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ABSTRACT In recent years, Machine Learning (ML), especially Deep Learning (DL) approaches, has
attracted great attention in medical field. In this study, we proposed a deep learning-based approach in
order to automatically diagnose Temporomandibular Disorder (TMD) onMagnetic Resonance (MR) images.
2576 MR images of 200 patients diagnosed with and without TMD were collected. These images were
classified as 8 groups. First of all, a basic Convolutional Neural Network (CNN) was used for the problem.
After that, 6 different fine-tuned pre-trained convolutional neural network models, Xception, ResNet-101,
MobileNetV2, InceptionV3, DenseNet-121 and ConvNeXt were applied on data set. Finally, the accomplish-
ment of Vision Transformer (ViT) in task solving was also discussed. Performances of the approaches were
evaluated bymetrics such as accuracy rate, precision, sensitivity, F1-score, Negative Predictive Value (NPV),
specificity, Area Under Curve (AUC) and kappa coefficient. Grad-CAM results of the best architectures
for diagnostic examination were obtained. Intraclass Correlation Coefficients (ICC) value was computed
to assess correlation between the models. According to the test results, deep learning-based architectures
assessed were found to be successful in the diagnosis of TMD.

INDEX TERMS Deep learning, magnetic resonance imaging, temporomandibular joint disorders.

I. INTRODUCTION
Temporomandibular Joint (TMJ), located between mandibu-
lar condyle and temporal bone, is the most complex joint
of the human body. Temporomandibular joint consists of
condyle, articular tubercle, articular disc, glenoid fossa, joint
capsule, retro discal tissue and synovial membrane. Clin-
ical problems of the temporomandibular joint and joint
structures are called temporomandibular joint disorders [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Marco Giannelli .

Temporomandibular joint disorders do not only affect TMJ
but also, they influence the masticatory muscles and other
components of stomatognathic system [1]. Pain symptoms
frequently arise in patients with TMJ Internal Derangement
(ID). The articular disk of the TMJ is composed of a bicon-
cave fibrocartilaginous structure. Internal irregularity, mani-
fested as disc displacement, is a common form of TMDs. TMJ
ID is defined as an abnormal positional relationship between
the articular disc and the mandibular condyle and the articular
eminence. Anterior disc displacement is discovered more
often than medial, posterior and lateral displacements [2].
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TMJ effusion, an inflammatory response, is the accumulation
of excess fluid in and around the temporomandibular joint.
This reaction emerges in consequence of internal disorder,
arthritis, trauma, and inflammatory changes associated with
rheumatoid diseases. Degenerative bony changes are more
frequent in the mandibular condyle than in the mandibular
fossa or the articular eminence and are characterized by the
development of pathological bony changes (erosion, osteo-
phytes and deformity) and adaptive bony changes (marginal
proliferation, flattening, concavity, sclerosis and subchon-
dral cysts) [3], [4]. These abnormalities are considered to
be radiological signs of OsteAarthritis (OA) and are fre-
quently observed in joints with long-standing anterior disc
displacement without reduction [5]. TMD, involving clinical
symptoms, such as; TMJ pain, joint sounds and limited jaw
function, affects 28%of theworld’s population [6]. These dis-
orders include those associated with articular disc structure
and position, as well as alterations in synovial fluid and soft
tissue [7].

Diagnosis of TMJ disorders is made by clinical examina-
tion of the patient, along with patient history and assessment
of diagnostic images including Magnetic Resonance Image
(MRI) when necessary. MRI allows excellent depiction of the
TMJ anatomy and abnormalities because of its inherent tissue
contrast and high resolution. Magnetic resonance imaging is
considered as reference standard for diagnostic imaging of
some TMDs including those associated with articular disc
structure and position, as well as alterations in synovial fluid
and soft tissue [8]. However, this procedure is considered
as costly and time consuming. Therefore, it is worth intro-
ducing an automatic inference system to facilitate diagno-
sis of disease for physicians. Artificial Intelligence (AI),
machine learning, especially deep learning-based models, are
highly effective approaches in order to achieve such tasks.
The thought of artificial intelligence was first mentioned
at a computer science conference held in Dartmouth Col-
lege, Hanover, New Hampshire in 1956 [9], [10]. Artificial
intelligence is described as ‘‘A system’s ability to interpret
external data correctly, to learn from such data, and to use
that information to achieve specific goals and tasks through
flexible adaptation.’’ [11]. Artificial intelligence, which is
essentially based on the way of human thinking, has sub-
fields. Machine learning is one of these subsets. In machine
learning, a mathematical model, which is dependent on train-
ing data, is designed in order to make predictions or deci-
sions [12]. Machine learning algorithms have received much
attention in recent years, and they have been used in many
applications. However, these approaches have not always
shown effective results as desired, especially on image and
sound data. Krizhevsky et. al., achieved an 86.3% success in
‘‘Deep Learning’s ImageNet Large-Scale Visual Recognition
Competition (ILSVRC)’’ in 2012 [13] and studies based
on deep learning were carried out by other researchers in
the following years. In recent years, deep learning-based
models performed better than conventional machine learning
based methods in most computer vision and medical image

processing problems. Accordingly, they have been utilized in
several diverse fields, such as classification, disease diagno-
sis, face recognition, and image enhancement [14], [15], [16],
[17], [18].

There are published studies regarding assessment of TMJ
by using machine learning, artificial intelligence, or deep
learning in previous literature. Application of deep learning
approaches related to different TMJ diseases and diagnostic
problems were studied in [19], [20], [21], [22], [23], [24],
[25], [26], [27], and [28].

In this study, our aim was to interpret TMJ disor-
ders displayed on MRI by using deep learning approaches
and to assess its effectiveness. A basic CNN architec-
ture, 6 different fine-tuned pre-trained models, Xcep-
tion [29], Residual Neural Network (ResNet)-101 [30],
MobileNetV2 [31], InceptionV3 [32], Dense Convolutional
Network (DenseNet)-121 [33] and ConvNeXt [34] were
applied onmagnetic resonance images of temporomandibular
joint patients to predict whether they have disc displacement,
effusion or condylar bone degeneration or not. In addition,
the performance of ViT, which has been very popular lately,
was examined.

II. MATERIALS AND METHODS
Sample images were taken from Ankara University, Faculty
of Dentistry and a data set was created. Ethical approval
for the data set was also obtained from Ankara University,
Faculty of Dentistry, Ethics Committee (36290600/34/2021).
Informed consent was obtained from the patients.

A. MR IMAGES DATA SET
The present study included MR images of 200 patients
who were referred to Ankara University Faculty of Den-
tistry, Dentomaxillofacial Radiology and Oral Surgery Clin-
ics for TMJ Disorders between 2015-2021. Patients who had
surgery including chin and face and patients with facial syn-
drome were excluded. MR images were obtained by utilizing
1.5 Tesla machine in both closed and open mouth positions.
T1 W (T1 weighted), T2 W images, Multiple Echo Recom-
bined Gradient Echo (MERGE) and Proton Density (PD),
series images of bilateral TMJs (3 mm thick) were obtained
with sagittal reconstructions. In order to increase the number
of MR images, T1 and PD images were used for articular
disc position, T2 and MERGE for effusion, and T1 and
PD series for condylar degeneration assessment. Screenshots
were taken as shown in Figure 1 (a), Figure 1 (b) for articular
disc position, Figure 1 (c) for effusion, and Figure 1 (d)
condylar degeneration.

MR images used in the present study were collected by an
experienced dentomaxillofacial radiology specialist in MRI
assessment. In cases where a decision could not be made by
the dentomaxillofacial radiology specialist a consensus was
achieved by consulting a more experienced dentomaxillofa-
cial specialist (15 years of experience in readingMR images).
2576 images were obtained from diagnostic MR images of
200 patients. At least 3 images of the right and left regions
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FIGURE 1. Right TMJ in sagittal oblique plane, in PD series: (a) closed mouth, (b) open mouth position, (red
arrow) normal disc position view, (c) right mouth closed TMJ effusion (red arrows) in sagittal oblique plane,
MERGE series, (d) right mouth closed TMJ in sagittal plane, in T1 series; view of condylar degeneration (red
arrows).

TABLE 1. Data set properties.

of each patient were transferred to the data set. The image set
we obtained was divided into 4 groups and 8 classes:

1) At closed mouth, articular disc position normal
2) At closed mouth, articular disc position in front
3) At open mouth, articular disc position normal
4) At open mouth, articular disc position in front
5) Joint cavity without effusion
6) Joint cavity with effusion
7) There is no mandibular condyle degeneration
8) There is mandibular condyle degeneration
Table 1 shows the distribution of number and percentage

of images for all groups from a total of 2567 data images.
In Table 1, for T1 and Proton density sequences ‘‘Posi-

tive’’ corresponds to the ‘‘disc in anterior or disc anteriorly

displaced’’ for ‘‘closed mouth disc position’’ and ‘‘open
mouth disc position’’ groups. For ‘‘joint cavity effusion’’
group and for the ‘‘mandibular condyle degeneration’’ group,
Class 5, 6, 7 and 8 were determined according to following
criteria:

• For 5: In the T2 and MERGE sequence, no increase in
intensity is observed in the TMJ interval,

• For 6: There is hyperintensity in the TMJ space on the
T2 and MERGE sequence,

• For 7: The appearance of a smooth and rounded line on
the mandibular condyle surface at T1 and Proton density
sequence,

• For 8: It is the appearance of irregularity, flattening and
osteophyte (bird beak appearance) on the mandibular
condyle surface at T1 and Proton density sequence.

B. TRANSFER LEARNING
In broad terms, Transfer Learning (TL) can be defined as
applying the knowledge obtained while solving a problem
to a different but relevant task. It is a very strong learning
approach in order to solve problems where there are not
enough training examples in order to train a model from
scratch. Instead of starting the learning from scratch, transfer
learning allows to create accurate models in a time saving
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FIGURE 2. Basic layers in a convolutional neural network.

way, starting from learned patterns while solving a task [35],
[36]. In this study, transfer learning was employed as we
did not have adequate sample images to train an architecture
from scratch. When a pre-trained model is fine-tuned for a
new task, either the entire model is trained or some layers
are trained and others are left frozen, or the convolutional
structure is left in its original state.

In deep learning, a CNN is a type of artificial neural net-
work in which mathematical operations are performed. It has
widespread use on image data. The primary layers of a CNN
architecture are shown in Figure 2. The general description
of layers in Figure 2 is as follows: The convolution layer is
the first layer of a CNN. In this layer, features are extracted
from the image using some filters. The pooling layer, which
has a different number of functions, is a layer added between
convolutional layers in a network. The aim here is to reduce
the parameters and the number of calculations in the network.
The Fully Connected (FC) layer is one of the last layers of
a convolutional neural network. The neurons in this layer
are connected to all neurons before and after them. Finally,
the output layer is the layer where the result is produced.
In the present study, the last layer of pre-trained models,
namely, Xception [29], ResNet-101 [30], MobileNetV2 [31],
InceptionV3 [32], DenseNet-121 [33] and ConvNeXt [34]
were fine-tuned. The details of each DL based architecture
are as follows:

1) XCEPTION
Xception is a popular CNN architecture proposed by Francois
Chollet [29]. It is based on depth wise separable convolution
layers with residual connections. The researcher performs a
theory which is a more robust version of the basic hypothesis
of the Inception model. According to this theory, the mapping
of cross-channels correlations and spatial correlations in the
feature maps of CNNs can be completely separable. In the
Xception model, there are 36 convolution layers structured
into 14 modules. Except for the first and last modules, all
these modules have linear residual connections around them.
The data goes through the input flow, middle flow, and output
flow, respectively [29].

2) ResNet-101
ResNet architecture is one of the most popular Deep Neural
Networks (DNN) available in many varieties with different

numbers of layers. ResNet was introduced by He et al. [30].
They presented a residual learning framework to ease the
training of networks and they reformulated the layers as
learning residual functions. Due to the vanishing gradient
problem, deep networks are difficult to train. Therefore,
increasing the depth of the network by stacking more layers
may not be effective. As the size of the net gets bigger, the
accuracy becomes saturated and then reduces rapidly [30].
He et al. presented a deep residual learning framework for
the problem of degradation. They introduced ‘‘identity short-
cut connections’’ that skip one or more layers with identity
mapping [30].

3) MobileNetV2
MobileNetV2 [31] is a convolutional neural network archi-
tecture specifically designed for mobile devices and environ-
ments with constrained resources. MobileNetV2 is based on
ideas taken from MobileNetV1 [37], however; it is a signif-
icant improvement over MobileNetV1. Deep separable con-
volution is used as efficient building blocks in MobileNetV2.
However, MobileNetV2 has the following two new fea-
tures: Linear bottlenecks between layers and shortcut connec-
tions [38]. In the first place, the MobileNetV2 model has a
fully convolution layer, involving 32 filters. After this layer,
there are 19 bottleneck layers. ReLU is used as non-linearity,
in addition kernel size is 3 × 3 and dropout and batch nor-
malization are used during the training process. A constant
rate of expansion is utilized throughout the network, except
for the first layer [31].

4) InceptionV3
InceptionV3 [32], which started as a model for GoogLeNet,
is a CNN to aid in image analysis and object detection [39].
It is the 3rd version from the Inception family and was
first introduced during the ImageNet Recognition Challenge.
InceptionV3 includes convolutions, average pooling, max
pooling, concats, dropouts, and fully connected layers [32].
This model aims to prevent the number of parameters from
increasing too much while the network gets deeper. Thereby,
it has lower computational cost.

5) DenseNet-121
DenseNet connects each layer to every other layer in a feed-
forward form. At each layer, features from all previous layers
are taken as input and their own features are passed to all
subsequent layers. DenseNets provide significant advantages
such as; theymake feature propagation robust, support feature
reuse, lessen the vanishing-gradient problem, and signifi-
cantly decrease the number of parameters [33]. The model
starts with the convolution pooling blocks, continues with the
dense block transition layer, and finally ends with the global
average pool and a fully-connected block.

6) ConvNeXt
ConvNeXT [34] inspired from vision transformers is a con-
volutional model proposed by Liu et al. They gradually
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‘‘modernized’’ a standard ResNet towards a vision trans-
formers design. They found some key components and these
components contribute to the performance difference. Deep
convolution which is a special case of grouped convolution
was used in ConvNeXt. Accordingly, the number of groups
is equal to the number of channels. In depth-wise convolution,
a process similar to the weighted sum in self-attention is
performed. This process works on a channel basis, in other
words it only mixes spatial information.

7) ViT
ViT is an architecture with transformer. Transformer was
firstly used in Natural Language Processing (NLP) tasks [40].
Basically, a transformer includes a self-attention structure.
This mechanism weights the importance of each part of the
input data. The main purpose of this method is to focus on
significant point in data. This approach has attracted great
attention due to its success in NLP applications. Accordingly,
it started to find a place in image applications [41].

8) METRICS
In order to examine the performance of models, met-
rics such as accuracy rate, precision (Positive Predictive
Value/PPV), recall (sensitivity), F1-score, (Negative Predic-
tive Value/NPV), specificity, AUC and kappa score were
used. Descriptions of aforementioned metrics are given at
equations 1, 2, 3, 4, 5 and 6.

Accuracy =
TP+ TN

TP+ FN + TN + FP
(1)

Precision =
TP

TP+ FP
(2)

Recall(sensitivity) =
TP

TP+ FN
(3)

F1 − score =
2 × precision× recall
precision+ recall

(4)

NPV =
TN

TN + FN
(5)

Specificity =
TN

TN + FP
(6)

For equations 1, 2, 3, 4, 5 and 6. TP corresponds to true
positives, FP false positives, TN true negatives and FN false
negatives. TP means that the test sample has disease and is
predicted to have disease. FP is the example that is healthy
but classified as diseased. TN is healthy and classified as
healthy. FN is the sample that has disease but is classified
as not healthy.

Kappa score is a measure of reliability of a model in clas-
sification. That is, it expresses the agreement between model
and real classes. Its interpretation is as follows: Kappa values
from 0.0 to 0.2 shows slight agreement, 0.21 to 0.40 indicates
fair agreement, from 0.41 to 0.60 is moderate agreement,
0.61 to 0.80 indicates substantial agreement, and from 0.81 to
1.0 gives almost perfect or perfect agreement.

In addition, Gradient-weighted Class Activation Map-
ping (Grad-CAM) [42] images of best architectures were

examined. Grad-CAM is a heat map image of the tested data.
It shows from which regions the architectures were inferred.
Red color in the heat map image is the area where the models
predict most intensely. In this way, we observed whether the
models’ learned parts related to the disease or not.

Correlation between architectures was also examined by
using ICC value. The correlation between themetric results of
models was statistically evaluated by using ICC. The relation
was measured separately for each success metric. Intraclass
correlation coefficients were computed for each class accord-
ing to the following criteria: < 0.40 = poor agreement;
0.40-0.59 = fair agreement; 0.60-0.74 = good agreement;
0.75-1.0 = excellent agreement. Thereby, the correlation
of architectures with each other in correct diagnosis was
assessed.

III. RESULTS
A series of experiments were carried out to evaluate and to
confirm the performance of a CNN structure, different TL
based models (Xception, ResNet-101, MobileNetV2, Incep-
tionV3, DenseNet-121 and ConvNeXt) and ViT in terms of
inferencing TMJ disorders automatically. All experiments
were run in Google Colaboratory (Colab) [43]. Colab is a
product developed by Google Research, where python codes
can be written and executed online. It allows the use of GPU
and to import many libraries automatically, therefore it is very
practical for studies on machine learning.

The images were divided into 4 groups and 8 different
classes and training, and testing processes were carried out
separately for each group. This allowed observation and eval-
uation of performance analysis of deep learning approaches
in a more efficient way. Considering that the jaw structure
could be in different shapes and sizes depending on gender
and age groups, the data set comprised images of patients
from different gender and age groups. In the first place, the
data set was divided as training, validation, and test groups so
as to provide a better validation processes. For each category,
training data was 80% of the total number of data and test data
was 20%.Also, 20% of the training data was employed for the
validation process. Moreover, data augmentation techniques
were applied to increase the amount of data. Data augmen-
tation is the artificial expansion of available data by making
some random (but realistic) changes to the existing images.
These changes are minor ones such as rotating, increasing
brightness, zooming etc. Each operation increases the number
of data as much as itself. For example, if three different
augmentations are applied, the number of data will triple.
In this experimental study, we used 3 different augmentation
methods: contrast, flip and rotation. In order to obtain more
reliable results, the region of disc was cut out from MR
images. In other words, the data set was cropped manually.
The reason why images were cut this way is because a huge
amount of data was needed for architectures to learn from the
full version of the MR images (as in Figure 1). MR images as
in Figure 1 included parts that were not related to the TMJ,
such as the brain, eye, mouth, etc. These parts caused the
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FIGURE 3. The examples for cropped images: (a) at closed mouth,
articular disc position normal, (b) at closed mouth, articular disc position
in front, (c) at open mouth, articular disc position normal, (d) at open
mouth, articular disc position in front, (e) joint cavity without effusion,
(f) joint cavity with effusion, (g) there is no mandibular condyle
degeneration, (h) there is mandibular condyle degeneration.

network to make inferences from the wrong parts. Figure 3
represents an example for cropped versions of images.

Firstly, classification was performed with a basic CNN
network. The network consists of the Convolution, Pooling
and Dense layers. After that, models were applied separately
for each class on the data set during the training process.
Finally, experiments with ViT were carried out.

In order to obtain a fair comparison between DL architec-
tures, parameter values were set the same for all thesemodels.
For instance, the number of epochs was 100, loss function
was binary cross-entropy, optimizer was ADAM [44] and
learning rate was 1 × 10−6. However, in some trainings, the
loss value of architectures increased after the 50th iteration.
Therefore, the training phase of these models was discon-
tinued at 50. After the training process was completed, the
success of models was tested through the use of test data.
Accuracy rate, precision, sensitivity, F1-score, NPV, speci-
ficity, AUC and kappa score were calculated. According to
these results, which architectures Grad-CAM images would
be produced were determined. Finally, correlation between
the metric results of architectures was examined by using
ICC. Figure 4 illustrates the flow chart of steps followed to
solve the problem.

Tables 2, 3, 4 and 5 present the results for ‘‘closed
mouth disc position’’, ‘‘open mouth disc position’’, ‘‘joint
cavity effusion’’ and ‘‘mandibular condyle degeneration’’
respectively. According to our findings, it can be said that
MobileNetV2 was the best architecture for ‘‘closed mouth
disc position’’ and Xception for ‘‘open mouth disc position’’
groups, whereas ResNet-101 was considered as the most
effective model for ‘‘joint cavity effusion’’ andMobileNetV2
was the most effective model for ‘‘mandibular condyle
degeneration’’ groups, respectively. The best architectures
were determined by considering all metrics. Training and

validation accuracy graphics of successful architectures were
presented in Figure 5.
We also mentioned that experiments were carried out with

ViT. We conducted the experiments, but unfortunately the
results were 50% and below. These outcomes are much
lower than expected and not acceptable. Therefore, it was not
included in the tables and a comparison with other models
was not made.

Grad-CAM results of best architectures were also pro-
duced. The Grad-CAM results of architectures are presented
in Figure 6. In Figure 6, the first row shows diseased
areas marked by the dentomaxillofacial radiologist. The MRI
images used in this study were images of patients diagnosed
by consensus of dentomaxillofacial specialists. Therefore,
it allows an accurate assessment of the success of architec-
tures. As mentioned earlier, the red parts are the areas where
architectures were heavily focused for learning. It was not
expected to obtain a precise boundary drawing from those
images. The main purpose was to observe whether inferences
were made from the right regions. As can be seen from the
Grad-CAM images, models mostly colored (selected) the
correct regions. This means that the networks were quite
successful in classification. Finally, the ICC value for metrics
is presented in Table 6.

The ICC values of models were 0.58 for accuracy, 0.57 for
precision, 0.63 for sensitivity, 0.64 for F1-score, 0.28 for
NPV, 0.79 for specificity, 0.74 for AUC and 0.67 for kappa
score. While the correlation between models for the NPV
value was low, the results for other metrics were found to be
acceptable.

IV. DISCUSSION
The TMJ is among one the most complex joints of the human
body. Temporomandibular joint and its related structures
have an important role in distributing the stresses produced
by frequently performed tasks like speaking, chewing and
swallowing, as well as directing the jaw movement [45].
Temporomandibular joint disorders correspond to the clinical
problems of the temporomandibular joint and joint structures
as well as the masticatory muscles [1]. TMD can be the cause
of psychological diseases such as depression and inferiority
complex or vice versa anxiety and depression may cause TMJ
complaints [46]. According to epidemiological studies, the
rate of adults showing at least one TMD symptom during
their examination may rise to 75% [47]. The MR images
of TMJ are interpreted and reported by dentomaxillofacial
radiologists. Therefore, observer performance and experience
are important factors in the diagnosis of TMJ disease.

Translation research, which has developed in recent years,
aims to integrate new methods into medical applications and
accelerate the transition to clinical practice. Various studies
have been carried out in this context [48], [49]. The aim of
this study was to automatically report TMJ MR images in a
short time and to prevent the interpretation difference depend-
ing on observer performance and experience. In addition,
this method can be used for evaluation and follow-up after
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FIGURE 4. Schematic chart of the proposed method.

TABLE 2. Performances of networks for closed mouth disc position.

TABLE 3. Performances of networks for open mouth disc position.

treatment. To our knowledge, our study is one of the leading
works to diagnose TMD by using different architectures and
to interpret the success of models according to images diag-
nosed by dentomaxillofacial radiologists. In our opinion, use

of this methodology will enable higher accuracy in diagnosis
while consuming less time and therefore we believe that a
significant contribution will be made to current TMJ related
literature.
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TABLE 4. Performances of networks for joint cavity effusion.

TABLE 5. Performances of networks for mandibular condyle degeneration.

FIGURE 5. Accuracy graph of the best architectures: (a) closed mouth disc position MobileNetV2, (b) open mouth disc position Xception,
(c) joint cavity effusion ResNet-101, (d) mandibular condyle degeneration MobileNetV2.

The implementation that is analogous to our study and that
we can compare is the publication of Kao et al. [28]. They
performed DL-based models (InceptionResNetV2, Incep-
tionV3, DenseNet169, and VGG16) on total 300 images
of 32 healthy and 52 TMD patients. As a first step, they
detected the articular space between the temporal bone and

the mandibular condyle using the U-Net architecture from
100 sagittal MRI images of the TMJ. Then, they made classi-
fication using the specified architectures. Recall, precision,
accuracy, and F1 score values for InceptionV3 were 1.0,
0.81, 0.85, 0.9, respectively, and 0.92, 0.86, 0.85, 0.89 for
DenseNet169.
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FIGURE 6. The Grad-CAM images of best architectures: (a) closed mouth
disc position MobileNetV2, (b) open mouth disc position Xception,
(c) joint cavity effusion ResNet-101, (d) mandibular condyle degeneration
MobileNetV2.

TABLE 6. Performances of networks for mandibular condyle.

Previous studies other than [28] generally focused on dif-
ferent diseases and inferences. For instance, Kim et al. [25]
applied random forest and MultiLayer Perceptron (MLP)
methods by using MR images for the detection of TMJ
disc perforation. They studied 299 joints belonging to
289 patients. They divided these joints into two groups as
perforated and non-perforated. This separation was deter-
mined according to the presence of disc perforation detected
during surgery. They compared the performance of models
by using AUC. MLP performed best with AUC of 0.940,
followed by random forest with AUC of 0.918, and disk shape
alone resulted in AUC of 0.791. There are some published
studies regarding TMJ segmentation in the literature. Authors
of a previous research, [26] proposed an all-automatic artic-
ular disc detection and segmentation system. In this system,
a DL-based semantic segmentation approach was proposed.
Within the proposed system, authors aimed to support the
diagnosis of TMD in MRI. Two hundred and seventeen (217)
MR images were used. These images were images of patients
with displaced or normal articular discs. Three DL-based
semantic segmentation approaches were used. The first one,
an encoder-decoder CNN model named 3DiscNet (Detec-
tion for Displaced articular DISC using convolutional neural
NETwork), proposed as a new approachwithin the study. This

was compared with U-Net and SegNet-Basic architectures.
Another interesting study on temporomandibular joint seg-
mentation was carried out by Liu et al. [27]. They introduced
an automated segmentation algorithm based on deep learning
followed by a post processing stage. First, a U-Net model was
applied to separate images into 3 categories (glenoid fossa,
condyles, and background). In the post-processing stage, the
internal force constraint of a snake model was used to renew
the integrity of the fracture boundary for structural fractures
in these split images. Based on the tracking concept, the initial
boundary of the snake was obtained. A total of 206 low-dose
Computed Tomography (CT) cases were used and compati-
bility between the experimental results and the gold standard
was evaluated with indicators such as the Dice Coefficient
(DC) and the Mean Surface Distance (MSD).

In the current study, a CNN network, 6 different
pre-trained, fine-tuned models (Xception, ResNet-101,
MobileNetV2, InceptionV3, DenseNet-121 and ConvNeXt)
were applied on the MR images (2576 MR images of
200 patients) prepared together with Ankara University, Fac-
ulty of Dentistry. In addition to these, the performance of ViT
was also examined. It is an important point that the data used
in our study was not obtained from the public data set but
collected and created by the researchers. A pre-processing on
the images was also carried out by the researchers. Before
applying the models, the region related to the disc was cut
out from images. Afterwards, experiments were carried out
on these cropped images. Once the experimental results
were examined, we observed that the TL-based architectures
provided effective results. We figured out from Tables 2, 3,
4 and 5 that the best accuracy rates, F1 scores and AUC
values were promising with values above 0.75. Considering
all metrics in Table 2, MobileNetV2 provided the highest
value. It produced a 97% accuracy rate, 0.97 F1-score and
0.95 AUC value. As a result of the execution of architectures
on ‘‘openmouth disc position’’MR images, Xception yielded
the best accuracy with 81%. It was seen that the Xception
architecture was the most successful model for precision,
sensitivity and NPV values as well. The F1-score of this
architecture was very effective at 0.79, but here, ResNet-101
presented the highest precision value with 0.80. In addition,
the AUC value of ResNet-101 was 0.75, which was higher
than Xception. According to the results in Table 4, in terms
of all metrics, ResNet-101 provided the best results, hence
it can be accepted as the best DL architecture. When we
analyzed Table 5, it could be seen that MobileNetV2 was the
most effective architecture in consideration to all findings.
Since deep webs are black boxes, it is not clear how they
learn and why different architectures are successful for each
disease is unknown. But, we could state that the MobileNet is
a model developed for limited data, this feature has enabled
the architecture to be the most successful one in two classes
and produce effective results in other groups.

Nevertheless, high success rates do not guarantee that
architectures have the capability to diagnose diseases in
the right regions. It is possible that models can make
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predictions over wrong areas. Therefore, we also examined
Grad-CAM images. Assessment of results was based on the
regions marked by the dentomaxillofacial radiology special-
ist. In other words, the images generated by coloring with
Grad-CAM were compared with the version of the same
images marked by the specialist. In Figure 6, the red parts
in the second rows show the regions from which the models
infer. We observed that the models mostly colored the correct
region, when the Grad-CAM images of the architectures were
thought to be the best for each group examined. We would
also like to state our interpretation on ConvNeXt. ConvNeXt
had decent outcomes, but when Grad-CAM images were
examined, it was seen that the architecture made inferences
from wrong points. In our interpretation, the main reason for
this is that the network focuses on wrong area.

When ICC values are analyzed, in general, they revealed
good to excellent agreement values suggesting acceptable
correlation among the models assessed.

We would like to emphasize again that the process of
creating a dataset is costly and time consuming. Experi-
mental results showed that our findings were encouraging.
Provided models were successful in the assessment of diag-
nostic images of TMD patients. However, we believe that
future studies should include a higher number of images
for all groups incorporating images of patients with more
than one disease. This is very important for the results to be
more reliable and robust. Because the results obtained with
little data are instructive but not sufficient for full practical
application. In this regard, we plan to increase the number of
data, to examine and to apply different methods mostly used
in medical diagnosis.

V. CONCLUSION
For the dentistry literature, a CNN network, 6 different deep
learning architectures were applied on MR images for TMD
diagnosis. In addition to these, the effectiveness of ViT, which
has been very popular nowadays, on MR images was investi-
gated. We observed whether learning was carried out in part
related to the disease with Grad-CAM images. Also, ICC was
utilized to analyze the correlation between the models. The
ICC value shows the agreement between models in correct
diagnosis. Considering the results, the reliability between
architectures was interpreted as satisfactory. Within the limi-
tations of the present research, architectures were found to be
successful in terms of metrics, such as accuracy rate, preci-
sion, sensitivity, F1-score, specificity, AUC and kappa score,
examining the Grad-CAM images and calculating the ICC.
Therefore, this study has the potential to make a significant
contribution to the literature and encourage researchers to
apply different DL based approaches to solve the diagnostic
problem.
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