼ N(0, 1). However, on single exposure path level,

presented in figure 6.4, the difference in uncorrelated and correlated paths can be seen

clearly. The underlying default intensity process and FX processes of the exposure paths

are shown in figure 6.5. The figure shows clearly how trending intensity (FX) process

can affect the FX rate (default intensity) if correlation between random components is

assumed.

As it was earlier mentioned, the default conditional expected positive exposures cannot
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Figure 6.3. Default conditional expected positive exposure with and without linear corre-
lation WWR

be directly used in the CVA formula if correlation is presented: the WWR effect of linear

correlation becomes from co-variation of market and credit risk, so the correlation effect

is fully present only in the final CVA number. For verification same figures as 6.3 and

6.4 were also plotted for WWR with jump and correlation present at the same time. The

findings were same as with no-WWR versus the correlation WWR case: the default con-

ditional expected positive exposure profiles are overlapping, while on a single exposure

path level the values differ.

6.4 Wrong-way risk effect on CVA

The CVA calculation results for uncollateralized case are in the table 6.1 where the CVA

without WWR effect, the independent collateralized CVA, CVA⊥, is used to scale the

values. The value of CVA⊥ is obtained from the model by setting J = 0 and ρX,λ = 0.

Same numbers, but for the collateralized CVA are presented in the table 6.2. Note that

the scaling factors in tables are different, since value of the CVA calculated without WWR

effect is in collateralized case only around fifth of the uncollateralized CVA. From the

tables we can see that a constant correlation has, even with high values, quite limited

effect on collateralized CVA while on uncollateralized CVA the effect is more material.

On the other hand, the jump parameter has relatively material effect on collateralized

CVA even with low values: A relative FX jump of 1% is already doubling the value of CVA.
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Figure 6.4. A default conditional exposure path with and without linear correlation
(ρX,λ = 0.5) WWR for collateralized portfolio. The paths have same independent random
components, so they would overlap if the correlation was set to 0.

Table 6.1. Collateralized CVA relative to the independent collateralized CVA with different
FX jump and FX rate - default intensity correlation combinations. The measured indepen-
dent collateralized CVA is 108.68C obtained with J = 0 and ρX,λ = 0.

J\ρX,λ 0.0 0.1 0.2 0.5 0.7 1.0

0.000 1.00 1.00 1.01 1.02 1.03 1.04

0.005 1.52 1.52 1.53 1.54 1.55 1.57

0.010 2.15 2.16 2.17 2.19 2.20 2.22

0.030 5.44 5.46 5.47 5.52 5.55 5.58

0.050 9.08 9.10 9.12 9.19 9.23 9.29

0.100 18.21 18.25 18.29 18.41 18.49 18.60

Same results but for negative J and ρX,λ values are calculated and presented in appendix

B to obtain RWR effect on CVA. The effect of RWR is mirrored: USD devaluation jump-at-

default decreases relative CVA in collateralized portfolio with 5% devaluation jump nearly

zeroing the CVA.

For verification, WWR calculations were performed also for 10-year CCBS contract, with

all other parameter values remaining same. The results are presented in appendix C. The

results are similar, with constant correlation becoming slightly more important contributor
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Figure 6.5. Stochastic intensity path and correlated FX rate path with ρX,λ = 0.5. The
uncorrelated path shows the FX rate evolution before the correlation effect.

for WWR. With 10-year contract the jump-at-default effect is still material even with low

jump values.

The differences between WWR parameter value sensitivities on collateralized portfolio

are even more clear in the figure 6.6, where CVA is shown as a function of the jump

parameter value with different levels of correlation. As we can see, the graphs with differ-

ent correlation values are nearly overlapping. Figure 6.7 shows the same graphs but for

uncollateralized case, where the correlation parameter value has clearly more significant

relative effect on CVA value. Same figures but in RWR case are shown in appendix B and

for 10-year CCBS in appendix C.

In both WWR figures the relative CVA increases as a function of the jump parameter,

but in the collateralized case the increase is steeper. However, with all other parame-

ters equal, the absolute value of CVA in collateralized portfolio remains still lower than
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Table 6.2. Uncollateralized CVA relative to the independent uncollateralized CVA with
different FX jump and FX rate - default intensity correlation combinations. The measured
independent uncollateralized CVA is 510.60 C obtained with J = 0 and ρX,λ = 0.

J\ρX,λ 0.0 0.1 0.2 0.5 0.7 1.0

0.000 1.00 1.04 1.09 1.23 1.32 1.46

0.005 1.11 1.16 1.21 1.35 1.45 1.60

0.010 1.23 1.28 1.33 1.48 1.59 1.74

0.030 1.77 1.83 1.89 2.07 2.19 2.37

0.050 2.39 2.46 2.53 2.73 2.87 3.06

0.100 4.14 4.22 4.30 4.54 4.70 4.92

the absolute value of uncollateralized one. A comparison of absolute CVA values with

different jump parameter values is presented in figure 6.8. The absolute difference be-

tween uncollateralized and collateralized CVA decreases as the size of assumed relative

FX jump-at-default increases.

In conclusion, collateralization can reduce the effect of the constant correlation WWR, but

it is incapable in reducing the jump WWR effect. Chung and Gregory (2019) report similar

results for a directional portfolio with collateralization. This is an unsurprising result, be-

cause collateral can mitigate the effect of correlation by reducing the total exposure while

the value of contract increases at the same time with default intensity. But with jump-at-

default, the collateral is posted last time one day before the default and the increase in

value of contract due to USD/EUR rate increase is in its entirety translated to the increase

in exposure. This effect is clearly visible in the default conditional exposure graphs when

the jump-at-default case 6.2 is compared with 6.1 having no WWR effect.

6.5 Sensitivity analysis

While the assumed relative jump-at-default J and the constant correlation ρX,λ are the

main parameters of interest when comparing jump and correlation based WWR mod-

els, other parameters may affect conclusions made of the modelling approaches. For

example, higher or lower FX volatility σX or intensity volatility σλ might make difference

between CVA numbers of the modelling approaches notable. To evaluate robustness of

the results of previous section, the sensitivity of independent CVA and CVA with WWR

is evaluated against few important model parameters. The simple sensitivity analysis is

made with four different modelling choices:

(i) No WWR (J = 0, ρX,λ = 0)

(ii) Relative 5% FX jump-at-default (J = 0.05, ρX,λ = 0)
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Figure 6.6. Collateralized cross-currency basis swap CVA relative to independent CVA
with different levels of FX rate and default intensity correlation

(iii) Constant 50% correlation between FX rate error and default intensity error (J =

0, ρX,λ = 0.5),

(iv) Both jump-at-default and constant correlation WWR effects (J = 0.05, ρX,λ = 0.5)

The sensitivities are measured by adjusting the corresponding parameter value ceteris

paribus, by keeping all the other model parameters at the same level as in the previous

section. The results are presented only for the collateralized CVA which is more important

in this thesis than the uncollateralized case, due to portfolio assumptions. The sensitivity

analysis results may differ in an uncollateralized portfolio, because the results of previous

section suggest that collateralization affects significantly on how CVA reacts to different

modelling choices.

First CVA sensitivity is measured against intensity parameters constant hazard rate h and

intensity volatility σλ. The sensitivity figure of constant hazard rate is presented in 6.9. As
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Figure 6.7. Uncollateralized cross-currency basis swap CVA relative to independent CVA
with different levels of FX rate and default intensity correlation

we can see the the hazard rate’s effect on CVA is approximately linear, with higher hazard

rate yielding higher CVA values due to higher average probability of default. In the jump-

at-default framework, the exposures at default are higher on average, which explains why

CVA value increases more steeply when the default intensity increases.

Figure 6.10 shows default intensity volatility sensitivity of different modelling approaches.

With an intensity volatility value σλ = 0 the corresponding CVA model with correlation

WWR is essentially same as the one without it, because the error term in the intensity

model becomes zero. Interestingly, the CVA seems to decrease as a function of the inten-

sity volatility, when the volatility is high enough. From the equation (4.12) one would sug-

gest that the expected value of default intensity increases as a function of default intensity

volatility and ditto CVA would monotonically increase, when the value of m = −σ2/2a is

set. The contradiction may indicate that with high volatility values the empirical mean
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Figure 6.8. Collateralized and uncollateralized cross-currency basis swap CVA with dif-
ferent jump values. The correlation parameter is set to ρX,λ = 0.

of default intensity is not leveling to the value of the deterministic hazard rate function.

However, this observation does not question the results of previous section as the level of

collateralized CVA in 6.10 remains a lot higher with jump-at-default framework than with

correlation framework for all tested values of default intensity.

In figure 6.11 FX volatility sensitivity of CVA is shown. With all modelling approaches

the CVA increases as a function of FX volatility, but with the independent CVA and the

correlation framework the increase is steeper. The difference might be due to exposure

changes unfolding in the MPoR period, driven by the baseline FX model (4.24). From

figure 6.12 we can see how the MPoR is a lot more significant driver of CVA in the in-

dependent CVA and the correlation framework than for the jump-at-default CVA. In fact,

in the jump-at-default framework increasing MPoR decreases CVA. The effect might be

explained by the tendency of FX drift to be downward and the fact that the exposure is

floored to zero: With low expected positive exposure values of correlation framework and

independent CVA it is more likely that with high FX volatility and longer MPoR the expo-

sure will end up being higher than nil. With jump-at-default framework it is already more

probable that the default conditional exposure will be above zero after the FX jump. In

that case the decreasing drift of the FX process have higher impact on CVA in MPoR than

the possibility of landing above zero.

All in all, the sensitivity analysis shows some differences on how the constant correlation
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Figure 6.9. CVA constant hazard rate sensitivity of different modelling choices

and jump-at-default based CVA WWR models react on the parameter changes. However,

the conclusions of CVA methods for collateralized contract remain same as made in the

previous section: The constant correlation method doesn’t yield notable difference when

compared to the independent CVA method, and the constant correlation method’s dif-

ferences with the jump-at-default method remain large with all tested parameter values.

The constant correlation is the only tested parameter which can decrease the difference.

The constant hazard rate sensitivity for jump-at-default method is higher due to reason

discussed above. Nevertheless, the difference remains notable even with a very low con-

stant hazard rate of 1%.
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Figure 6.10. CVA default intensity volatility sensitivity of different modelling choices
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7. CONCLUSION

In this thesis the focus was on CVA WWR effect measurement of a cross-currency basis

swap contract, where the counterparty is a significant financial institution in same cur-

rency area. The first research question was: How CVA WWR should be modelled in

OTC derivatives contracts made with eurozone G-SIB, when the underlying risk factor

is USD/EUR FX rate and both parties post collateral? Based on portfolio assumptions

and requirements imposed by theoretical and practical considerations, the identified can-

didates were the jump-at-default and linear correlation approaches. Both models can be

calibrated to be arbitrage-free, and they are general enough to be implemented and used

in complex portfolios to measure WWR.

The second research question was: How significant is the WWR effect in the example

contract based on the selected model(s) compared to a CVA model without WWR and

how it is affected by modelling assumptions? The CVA calculation results show similar

patterns observed in the previous literature: Assumed linear correlation does not have

significant effect on independent CVA, when collateralized portfolio is considered. On

the other hand, jump-at-default, even with small relative jump size can dramatically affect

CVA of collateralized transaction.

From the results of empirical section, it seems evident that events potentially unfolding at

the time of a counterparty default should not be ignored when measuring counterparty

credit risk. The issue is highlighted with directional portfolios and instruments with high

market risk factor sensitivity, like cross-currency swaps used to hedge FX risk. As Pykhtin

and Sokol (2013) conclude their study of systemic WWR risk:

“ Counterparty credit exposure is meaningful only when measured conditional on default,

and any dependence between exposure and counterparty default time results in diver-

gence between conditional and unconditional exposures. ”

Based on simulation results of this thesis and earlier literature, one can confidently say

that the divergence can be material, even if the underlying market risk factor’s shock is

modest.

Conversely, as empirical WWR literature suggest, simple linearly correlated WWR model

is not sufficient in capturing a measurable WWR effect on collateralized portfolio. Low

market risk factor volatility and high credit quality of the counterparty combined with col-
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lateral posting is effectively mitigating the correlation effect of market risk factor and de-

fault intensity. Linear correlation based WWR model can, in the given conditions, severely

underestimate the WWR effect on CVA.

7.1 Implications and recommendations

From risk management perspective, the practical implications of this thesis are, that mea-

suring WWR or at least monitoring it in FX derivatives contracts made with large domestic

counterparties is necessary. Ignoring the potential dependence structure or modelling it

with the linear correlation method can pose significant model risk: Even if the potential

jump-at-default effect is modest, the relative impact on CVA is high. Making risk manage-

ment decisions or pricing based on models without the jump component includes a high

change of errors, because in case of market-credit risk combinations like the one dis-

cussed in this thesis, the exposure at default can with one counterparty be significantly

higher than with another one.

The jump-at-default WWR studied in this thesis can theoretically be avoided by not making

OTC FX derivative transactions with counterparties, whose defaults might devalue the

currency held long position in the contract. However, more sensible approach is to model

the jump-at-default effect, do the pricing adjustment as usual and then draw conclusions

about counterparty level allocations. In this analysis CVA with WWR is a useful tool

because, by definition, it quantifies the price of counterparty credit risk, which can then

be used to control trading decisions.

The effect of CVA WWR could also be hedged, if undesired market risk factor and coun-

terparty combinations are unavoidable. One strategy is to avoid directional characteristics

in portfolios with jump-at-default risky counterparties, if it is possible. The effect of jump-

at-default WWR can then be expected to be lower (Chung and Gregory 2019). Another

approach for risk mitigation could be macro level hedging of whole CVA, including WWR.

Van der Zwaard et al. (2021) consider hedging CVA market risk, when the underlying

follows jump-diffusion process. However, they assume no WWR and focus on a portfolio

with European options on a stock. For an institution using derivatives to hedge foreign

currency funding, adjusting portfolio structure might not be an option because for them

derivative portfolios are by nature directional.

For directional portfolios the effect of jump-at-default might be best mitigated by more

comprehensive collateralization: Initial margin combined with VM might be effective tool

in reducing gap risk related to events unfolding in MPoR (Gregory 2015, section 6.2.4). In

fact, valuation adjustments CVA and funding valuation adjustment combined can be seen

as the cost of imperfect collateralization (Zwaard, Grzelak, and Oosterlee 2022). Since

IM is intended to reduce risk of adverse market factor movements in MPoR (Basel Com-

mittee on Banking Supervision 2011b), it seems to be the regulatory answer to default-
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conditional exposure changes, like jump-at-default effect. However, it is another question

how high IMs counterparties are willing to suffer. Especially, if we consider the case of di-

rectional portfolio, which is theoretically avoidable and rising from the bank’s own choices,

the counterparty is unlikely willing to compensate with higher IM for this undiversified gap

risk.

Another view to market-credit dependency which was only briefly addressed in this thesis

is that instead of WWR benefiting RWR can be obtained, if counterparty’s default devalues

the currency being hedged, relative to the currency held the long position. The conclusion

is confirmed by empirical results presented in appendix B. According to Ruiz (2015, p.

169) a trading desk of an institution should be encouraged generating RWR similarly as

generating WWR should be discouraged.

7.2 Limitations and future research

In this work the market-credit dependency is investigated only on one transaction type:

one year cross-currency basis swap. This is the main limitation of the work, since CVA

numbers are normally reported on a netting set level where multiple transactions with

same counterparty are netted, and the collateral is posted depending on netted value.

With directional portfolios having FX trades one can expect similar results, as Chung and

Gregory (2019) show, but with exotic derivatives, different risk factors and long maturities

results may differ. A collateralized portfolio’s WWR sensitivity with MPoR and multiple

transaction types is left for future research.

While this thesis extends previous work of jump-at-default WWR studies by discussing

jump-at-default and constant correlation WWR effect at the same time with collateraliza-

tion and some modelling details, like MPoR and realistic term structures of interest rates,

it is still simplified version and could be extended to be more realistic. Firstly, jump and

correlation parameters could be modelled with deterministic or stochastic models. For

example, stochastic correlation has been shown to produce more adverse WWR effects

than constant correlation due to better captured tail dependence of market risk factors

and default intensity (Kumar, Markus, and Hari 2021). In jump-at-default component the

size could be made stochastic, or the rapid market movement modelled with continu-

ous change instead of instant jump at the credit event: The credit event could be partly

expected by the market, in which case the collateral can offset some part of the rapid

movement. The partly expected credit event can be modelled for example with a collat-

eral delivery ratio (Pykhtin and Sokol 2013). Another jump related extension would be

multiple allowed jumps in spot FX rate across whole portfolio of derivatives contracts. A

systemic crisis in financial markets could cluster credit events and thus increase CVA

across the whole portfolio of contracts with different counterparties.

Secondly, the FX and default intensity models could be improved with stochastic mod-
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elling of other parameters. For example, stochastic interest rate modelling can be in-

cluded, which would be more important for interest rate sensitive products. With volatility

sensitive products, like constant maturity swaps (Veilex 2010), stochastic volatilities could

also be necessary. Thirdly, in this thesis WWR effects were discussed only in the case

of unilateral credit valuation adjustment and other valuation adjustments were ignored.

To extend the discussion to other valuation adjustments the first step would be to model

also own default risk and potential FX jump. In addition to bilateral CVA, other valuation

adjustment could be studied. The field of valuation adjustments is broad, and while the

topic has been discussed extensively after the financial crisis, the best practices are still

to be formed.

Finally, causality effects and systemic counterparties are a fruitful topic for future studies,

since they show potential adverse effects in FX sensitive portfolios, as shown by results of

this thesis. While heuristic calibration of jump-at-default effect with quanto CDS spreads

is possible as discussed in chapter 5, liquidity and existence of CDS instruments limit

the set of counterparties for which the calibration is possible. Thus, the jump-at-default

literature could benefit of peer-group analysis methods and study of economic drivers

of jumps. Naturally, quanto instrument valuation and liquidity improvements would also

increase the usability of the risk-neutral jump calibration.

For risk and portfolio management the assumed jumps can have interesting implications

as discussed in the previous section. While some recommendations were given, further

studies of macro-level management of jump-at-default risk are necessary. One point that

may affect the results of analysis made in this thesis and in portfolio level are the initial

margin requirements set for OTC derivatives (Basel Committee on Banking Supervision

2011b), which can theoretically offset large market movements during MPoR. Large IM

combined with frequent VM could potentially mitigate the jump risk completely and hence

make the constant correlation more important driver of WWR in collateralized portfolio.

This topic, along with other collateral agreement details and strategic portfolio manage-

ment are left for future studies.
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APPENDIX A: DATA

Table A.1. Data description

Data type Source Data points Observati-
on period

EUR/USD FX rate Euro FX time series (European Central
Bank 2023)

Daily 1.4.2020–
31.3.2023

Implied vol of
EUR/USD FX option

Bloomberg 1Y, at-the-money 31.3.2023

CSTR yield curve Bootstrapped from swap data of
Bloomberg

OIS observed rate 1W, 2W and
1M,2M,...,12M swap rates

31.3.2023

SOFR yield curve Bootstrapped from swap data of
Bloomberg

1W, 2W, 3W and 1M, 2M,...,
12M swap rates

31.3.2023

EUR vs. USD cross-
currency basis curve

Observed cross-currency basis quotes
from Bloomberg

3M, 6M, 9M, 12M 31.3.2023

USD CSA discount-
ing curve

Bootstrapped and constructed syntheti-
cally from CSTR, SOFR and EUR vs. USD
cross-currency basis data of Bloomberg

Described above 31.3.2023

3M Euribor projec-
tion curve

Constructed from Bootstrapped future
quotes data and CSTR swap data of
Bloomberg

Observed rate of the day
1M, 2M,...,12M observed fu-
tures rates

31.3.2023

Table A.2. USD/EUR FX rate historical log-return summary statistics. The distribution
has leptokurtic form, since the kurtosis is higher than the Standard normal distribution’s
3.0, which makes the tails of the distribution thicker. Thus, it is more likely to observe
"outliers" like the minimum value of −3.5% log-return. The distribution is not stable over
time as can be seen from statistics of different time periods.

Period Observations Min value Max value Mean Volatility Skewness Kurtosis Annualized
volatility

1.4.2020–31.3.2023 772 −0.0349 0.0183 7.25× 10−6 5.10× 10−3 −0.216 3.70 0.0967

1.4.2020–31.3.2021 255 −0.0130 0.0112 −2.73× 10−4 4.38× 10−3 −0.0823 0.129 0.0832

1.4.2021–31.3.2022 259 −0.0156 0.0161 2.11× 10−4 3.83× 10−3 0.201 3.10 0.073

1.4.2022–31.3.2023 258 −0.0130 0.0183 7.97× 10−5 6.65× 10−3 −0.319 2.78 0.126
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APPENDIX B: RWR RESULTS

Table B.1. Collateralized CVA with RWR effect relative to the independent collateralized
CVA with different FX jump and FX rate - default intensity correlation combinations. The
measured independent collateralized CVA is 108.68C obtained with J = 0 and ρX,λ = 0.
The results show how jump-at-default RWR can decrease relative CVA significantly in
collateralized portfolio.

J\ρX,λ 0.0 −0.1 −0.2 −0.5 −0.7 −1.0

0.000 1.0000 0.9959 0.9917 0.9784 0.9693 0.9528

−0.005 0.6124 0.6097 0.6069 0.5980 0.5917 0.5805

−0.010 0.3452 0.3435 0.3418 0.3362 0.3321 0.3252

−0.030 0.0129 0.0128 0.0127 0.0125 0.0124 0.0119

−0.050 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

−0.100 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Table B.2. Uncollateralized CVA with RWR effect relative to the independent uncollater-
alized CVA with different FX jump and FX rate - default intensity correlation combinations.
The measured independent uncollateralized CVA is 510.60 C obtained with J = 0 and
ρX,λ = 0.

J\ρX,λ 0.0 −0.1 −0.2 −0.5 −0.7 −1.0

0.000 1.0000 0.9574 0.9158 0.7971 0.7237 0.6143

−0.005 0.8961 0.8561 0.8171 0.7065 0.6381 0.5370

−0.010 0.8001 0.7626 0.7261 0.6237 0.5603 0.4674

−0.030 0.4912 0.4639 0.4378 0.3659 0.3211 0.2576

−0.050 0.2869 0.2687 0.2514 0.2037 0.1742 0.1337

−0.100 0.0608 0.0554 0.0503 0.0368 0.0295 0.0199
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Figure B.1. Collateralized cross-currency basis swap CVA RWR effect relative to inde-
pendent CVA with different levels of FX rate and default intensity correlation
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Figure B.2. Uncollateralized cross-currency basis swap CVA RWR effect relative to inde-
pendent CVA with different levels of FX rate and default intensity correlation
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APPENDIX C: 10-YEAR CROSS-CURRENCY BASIS

SWAP RESULTS

Table C.1. 10-year collateralized cross-currency basis swap’s CVA relative to the inde-
pendent collateralized CVA with different FX jump and FX rate - default intensity corre-
lation combinations. The measured independent collateralized CVA is 697.31C obtained
with J = 0 and ρX,λ = 0. The results are similar as with the 1Y CCBS, with correlation
becoming slightly more important contributor of WWR.

J\ρX,λ 0.0 0.1 0.2 0.5 0.7 1.0

0.000 1.00 1.02 1.03 1.08 1.11 1.15

0.005 1.51 1.53 1.56 1.62 1.67 1.73

0.010 2.14 2.17 2.20 2.29 2.36 2.44

0.030 5.35 5.43 5.50 5.73 5.88 6.10

0.050 8.88 9.00 9.12 9.49 9.74 10.09

0.100 17.61 17.84 18.08 18.79 19.27 19.96
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Figure C.1. Collateralized 10-year cross-currency basis swap CVA WWR effect relative
to independent CVA with different levels of FX rate and default intensity correlation
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