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Abstract
Identifying metabolic biomarkers of frailty, an age- related state of physiological 
decline, is important for understanding its metabolic underpinnings and develop-
ing preventive strategies. Here, we systematically examined 168 nuclear magnetic 
resonance- based metabolomic biomarkers and 32 clinical biomarkers for their asso-
ciations	with	frailty.	In	up	to	90,573	UK	Biobank	participants,	we	identified	59	bio-
markers robustly and independently associated with the frailty index (FI). Of these, 
34 associations were replicated in the Swedish TwinGene study (n = 11,025)	and	the	
Finnish Health 2000 Survey (n = 6073).	Using	two-	sample	Mendelian	randomization,	
we showed that the genetically predicted level of glycoprotein acetyls, an inflamma-
tory marker, was statistically significantly associated with an increased FI (β per SD 
increase = 0.37%,	95%	confidence	interval:	0.12–	0.61).	Creatinine	and	several	lipopro-
tein lipids were also associated with increased FI, yet their effects were mostly driven 
by kidney and cardiometabolic diseases, respectively. Our findings provide new in-
sights into the causal effects of metabolites on frailty and highlight the role of chronic 
inflammation underlying frailty development.
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1  |  INTRODUC TION

Frailty, a state of multisystem physiological decline (Clegg 
et al., 2013), is a strong, independent predictor of a range of ad-
verse outcomes, such as mortality, falls, and hospitalizations 
(Kojima, 2015, 2016; Peng et al., 2022).	Among	the	multiple	opera-
tional definitions of frailty, the two most widely adopted models are 
the frailty index (FI) (Searle et al., 2008) and the frailty phenotype 
(FP) (Fried et al., 2001). The FI describes frailty as the accumulation 
of age- related health deficits (e.g., diseases, signs, symptoms, and 
disabilities), whereas the FP considers frailty as a clinical syndrome 
characterized by weakness, slowness, exhaustion, unintentional 
weight loss, and low physical activity. Depending on the assessment 
method,	 the	 overall	 prevalence	 of	 frailty	 varies	 from	12%	 to	 24%	
among	individuals	aged	≥50 years	and	it	rises	substantially	with	age	
(O'Caoimh	et	al.,	2021). Since frailty is dynamic and potentially re-
versible (Hoogendijk et al., 2019), improved diagnosis and manage-
ment of frail individuals is crucial to reduce morbidity and mortality 
in the aging population.

Due to its complexity and multidimensional nature, it is challeng-
ing to uncover the underlying mechanisms of frailty. Studies have 
shown that both genetic and environmental factors play an import-
ant role in the etiology of frailty, with an estimated heritability of 
25%–	50%	(Livshits	et	al.,	2018; Mak et al., 2021).	A	recent	genome-	
wide	 association	 study	 (GWAS)	 provided	 further	 insights	 into	 the	
genetic underpinnings of frailty, suggesting that frailty is influenced 
by genetic loci related to several disease risk factors, such as body 
mass	index	(BMI),	cardiovascular	diseases,	and	mental	health	(Atkins	
et al., 2021). However, how these genetic findings translate into 
the biological processes underlying frailty is still unclear. Studying 
metabolic biomarkers, which are small molecules involved in met-
abolic reactions and regulated by genotypes to a varying degree, 
could contribute to the understanding of the molecular mecha-
nisms of frailty and aid in the development of preventive strategies 
(Picca et al., 2019). Prior studies have proposed a plethora of frailty- 
associated blood biomarkers, including inflammation markers (e.g., 
C- reactive protein [CRP], interleukin- 6), immune markers (e.g., white 
blood cell count), hormones (e.g., testosterone, insulin- like growth 
factor 1), and clinical markers (e.g., albumin, creatinine) (Cardoso 
et al., 2018;	Kane	&	Sinclair,	2019; Picca et al., 2022). More recently, 
metabolomics	studies	based	on	liquid	chromatography–	mass	spec-
trometry suggested that metabolites involving in energy producing 
pathways and antioxidation could be associated with frailty (Kameda 
et al., 2020; Rattray et al., 2019; Westbrook et al., 2021). However, 
no biomarker has been identified so far that could be used as a spe-
cific target for frailty diagnosis and drug development. One of the 
reasons is that current evidence is mostly based on observational 
studies, which is difficult to establish causal relationships as the find-
ings may be biased by confounding and reverse causality.

As	 a	 causal	 inference	method,	Mendelian	 randomization	 (MR)	
uses	 genetic	 variants	 as	 instrumental	 variables	 (IVs)	 to	 study	 the	
lifelong effect of an exposure on a disease outcome, providing an 
approach that is less prone to confounding and reverse causation 

compared to observational studies (Davies et al., 2018). To date, 
a few MR studies have identified causal links between increased 
low- density lipoprotein (LDL)- cholesterol, saturated fatty acids, 
as well as decreased serum total protein levels, and the FI (Tomata 
et al., 2021, 2022; Wang et al., 2019). Nevertheless, whether other 
frailty- associated metabolic biomarkers may also have causal effects 
on frailty, and whether there are differences in the metabolic under-
pinnings between the different constructs of frailty (e.g., FI vs. FP) 
remain largely unexplored.

To address these knowledge gaps and identify novel metabolic 
biomarkers of frailty, we investigated the effects of 200 circulating 
metabolic biomarkers on frailty, measured by both the FI and FP, 
using observational and MR approaches (Figure 1). The analyzed 
biomarkers include 168 metabolomic biomarkers quantified from a 
standardized, high- throughput nuclear magnetic resonance (NMR) 
metabolomics platform, as well as 32 conventional clinical biomark-
ers from serum and urine samples. Using data from three European 
population- based studies, including the UK Biobank (UKB) as discov-
ery cohort, and the Swedish TwinGene study and the Finnish Health 
2000 Survey as replication cohorts, we identified 34 biomarkers 
consistently and strongly associated with frailty independent of 
other risk factors. Subsequently, we conducted two- sample MR 
analyses to examine whether the identified biomarkers are causally 
related to frailty.

2  |  RESULTS

2.1  |  Cross- sectional associations of metabolic 
biomarkers with frailty in UK biobank

Details of the 200 metabolic biomarkers are shown in Table S1 and 
Figures S1 and S2. The 168 NMR metabolomic biomarkers include 
amino acids, cholesterols, lipoproteins, fatty acids, and metabolites 
related to inflammation and fluid balance; part of the metabolites 
also overlaps with the included clinical biomarkers, such as LDL- 
cholesterol,	creatinine,	and	albumin.	As	expected,	high	correlations	
were found across many of these biomarkers, especially those within 
the same biological domains (Figures S3 and S4; Tables S2 and S3). 
Frailty	was	assessed	using	the	FI	(ranging	from	0%	to	100%)	and	FP	
scores (ranging from 0 to 5, as a secondary outcome), where higher 
scores denote higher degrees of frailty (Tables S4 and S5). Two sub-
samples from the UKB were used as the discovery cohorts for the 
metabolomic and clinical biomarkers, respectively. They consisted 
of	90,573	participants	who	had	complete	data	on	the	168	NMR	me-
tabolomic	biomarkers	(mean	age	56.8 years	[standard	deviation	(SD)	
8.0];	54%	women;	mean	FI	12.3%	[SD	7.4])	and	67,488	participants	
who had complete data on the 32 clinical biomarkers (mean age 
57.5 years	[SD	8.2];	39%	women;	mean	FI	13.0%	[SD	7.7];	Table 1).

Using linear regression models adjusted for age and sex, we 
found	 191	 of	 the	 200	 metabolic	 biomarkers	 statistically	 signifi-
cantly associated with the FI after Bonferroni correction for multiple 
testing at p < 0.00025	 (i.e.,	0.05/200;	Figure 2; Tables S6 and S7). 
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Among	 the	 NMR	 metabolomic	 biomarkers,	 glycoprotein	 acetyls	
(GlycA)	 had	 the	 strongest	 positive	 association,	 every	 SD	 increase	
(equivalent	to	0.11 mmol/L)	being	associated	with	a	1.40%	higher	FI	
(95%	confidence	interval	[CI]:	1.35–	1.44).	Most	of	the	cholesterols	
and lipoproteins were negatively associated with the FI (Figure 2). 
Among	the	clinical	biomarkers,	the	 largest	effect	sizes	were	found	
for	glycated	hemoglobin	(HbA1c;	β	per	SD	increase:	1.84%,	95%	CI:	
1.78–	1.90)	 and	 total	 cholesterol	 (β	 per	 SD	 increase:	 −1.62%,	 95%	
CI:	−1.67	to	−1.56).	When	additionally	adjusted	for	baseline	assess-
ment center, BMI, smoking, alcohol consumption, education, and 
deprivation index (i.e., fully adjusted models), we found that 164 

biomarkers remained statistically significantly, where most of them 
were inversely, associated with the FI (Figure S5).	As	the	metabolic	
biomarkers were highly intercorrelated, we applied the least ab-
solute	 shrinkage	and	 selection	operator	 (LASSO)	procedure	 in	 the	
observational analysis to select biomarkers that were strongly and 
independently associated with the FI when adjusted for each other 
and also for age and sex. In total, 56 NMR metabolomic and 21 clin-
ical	biomarkers	were	identified	in	LASSO	models	(i.e.,	had	nonzero	
coefficients; Figure S6; Tables S6 and S7).

Several sensitivity analyses were performed. Firstly, instead of 
the FI, we used FP score as the outcome and found that most of the 

F I G U R E  1 Study	overview.	This	study	was	split	into	two	parts:	observational	and	MR	analysis.	(a)	In	observational	analysis,	90,573	and	
67,488 white UKB participants who had complete data on 168 NMR metabolomic and 32 clinical biomarkers, respectively, were used to 
assess	the	cross-	sectional	associations	between	the	biomarkers	and	the	frailty	index.	A	total	of	41	metabolomic	and	18	clinical	biomarkers	
that were statistically significant in linear regression models after Bonferroni correction (p < 0.05/200)	and	had	nonzero	coefficients	in	
LASSO	models	were	brought	forward	to	the	replication	phase	in	TwinGene	and	Health	2000.	(b)	Two-	sample	MR	analyses	were	performed	
for	the	34	replicated	biomarkers	(and	10	biomarkers	unavailable	in	the	replication	cohorts).	CHARGE,	Cohorts	for	Heart	and	Aging	Research	
in Genomic Epidemiology consortium; CRP, C- reactive protein; FI, frailty index; FP, frailty phenotype; GLGC, Global Lipids Genetics 
Consortium;	GWAS,	genome-	wide	association	study;	HbA1c,	glycated	hemoglobin;	LASSO,	least	absolute	shrinkage	and	selection	operator;	
LD,	linkage	disequilibrium;	MAGIC,	Meta-	Analyses	of	Glucose	and	Insulin-	related	traits	Consortium;	MR,	Mendelian	randomization;	MR-	
PRESSO, MR- pleiotropy residual sum and outlier; NMR, nuclear magnetic resonance; QC, quality control; SD, standard deviation; SNP, single 
nucleotide polymorphism; UKB, UK Biobank.
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associations were directionally consistent with the analyses using 
the FI (Figure 2 and Figure S5). Secondly, after excluding outlier bio-
marker values, all the biomarker- FI associations remained essentially 
unchanged (Tables S6 and S7). Finally, we performed stratified anal-
yses and observed largely similar results in subgroups by age, sex, 
and in non- white ethnic groups (Figure S7; Tables S8 and S9).

2.2  |  Replication in TwinGene and health 2000

For 41 NMR metabolomic biomarkers and 18 clinical biomarkers that 
were (i) significantly associated with the FI in multivariable- adjusted 
models	and	(ii)	selected	by	LASSO	in	the	UKB,	we	further	examined	
their associations with the FI in two independent samples, includ-
ing	11,025	Swedish	TwinGene	participants	(mean	age	58.3 years	[SD	
7.9];	55%	women;	mean	FI	12.1%	[SD	8.0])	and	6073	Finnish	Health	
2000	 participants	 (mean	 age	 52.5 years	 [SD	 14.7];	 55%	 women;	
mean	FI	17.7%	[SD	12.9];	Table 1). We meta- analyzed the biomarker-
 FI associations in TwinGene and Health 2000 and found that out of 

the	49	biomarkers	that	were	available	in	the	replication	cohorts,	34	
were significantly associated with the FI (p < 0.05;	Table S10). The 
replicated biomarkers were NMR metabolomic biomarkers from 
several domains including amino acids (e.g., alanine, phenylalanine), 
fluid	balance	(e.g.,	creatinine),	inflammation	(GlycA),	fatty	acids	(e.g.,	
monounsaturated fatty acids, linoleic acid), and lipoprotein sub-
classes, as well as clinical biomarkers such as LDL- cholesterol, CRP, 
and	HbA1c	(Figure 3).

2.3  |  Two- sample Mendelian randomization of 
identified biomarkers on frailty

Next, we performed two- sample MR analyses to examine potential 
causal relationships of the 44 biomarkers, of which 34 were rep-
licated in TwinGene and Health 2000 and 10 were unavailable in 
the replication cohorts. Genetic instruments (i.e., single nucleotide 
polymorphisms [SNPs] associated with the biomarkers) were se-
lected	from	the	largest	available	GWASs;	the	estimated	F- statistics 

TA B L E  1 Characteristics	of	the	samples	used	in	the	observational	analysis.

Characteristic

UK biobank (discovery)a

TwinGene 
(replication)

Health 2000 
(replication)

NMR metabolomics 
subsample Clinical biomarkers subsample

No. of participants 90,573 67,488 11,025 6073

Age	at	baseline,	year

Mean ± SD 56.77 ± 8.03 57.46 ± 8.16 58.33 ± 7.91 52.54 ± 14.68

Range 40–	71 39–	72 41–	87 30–	97

Women, n	(%) 49,296	(54.4) 26,379	(39.1) 6017 (54.6) 3325 (54.8)

BMI, kg/m2,	mean ± SD 27.33 ± 4.69 28.42 ± 5.16 25.05 ± 3.34 26.92 ± 4.63

Current smokers, n	(%) 8964	(9.9) 7751 (11.5) 1795	(16.3) 1305 (21.5)

Alcohol	consumption,	g/year,	
mean ± SD

–	 –	 –	 3599 ± 8220

Less than weekly, n	(%) 25,790	(28.5) 19,321	(28.6) 3122 (30.1) –	

Weekly, n	(%) 64,727 (71.5) 48,134 (71.4) 7241	(69.9) –	

Education levelb, n	(%)

High 29,213	(32.5) 20,223 (30.3) 2862 (26.0) 1754	(28.9)

Intermediate 44,855 (50.0) 33,384 (50.0) 5199	(47.2) 1983	(32.7)

Low 15,684 (17.5) 13,206	(19.8) 2951	(26.8) 2336 (38.5)

Deprivation indexc,	mean ± SD −1.48 ± 3.00 −1.25 ± 3.10 –	 –	

FId,	%,	mean ± SD 12.29 ± 7.41 13.03 ± 7.71 12.15 ± 8.04 17.67 ± 12.90

FP scoree,	mean ± SD 0.56 ± 0.82 0.64 ± 0.87 –	 –	

a Two subsamples from the UK Biobank cohort were used for analysis of the two groups of biomarkers. The NMR metabolomics subsample had 
complete data on the 168 metabolomic biomarkers, while the clinical biomarkers subsample had complete data on the 32 clinical biomarkers.
b	Education	level	in	UKB	was	assessed	by	the	highest	self-	reported	qualification:	low	(no	relevant	qualifications);	intermediate	(A	levels,	O	levels/
GCSEs,	CSEs,	NVQ/HND/HNC,	and	other	professional	qualifications);	high	(college	or	university	degree).	Education	level	in	TwinGene	was	defined	
by years of completed education: low (<9 years);	intermediate	(9–	12 years);	high	(>12 years).
c Townsend deprivation index was derived from national census data regarding unemployment, car ownership, home ownership, and household 
overcrowding.	A	higher	score	indicates	a	higher	level	of	socioeconomic	deprivation.	It	was	only	available	in	UK	Biobank.
d	FI	was	multiplied	by	100	and	was	considered	as	the	percentage	of	deficit	accumulation	(from	0%	to	100%).
e FP was considered as a continuous score representing the number of frailty criteria present (from 0 to 5). It was only available in UK Biobank.
Abbreviations:	BMI,	body	mass	index;	FI,	frailty	index;	FP,	frailty	phenotype;	NMR,	nuclear	magnetic	resonance;	SD,	standard	deviation.
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for	all	 instruments	were > 10	 (Tables S11–	S13). To obtain summary 
statistics for the SNP- frailty (outcome) associations, we performed a 
GWAS	for	the	FI	and	FP	in	UKB	samples	that	did	not	have	an	overlap	
of	individuals	with	the	exposure	GWASs.	Using	the	inverse	variance	
weighted	 (IVW)-	MR	method,	 we	 observed	 18	 significant	 associa-
tions with the FI at a false discovery rate (FDR)- corrected threshold 
of p < 0.011	(Figure 3 and Table S14). Several of these MR estimates 
were directionally consistent with the observational estimates. For 
instance, each SD increment in the genetically predicted levels of 
GlycA	 and	 creatinine	were	 associated	with	 0.37%	 (95%	 CI:	 0.12–	
0.61)	and	0.38%	(95%	CI:	0.10–	0.66)	increase	in	the	FI,	respectively	
(Figure 4). By contrast, omega- 6, apolipoprotein B, total cholesterol, 
LDL- cholesterol, and some of the lipoprotein subclasses were asso-
ciated with the FI negatively in the observational analysis but posi-
tively	in	the	IVW-	MR	(Figure 3). None of the selected 44 biomarkers 
were statistically significantly associated with FP score (Table S14).

Notably, a considerable heterogeneity was observed for most 
MR estimates (p < 0.05	from	Cochran's	Q tests; Table S14), some of 
which could possibly be due to horizontal pleiotropy (i.e., genetic 
variants	associate	with	other	traits	that	influence	the	outcome).	As	
sensitivity analyses, we applied pleiotropy- robust methods including 
MR- Egger, weighted median, weighted mode, and MR- pleiotropy re-
sidual sum and outlier (MR- PRESSO). Estimates for most biomarkers 
were comparable when using different MR methods; however, we 
found	 evidence	 of	 directional	 pleiotropy	 for	 GlycA,	 monounsatu-
rated fatty acids, and total lipids in small LDL (p < 0.05	for	MR-	Egger	
intercept; Table S14).

Since	many	of	 the	 IVs	were	 associated	with	>1 NMR metabo-
lomic biomarkers, we performed a sensitivity analysis by excluding 
the	 potentially	 pleiotropic	 SNPs	 from	 each	 biomarker.	 As	 shown	
in Table S15,	 the	MR	estimates	for	GlycA	and	creatinine	remained	
robust, and we also observed a statistically significant association 

F I G U R E  2 Age-		and	sex-	adjusted	observational	associations	of	metabolic	biomarkers	with	FI	and	FP	scores	in	the	UK	Biobank.	
Estimates represent the age-  and sex- adjusted changes in frailty index (outer tracks of the circles) or frailty phenotype score (inner tracks 
of the circles) per 1 standard deviation increase in the biomarker level. Red dots indicate positive associations, whereas blue dots indicate 
negative associations. Filled dots represent statistically significant associations after Bonferroni correction at p < 0.00025	(i.e.,	0.05/200,	
considering 200 biomarkers). The corresponding numeric estimates are shown in Tables S6 and S7.	ALP,	alkaline	phosphatase;	ALT,	alanine	
aminotransferase;	AST,	aspartate	aminotransferase;	ApoA,	apolipoprotein	A;	ApoB,	apolipoprotein	B;	BCAA,	branched	chain	amino	acids;	
bOHbutyrate,	3-	hydroxybutyrate;	C,	cholesterol;	CE,	cholesteryl	esters;	DHA,	docosahexaenoic	acid;	FC,	free	cholesterol;	FI,	frailty	index;	
FP,	frailty	phenotype;	GGT,	gamma	glutamyltransferase;	HbA1c,	glycated	hemoglobin;	HDL,	high-	density	lipoproteins;	IDL,	intermediate-	
density	lipoproteins;	IGF,	insulin-	like	growth	factor;	L,	large	(when	used	as	prefix)	or	total	lipids	(when	used	as	suffix);	LA,	linoleic	acid;	LDL,	
low-	density	lipoproteins;	M,	medium;	MUFA,	monounsaturated	fatty	acids;	NMR,	nuclear	magnetic	resonance;	P,	particle	concentrations;	
PL,	phospholipids;	PUFA,	polyunsaturated	fatty	acids;	S,	small;	SD,	standard	deviation;	SFA,	saturated	fatty	acids;	SHBG,	sex	hormone-	
binding	globulin;	TG,	triglycerides;	Unsaturation,	degree	of	unsaturation;	UKB,	UK	Biobank;	VLDL,	very-	low-	density	lipoproteins;	XL,	very	
large;	XS,	very	small;	XXL,	extremely	large.
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6 of 17  |     MAK et al.

between	genetically	predicted	GlycA	and	increased	FP	score	(β per 
SD	 increase:	0.040,	95%	CI:	0.012–	0.067).	However,	 the	MR	esti-
mates for most of the lipids and lipoproteins were attenuated, prob-
ably due to the highly reduced number of genetic instruments.

To further examine whether the effects of the biomarkers on 
the FI could be influenced by the deficit items included in the FI, 
we performed sensitivity analyses of the MR using 11 stripped FIs 
as outcomes, where deficit items from each of the 11 categories, 
such as cardiometabolic, cancer, and immunological items were re-
moved from the corresponding FI. When removing cardiometabolic 
items (e.g., heart failure, stroke, diabetes, and high blood pressure), 

the	IVW-	MR	estimates	for	monounsaturated	fatty	acids,	omega-	6,	
cholesterols, and lipoprotein subclasses were attenuated to null 
(Figure 5 and Table S16).	 Estimates	 for	 GlycA	 and	 creatinine	 re-
mained significant across all the stripped FIs.

2.4  |  Subgroup and co- twin control analyses of 
creatinine and GlycA on FI

For	 GlycA	 and	 creatinine	 that	 had	 putative	 causal	 relationships	
with the FI, we performed additional subgroup analyses in the 

F I G U R E  3 Observational	and	MR	effect	estimates	of	selected	metabolic	biomarkers	on	FI.	The	44	included	biomarkers	were	those	
identified as FI- associated biomarkers in the UK Biobank (p < 0.00025	in	linear	regression	models	and	had	nonzero	coefficients	in	LASSO	
models) and replicated (or not available) in TwinGene and Health 2000. The estimates are from fully adjusted linear regression models, 
including age, sex, baseline assessment center (only in UK Biobank), body mass index, smoking, alcohol consumption, education level, 
and deprivation index (only in UK Biobank) as covariates. The models in TwinGene were additionally corrected for twin relatedness. For 
the	IVW-	MR	estimates,	filled	triangles	represent	statistically	significant	associations	at	p < 0.011	(FDR-	corrected	p	value	threshold).	All	
the	effect	sizes	represent	the	changes	in	FI	(%)	per	1	standard	deviation	increase	in	biomarker	level	(except	for	the	IVW-	MR	estimates	
for	CRP	and	HbA1c,	which	are	per	log	mg/L	increase	and	per	%	increase,	respectively;	details	of	the	units	used	are	shown	in	Table S11). 
All	the	observational	estimates	are	shown	in	Tables S6 and S7; MR estimates are shown in Table S14.	ALP,	alkaline	phosphatase;	ApoB,	
apolipoprotein	B;	C,	cholesterol;	CE,	cholesteryl	esters;	FC,	free	cholesterol;	FI,	frailty	index;	GGT,	gamma	glutamyltransferase;	HbA1c,	
glycated	hemoglobin;	HDL,	high-	density	lipoproteins;	IDL,	intermediate-	density	lipoproteins;	IGF,	insulin-	like	growth	factor;	IVW,	inverse	
variance	weighted;	L,	total	lipids;	LA,	linoleic	acid;	LDL,	low-	density	lipoproteins;	M,	medium;	MR,	Mendelian	randomization;	MUFA,	
monounsaturated	fatty	acids;	NMR,	nuclear	magnetic	resonance;	P,	particle	concentrations;	PL,	phospholipids;	PUFA,	polyunsaturated	fatty	
acids;	S,	small;	SD,	standard	deviation;	SHBG,	sex	hormone-	binding	globulin;	TG,	triglycerides;	Unsaturation,	degree	of	unsaturation;	VLDL,	
very-	low-	density	lipoproteins;	XL,	very	large;	XS,	very	small;	XXL,	extremely	large.
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UKB to assess whether the associations could be driven by their 
associated	 traits,	 namely	 CRP	 and	 LDL-	cholesterol	 for	 GlycA	
(Connelly et al., 2017), and chronic kidney disease for creatinine 
(Levey et al., 2009).	The	GlycA-	FI	association	was	robust	across	all	
subgroups (individuals stratified by their CRP and LDL- cholesterol 
levels), though it tended to be stronger among participants with 
high CRP and low LDL- cholesterol levels (Figure 6a and Table S17). 
The creatinine- FI association was statistically significant only 
in participants with a chronic kidney disease (Figure 6c and 
Table S18).

As	 a	 triangulation	 approach,	we	performed	 a	within-	twin-	pair	
analysis in TwinGene to determine whether the FI- biomarker as-
sociations could be explained by familial confounding (i.e., shared 
genetic and/or shared environmental factors). Compared to the 
population-	level	estimate	of	 the	GlycA-	FI	association,	 the	within-	
pair estimate was slightly attenuated in dizygotic (DZ) twins and 
was attenuated to an even greater extent— although not com-
pletely— in monozygotic (MZ) twins, indicating potential genetic 
confounding (Figure 6b). For the creatinine- FI association, we ob-
served similar effect sizes for the population- level and within- pair 
estimates; however, the wide confidence intervals and statistically 
nonsignificant estimates in twin pairs precluded us from drawing 
conclusions on the extent to which this association could be attrib-
utable to familial factors (Figure 6d).

3  |  DISCUSSION

We conducted comprehensive observational analyses using data 
from three population- based studies, supplemented with MR anal-
yses to explore the effects of circulating metabolic biomarkers on 
frailty. In the large UKB sample, we found that the vast majority 
of the 200 assessed biomarkers were significantly associated with 
frailty, and the directions of associations were mostly consistent 
for the FI and FP models. Using multivariable linear regression and 
LASSO	models,	we	selected	59	biomarkers	 that	had	the	strongest	
observational associations with the FI in the UKB and replicated 34 
of these associations in TwinGene and Health 2000. Specifically, 
we	showed	that	GlycA	was	strongly	associated	with	increased	FI	in	
both	observational	and	IVW-	MR	analyses	and	across	different	sub-
groups. However, the association was at least partly influenced by 
pleiotropy as indicated by MR- Egger and co- twin control analyses. 
MR analyses also suggested potential causal effects of creatinine, 
monounsaturated fatty acids, omega- 6, and several cholesterol and 
lipoprotein traits on the FI, although these effects appeared to be 
driven by other traits and diseases associated with the exposures. 
We did not find evidence of causal relationships between the meta-
bolic biomarkers and the FP score.

To the best of our knowledge, this is the first study that has sys-
tematically assessed the associations of NMR metabolomic biomarkers 

F I G U R E  4 MR	scatter	plots	for	the	effects	of	NMR-	derived	glycoprotein	acetyls	and	creatinine	on	FI.	(a)	Scatter	plot	of	the	SNP-	FI	
associations	against	SNP-	GlycA	associations.	The	slopes	of	the	colored	lines	represent	the	estimated	change	in	FI	(%)	per	1	standard	
deviation	increase	in	genetically	predicted	GlycA	level.	Intercepts	for	IVW,	weighted	median,	weighted	mode,	and	MR-	PRESSO	were	fixed	at	
0; the MR- Egger intercept was 0.0276 (p = 0.028),	indicating	potential	directional	pleiotropy.	Fifty-	five	SNPs	were	used	in	total,	six	of	which	
were	identified	as	outliers	by	MR-	PRESSO	(rs10455872,	rs117733303,	rs1548306,	rs72801474,	rs77303550,	and	rs9270074;	these	SNPs	
were indicated by asterisks). (b) Scatter plot of the SNP- FI associations against the SNP- creatinine associations. The slopes of the colored 
lines	represent	the	estimated	change	in	FI	(%)	per	1	standard	deviation	increase	in	genetically	predicted	creatinine	level.	The	MR-	Egger	
intercept was 0.005 (p = 0.73),	indicating	no	evidence	of	directional	pleiotropy.	Sixty-	nine	SNPs	were	used	in	total,	three	of	which	were	
identified	as	outliers	by	MR-	PRESSO	(rs10008637,	rs3974479,	and	rs9272116);	these	SNPs	were	indicated	by	asterisks.	Error	bars	represent	
95%	confidence	intervals.	All	the	MR	estimates	are	shown	in	Table S14.	FI,	frailty	index;	GlycA,	glycoprotein	acetyls;	IVW,	inverse	variance	
weighted; MR, Mendelian randomization; MR- PRESSO, MR- pleiotropy residual sum and outlier; SNP, single nucleotide polymorphism.
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with frailty. We reported several novel observational findings, includ-
ing	the	strong	positive	association	of	GlycA	and	the	generally	negative	
associations of lipoprotein subclasses and components with both the 
FI and FP scores. Our results for clinical biomarkers are also largely 
consistent with the literature, which has suggested positive associa-
tions	of	CRP	(Velissaris	et	al.,	2017) and glucose (Zaslavsky et al., 2016), 
and negative associations of vitamin D (Buchebner et al., 2019) and 
LDL-	cholesterol	 (Jayanama	 et	 al.,	 2018) with frailty. Since frailty is 
characterized by the dysregulation in multiple physiological systems 
such as endocrine system, immune system, brain, and skeletal muscles 
(Clegg et al., 2013), it is conceivable that frailty is related to many of the 

circulating metabolomic and clinical biomarkers, which are typically re-
flective of the current physiological state (Picca et al., 2019).

As	 observational	 results	 can	 be	 biased	 by	 confounding	 and	
reverse causation, we performed two- sample MR analyses to 
provide further mechanistic insights into the causal effects of 
the biomarkers on frailty (Davies et al., 2018).	 Although	 the	
exact biological mechanisms of frailty are not yet fully under-
stood, studies have suggested “inflammaging” (i.e., systemic and 
chronic inflammation associated with aging) as the converging 
point of the mechanistic pillars of aging and the main contributor 
to	age-	related	diseases,	including	frailty	(Ferrucci	&	Fabbri,	2018; 

F I G U R E  5 MR	sensitivity	analysis	for	the	effects	of	metabolic	biomarkers	on	11	stripped	FIs	removing	deficit	items	from	each	category.	
The	19	included	biomarkers	are	those	that	were	significantly	associated	with	the	FI	in	IVW-	MR	after	FDR	correction.	The	11	stripped	FIs	
were calculated as the sum of deficit items divided by the total, after excluding items from each category in the UK Biobank. For example, 
the “FI, excluded cardiometabolic items” was a 41- item FI removing 8 cardiometabolic items (i.e., diabetes, myocardial infarction, angina, 
stroke, high blood pressure, hypothyroidism, deep vein thrombosis, and high cholesterol). The list of FI items in each category is shown in 
Table S4.	A	GWAS	and	a	two-	sample	MR	analysis	were	then	performed	for	each	of	the	11	stripped	FIs,	using	the	same	method	as	in	the	
main	analysis.	The	IVW-	MR	effect	sizes	represent	the	difference	in	FI	(%)	per	1	SD	increase	in	genetically	predicted	biomarker	level.	Filled	
symbols represent statistically significant associations at p < 0.011	(FDR-	corrected	p value threshold). The numeric point estimates from this 
sensitivity analysis are shown in Table S16.	ApoB,	apolipoprotein	B;	C,	cholesterol;	CE,	cholesteryl	esters;	FC,	free	cholesterol;	FI,	frailty	
index;	GlycA,	glycoprotein	acetyls;	HDL,	high-	density	lipoproteins;	IDL,	intermediate-	density	lipoproteins;	IVW,	inverse	variance	weighted;	
L,	total	lipids;	LDL,	low-	density	lipoproteins;	M,	medium;	MR,	Mendelian	randomization;	MUFA,	monounsaturated	fatty	acids;	NMR,	nuclear	
magnetic	resonance;	P,	particle	concentrations;	PL,	phospholipids;	S,	small;	VLDL,	very	low-	density	lipoproteins;	XL,	very	large;	XS,	very	
small.
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Franceschi et al., 2018;	Kane	&	Sinclair,	2019; Picca et al., 2022). 
In line with previous studies showing robust relationships of pro- 
inflammatory cytokines such as interleukin- 6 and tumor necrosis 

factor- α	 with	 frailty	 (Kane	 &	 Sinclair,	 2019; Picca et al., 2022), 
we	 found	 that	 genetically	 predicted	 GlycA	 level	 was	 associated	
with an increased FI. Importantly, this effect was not driven by 

F I G U R E  6 Subgroup	and	co-	twin	control	analyses	for	the	association	of	NMR-	derived	glycoprotein	acetyls	and	creatinine	with	FI.	(a)	
Forest	plot	showing	the	association	between	GlycA	and	FI	across	subgroups	of	C-	reactive	protein	and	LDL-	cholesterol	levels	in	the	UK	
Biobank. LDL- cholesterol values were adjusted for statin use. Details of the estimates are shown in Table S17. (b) Bar graph showing the 
population-	level	and	within-	twin-	pair	estimates	for	the	association	between	GlycA	and	FI	in	the	full	sample,	DZ	twins	(2762	pairs),	and	MZ	
twins (1132 pairs) in TwinGene. (c) Forest plot showing the association between the NMR- derived creatinine and FI among individuals with 
and without a chronic kidney disease. Chronic kidney disease cases were defined based on a self- reported kidney disease at baseline and 
ICD-	10	codes	N17,	N18,	or	N19	from	hospital	data.	Open	circle	represents	a	nonsignificant	estimate	(p ≥ 0.00025).	Details	of	the	estimates	
are shown in Table S18. (d) Bar graph showing the population- level and within- twin- pair estimates for the association between the NMR- 
derived creatinine and FI in the full sample, DZ twins (2762 pairs), and MZ twins (1132 pairs) in TwinGene. Models for the subgroup analysis 
were multivariable linear regression models adjusted for age, sex, baseline assessment center, body mass index, smoking, alcohol, education, 
and deprivation. Models for the co- twin control analysis were generalized estimating equations adjusted for age, sex, body mass index, 
smoking,	alcohol	consumption,	and	years	of	education.	All	the	error	bars	represent	95%	confidence	intervals.	DZ,	dizygotic;	FI,	frailty	index;	
GlycA,	glycoprotein	acetyls;	LDL,	low-	density	lipoprotein;	NMR,	nuclear	magnetic	resonance;	SD,	standard	deviation.
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the individual deficit items included in the FI nor by other traits 
(CRP	and	LDL-	cholesterol)	associated	with	GlycA.	Meanwhile,	our	
MR results did not support a causal relationship between CRP, a 
commonly used inflammatory marker in clinical practice (Bassuk 
et al., 2004),	and	frailty.	GlycA	is	a	novel,	NMR-	derived	composite	
biomarker which reflects the concentration and glycosylation of 
acute- phase proteins such as α1- acid glycoprotein, haptoglobin, 
and α1- antitrypsin during inflammatory states, and has been pro-
posed as a more sensitive measure than CRP for detecting low- 
grade inflammation in younger adults (Chiesa et al., 2022; Connelly 
et al., 2017). Similarly, a recent study suggested that the interleu-
kin- 6 signaling pathway that also includes CRP, but not CRP itself, 
could have a causal effect on frailty (Mourtzi et al., 2023). Notably, 
the MR- Egger intercept and within- twin- pair estimates implicated 
possible	pleiotropic	effects.	This	 could	be	due	 to	 the	GlycA	 sig-
nal that overlaps with lipoproteins and triglycerides (Connelly 
et al., 2017), which may also be associated with frailty (Ramsay 
et al., 2015).	 Taken	 together,	 these	 findings	 suggest	 that	 GlycA	
may capture part of the inflammatory response that is causally re-
lated to frailty and could be a potential biomarker for early identi-
fication and monitoring of frailty. More studies are also warranted 
to assess the effect of reducing inflammation on frailty due to the 
currently limited and inconclusive evidence (Espinoza et al., 2022; 
Orkaby et al., 2021). On the contrary, we observed a putative 
causal effect of NMR- derived creatinine on the FI, although this 
effect was not found in the clinical biomarker serum creatinine, 
measured using an enzymatic assay. Creatinine is a by- product of 
muscle metabolism and increased levels are often indicative of a 
decline in kidney function (Thongprayoon et al., 2016).	As	frailty	
is closely linked to kidney function (Nixon et al., 2018) and has 
shown to be associated with glomerular filtration rate estimated 
by serum creatinine (Ballew et al., 2017), the association between 
creatinine and FI could possibly be explained by kidney disease. 
This finding was also confirmed in our subgroup analysis, in which 
we found no statistically significant association between NMR- 
derived creatinine and FI in individuals without a chronic kidney 
disease.

In the observational analyses, we found that most of the lipids 
and lipoprotein subclasses, except for triglycerides within lipopro-
teins, were negatively associated with the FI. On the contrary, our 
MR results indicated that many of these lipid traits, such as sub-
classes of very low- , intermediate- , and low- density lipoproteins, as 
well as monounsaturated fatty acids and omega- 6, were associated 
with an increased FI. These findings are similar to previously re-
ported inverse relationships of total cholesterol and LDL- cholesterol 
with	frailty	in	observational	studies	(Jayanama	et	al.,	2018; Matsuoka 
et al., 2020), but a positive association between LDL- cholesterol and 
the FI in an MR study (Wang et al., 2019). The apparent discrepancy 
in the direction of the associations could be due to uncontrolled 
confounders in the observational associations, as well as the dif-
ferent interpretations of the models; the MR estimates represent a 
lifelong effect of genetically predicted biomarker levels on frailty, 
while observational estimates usually represent an association over 

a	shorter	period	of	life.	Although	these	biomarkers	have	shown	to	be	
risk factors for cardiovascular diseases and diabetes (Do et al., 2013; 
Holmes et al., 2018; Richardson et al., 2020; White et al., 2016; 
Zagkos et al., 2022), some studies have also found no or inverse re-
lationship between LDL- cholesterol and mortality risk among older 
adults (Butterworth et al., 2009; Li et al., 2021). Moreover, MR es-
timates could potentially be biased by SNPs that have pleiotropic 
effects. It has been shown that SNPs in lipid- associated genes, such 
as PCSK9, are highly pleiotropic and are robustly associated with var-
ious lipoprotein subclasses, cholesterols, as well as omega- 6 fatty 
acids and sphingomyelin (Würtz et al., 2013). Importantly, when 
the FI was stripped of cardiometabolic items such as heart failure, 
stroke, and diabetes, the MR estimates for all these lipid and lipopro-
tein traits attenuated to null, suggesting that their effects on the FI 
are likely mediated by cardiometabolic diseases. This also highlights 
the importance of optimizing cardiovascular disease risk factors in 
mitigating	frailty	(Atkins	et	al.,	2019).

We used both the FI and FP to measure frailty, which are the 
two most widely validated frailty measures in community- dwelling 
older adults (Dent et al., 2016). Despite being different operational 
approaches to frailty, previous research has demonstrated that the 
FI and FP share a large part of their genetic and environmental eti-
ologies, and may thus tap the same root causes of frailty (Livshits 
et al., 2018).	Although	most	biomarkers	had	similar	effects	on	the	
FI and FP in the observational analysis, we did not observe any 
statistically significant association between biomarkers and the 
FP in the main MR analysis. This could be due to differences in 
their underlying mechanisms, in which the FI is a multidimensional 
construct that incorporates deficits from multiple tissue and organ 
systems (Searle et al., 2008), while the FP is more related to physi-
cal functioning and defines a clinical syndrome that emerges from 
a decline in physiological reserves (Fried et al., 2001). Therefore, 
biomarkers directly related to the FI items, such as lipids and li-
poproteins that are indicative of cardiometabolic health, may be 
more strongly associated with the FI than the FP. Of note, in the 
sensitivity	MR	analysis,	we	found	that	GlycA	was	significantly	as-
sociated with both the FI and FP after excluding the potentially 
pleiotropic SNPs, indicating that inflammation could be a common 
driver of both the multidimensional (FI) and physical (FP) frailty. 
Moreover, while the FP was originally developed for older adults, 
the continuous FI is often more informative on the frailty status 
in younger adults (Clegg et al., 2013). The null association for the 
FP could be explained by the relatively young and healthy popu-
lation of UKB and the low prevalence of frailty as measured by 
the	 FP,	which	may	 have	 reduced	 statistical	 power	 in	 the	GWAS	
and the subsequent MR analysis. The FP was also not available in 
TwinGene and Health 2000. More studies are therefore needed 
to confirm the relationships between metabolic biomarkers and 
physical frailty.

The strengths of this study include the use of a standardized 
NMR metabolomics platform in three large cohorts to identify met-
abolic biomarkers that have strong evidence of associations with the 
two measures of frailty. This platform allowed us to examine novel 
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biomarkers, such as inflammatory markers and lipids that are not 
yet commonly assessed in clinical practice. Using the MR and co- 
twin control methods, we were also able to make causal inferences. 
However, some limitations should be considered when interpret-
ing our results. Firstly, our analysis was restricted to samples with 
European	 ancestry.	Although	 it	minimized	bias	 arising	 from	popu-
lation stratification, it could also reduce generalizability to other 
ethnic	groups.	Secondly,	our	metabolomics	and	GWAS	data	mainly	
relied on UKB, which provided us with enough statistical power 
but may not be representative to the general population due to the 
healthy selection (Fry et al., 2017). Thirdly, because of the cross- 
sectional design of the included observational studies, we were un-
able to delineate longitudinal relationships between biomarkers and 
changes in frailty levels. Fourthly, our observational and two- sample 
MR analyses only assumed linear relationships. Whether there may 
be nonlinear associations between metabolic biomarkers and frailty 
need to be examined in future studies. Finally, although the NMR 
metabolomics platform from Nightingale Health provides a compre-
hensive and standardized assessment of circulating metabolites, it 
does not capture the whole blood metabolome and includes only a 
limited number of metabolites. Some of the NMR biomarkers also 
lack specificity and are associated with a wide range of diseases 
(Julkunen	et	al.,	2023). Hence, further investigation is needed to ex-
amine if other metabolites may also be related to frailty.

In conclusion, our results show that a large proportion of the 
blood metabolome is associated with frailty. We also present evi-
dence	of	the	potential	causal	effects	of	GlycA,	creatinine,	and	sev-
eral lipid traits on the FI. These findings provide novel insights into 
the metabolic underpinnings of frailty and outline the foundations 
for the continuing search of specific biomarkers that can facilitate 
early identification and management of frailty.

4  |  METHODS

4.1  |  Study population

The UKB was used as the discovery cohort. It is a population- based, 
cross-	sectional	study	with	half	a	million	adults	aged	37–	73 years	re-
cruited across the UK between 2006 and 2010 (Sudlow et al., 2015). 
At	 baseline	 assessment,	 participants	 provided	 biological	 samples	
and other health- related data via touch screen questionnaires and 
physical measurements in one of the 22 assessment centers across 
England, Wales, and Scotland. For the observational analysis, we ex-
cluded UKB individuals who had withdrawn from the study (n = 172),	
had missing data on the FI (n = 2293)	and	were	self-	reported	as	non-	
white ethnicity (n = 28,260).	From	the	471,906	eligible	UKB	partici-
pants, we then selected two subsamples for the analyses of the NMR 
metabolomic biomarkers and clinical biomarkers, respectively. In the 
first subsample of 104,378 participants who had complete data on 
the 168 metabolomic biomarkers, we further removed samples that 
failed quality control (i.e., labeled as “high lactate,” “high pyruvate,” 
“low glucose,” or “low protein”), yielding n = 90,573	individuals	in	the	

analysis. The second subsample consisted of 67,488 participants 
who had complete data on the 32 clinical biomarkers.

Replication was conducted in two independent studies: the 
Swedish TwinGene study and the Finnish Health 2000 Survey. 
TwinGene is a subcohort study within the Swedish Twin Registry, 
which collected blood sample from 12,648 older Swedish twins in 
2004–	2008	 (Magnusson	 et	 al.,	2013). Participants had previously 
participated	in	a	telephone	interview	survey,	the	Screening	Across	
the	Lifespan	Twin	 (SALT)	 study	 in	1998–	2002.	The	Finnish	Health	
2000 Survey is a nationally representative survey conducted during 
2000–	2001,	and	its	two-	stage	stratified	cluster	sample	consisted	of	
8028	persons	aged	≥30	(Heistaro,	2008). The Health 2000 Survey 
included self- administered questionnaires, interviews, health exam-
inations, and laboratory measurements. The participation rate in the 
health	examination	was	85%.	Using	the	same	data	processing	proce-
dures as in the UKB, we excluded TwinGene and Health 2000 par-
ticipants who had missing data on the FI, or any of the metabolomic 
or clinical biomarkers, and failed quality control, yielding a total of 
11,025 TwinGene participants and 6073 Health 2000 participants 
in the analysis.

The UKB study had an ethical approval from the North West 
Multi- Centre Research Ethics Committee. The TwinGene study was 
approved by the Regional Ethics Review Board in Stockholm. The 
Health 2000 Survey was approved by the Ethical Committee for 
Research in Epidemiology and Public Health at the Hospital District 
of	Helsinki	and	Uusimaa.	A	written	informed	consent	was	obtained	
from all participants.

4.2  |  Metabolic biomarker profiling

Circulating metabolomic biomarkers were measured using a tar-
geted high- throughput NMR metabolomics platform (Nightingale 
Health Ltd., Helsinki, Finland). Details on the first data release of 
the NMR metabolomic biomarkers in UKB have been described else-
where	(Julkunen	et	al.,	2023). Briefly, 168 metabolic measures were 
quantified from a random subset of 118,461 nonfasting baseline 
EDTA	plasma	samples.	These	biomarkers	include	clinically	validated	
biomarkers, such as cholesterols, fatty acids, amino acids, and in-
flammation markers, as well as other emerging biomarkers such as 
lipoprotein subclasses. The 81 ratios derived from combinations of 
the 168 measured biomarkers were not included in this analysis due 
to unclear biological interpretations. The same 168 biomarkers were 
quantified from serum samples in the TwinGene and Health 2000 
participants, who had been instructed to fast overnight before blood 
collection.

Additionally,	we	studied	32	clinical	biomarkers	from	serum	and	
urine samples of UKB participants (rheumatoid factor and estradiol 
were not included due to high missingness). These biomarkers are 
diagnostic measures or risk factors for diseases, including cardio-
vascular, bone and joint, cancer, diabetes, renal, and liver- related 
biomarkers. Details of the assay methods and quality control are de-
scribed on the UKB website (https://bioba nk.ndph.ox.ac.uk/showc 
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ase/showc ase/docs/serum_bioch emist ry.pdf and http://bioba 
nk.ctsu.ox.ac.uk/cryst al/cryst al/docs/urine_assay.pdf). Details of 
the clinical biomarkers in TwinGene and Health 2000 have been de-
scribed previously (Kananen et al., 2023; Li et al., 2021).

Descriptive statistics of all the included biomarkers are summa-
rized in Table S1.	 Spearman's	 correlations	 between	 the	metabolic	
biomarkers were visualized as heatmaps. To enable comparison of 
effect sizes for biomarkers with different units and concentration 
ranges,	we	standardized	all	biomarkers	to	have	mean = 0	and	SD = 1	
within each sample.

4.3  |  Frailty measures

An	FI	has	previously	been	created	and	validated	in	the	UKB	using	49	
self- reported deficit items from 11 categories (Williams et al., 2019), 
covering a range of diseases, signs, and symptoms from physiological 
and mental domains (items are shown in Table S4).	After	excluding	
individuals who had >20%	missing	data	across	the	49	items,	we	cal-
culated the FI as the sum of deficit divided by the total number of 
nonmissing items in each individual. The FIs in TwinGene (44- item, 
collected	at	baseline	of	the	SALT	study)	(Li	et	al.,	2019) and Health 
2000 (38- item) were constructed using the same procedure. In all 
analyses, we multiplied the FI by 100 and considered it as the per-
centage	of	deficit	accumulation	(0%–	100%).

The FP was used as a secondary outcome in a sensitivity analy-
sis in the UKB. Based on the five frailty criteria in the Fried model 
(Fried et al., 2001), a modified FP has previously been constructed 
in the UKB (Hanlon et al., 2018). Weight loss, exhaustion, slowness, 
and low activity were assessed by self- reported questionnaire items, 
whereas weakness was assessed by the measured grip strength at 
baseline (scoring of the items are described in Table S5).	An	FP	score	
was then calculated as the number of frailty criteria present in an in-
dividual.	Although	the	FP	is	commonly	categorized	into	three	groups	
for	assessing	frailty	in	older	adults	aged	≥65 years	(Fried	et	al.,	2001), 
we considered it as ordinal variable from 0 to 5 to maximize statis-
tical	power,	due	 to	 the	 relatively	young	age	 (mean	56.8 years)	and	
low prevalence of frailty in UKB (only ~3%	of	UKB	participants	were	
deemed frail by the FP).

4.4  |  Statistical analysis

4.4.1  |  Identification	of	frailty-	associated	
biomarkers in UKB

In the discovery phase in UKB, we applied two approaches to iden-
tify frailty- associated metabolic biomarkers: 

1. Multivariable linear regression of FI on each biomarker. The 
base models were adjusted for age (continuous) and sex, and 
the fully adjusted models were additionally adjusted for base-
line assessment centers (England, Wales, and Scotland), BMI 

(continuous), smoking (never, previous, and current), alcohol 
consumption (less than 3 times a month, 1 to 4 times a week, 
daily or almost daily), education level (low, intermediate, and 
high),	 and	 Townsend	 deprivation	 index	 (continuous).	 All	 the	
estimates were calculated as β- coefficients per SD increase 
in biomarker values. To account for multiple testing of up to 
200 biomarkers in the large sample of UKB, we applied the 
stringent Bonferroni correction and considered p < 0.00025	(i.e.,	
0.05/200) as statistically significant.

2.	 Feature	selection	using	LASSO.	Due	to	the	large	number	of	me-
tabolites and their high degree of collinearity, we applied the 
LASSO	 procedure	 (Tibshirani,	 2011) to select the independent 
and most dominant biomarkers that contributed to the variance of 
the FI, as well as to minimize overfitting. Using FI as the depend-
ent	variable,	we	fitted	two	LASSO	linear	regression	models,	one	
including 168 metabolomic biomarkers, and the other 32 clinical 
biomarkers	as	the	explanatory	variables.	Age	and	sex	were	also	
included in both models. We used a 10- fold cross validation to 
optimize the λ regularization parameter. Estimates of the nonin-
formative features were then shrunk to zero, based on the λ value 
that gave a mean squared error within 1 standard error of the 
minimum (Figure S6).

As	a	sensitivity	analysis,	we	used	the	FP	as	the	outcome	in	linear	
regression models and compared the direction of the biomarker- FI 
and biomarker- FP associations. To examine whether the associa-
tions were influenced by outlier biomarker values, we repeated the 
linear regression analysis after excluding values outside 5 interquar-
tile ranges from the median. Furthermore, we performed subgroup 
analyses of the biomarker- FI associations by age at baseline (<60 
vs.	≥60 years)	and	sex	(women	vs.	men).	As	our	main	analyses	were	
constrained to white UKB participants, we also repeated the anal-
ysis in non- white ethnic groups to test if the associations differ by 
ethnicity.	Finally,	as	MR	implicated	potential	causal	effects	of	GlycA	
and creatinine on the FI, we additionally stratified the observational 
analyses	between	GlycA	and	FI	by	CRP	and	LDL-	cholesterol	cate-
gories, and between creatinine and FI by chronic kidney disease to 
examine whether the associations may be influenced by their related 
traits (Connelly et al., 2017; Levey et al., 2009).

4.4.2  |  Replication	in	TwinGene	and	health	2000

For the biomarkers that (i) passed the Bonferroni- corrected thresh-
old (p < 0.00025)	 in	multivariable	 linear	 regression	models	 and	 (ii)	
had	nonzero	coefficients	 from	LASSO	models,	we	performed	rep-
lication in TwinGene and Health 2000 using FI as the outcome. 
Associations	were	assessed	using	linear	regression	models	adjusted	
for age, sex, BMI, smoking, education, and alcohol consumption. 
The models in TwinGene were also accounted for twin relatedness 
(i.e., cluster- robust standard errors). Results from the replication 
cohorts were meta- analyzed using a DerSimonian- Laird random- 
effects	model	(DerSimonian	&	Laird,	1986), where associations with 
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p < 0.05	were	considered	as	“replicated”.	The	biomarkers	that	were	
replicated or unavailable in replication cohort were then proceeded 
to MR analyses.

4.4.3  | Mendelian	randomization

Two- sample MR analyses were performed to investigate causal 
relationships between the selected metabolites and frailty. Only 
genetic data on European- ancestry individuals were included to 
ensure comparability of the SNPs. Details on the datasets used 
are provided in Table S11. Briefly, SNPs associated with the bio-
markers	(exposures)	were	taken	from	the	largest	available	GWASs,	
namely UKB (n = 115,078,	 for	 NMR	 metabolomic	 biomarkers)	
(Borges et al., 2022),	Meta-	Analyses	of	Glucose	and	Insulin-	related	
traits Consortium (n = 123,665,	for	HbA1c)	(Wheeler	et	al.,	2017), 
Cohorts	for	Heart	and	Aging	Research	in	Genomic	Epidemiology	
Consortium (n = 204,402,	 for	 CRP)	 (Ligthart	 et	 al.,	 2018), and 
Global Lipids Genetics Consortium (n = 187,365,	 for	 total	 cho-
lesterol, LDL- cholesterol, and triglycerides) (Willer et al., 2013). 
For	 the	 remaining	clinical	biomarkers,	we	performed	a	GWAS	 in	
a	 randomly	 selected	 50%	 of	 the	UKB	 sample	who	were	 eligible	
and passed quality control (n = up	 to	 204,402;	 excluded	 indi-
viduals with non- European ancestry, consent withdrawal, sex 
chromosome aneuploidy, extreme heterozygosity or missing-
ness,	and	without	genotype	and	phenotype	data).	A	mixed	linear	
model-	based	GWAS	 analysis	 (“fastGWA”)	was	 used,	which	 is	 an	
efficient method to control for relatedness between individuals 
by	 a	 sparse	 genetic	 relationship	matrix	 (Jiang	 et	 al.,	 2019).	 Age,	
sex, genotyping array, and the first 10 principal components were 
included as covariates. Following the same pipeline, we performed 
a	GWAS	for	the	FI	and	FP	in	UKB	to	obtain	summary	statistics	for	
the	SNP-	frailty	(outcome)	associations.	The	GWAS	for	frailty	was	
performed in UKB subsamples that did not overlap with the expo-
sure	GWASs	to	avoid	biasing	the	two-	sample	MR	analysis	(Burgess	
et al., 2016).

To obtain valid causal estimates in MR, genetic variants that 
are	 used	 as	 IVs	 should	 fulfill	 three	 assumptions:	 (i)	 they	 are	 ro-
bustly associated with the exposure (relevance), (ii) they are inde-
pendent of any confounders (independence), and (iii) they affect 
the outcome only through the exposure (exclusion restriction) 
(Davies et al., 2018).	We	selected	SNPs	as	IVs	if	they	were	associ-
ated with the biomarker of interest at a genome- wide significance 
level (p < 5 × 10−8) and were not in linkage disequilibrium with 
other SNPs (r2 < 0.001	within	 a	 clumping	window	 of	 10,000 kb).	
Palindromic	 SNPs	 with	 minor	 allele	 frequency >0.42 or SNPs 
not	available	 in	 the	outcome	GWASs	were	excluded.	 Instrument	
strength was evaluated by the F- statistic (Davies et al., 2018). The 
multiplicative	random-	effects	IVW-	MR	method	was	applied	as	the	
primary	approach,	which	provides	unbiased	estimates	if	all	the	IVs	
are valid or if the overall pleiotropy is balanced to be zero (Burgess 
et al., 2013).	The	Cochran's	Q test was used to assess heteroge-
neity	across	the	IVs.	To	correct	the	main	IVW	results	for	multiple	

testing	 (a	 total	 of	 49	 biomarkers × 2	 frailty	measures = 98	 tests),	
we	 applied	 a	 5%	 FDR	 correction	 (Benjamini	 &	 Hochberg,	 1995) 
and considered p < 0.011	 as	 statistically	 significant.	 To	 test	 for	
robustness of our results, we conducted MR analyses that relax 
assumptions on horizontal pleiotropy: (i) MR- Egger, which allows 
for pleiotropic effects under the instrument strength independent 
of direct effect (InSIDE) assumption, with an intercept term in-
dicating the average pleiotropic effect (Bowden et al., 2015); (ii) 
weighted	median,	which	 assumes	 over	 50%	 of	 the	 IVs	 are	 valid	
(Bowden et al., 2016); (iii) weighted mode, which assumes a plu-
rality	of	IVs	are	valid	(Hartwig	et	al.,	2017); and (iv) MR- PRESSO, 
which detects and corrects for horizontal pleiotropy by excluding 
outliers	(Verbanck	et	al.,	2018).	As	a	sensitivity	analysis,	we	used	
a smaller set of SNPs that were not associated with other metab-
olomic	 biomarkers	 at	 genome-	wide	 significance	 as	 the	 IVs	 (i.e.,	
excluding potentially pleiotropic SNPs). Finally, to examine if the 
observed associations were driven by the individual FI items, we 
repeated the MR analysis using 11 modified FIs that were stripped 
of items from each category as the outcomes (Table S4).

4.4.4  |  Co-	twin	control	analysis	in	TwinGene

Taking the advantage of twin data in TwinGene, we employed the 
co- twin control method to elucidate whether a biomarker- FI asso-
ciation may be attributable to familial confounding (shared genetic 
or shared environmental factors) (McGue et al., 2010). This method 
assumes	that	MZ	and	DZ	twins	share	100%	and ~ 50%	of	their	seg-
regating genes, respectively, and that both MZ and DZ twins share 
the same family environment. If the association is not influenced by 
familial influences (i.e., in line with a causal hypothesis), the effect 
sizes should remain similar across the population- level and within- 
pair estimates. If the association is explained by shared genetic fac-
tors (pleiotropy), we would expect an attenuation of the estimate to 
null within MZ twin pairs, while the estimate within DZ twin pairs 
is expected to lie between the population- level and MZ estimates. 
If the association is explained by shared environmental factors, a 
similar attenuation would be expected in both DZ and MZ twins. 
Conditional generalized estimating equation models were used to 
obtain	within-	twin-	pair	estimates.	All	models	were	adjusted	for	age,	
sex, BMI, smoking, alcohol consumption, and years of education.
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