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A B S T R A C T

Cross-modality image synthesis is an active research topic with multiple medical clinically relevant applica-
tions. Recently, methods allowing training with paired but misaligned data have started to emerge. However,
no robust and well-performing methods applicable to a wide range of real world data sets exist. In this work, we
propose a generic solution to the problem of cross-modality image synthesis with paired but non-aligned data
by introducing new deformation equivariance encouraging loss functions. The method consists of joint training
of an image synthesis network together with separate registration networks and allows adversarial training
conditioned on the input even with misaligned data. The work lowers the bar for new clinical applications by
allowing effortless training of cross-modality image synthesis networks for more difficult data sets.
1. Introduction

Image-to-image translation is an active area of research in computer
vision because of its various applications such as image synthesis, seg-
mentation, restoration, style transformation and pose estimation. After
the advent of deep leaning, medical imaging as a cardinal application
area, has seen an increasing interest in the use of image-to-image
translation. In histopathology, image-to-image translation has been
used, e.g., for cross-stain translation (Liu et al., 2021; Xu et al., 2019),
for replacing chemical staining by digitally generated mask (Valkonen
et al., 2019), for tissue color normalization (de Bel et al., 2019, 2021),
for virtual staining of label-free or unstained tissue images (Bayramoglu
et al., 2017; Rana et al., 2020; Rivenson et al., 2019). In radiology,
it has been used for pseudo CT generation and cross-modality MRI
synthesis, and the synthesized images have been shown to be useful for
downstream tasks, e.g., segmentation (Boulanger et al., 2021; Spadea
et al., 2021; Xie et al., 2022). The image-to-image translation methods
are primarily divided into two categories: supervised methods that rely
upon aligned image pairs and unsupervised methods that do not require
aligned image pairs. In the medical setting including supervision tends
to improve the results (Jin et al., 2019; Klages et al., 2020; Li et al.,
2020; Peng et al., 2020; Fard et al., 2022).

Image-to-image translation is called differently depending on the
application and in this work we will call it cross-modality image
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synthesis, which is often used in the medical imaging context. We use
the term modality broadly to refer to any distinct image types capturing
different characteristics of the underlying anatomy.

In the medical domain, different modality images of the same
subject are not usually anatomically aligned. To solve this before
training a network images are typically registered, or in other words,
aligned anatomically. Deep learning registration methods have gained
popularity (Fu et al., 2020) with the best methods performing close to
classical registration algorithms, e.g. in Learn2Reg multi-task medical
image registration challenge (Hering et al., 2021) or in histopathology
ANHIR competition (Borovec et al., 2020).

Methods combining the two, cross-modality image synthesis and
cross-modality registration, have also started to surface. In registration
a synthesized image can be used as a bridge to generate a cross-
modality similarity metric (Lu et al., 2021). However, some methods
combine these two into a unified architecture, solving both problems
at the same time. Such methods have been published from both the
registration (Arar et al., 2020; Chen et al., 2022) and image synthesis
viewpoint (Joyce et al., 2017; Kong et al., 2021; Wang et al., 2018,
2019, 2021a).

In this paper, we propose a new architecture for cross-modality
image synthesis which is robustly trainable with misaligned train-
ing data, using a novel strategy that couples registration and image
vailable online 20 August 2023
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Fig. 1. Basic setting. Only non-aligned pairs of 𝑥(𝑖) and �̃�(𝑖) are available but the task is
to learn 𝐹 for transforming 𝑥(𝑖) into 𝑦(𝑖). The images are from the synthetic ‘‘multimodal’’
data sets built using COCO (Lin et al., 2014) data set.

synthesis networks during training. Firstly, we suggest training the
image-synthesis network directly for deformation equivariance which
refers to the property that applying a deformation before or after
the image synthesis should result in the same image. Secondly, we
develop a strategy allowing adversarial training conditioned on the
input images despite using misaligned training data, not possible to do
robustly by earlier methods. Conditioning adversarial training on the
input is especially important in the medical domain as it results in more
reliable predictions. In addition to the better quality predictions the
method is applicable to a wider range of data sets than earlier similar
methods. In the experiments we show that the method improves upon
earlier methods trainable on non-aligned data and that it also surpasses
the standard approach where the images are registered before training,
assuming that no significant manual effort is put into the registration.

2. Basic setting

Assume we have a paired training set of input images (𝑥(1),… , 𝑥(𝑁))
and non-aligned target images (�̃�(1),… , �̃�(𝑁)). Following the notation
by Kong et al. (2021) we denote the (unavailable) aligned ground
truth targets by (𝑦(1),… , 𝑦(𝑁)). Furthermore, unknown deformations
(𝑑(1),… , 𝑑(𝑁)) connect the coordinate systems of the inputs and the
targets. See Fig. 1 for a visualization of the learning setting.

Assuming that the images are continuous, they can be seen as
mappings 𝑥(𝑖) ∶ R𝑛 → R𝑚1 and 𝑦(𝑖), �̃�(𝑖) ∶ R𝑛 → R𝑚2 where 𝑛 is the
dimensionality of the image (e.g. 𝑛 = 2 for two dimensional images)
and 𝑚1 and 𝑚2 are number of channels in input and target images
respectively (e.g. 3 for RGB images). The deformations would then be
mappings 𝑑(𝑖) ∶ R𝑛 → R𝑛 connecting the image coordinates. Doing
a coordinate transformation of an image 𝑥(𝑖) based on a deformation
𝑑(𝑖) would equal to function composition 𝑥(𝑖)◦𝑑(𝑖) which can be written
using the pullback notation as 𝑑(𝑖)∗𝑥(𝑖) ∶= 𝑥(𝑖)◦𝑑(𝑖) where 𝑑(𝑖)∗ can be
seen as a mapping acting on images.

Following the notation, we have the relationship 𝑑(𝑖)∗𝑦(𝑖) = �̃�(𝑖)

between the aligned and non-aligned targets. In practice, the images are
not continuous, but instead only samples of the images are available,
i.e. the pixels or voxels. Hence in reality, the mapping 𝑑(𝑖)∗ equals to
interpolating the image at the locations defined by the deformation,
and we use linear interpolation.

In this work, we study a setting where we are trying to learn a
function 𝐹 which is a neural network such that 𝐹 (𝑥(𝑖)) = 𝑦(𝑖). To do
this, we simultaneously try to learn a second neural network, or, as it
turns out, multiple networks, for predicting 𝑑(𝑖). However, during test
time we still only want to use the network 𝐹 .

3. Previous work

3.1. Cross-modality image synthesis

Cross-modality medical image synthesis has gained a lot of attention
in recent years with multiple proposed clinical applications (Wang
et al., 2021b). The conditional GAN-based architecture pix2pix (Isola
2

et al., 2017) is widely used when paired and aligned data are avail-
able as it is based on an assumption of pixel-to-pixel correspondence
between training images of different modality. On the other hand,
CycleGAN (Zhu et al., 2017) can be used without paired or aligned data.

Paired training images in the medical context are typically not
aligned, and hence for pixel-to-pixel training they are registered into
the same coordinate system. However, registration is never perfect and
pixel-to-pixel losses are very sensitive to registration errors reducing
the synthesis quality especially on difficult to register areas with large
internal anatomic motion such as on pelvis area (Wang et al., 2021b).

In pixel-to-pixel setting, different approaches have been proposed
to mitigate for the remaining registration errors (Chen et al., 2020b;
Joyce et al., 2017; Kazemifar et al., 2019; Leynes et al., 2018; Yu et al.,
2019). Most similarly to our work, Kong et al. (2021) combine a cross-
modality image synthesis network with a registration network to enable
training with non-aligned data. However, we argue that their method
does not robustly mitigate for registration errors especially with real
world data sets as will be discussed in Section 4. Additionally they use
unconditional adversarial training which has been shown to be inferior
to conditioning the discriminator with input images. In this work we
aim to solve both of these problems.

While performing worse than pix2pix when paired and aligned data
are available, unsupervised CycleGAN is more robust against misalign-
ments due to its cycle consistency loss (Kaji and Kida, 2019; Wang et al.,
2021b). However, if the misalignments between the modalities are
systematic and severe, CycleGAN can also fail to produce geometrically
aligned predictions. Approaches, similar to ones used with pix2pix, have
also been employed with CycleGAN (Zhang et al., 2018; Hiasa et al.,
2018; Kida et al., 2019). Wang et al. (2018, 2019, 2021a) propose
network architectures combining cross-modality image synthesis and
registration, together with mutual information loss between the input
and the prediction to promote similar geometry.

3.2. Cross-modality registration

Deformable medical image registration using deep learning has also
gained popularity recently (Fu et al., 2020). With stationary veloc-
ity field parametrization, one can generate diffeomorphic deforma-
tions (Arsigny et al., 2006; Ashburner, 2007). This kind of methodology
was applied to deep learning by Dalca et al. (2018). Some architectures
such as the one by De Vos et al. (2019) combine affine or rigid
registration together with a separate deformable registration resulting
in multi-stage registration approach.

From cross-modality registration methods, the method by Arar et al.
(2020) is closest to our work. They train a cross-modality registration
network by simultaneously training a cross-modality image synthe-
sis network which they encourage to be equivariant to deformations
predicted by the registration network. This is done by applying the
predicted deformation both before and after the image synthesis net-
work and comparing both of them to the target. We instead use
simulated deformations for encouraging deformation equivariance. We
argue that this leads to a more robust approach, which we verify in the
experiments. Our method of encouraging deformation equivariance is
similar to the method by Pielawski et al. (2020) where they train their
network for rotational equivariance.

Very recently, Chen et al. (2022) use a contrastive learning based
loss for promoting geometric (or shape) similarity of the image synthe-
sis in an otherwise similar setting to Arar et al.

4. Methods

To teach the network 𝐹 for predicting 𝑦(𝑖) from 𝑥(𝑖), Kong et al.
(2021) train an additional network 𝐺 aimed at learning the 𝑑(𝑖) s.t.
𝐺(𝐹 (𝑥(𝑖)), �̃�(𝑖)) = 𝑑(𝑖). They train both of the networks 𝐹 and 𝐺 simul-
taneously with the similarity loss (which we label default similarity
loss)

 ∶= E ‖�̃� − 𝐺(𝐹 (𝑥), �̃�)∗𝐹 (𝑥)‖ (1)
def-sim 𝑥,�̃� 𝐿1
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Fig. 2. Proposed core architecture. When using the equivariance similarity loss instead
of the default similarity loss, the commutation loss is optional. The architecture
presented here is further refined by adding an adversarial loss and a separate cross-
modality registration network for first registering �̃�(𝑖) to 𝑥(𝑖). Deformation 𝑡 is a random
deformation sampled on the fly individually for each training image pair. The images
are from the synthetic ‘‘multimodal’’ data sets built using COCO (Lin et al., 2014) data
set.

together with a regularization loss

reg ∶= E𝑥,�̃� Reg(𝐺(𝐹 (𝑥), �̃�))

where Reg is some operator penalizing non-smooth deformations, and
an unconditional adversarial loss with the intent of training the distri-
bution of 𝐹 (𝑥(𝑖)) to match the distribution of �̃�(𝑖).

In the work by Kong et al. they view the deformations between
inputs and targets as noise and assume the same underlying physical
distribution for both the inputs and the targets. In that setting, the
adversarial training objective they use is justified. However, often
images in the target domain might be systematically geometrically
different to the images in the input domain, e.g., when patients are
laying differently within different medical imaging equipment. In that
case matching the distribution of 𝐹 (𝑥(𝑖)) with the distribution of �̃�(𝑖) is
not desirable.

To fix this we first omit the adversarial loss altogether, although
we will develop a revised adversarial training strategy later. However,
without the adversarial loss the optimization problem is very unstable
since the network 𝐹 is not in any way constrained to preserve the geom-
etry of the input images, that is, the predictions are not guaranteed to
be anatomically aligned with the inputs. If 𝐹 is a convolutional neural
network it has an inductive bias towards this kind of a behavior but
there is no guarantee that the convolutional network does not, e.g.,
shift the predictions and the registration network compensate for the
shift. An example of a possible failure mode is shown later in Fig. 8. It
is also noteworthy that while having the adversarial training in a setting
similar to the work by Kong et al. (2021) will definitely stabilize the
training, there is no fundamental theoretical reason why it should result
in 𝐹 preserving the geometry of its inputs.

The property of 𝐹 preserving the geometry of an input can be for-
mulated as deformation equivariance. Any movement in the underlying
anatomy of the input image should be reflected similarly in the output
image. Assuming a set of anatomically possible geometric deformations
𝑇 (𝑖) for each input image 𝑥(𝑖), a network 𝐹 is deformation equivariant
over the deformations if for all 𝑡 ∈ 𝑇 (𝑖) it holds that

𝑡∗𝐹 (𝑥(𝑖)) = 𝐹 (𝑡∗𝑥(𝑖)). (2)

In other words, 𝐹 should commute with respect to the deformations of
𝑥(𝑖).

In practice we do not aim for the relation to hold exactly but instead
propose to promote the property implicitly by modifying the default
3

similarity loss given in Eq. (1). The modification is similar to the one
by Pielawski et al. (2020), although they use it in a different contrastive
learning setting. We label the resulting loss equivariance similarity
loss:

eq-sim = E𝑥,�̃�,𝑡‖�̃� − (𝐺(𝐹 (𝑥), �̃�)∗𝑡−1)∗𝐹 (𝑡∗𝑥)‖𝐿1 (3)

Here 𝑡 is seen as a random variable sampled from some distribution. The
loss can be zero only if 𝐹 is equivariant to all 𝑡 and inputs. Note that we
first compose the deformations 𝐺(𝐹 (𝑥), �̃�) and 𝑡−1 and after that deform
the prediction 𝐹 (𝑡∗𝑥). This way we avoid multiple interpolations of the
same image. The same strategy of composing the deformations first is
always used in this paper when applying multiple deformations to an
image.

The loss in Eq. (3) also acts as a data augmentation method by
randomly transforming inputs fed into the network 𝐹 . However, in
contrast to the traditional data augmentation, we do not transform the
target image with the same deformation as the input.

Optionally one can more directly promote the equivariance by
training with the following objective which we label commutation
loss:

com ∶= E𝑥,𝑡‖𝑡
∗𝐹 (𝑥) − 𝐹 (𝑡∗𝑥)‖𝐿1 (4)

When using the commutation loss using the equivariance similarity loss
is optional and the default similarity loss can be used as well. Without
the commutation loss the equivariance similarity loss is needed. As a
result we have three possible configurations.

Arar et al. (2020) also encourage deformation equivariance but
only for deformations predicted by their registration network. That
is not always enough, e.g., with perfectly aligned training data the
network 𝐹 could still introduce any translation which the registra-
tion network could compensate since translations commute. Also with
subtle systematic deformations the network 𝐹 might easily overlearn
the deformations from the data resulting in the registration network
predicting zero deformation. The limitations of their method are also
discussed in the supplementary materials of their paper where they
conclude that their method works only with relatively small image
synthesis networks, which is not a large problem in their work which
focuses on image registration, but a significant limitation in difficult
cross-modality image synthesis tasks. Later, in Fig. 10, we visualize
a situation where our method succeeds in producing spatially aligned
output but the method by Arar et al. (2020) (NeMAR) fails.

The core architecture presented so far is visualized in Fig. 2, and is
in itself trainable. However, in addition to the core architecture, we
will be looking at adding a conditional adversarial loss for training
the model to improve the prediction quality further. In order for the
adversarial training to converge even in the presence of systematically
different geometries between the input and target domains, it turns out
we will require two registration networks: one for registering targets to
inputs and the other for registering predictions to possibly imperfectly
registered targets.

Before advancing further, we introduce an additional notation. In
case a variable should be treated as a constant from optimization point
of view even if it is an output of a neural network, we overline the
variable, e.g. 𝑥(𝑖) vs. 𝑥(𝑖). In the neural network context, this means
halting the backward pass during back-propagation.

4.1. Selecting a set of simulated deformations

The equivariance similarity loss and the commutation loss require
some way to simulate anatomically realistic deformations for calcu-
lating them. For promoting equivariance, an ideal set would be the
set of all anatomically realistic deformations for each sample, but
anatomically realistic non-affine deformations are very difficult to sim-
ulate. A natural question is then whether a significantly smaller set of
deformations would be sufficient, especially considering the inductive
biases of the used architectures.
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Given that 𝐹 is a convolutional network it is (roughly) translation
equivariant. Hence intuitively simulating only globally affine deforma-
tions might be enough since any diffeomorphic deformation is ‘‘locally
affine’’. Also, affine deformations are easy to sample and the same
distribution of deformations can be used for each sample. Applying
affine deformations to images is also computationally efficient and
numerically accurate. For these reasons we used only affine transfor-
mations in our experiments. It is left for future work to test whether
elastic deformations could increase the performance further.

Affine transformations can be further divided into translation, rota-
tion, scaling, shearing, and flipping. Translations and rotations should
be reasonable to use in any practical situations, and flipping can be
used when it does not affect the distribution of the imaged anatomy.
Scaling and shearing are more difficult since anatomically stretching a
tissue could in principle affect its appearance under different imaging
techniques. In other words, even in an ideal situation the deformation
equivariance property would no longer hold exactly. In the experiments
we conduct two studies on two data sets on using different types of
affine transformations.

4.2. Adversarial training

In addition to the losses presented so far, we want to incorporate
adversarial loss to the training in order to improve the appearance
and also clinical quality of the predictions. In adversarial training,
an additional discriminator network is trained to classify whether an
image fed to the network is real or fake and can be used for guiding
the generator network responsible for generating synthetic images. We
want to employ a conditional adversarial training setting, similar to
pix2pix (Isola et al., 2017), wherein the input image is also fed to the
iscriminator. This is different to the approach taken by Kong et al.
2021) where they feed only the prediction or the target. Conditioning
he discriminator on input images has potential for better prediction
uality (Isola et al., 2017).

Let now 𝐷 be the discriminator network receiving an input image
s the first argument and either a target or a prediction as the second
rgument. The conditional adversarial learning objective is defined as
ollows:

𝑥,�̃�[log𝐷(input, target) + log(1 −𝐷(input,prediction))] (5)

The discriminator is trained to maximize the loss and the generator
is trained to minimize it with the training executed in turns while
holding the weights of the other network constant. Placeholder texts
are used as we are yet to derive the optimal way to feed the data to the
discriminator. Misaligned training data will require care in how that is
done. To be more precise, the following three points need to be taken
into account:

1. Predictions and targets have to be fed in the same coordinate
system since the input domain and the target domain might
have systematic geometric differences which would encourage
the predictions to be misaligned with the inputs.

2. Inputs and their corresponding predictions cannot be fed in the
exactly same coordinate system since even if the predictions are
registered to the targets or vice versa, the targets will not be
exactly aligned with the inputs, especially in the beginning of
the training. That would encourage misaligned predictions.

3. Interpolation acts as a low-pass filter especially in areas where
the image is stretched. As a result, predictions registered to
targets cannot be directly compared with the targets as the
discriminator will learn to notice the missing high frequencies.

Points (1) and (2) would suggest to feed targets and predictions in the
target coordinates but (3) would suggest that we cannot deform the
predictions to the targets either. As a solution we propose to train two
separate registration networks: one for cross-modality registration of
4

targets to inputs and one for intra-modality registration of predictions f
to possibly imperfectly registered targets. The adversarial comparison
can then be done between the registered targets and the predictions
registered to the registered targets. The proposed approach will solve
all the three problems mentioned above: (1) The comparison will be
done in the same coordinate system. (2) If the target and the input
are imperfectly aligned, the prediction can still be separately registered
to the registered target hence removing the incentive for misaligned
predictions. (3) The predictions registered to the registered targets can
contain high frequency information to at least a similar extent as their
counterparts, the registered targets, since as the training progresses the
registration of the targets to the inputs should account for most of the
registration movement.

Let us now denote the predicted cross-modality deformation (ap-
proximately) mapping coordinates of �̃�(𝑖) to 𝑥(𝑖) as 𝑑(𝑖)cross and the pre-
dicted intra-modality deformation (approximately) mapping coordi-
nates of 𝐹 (𝑥(𝑖)) to 𝑑(𝑖)cross

∗
�̃�(𝑖) as 𝑑(𝑖)intra. We will look at how these are

obtained in Section 4.3.
From the adversarial loss perspective, we want to treat 𝑑(𝑖)cross as

onstant since the cross-modality registration would not benefit from
he adversarial loss and might even result in unexpected optima. This
pproach corresponds to the normal GAN training where only the
econd term is used in updating the generator. The proposed adversarial
oss is then

𝑥,�̃�[log𝐷(𝑥, 𝑑
∗
cross�̃�) + log(1 −𝐷(x, 𝑑∗intra𝐹 (𝑥)))]. (6)

The loss function can be improved even further by employing a sim-
lar idea to the equivariance similarity loss. To simultaneously prevent
iscriminator from over-fitting and implicitly promote equivariance to
set of deformations, we propose to further modify the loss to the

ollowing form (which we label equivariance adversarial loss):

eq-adv ∶= E𝑥,�̃�,𝑡[ log𝐷(𝑡∗𝑥, (𝑡∗𝑑cross)∗�̃�)

+ log(1 −𝐷(𝑡∗𝑥, (𝑡∗𝑑∗intra𝑡
−1)∗𝐹 (𝑡𝑥)))]

(7)

ere, the same deformations 𝑡 can be used which are used for the
quivariance similarity loss and the commutation loss. The core idea
s to augment the inputs to the discriminator with the deformations 𝑡
hile taking into account the unaligned nature of the training data.

.3. Registration architecture

As discussed, the registration will be divided into cross-modality
egistration for registering targets to inputs and intra-modality reg-
stration for registering predictions to the registered targets. While
he cross-modality registration receives pairs of different modality as
nputs, it is trained with intra-modality loss based on the synthesized
mage 𝐹 (𝑥(𝑖)) similarly to the intra-modality registration.

In principle, the registration networks can predict the deformation
n any suitable form. We split the cross-modality registration into rigid
egistration and elastic registration. The two-stage architecture makes
t significantly easier for the model to handle large deformations. For
ntra-modality registration, we do not use two-stage architecture as
ross-modality registration should take care of most of the registration
ovement.

We generate elastic deformations from stationary velocity fields
o promote diffeomorphic deformations and to allow inverting the
eformations. From a stationary velocity field the final diffeomorphic
eformation is obtained by integrating the field over itself over a unit
ime. In group theory, this can be seen as exponentiation of a member of
lie algebra (Arsigny et al., 2006), and hence we denote the integration
y exp. Exponentiation can be estimated efficiently by the scaling and
quaring method (Arsigny et al., 2006; Dalca et al., 2018). The velocity

ields are predicted in the same resolution as the images.
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Fig. 3. Cross-modality registration architecture. The outputs 𝑦(𝑖)reg and 𝑣(𝑖)cross are for-
warded for intra-modality registration. Regularization is applied to both inverse and
forward elastic deformation which is not explicitly shown here. The images are from
the synthetic ‘‘multimodal’’ data sets built using COCO (Lin et al., 2014) data set.

4.3.1. Cross-modality registration
Let the neural network predicting the rigid deformation for cross-

modality registration be 𝐻rig and the neural network predicting the
stationary velocity field for elastic cross-modality registration be 𝐻svf.
Both networks 𝐻rig and 𝐻svf could be trained in principle with a single
loss. However, it is possible that the rigid registration network could
first unnecessarily shift the target image and the elastic registration
network could then shift the image back, and to prevent this we add a
separate rigid registration loss (see Fig. 3).

The overall predicted cross-modality deformation is then

𝑑(𝑖)cross ∶= exp(𝑣(𝑖)cross)
∗𝑟(𝑖)cross

where 𝑟(𝑖)cross ∶= 𝐻rig(𝑥(𝑖), �̃�(𝑖)) and 𝑣(𝑖)cross ∶= 𝐻svf(𝑥(𝑖), �̃�(𝑖)). Halting the
gradients for 𝑟(𝑖)cross is not necessary but makes loss function balancing
more straightforward by separating the rigid registration altogether.

We train the rigid registration network 𝐻rig with the loss

cross
rig-sim ∶= E𝑥,�̃�[‖𝐹 (𝑥) − 𝑟∗cross�̃�‖𝐿1 ] (8)

and the elastic registration network 𝐻svf with the loss

cross
sim ∶= E𝑥,�̃�[‖𝐹 (𝑥) − 𝑑∗cross�̃�‖𝐿1 ]. (9)

We halt the gradients for the backward pass for 𝐹 (𝑥) as we do not
want the imperfect cross-modality and especially rigid cross-modality
registered target image to affect the image synthesis network.

Additionally we need to regularize the deformation. The regular-
ization term can be applied only to the elastic component as we do
not penalize rigid deformations. We use non-rigidity penalty by Staring
et al. (2007) and apply it to both inverse and forward deformations. We
have

cross
reg ∶= E𝑥,�̃�

[

Rig(exp(𝑣cross)) + Rig(exp(−𝑣cross))
]

(10)

where Rig is the non-rigidity penalty by Staring et al. Details of the
regularization used can be found in the supplementary materials.

4.3.2. Intra-modality registration
The intra-modality registration network receives the triplets

(𝐹 (𝑥(𝑖)), 𝑦(𝑖)reg, exp(−𝑣
(𝑖)
cross) − 𝐼)

as inputs where 𝐼 is the identity mapping. The third argument repre-
sents displacement field of the inverse elastic deformation with which
𝑦(𝑖)reg has been deformed and allows the network to optimize regularity of
the concatenated overall deformation, as we regularize based on that.

Outputs of the cross-modality registration stage are treated as con-
stants by the intra-modality registration losses. By that we prevent the
networks from finding any non-desired optima where, e.g., difficult to
synthesize regions were made smaller.
5

Let now the function predicting the stationary velocity field for
intra-modality registration be 𝐺svf. Then, the predicted intra-modality
deformation is

𝑑(𝑖)intra ∶= exp(−𝑣(𝑖)intra)

where 𝑣(𝑖)intra ∶= 𝐺svf(𝐹 (𝑥(𝑖)), 𝑦(𝑖)reg, exp(−𝑣
(𝑖)
cross) − 𝐼). Here, we use the

negative sign for the velocity field to emphasize that the direction is dif-
ferent from the cross-modality registration. As the training progresses
and cross-modality registration and cross-modality image synthesis
improve, 𝑑(𝑖)intra should approach the identity mapping.

The loss function for the intra-modality registration is also guiding
the cross-modality image synthesis. Hence, we use the deformation
equivariance encouraging loss function following the Eq. (3):

intra
eq-sim ∶= E𝑥,�̃�,𝑡‖(𝑑∗intra𝑡

−1)∗𝐹 (𝑡∗𝑥) − 𝑦reg‖𝐿1 (11)

We also experiment with a setting where the intra
sim is replaced with

the default similarity loss following the Eq. (1). In that case, the loss
simply takes the following form:

intra
def-sim ∶= E𝑥,�̃�‖𝑑

∗
intra𝐹 (𝑥) − 𝑦reg‖𝐿1 . (12)

For regularization, we use the concatenated overall elastic deforma-
tion again in both directions:

intra
reg ∶= 1

2
E𝑥,�̃�[ Rig(exp(𝑣intra)∗ exp(𝑣cross))

+Rig(exp(−𝑣cross)∗ exp(−𝑣intra))]
(13)

Using the concatenated overall deformation is logical, as that is the
deformation we are actually trying to learn and hence regularize.

Having the separate intra-modality registration network in addition
to the cross-modality registration allows the prediction from the image
synthesis network to directly affect the predicted deformation. As a re-
sult the cross-modality image synthesis network is efficiently optimized
for generating predictions with lowest deformation regularization loss,
which can be seen as a meaningful selection criteria among all the
possible geometry preserving versions of the synthesized image.

4.4. Masking

Throughout the architecture, images are resampled by deforma-
tions, but the sampled locations might be outside the image. We
connect each image with a mask that can initially represent invalid
regions in the image. Each time an image is resampled, the mask is up-
dated with the regions resampled from outside the image. In similarity
losses, we then compare images only within intersections of the masks.
Masks contain discrete values and no gradients flow through the masks
during the backward-pass, preventing the optimization of the masks
themselves. The same procedure is done also for the deformations as
they are also resampled by other deformations.

Invalid region masks are also fed for the registration networks since
for invalid regions only the regularization should affect the generated
deformation.

Additionally, the masks of the registered targets and the predictions
registered to the registered targets might be systematically different,
which the discriminator could use for separating the images. We miti-
gate for that by multiplying each image fed to the discriminator by the
intersection of the masks of the images compared.

4.5. Overall loss function

The overall loss function can be written as

 ∶=

𝐻rig
⏞⏞⏞
cross

rig-sim +

𝐻svf
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
cross

sim + 𝜆cross
reg

+ intra
sim + 𝜆intra

reg + 𝛾com + 𝛿

𝐷
⏞⏞⏞
eq-adv

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(14)
𝐺svf ,𝐹
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where intra
sim is either intra

eq-sim or intra
def-sim, and 𝜆, 𝛾, 𝛿 ∈ R are loss function

weights. Each loss component affects only the weights of the sub-
networks written in the curly braces. Note that 𝐷 is trained to maximize
the loss whereas the other networks are trained to minimize it. We use
two optimizers, one for discriminator, and one for all the other compo-
nents. This is different to the works by Arar et al. (2020) and Kong et al.
(2021) which use a separate optimizer for the registration network.

Actual values used for the loss function weights are given in the
supplementary materials.

5. Experiments

To evaluate our method, we conduct experiments on four diverse
data sets of which two are real world medical imaging data sets, one is
a semi-synthetic data set, and one is a synthetically constructed ‘‘multi-
modal’’ data set. We perform an ablation study of the losses proposed
and compare the method against multiple baselines. Additionally we
evaluate on two data sets the performance when using different distri-
butions of affine transformations with the commutation loss. The aim
of the experiments is to establish to a reasonable extent:

1. The performance of our method against earlier cross-modality
image synthesis methods which are trainable on non-aligned
data.

2. The performance of our method against the standard pipeline
where the image pairs are registered before training, assuming
that no significant manual effort is put into registering the
images.

3. Which types of affine transformations are the most suitable for
the equivariance encouraging losses and whether the choice has
a large effect on the performance.

On the two real world data sets we use clinically relevant metrics
for establishing the best performance.

5.1. Ablation study

We will use the following naming conventions to reflect loss terms
to be included in different experimental configurations:

• EqSim: The equivariance similarity loss from Eq. (11) was in-
cluded.

• DefSim: The default similarity loss from Eq. (12) was included.
• Com: The commutation loss from Eq. (4) was included.
• EqAdv: The equivariance adversarial loss from Eq. (7) was in-

cluded.
• DefUncondAdv: The default unconditional adversarial loss from
pix2pix (Isola et al., 2017) defined directly between unmodified
predictions and targets was included.

• NoReg : Only the cross-modality image synthesis component 𝐹
with 𝐿1 similarity loss directly between predictions and unmodi-
fied training targets was included.

• Aug : Traditional data augmentation was used for each train-
ing input using the same distribution of deformations as what
would have been used for the equivariance similarity loss, the
commutation loss, and the equivariance adversarial loss.

The cross-modality registration related similarity loss and both of the
regularization losses were used in all the trainings except with NoReg
setup.

In Section 4 three variants of our developed method were proposed:
EqSim, DefSim + Com, and EqSim + Com. Optionally, EqAdv can be
combined with any of them. Training with any of the variants should
result in a stable convergence and the experiments aim at measuring
6

their relative performance.
Table 1
Deformation parameters for synthetic data sets.

Rigid Elastic

Translation Rotation 𝜇 𝜎 𝑚

LR U(−15, 15) U(−15◦, 15◦) U(0, 400) U(40, 120) U(−20, 20)
SR U(−1.5, 1.5) U(−1.5◦, 1.5◦) U(0, 400) U(40, 120) U(−2.0, 2.0)
LC (10, −10) 10◦ (120, 280) (60, 80) (20, −20)
SC (1, −1) −1◦ (120, 280) (60, 80) (2, −2)

𝑈 refers to the uniform distribution independent for each dimension.
All the values except the rotations are in pixel coordinates.

5.2. Baselines

We compare the method against four baselines:

• Pix2pix (Isola et al., 2017), trainable on paired aligned data.
• RegGAN The method proposed by Kong et al. (2021), trainable on

paired unaligned data. We use the NICEGAN (Chen et al., 2020a)
variant which uses 𝐿2 adversarial loss as it performed the best.

• NeMAR The method proposed by Arar et al. (2020), trainable on
paired unaligned data, originally suggested for image registration.

• CycleGAN (Zhu et al., 2017), unsupervised method trainable on
unpaired data.

We use the official implementations123 and modify them for our
ata sets.

For pix2pix and NeMAR we additionally train variants which use
he same losses as the official implementations but our components
nd optimizers. We denote these variants by adding ‘‘our components’’
n parenthesis after the method name. For details, see Section S.IV
f the supplementary materials. Note also that the method DefSim +
efUncondAdv + Aug corresponds to training our architecture with the

osses similar to RegGAN, although RegGAN uses a separate optimizer
or the registration network.

Our proposed equivariance losses additionally act as data augmen-
ation. To ensure that the reason for our methods performing better is
ot simply the effect of seeing more data, we augment the inputs for
he baseline methods with the same distribution of deformations as is
sed for the equivariance similarity loss, the commutation loss, and the
quivariance adversarial loss.

.3. Data sets

.3.1. Synthetic
We performed an ablation study on very simple synthetic ‘‘mul-

imodal’’ data sets created using images from COCO data set (Lin
t al., 2014) with unmodified images as input images. Target images
ere generated by circularly swapping the RGB color channels of the

nput images and by deforming them with simulated deformations.
he simulated deformations were generated by a composition of ro-
ation, translation, and an elastic deformation component generated
y exponentiation of a stationary velocity field defined by parameters
, 𝜎, 𝑚 ∈ R𝑛 using the formula

𝑖e
− 1

2
‖(𝑥−𝜇)‖2

𝜎2𝑖 , (15)

where 𝑥 is the spatial coordinate and 𝑖 ∈ 1,… , 𝑛 is the dimension
(𝑛 = 2 or 3). Four data set were generated: LR (Large Random), SR
(Small Random), LC (Large Constant), and SC (Small Constant). Used
deformation parameters are displayed in Table 1. We centrally cropped
all the images to resolution (400, 400), to avoid the need to extrapolate

1 https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
2 https://github.com/Kid-Liet/Reg-GAN
3
 https://github.com/moabarar/nemar

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/Kid-Liet/Reg-GAN
https://github.com/moabarar/nemar
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Fig. 4. Example images from the semi-synthetic cross-modality MRI synthesis data set.
Only one sagittal slide of the 3D volumes is visualized. The training target �̃�(𝑖) has been
deformed with a random deformation after which we have cropped it such that the
top and bottom edges are straight.

Table 2
Results for the synthetic data set experiments.

Data set Model PSNR SSIM NMI

LR

EqSim + Com 36.45 0.9842 1.159
DefSim + Com 33.95 0.9757 1.155
EqSim 34.24 0.9781 1.154
DefSim −2.705 1.152e−03 1.042
DefSim + Aug −3.138 6.303e−04 1.049
NoReg + Aug 17.39 0.4550 1.079

SR

EqSim + Com 41.68 0.9954 1.165
DefSim + Com 33.72 0.9737 1.153
EqSim 35.39 0.9817 1.155
DefSim 4.369 3.000e−03 1.022
DefSim + Aug 31.51 0.9559 1.147
NoReg + Aug 24.44 0.7607 1.123

LC

EqSim + Com 38.78 0.9905 1.162
DefSim + Com 34.00 0.9745 1.153
EqSim 35.18 0.9819 1.155
DefSim 32.74 0.9640 1.149
DefSim + Aug −1.537 1.526e−03 1.039
NoReg + Aug 16.92 0.4617 1.073

SC

EqSim + Com 40.89 0.9919 1.166
DefSim + Com 34.05 0.9754 1.154
EqSim 35.89 0.9840 1.157
DefSim 15.93 0.38.00 1.070
DefSim + Aug 30.93 0.9501 1.145
NoReg + Aug 22.54 0.6696 1.114

values from outside the original image when synthetically deforming
the images, for details see Section S.V of the supplementary materials.
Training, validation, and test sets all contained 4113 images.

With this data set, all the experiments were conducted without
the adversarial loss to study separately the effects of deformation
equivariance encouraging losses. The six models trained using each of
the data sets are listed in Table 2.

Compositions of the following transformations were used as simu-
lated deformations for the loss functions and data augmentation:

1. Rotations in range (−15◦, 15◦)
2. Orthogonal rotations of either 0◦, 90◦, 180◦, or 270◦,
3. Random flips over any axis

No model was trained with aligned data as it would be easily learned
perfectly in this setup.

5.3.2. Semi-synthetic cross-modality brain MRI synthesis
In recent years, a significant amount of research has emerged on

applying deep learning to cross-modality brain MRI synthesis. Synthet-
ically generated modalities have many possible down-stream use cases
such as segmentation, classification, detection and diagnosis (Xie et al.,
2022).

We used brain images from Information eXtraction from Images
(IXI) data set4 to generate a semi-synthetic 3D data set for T2 to PD

4 http://brain-development.org/ixi-data set/
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(proton density) synthesis, like in Wang et al. (2021a). The main reason
for choosing this task was that brain T2 and PD images are initially
well aligned and hence provide good ground truths. Most of the images
were already in resolution (1.25 mm, 0.9375 mm, 0.9375 mm), the rest
were also resampled to the same resolution. All the images were bias
field corrected using N4 bias correction (Tustison et al., 2010) with
Advanced Normalization Tools (ANTs) software (Avants et al., 2009),
and normalized based on brain white-matter using the implementation
by Reinhold et al. (2019) together with the implementation by Iglesias
et al. (2011) for brain mask extraction by dividing all image values such
that the white-matter had mean value of one in each image. We used
192 images for training, 19 for validation, and 365 for testing.

To generate unaligned data set we applied simulated deformations
to the target images. The deformations were generated by a compo-
sition of rotation, translation, and an elastic deformation component.
Translations were sampled from range (2.0 mm, 10.0 mm), rotations
from range (2.0◦, 10.0◦), and for elastic deformations we sampled
white noise with mean of 10 mm and standard deviation of 200 mm
followed by Gaussian smoothing with standard deviation of 10 mm. The
distribution is intentionally skewed to make the non-desired outcome of
over-learning the deformation already in 𝐹 more attractive. We refer
to the unaligned data set as ‘‘unaligned’’. See Fig. 4 for an example
training pair.

We re-register the synthetically deformed images using popular
deformable registration method elastix (Klein et al., 2009; Shamonin
et al., 2014) to compare our method with the standard approach of
using registration as a pre-processing step. We refer to this data set as
‘‘registered’’.

Additionally we train an oracle model with the original aligned data
set and refer to that data set as ‘‘aligned’’. For the oracle we use the
same generator architecture as for our other methods. Its performance
should provide a good upper bound on the performance of our methods.

For our methods we use 3D models and train them by sampling
random image patches of size (64, 64, 64) from the whole training data
set. For 2D baseline models we used randomly sampled axial slices. Ad-
ditionally the inputs were augmented with low-amplitude noise during
the training. We also conducted a small experiment on the validation
set for determining which type of simulated affine deformations are
the most suitable ones for this problem. The experiment included
translation, rotation, scaling and shearing. Flipping was not considered
since the human anatomy is not symmetric.

5.3.3. Virtual histopathology staining
Virtual histopathology staining using deep learning has emerged as

an active research topic in recent years, and has been primarily driven
by GAN-based methods (Bayramoglu et al., 2017; Rivenson et al., 2019;
Rana et al., 2020; Koivukoski et al., 2023). However, a majority of the
methods require elastic registration of inputs and targets. Our method
simplifies the data pre-processing by eliminating the need to elastically
register image pairs explicitly.

We used a public data set containing unstained and stained tissue
whole slides image (WSI) pairs Khan et al. (2023) available at.5 These
are essentially ultra high resolution gigapixel images, and virtually
staining the unstained tissue WSIs is a highly non-trivial task. Pre-
clinical murine prostate tissue samples were prepared at the University
of Eastern Finland, Kuopio. Material used was surplus tissue from
previous studies (Latonen et al., 2017; Valkonen et al., 2017) where
all animal experimentation and care procedures were carried out in
accordance with guidelines and regulations of the national Animal
Experiment Board of Finland, and were approved by the board of
laboratory animal work of the State Provincial Offices of South Finland
(licence number ESAVI/6271/04.10.03/2011). The tissue samples were
first scanned without staining. This was followed by hematoxylin and

5 https://doi.org/10.23729/9ddc2fc5-9bdb-404c-be07-c9c9540a32de

http://brain-development.org/ixi-data
https://doi.org/10.23729/9ddc2fc5-9bdb-404c-be07-c9c9540a32de
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Fig. 5. Example training images from the head MRI to CT synthesis data set. Only one
sagittal slide of the 3D volumes is visualized. As can be seen, significant misalignments
are present at the neck region. © CERMEP – Imagerie du vivant, www.cermep.fr and
Hospices Civils de Lyon. All rights reserved.

eosin (H&E) staining of the unstained tissue samples, and then the
stained samples were scanned again. The samples were scanned using
Thunder Imager 3D Tissue slide scanner (Leica Microsystems, Wetzlar,
Germany) equipped with DMC2900 camera at 40X magnification level
with a pixel size of 0.353μm. Total of 17 WSI pairs were included in the
data set each with resolution of approximately 40k × 40k from which 9
were used for training, 1 for validation, and 7 for testing.

Inputs and targets were coarsely registered and the alignment seems
superficially good. However, upon a closer inspection clear misalign-
ments are present. We additionally registered the images using an
open source cross-modality whole slide image registration tool called
wsireg.6 The WSI pairs were registered in two steps, first rigidly for
global alignment and then elastically for more granular correspondence
between the modalities. We refer to the coarsely registered original
data set as ‘‘unaligned’’ and to the more finely registered data set as
‘‘registered’’. No oracle model was trained as we did not have ground
truth registrations for this data set.

All of the models were trained by sampling random image patches
of size 512 × 512 from the whole training data set. Additionally the
inputs were augmented with low-amplitude noise during the training.
On this data set we used the same set of transformations for the
equivariance encouraging loss functions as was used in the synthetic
experiment. We did not consider scaling or shearing for this data set as
the misalignments on a single patch level are essentially rigid. Flipping
was included as on the microscopic level the distribution should not be
affected by that.

5.3.4. Head MRI to CT synthesis
Pseudo CT images are CT-like images generated from MRI im-

ages and are mostly used for replacing CT images in external beam
radiation therapy (EBRT). Both predicting correct CT-values and ge-
ometrical accuracy of the generated images are important. In recent
years Deep Learning has emerged as a strong option for pseudo CT
generation (Owrangi et al., 2018).

For the experiments we used CERMEP-IDB-MRXFDG data set which
is freely available for research use (Mérida et al., 2021). The data set
consists of 37 rigidly registered CT and T1 MRI head scan pairs. We
resampled all the images to the MRI-resolution of 160 × 192 × 192.
Pre-processing of the T1 images was similar to the one done for the
cross-modality MRI synthesis data set as we applied N4 bias correc-
tion (Tustison et al., 2010) using Advanced Normalization Tools (ANTs)
software (Avants et al., 2009) and normalized the brain white-matter
to the mean value of one using the implementation by Reinhold et al.
(2019) together with the implementation by Iglesias et al. (2011) for

6 https://github.com/NHPatterson/wsireg
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brain mask extraction. We additionally removed any external objects
from the CT images using series of morphological operations. While the
skull and brain regions are relatively rigid, the image volumes extend to
neck region with significant registration mismatches as can be seen in
Fig. 5. We divided the data set to 20 cases for training, 5 for validation,
and 12 for testing.

We refer to the default data set as ‘‘unaligned’’. We additionally reg-
istered the images elastically using elastix (Klein et al., 2009; Shamonin
et al., 2014) with the hyperparameters by Leibfarth et al. (2013) and
refer to the data set as ‘‘registered’’.

Training setup was very similar to the that of cross-modality MRI
synthesis experiment. We used 3D models and trained them by sam-
pling random image patches of size (64, 64, 64) from the whole training
data set and for 2D baseline models we used randomly sampled axial
slices. Additionally the inputs were augmented with low-amplitude
noise during the training. We still similarly to the cross-modality MRI
synthesis experiment conducted an experiment on the validation set for
determining which type of simulated affine deformations are the most
suitable. Flipping was again not considered since the human anatomy
is not symmetric.

5.4. Evaluation

For all the experiments we measure structural similarity index
(SSIM) (Wang et al., 2004), peak-signal-to-noise-ratio (PSNR), and
normalized mutual information (NMI) (Studholme et al., 1999). NMI
was applied between inputs and predictions as opposed to inputs and
aligned targets as it is used here for measuring the geometric similarity
of the predictions to the corresponding inputs. A detailed description
of the pixel-wise metrics is given in the supplementary materials.

Additionally we measured the visual appearance of the synthesized
images with Fréchet inception distance (FID) metric (Heusel et al.,
2017; Seitzer, 2020). While the visual appearance of the images is not
usually clinically relevant, we still considered the comparison to be
interesting enough to be included. For 3D data sets we computed FID
over image slices over all three axes.

Evaluation of the virtual staining and pseudo CT experiments re-
quired more careful approaches described in the Sections 5.4.1 and
5.4.2.

5.4.1. Virtual histopathology staining evaluation
We computed the pixel-wise metrics for the virtual staining data

set separately for each predicted batch. As no ground truth was avail-
able, we registered affinely each stained patch to the correspond-
ing unstained patch using Advanced Normalization Tools (ANTs) soft-
ware (Avants et al., 2008, 2009). We did not use directly the registered
data set for computing the pixel-wise metrics to avoid the models
trained with that data set from benefiting too much by being able
to learn the exact registration dynamics (including possible systematic
registration errors).

To further evaluate the quality of the virtually stained images, we
conducted a comparative analysis of the virtual staining methods for
nuclei reproducibility, a downstream validation approach similar to
that of Khan et al. (2023). For that analysis we used the images from
the registered data set as the ground truth. We employed the nuclei
detection method by Valkonen et al. (2020) to output nuclei center
coordinates in all the WSIs in the test set. First, nuclei were detected for
the ground truth followed by nuclei detections in the virtually stained
WSI generated by each of compared methods. F1-scores were computed
to compare the detected nucleus coordinates of all outputs against those
of the ground truth WSIs, using Euclidean distance with a tolerance
of 5μm radius derived experimentally and through prior knowledge
of typical nucleus dimensions (Lammerding, 2011; Valkonen et al.,
2020). We defined a true positive as a nucleus center in the virtually
stained WSI for which there was a corresponding nucleus center in the
ground truth WSI within 5μm radius. A false positive was defined as

http://www.cermep.fr
https://github.com/NHPatterson/wsireg
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Fig. 6. Example failure mode when training without deformation equivariance en-
couraging losses. The prediction is shifted towards top-left direction and also has a
non-desired pattern both of which are compensated by the registration networks. Images
are from the synthetic experiment with data set SR and model DefSim.

a nucleus center in the virtually stained WSI for which there was no
corresponding nucleus center in the ground truth WSI within the 5μm
radius. False negatives were nuclei centers in the ground truth WSI for
which there were no matches in the virtually stained WSI within the
5μm radius.

5.4.2. Head MRI to CT synthesis evaluation
For pseudo CT evaluation we additionally computed pixel-wise

mean absolute error (MAE) and mean error (ME) as they are very
widely used for pseudo CT evaluation and better predictors for resulting
radiation dose differences than SSIM or PSNR (Boulanger et al., 2021).
ME refers to mean signed error over the data set, and can also be neg-
ative. ME largely ignores geometrical misalignements between inputs
and predictions but on the other hand is robust to registration errors
between inputs and targets used for evaluation.

We concluded the registered data set to be inadequate for accurate
evaluation and had to develop more nuanced approach for registering
the images, although still using the elastix software (Klein et al.,
2009; Shamonin et al., 2014). We noticed that the registration results
improved by registering only part of the image at a time, probably
since that way the rigid registration phase was able to account for a
larger part of the total deformation. We ended up randomly sampling
20 masks with radius of 10 centimeters from each image and registered
the image pairs over each of the masks. The evaluation metrics were
computed over all the registrations with Gaussian weighting such that
the highest weight was given to the coordinates at the center of the
registration mask. Additionally we generated bone masks from the
images by thresholding and applied the non-rigidity penalty (Staring
et al., 2007) over those regions, improving the bone registration. That
allowed us to use lower regularization value for the soft tissue regions
improving the registration for those regions as well. We also manually
masked out any regions with clear artefacts from the images. With
these changes the quality of the registrations improved significantly
based on visual evaluation. However, registration errors will always
remain which will have to be taken into account in interpreting the
results. To mitigate for registrations errors in body outline which end
up easily dominating the metrics, we constructed body masks for both
the MRI and CT images using morphological operations and ignored in
the evaluation the regions where the body masks did not match.

6. Results and discussion

6.1. Synthetic

Results for the synthetic data set experiment can be seen in Table 2,
and for an example prediction see Fig. 7.
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Fig. 7. Example prediction from the synthetic experiment with data set LR and model
EqSim + Com. The image is from the test set. In addition to the synthesized image, the
deformation is accurately reproduced.

Table 3
Results for the cross-modality brain MRI synthesis experiment on the validation set
comparing different types of affine transformations for the commutation loss. The
experiment was performed using ‘‘DefSim + Com + EqAdv’’ setup. Translations were
sampled from range [−8mm, 8mm], and rotations from range [−25◦ , 25◦]. Scales and
shears were sampled by exponentiating a symmetric matrix with each matrix element
being sampled from a zero mean Gaussian distribution with standard deviation of 0.08.
For generating scales non-diagonal values were set to zero.

Transformations PSNR SSIM NMI

Translation 34.33 0.9332 1.111
Translation + rotation 36.43 0.9578 1.122
Translation + rotation + scaling 36.60 0.9621 1.122
Translation + rotation + scaling + shearing 36.90 0.9623 1.125

Fig. 8. A prediction produced by the RegGAN model in the cross-modality brain
MRI synthesis experiment. The model has converged to produce severely misaligned
predictions.

The models using the deformation equivariance encouraging losses
systematically outperformed the models not using them. Four out of
eight trainings with the registration component but without the de-
formation equivariance encouraging losses did not converge at all to
a meaningful optimum. An example prediction of such a training is
shown in Fig. 6. The performance of the models without the deforma-
tion equivariance losses varied a lot and in few cases the performance
was even quite good. However, when using either of the deforma-
tion equivariance losses the trainings always converged robustly to a
meaningful optimum.

Models using both the equivariance similarity loss and the com-
mutation loss performed the best in terms of the similarity metrics.
However, the models having only either the equivariance similarity loss
or the commutation loss for encouraging deformation equivariance also
performed very well and it is questionable whether the differences in
performance when using this kind of synthetic data set will be relevant
in real world applications.

6.2. Cross-modality brain MRI synthesis

Results for the study on a validation set comparing different distri-
butions of affine transformations for equivariance encouraging losses
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Table 4
Results for the cross-modality brain MRI synthesis experiment.
Data set Model PSNR SSIM NMI FID (sag) FID (cor) FID (ax)

Non-aligned

EqSim + Com + EqAdv 36.30 0.9564 1.123 5.069 6.283 6.764
DefSim + Com + EqAdv 36.70 0.9595 1.124 6.302 7.290 7.709
EqSim + EqAdv 36.73 0.9609 1.119 3.647 5.204 4.981
DefSim + DefUncondAdv + Aug 26.67 0.6286 1.049 37.94 28.48 23.80
RegGAN 21.24 0.3037 1.013 48.70 59.52 28.51
NeMAR 19.98 0.4592 1.036 147.3 170.0 243.1
NeMAR (our components) 34.83 0.9377 1.107 3.461 4.270 5.243
CycleGAN 23.32 0.4046 1.027 21.06 19.30 12.59

Registered Pix2pix 28.96 0.8895 1.095 12.94 16.32 17.80
Pix2pix (our components) 35.12 0.9386 1.107 10.01 10.95 10.29

Aligned Pix2pix (our components) 38.14 0.9679 1.111 4.093 5.462 6.514
Fig. 9. Virtually stained histopathological images with two top-performing models. An
area of epithelial cells (pink) with nuclei (blue) is shown.

can be seen in Table 3. Based on the study we used combination of all
four transformation types in the main experiment for which the results
with a test set can be seen in Table 4.

All the three proposed variants of our method performed very
well compared to the oracle model trained with aligned data and
outperformed all the baselines with statistically significant margin on
the voxel-wise metrics. NeMAR which also encourages deformation
equivariance coupled with our 3D architecture is the only baseline
trained on non-aligned data that came close to our method. RegGAN
performed significantly worse and converged to produce severely mis-
aligned predictions as visualized in Fig. 8. Pix2pix model trained on
the registered data set coupled with our 3D architecture also performed
well but was still clearly behind our methods while surpassing all the
other models trained on non-aligned data. CycleGAN was also unable
to converge to a meaningful optimum due to the large misalignments.
While rarely directly relevant in clinical context, our method also
performed very well in terms of the FID score.

6.3. Virtual histopathology staining

Results for the virtual histopathology staining experiment can be
seen in Table 5, and for example predictions see Fig. 9.
10
Nucleus reproduction from unstained brightfield images to virtual
stained H&E images is a particularly challenging task, as confirmed by
the comparison of nucleus detection results between real and virtual
stained images. This is in line with the conclusion from the earlier
literature that the locations of all nuclei are simply not available in the
unstained input images (Khan et al., 2023). Additionally the data is not
very uniform which also affects the evaluation metrics as training and
test distributions do not match.

In terms of F1-score, which can be considered the main metric,
RegGAN performed better than the other methods with statistical sig-
nificance, and two of our methods were close behind, outperforming
other baselines. We suspect that RegGAN benefited from having a
generator with 24 times more parameters than our generator (1.1
billion vs. 46 million). Also, with this data set the distributions of the
desired predictions 𝐹 (𝑥(𝑖)) and the training targets �̃�(𝑖) are very close
to each other, i.e. there are no systematic geometrical differences. In
such settings the RegGAN can be expected to perform well. It is left for
future work to test our method with a larger generator.

Two of our configurations, EqSim + EqAdv and DefSim + Com +
EqAdv, beat both pix2pix variants trained on registered data in terms
of F1-score by a statistically significant margin (p-values 0.016 and
0.00020). The result is more significant for the pix2pix model with our
components as it was trained with identical architecture to our method.
However, it is also noteworthy that the differences in loss function
weightings affect the precision–recall balance which again can affect
the F1-score, e.g. our training of the vanilla pix2pix had a different
loss function balance affecting the precision–recall balance compared
to the one trained with our components. For our proposed variants it
seems that increasing deformation equivariance increases precision at
the cost of recall. The model EqSim + EqAdv which did not have the
commutation loss was more included to guess nuclei whereas the two
other models with the commutation loss placed them in more certain
locations. We suspect this is due to the commutation loss more directly
promoting deformation equivariance which will require the shape of
the nuclei to be known.

NeMAR adversarial training did not converge meaningfully with
this data set due to the discriminator being easily able to distinguish
between fake and real target images. We suspect that it was due to
high frequency components present in this data set which the NeMAR
architecture could not replicate for the discriminator due to the issues
discussed in Section 4.2. Generator size of the unmodified NeMAR was
also way too limited for the task.

6.4. Head MRI to CT synthesis

Results for the study on validation set comparing different distri-
butions of affine transformations for equivariance encouraging losses
can be seen in Table 6. Based on the study we used only translation
and rotation in the main experiment for which the results can be seen
in Table 7. Note that the differences in metrics when using different
affine transformation types are very small and might not be statistically
significant.
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Table 5
Results for the virtual histopathology staining experiment. Unmodified NeMAR was not included in the nuclei reproducibility study as it failed
to converge to a meaningful optimum.
Data set Model Nuclei reproducibility PSNR SSIM NMI FID

F1 Precision Recall

Non-aligned

EqSim + Com + EqAdv 0.7493 0.8514 0.6700 21.33 0.6491 1.020 43.04
DefSim + Com + EqAdv 0.7597 0.8291 0.7015 21.54 0.6553 1.019 35.00
EqSim + EqAdv 0.7655 0.8004 0.7340 20.95 0.6358 1.018 21.51
DefSim + DefUncondAdv + Aug 0.7373 0.8838 0.6328 21.16 0.6409 1.019 42.70
RegGAN 0.7799 0.7978 0.7647 21.22 0.6475 1.019 12.59
NeMAR – – – 17.64 0.2791 1.014 333.1
NeMAR (our components) 0.6846 0.9151 0.5476 20.18 0.5788 1.015 55.35
CycleGAN 0.5826 0.5712 0.5956 15.94 0.5073 1.039 31.50
Pix2pix (our components) 0.7051 0.8762 0.5914 20.39 0.6144 1.016 40.82

Registered Pix2pix 0.7068 0.9195 0.5745 21.69 0.7025 1.023 51.73
Pix2pix (our components) 0.7514 0.8628 0.6656 20.98 0.6705 1.020 30.28
Table 6
Results for the MRI to CT synthesis experiment on the validation set comparing different types of affine transformations for the commutation
loss. The experiment was performed using ‘‘DefSim + Com + EqAdv’’ setup. Translations were sampled from range [−8mm, 8mm], and rotations
from range [−25◦ , 25◦]. Scales and shears were sampled by exponentiating a symmetric matrix with each matrix element being sampled from a
zero mean Gaussian distribution with standard deviation of 0.08. For generating scales non-diagonal values were set to zero. Only translation
and rotation were used for the main experiment as that resulted in the best MAE, although the difference is not very large in comparison to
additionally using scaling and shearing. Note that ME largely ignores geometrical misalignements between inputs and predictions.
Transformations MAE ME PSNR SSIM NMI

Translation 74.85 −0.2184 26.89 0.8699 1.067
Translation + rotation 68.06 −0.5071 27.50 0.8698 1.075
Translation + rotation + scaling 68.48 6.100 27.46 0.8723 1.077
Translation + rotation + scaling + shearing 68.44 7.488 27.40 0.8727 1.077
Table 7
Results for MRI to CT synthesis experiment. Note that ME largely ignores geometrical misalignements between inputs and predictions.

Data set Model MAE ME PSNR SSIM NMI FID (sag) FID (cor) FID (ax)

Non-aligned

EqSim + Com + EqAdv 67.59 9.091 28.41 0.8733 1.080 19.30 17.78 18.40
DefSim + Com + EqAdv 65.26 3.677 28.66 0.8794 1.078 22.66 20.33 20.79
EqSim + EqAdv 66.08 1.752 28.82 0.8846 1.074 22.07 23.08 18.75
DefSim + DefUncondAdv + Aug 136.8 −0.8551 23.10 0.7431 1.049 49.51 31.95 34.90
RegGAN 78.58 −5.386 27.39 0.8461 1.069 63.80 49.06 18.47
NeMAR 83.22 −14.39 27.22 0.8331 1.071 57.13 46.16 36.28
NeMAR (our components) 67.49 11.60 28.57 0.8810 1.073 16.04 15.14 15.20
CycleGAN 99.56 8.469 25.73 0.8002 1.061 63.68 54.07 15.77

Registered Pix2pix 100.9 −3.347 25.82 0.7684 1.064 67.40 65.20 46.79
Pix2pix (our components) 69.46 −18.31 28.40 0.8787 1.071 28.64 25.11 22.16
Fig. 10. Predictions produced by different variants of our method and the two best
performing baselines in the head MRI to CT synthesis experiment. Only our method is
capable of generating the body outline at the lower neck region correctly. The region is
highlighted with red circles. T1 MRI. © CERMEP – Imagerie du vivant, www.cermep.fr
and Hospices Civils de Lyon. All rights reserved.

Our proposed method performed very well in terms of the MAE
which can be considered the most important metric for pseudo CT
11
generation due to the strongly linear relationship between CT values
and radiation absorption in radiation therapy. DefSim + Com + EqAdv
beat all of the baselines with statistically significant margin (𝑝-value
0.0024 compared to NeMAR with our components). EqSim + EqAdv
also beat all of the baselines but when using the threshold of 0.05 in
𝑝-value for statistical significance the difference in MAE is narrowly not
significant (𝑝-value 0.057). Encouraging too much equivariance seems
to be detrimental for correct CT-value estimation since EqSim + Com +
EqAdv performed slightly worse, although still not worse than any of
the baselines.

While close to our method metric-wise, under visual inspection the
images generated by NeMAR with our components contained more
easily visible alignment mistakes than the images generated by our
models. Probably the easiest mistake to notice was its inaccuracy in
predicting the body outline at neck region, where the data set contains
the largest systematic deformation differences. An example of such a
case is shown in Fig. 10. More subtle mistakes included soft tissue
boundaries being placed slightly off. Geometric accuracy of tissue
boundaries is important as the pseudo CT images might also be used
for positioning at the linear accelerator. The result is in line with the
paper introducing NeMAR (Arar et al., 2020) as in the supplementary
materials they conclude that their image-to-image translation network
produces geometrically accurate results only when the image synthesis
generator model is significantly smaller than the one used here.

FID values have to be looked at with caution since they were calcu-
lated with respect to the unaligned data set whose distribution differs

http://www.cermep.fr
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from that of the desired unavailable aligned CT images. However, based
on visual inspection the NeMAR model with our components indeed
produced the most realistic looking texture.

7. Implementation

Implementation of our method in PyTorch framework and all the
evaluation implementations can be found at https://github.com/ho
nkamj/non-aligned-i2i. The code base also contains all of the data
pre-processing and allows for easily reproducing the results.

8. Conclusions

In this work, we have developed a generic method for training a
network for cross-modality image synthesis with paired but misaligned
training data by promoting equivariance with respect to simulated
deformations. The method is applicable to a wider range of data sets
than earlier methods and has the best overall performance across three
different cross-modality image synthesis tasks. On two tasks, cross-
modality brain MRI synthesis and head MRI to CT synthesis, the method
outperformed all of the baselines, and on the virtual staining task the
performance was close to the best performing baseline, even though
the baseline had a significantly larger network size. Based on the
experiments while the EqSim + Com + EqAdv configuration worked
well on the synthetic data, our recommended configurations are EqSim
+ EqAdv and DefSim + Com + EqAdv as they performed the best on
more realistic data sets.
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