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Abstract

Designing educational systems able to lead students
into flow experience is a contemporary challenge,
especially given the positive relationship between flow
experience and learning. However, an important
challenge within the field of learning analytics is
evaluating the students’ flow experience during the
use of educational systems. In general, such
evaluation is conducted using invasive methods (e.g.,
electroencephalogram, and eye trackers) and cannot be
massively applied. To face this challenge, following the
trend of utilizing behavioral data produced by users to
identify their experience when using different types of
systems, in our study, we evaluated the applicability of
employing one single type of behavior data (i.e., mouse
click frequency) as an exclusive metric to model and to
predict students’ flow experience. By conducting two
data-driven studies (N1 = 25 | N2 = 101), we identified
that the mouse click frequency on its own is not able
to predict the flow experience. Our study contributes
to the field of learning analytics confirming that it is
not possible to predict students’ flow experience only
with mouse click frequency and paving the way for
new studies that use different behavior data to predict
students’ flow experience.

1. Introduction

Flow, as first introduced by Csikszentmihalyi (1975),
can be defined as “an optimal experience during an
activity in which an individual is deeply engaged
and presents high levels of fulfillment, focus, and
enjoyment” (Csikszentmihalyi, 1975; Csikszentmihalyi
and Csikszentmihalyi, 1992). Especially over the last
30 years, a plethora of studies have identified a positive
influence of flow experience on students’ learning
outcomes in educational systems (e.g., students who
engage in a high flow experience state are more prone to
achieve a satisfactory learning experience (Özhan and
Kocadere, 2020) or that flow experience has a positive
effect in both comprehension and memorization (Erhel

and Jamet, 2019). In summary, literature demonstrates
that the flow experience is linked to positive affects
on students’ learning experience (Oliveira et al., 2018;
Oliveira, Pastushenko, et al., 2021; Perttula et al., 2017).

Thus, over the last few years, several researchers
have invested in developing different types of
educational systems (e.g., self-regulation systems
(Wan et al., 2020), games (Chou et al., 2021), and
gamified systems (Oliveira, Toda, Toledo, et al., 2020))
to lead students to a flow experience. This is not an easy
task due to two different reasons, first, to understand
which design aspects lead students to a flow experience
(Gao et al., 2019), and second, to analyze whether the
system was able to provide a flow experience to students
(Semerci and Goularas, 2021). In particular, the field
of learning analytics has focused on the challenge
of analyzing whether a student has achieved a flow
experience (van Schaik et al., 2012).

Different studies have highlighted that reaching
an effective measuring technique for flow experience
in educational systems is a significant challenge
(Hamari and Koivisto, 2014; Jackson and Marsh,
1996; Lee et al., 2014). As pointed out by
Oliveira, Toda, Palomino, Rodrigues, Shi, et al.
(2020) and Z. Zheng et al. (2019), this challenge
is especially pertinent because instruments adopted
in past studies (e.g., electroencephalography (EEG),
interviews, questionnaires, eye trackers) present major
drawbacks: i) high cost and ii) the impossibility
of conducting a massive application (Oliveira, Toda,
Palomino, Rodrigues, Shi, et al., 2020; Z. Zheng et al.,
2019). Thus, researchers in the area of learning analytics
have sought to create alternative methods to analyze
students’ flow experience (De Kock, 2014; Lee et al.,
2014; Semerci and Goularas, 2021).

In face of such limitations and aiming to create these
alternative methods, the use of students’ behavior data
(i.e., user’ data logs) to measure flow experience in
educational systems has recently gained traction as a
scalable and low-cost strategy (Lee et al., 2014; Oliveira
et al., 2019; Oliveira, Toda, Palomino, Rodrigues, Shi,
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et al., 2020; Semerci and Goularas, 2021). Despite
recent promising results (De Kock, 2014; Lee et al.,
2014; Oliveira et al., 2018; Oliveira et al., 2019;
Semerci and Goularas, 2021), this area of study is yet
to be comprehensively explored, highlighting the urgent
need for empirical data-driven studies investigating the
relationship between behavior data and flow experience
in educational systems. In particular, it is necessary to
investigate how different behavior data can be used to
model and predict students’ flow experiences.

As explained by Pentel (2015), mouse dynamics can
be used in conjunction as features in training data sets
(Chen et al., 2017; Guo and Agichtein, 2010; Pentel,
2015; N. Zheng et al., 2011). Among those metrics, the
mouse click frequency has particularly shown favorable
results in identifying certain experiences (Oliveira,
Isotani, et al., 2021; Semerci and Goularas, 2021). At
the same time, previous studies on the use of behavior
data generated by the mouse presented significant results
in the prediction of the users’ flow-related experience
(e.g., using mouse logs to predict the user’s confusion
(Pentel, 2015) and satisfaction (Chen et al., 2017)),
which demonstrates its potential as a valid metric for
different users’ experiences (e.g., flow experience).

Facing the challenge of flow experience
measurement, in this paper we present the results
of two data-driven studies (N1 = 25 | N2 = 101)
investigating if the mouse click frequency (during the
system usage) can be used independently to predict
students’ flow experience in educational systems. Thus,
we aim to answer the following research question:
Does mouse click frequency predict students’ flow
experience in educational systems? In the two studies
conducted to answer this question, students used
different educational systems (while the mouse click
frequency was collected) and then answered a scale to
identify their flow experience during the system usage.

Our main results indicate that there is a slight
relationship (β) between the mouse click frequency
and the students’ flow experience. However, such
a relationship fails to provide significant predictive
power (Adjusted R2), implying that the mouse click
frequency on its own cannot be used as a metric for
flow experience prediction. Our study contributes to
the field of learning analytics, as it presents empirical
evidence that employing the frequency of the mouse
as a solo metric is inadequate to predict students’ flow
experience.

2. Background

In this section, we introduce the main topic
addressed in this paper (i.e., flow experience

measurement in educational systems), as well as
the main related works.

2.1. Flow experience and learning

The flow experience (i.e., “an optimal experience
that people have as a motivating factor in their
daily activities” (Faiola et al., 2013)) is one of the
most important experiences investigated in the field
of educational technologies (Oliveira et al., 2018;
Oliveira, Pastushenko, et al., 2021; Perttula et al., 2017;
Semerci and Goularas, 2021). This is because the flow
experience is considered directly related to the learning
experience, and when a student is experiencing the flow,
they tend to have a high learning experience (Özhan and
Kocadere, 2020; Yen and Lin, 2020).

The flow experience is composed of
nine different psychological dimensions (also
independent experiences) (Csikszentmihalyi, 1997b;
Csikszentmihalyi and Csikszentmihalyi, 1992;
Jackson et al., 2011): i) challenge-skill balance;
ii) action-awareness merging; iii) clear goals; iv)
unambiguous feedback; v) total concentration on
the task at hand; vi) sense of control; vii) loss of
self-consciousness; viii) transformation of time; and
ix) autotelic experience. Researchers argue that an
individual must reach the nine dimensions to reach
the flow experience (see (Csikszentmihalyi, 1997b;
Csikszentmihalyi and Csikszentmihalyi, 1992; Jackson
et al., 2011) for a thorough review regarding the flow
experience dimensions).

The complexity of modeling students’ flow
experience in an educational system is a pertinent
problem (Lee et al., 2014; Oliveira, Isotani, et al., 2021;
Oliveira et al., 2019; Semerci and Goularas, 2021).
Despite advancements, this technology still has issues,
such as application complexity, prompting other ways,
such as the use of EEG or eye trackers, to be proposed
more recently. All of these approaches, however, have
one of three issues: they are either expensive, intrusive,
or cannot be used on a large scale.

As a result, more promising solutions include
the development of approaches for analyzing flow
experience using behavior data generated by users in
educational systems (Lee et al., 2014; Oliveira et al.,
2019; Oliveira, Toda, Palomino, Rodrigues, Shi, et al.,
2020; Semerci and Goularas, 2021). Researchers have
used techniques ranging from step regression (Lee et al.,
2014) to deep neural networks (Semerci and Goularas,
2021), and structural equation modeling (Oliveira,
Isotani, et al., 2021) in an attempt to find behavioral data
that are able to predict the flow experience.
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2.2. Related Works

Aiming to identify the main related works and
provide a deep field understanding, we started
analyzing the results of three systematic literature
reviews conducted by Oliveira et al. (2018), Oliveira,
Pastushenko, et al. (2021), and Perttula et al. (2017),
which were conducted to describe the state of the art
in Flow Theory and educational technologies (including
the most used methods for identifying the students’ flow
experience in educational systems). From the studies
identified in the literature reviews, we also found other
external studies.

Lee et al. (2014) were one of the pioneer studies
dedicated to investigating the use of behavior data to
measure flow experiences in an e-learning environment.
Their work presented an automated detector able to
distinguish whether a student is experiencing flow,
boredom, and frustration. The approach proposed by
Lee et al. (2014) was based on a step regression, which
utilized the data sourced from college students when
interacting with a step-based tutoring system. Their
findings support the use of affect detectors on flow
conditions (San Pedro et al., 2013). The average mouse
click duration, for instance, was found to be positively
correlated with boredom but negatively correlated to
flow. This also suggests that standard input devices
used commonly by students, such as the mouse, are a
potential source of abundant information for developing
low-cost detectors. The incorporation of automatic flow
detection tools is an improvement to ITSs as this feature
can be used to predict students’ behavior and tailor
effective ways to improve their educational performance
as well as learning experience (Egbert, 2004).

In the same realm, Oliveira et al. (2019) introduced
a theory-driven based conceptual model, which
associates each of nine the flow experience dimensions
(Csikszentmihalyi, 1997b; Csikszentmihalyi and
Csikszentmihalyi, 1992; Jackson et al., 2011) with
student interaction data logs. In a further study,
Oliveira, Toda, Palomino, Rodrigues, Shi, et al. (2020)
proposed the use of the think-aloud protocol (i.e., a
method that provides rich verbal data on reasoning
during a problem-solving task (Fonteyn et al., 1993)) as
a tool to link users’ data logs with their flow experiment
in an educational system. In yet another study, they
set forth the usage of structural equation modeling to
model flow in students performing tasks in a gamified
system (Oliveira, Isotani, et al., 2021).

Semerci and Goularas (2021) presented a solution
that measures the flow state of students by employing
heat-maps and deep neural networks (i.e., convolutional
autoencoders). This flow theory-based method provides

information on the students’ flow state in an e-learning
platform, which is calculated by also taking into account
their grades. Besides collecting interaction data from
e-learning platform (i.e., mouse click coordinates, the
locations visited with the mouse, access times, etc.),
Semerci and Goularas (2021)’ method also sourced
data from post-lecture quiz results and student surveys.
Their findings indicate that while other methods did
badly in terms of p-values and r-values, deep learning
methods were able to extract student behavioral patterns
based on mouse interactions with significantly better
performance.

In addition to the aforementioned approaches,
Z. Zheng et al. (2019) proposed a hierarchical
recognition model to track the flow experience of
computer programmers by tracing their computer
interactions (e.g., keyboard, mouse, IDE functions,
and switching applications windows) when engaged
in software development. Z. Zheng et al. (2019)
implemented a non-invasive flow state tracking system
whose performance was assessed using a real-world
data set from a medium-sized IT company in China.
Their results reached the highest recognition accuracy
of 92.6%, an achievement that is suited for performing
real-time recognition.

In summary, previous studies have investigated
the use of behavioral data to analyze students’ flow
experience. However, as far as we know, no data-driven
study has yet aimed to model and predict flow
experience in educational systems by employing a sole
type of behavior data (i.e., mouse click frequency).

3. Study Design

In this paper, we present the results of two
data-driven studies investigating if is possible to
use mouse click frequency to predict students’ flow
experience. In both cases, i) the number of students’
mouse clicks when using different systems was
collected, then ii) the students answered a questionnaire
to analyze their flow experience, and finally, iii)
statistical analyzes were performed to identify if the
mouse click frequency would be able to predict the
students’ flow experience (i.e., learning analytics).

3.1. Materials and method

To collect the students’ mouse click frequency, we
used two different systems. For both experiments, there
were no selection criteria for participants (e.g gender,
age group, among others), which was a decision made to
achieve a heterogeneous population. In addition to being
research-oriented, they provide straightforward access
to various student interaction data logs, which allows for
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conducting the analyzes proposed in this study.
For the first study, we used Eagle-edu1, a

gamified educational system design according to the 21
gamification elements introduced by Toda et al. (2019).
As a gamified learning platform, Eagle-edu was chosen
as it is a commercial system widely used in the territory
where the study was conducted (i.e. Brazil), which
according to Wohlin et al. (2012), is beneficial to the
ecological settings of the study. Eagle-edu is comprised
of three main pages: Home, where users can keep track
of their progress in the system; Profile, where users
can view and edit their personal information; Learn,
where the user can complete multiple kinds of tasks
(e.g, Quiz, Complement, and Pairs). Figure 1 presents
an interface of this system. Participants enrolled in an
English course previously created by a team from a local
language school, which involved performing basic tasks
(e.g pair-matching of Portuguese and English words)
and quizzes.

Figure 1. Eagle-edu’s course page interface

For the second study, we utilized a gamified
educational system named Quick Detector on Gender
Flow (QDGF). In QDGF, students would answer a logic
reasoning quiz containing 20 questions and, by doing so,
participants could earn points, trophies, or even appear
in a ranking. Figure 2 exhibits an example of the system.

Figure 2. Quick Detector on Gender Flow’s quiz

page interface

When it comes to relating each of the nine

1https://eagle-edu.com.br/

dimensions of flow experience (Csikszentmihalyi,
1997a) to the data log collected (frequency of mouse
clicks), both studies used the theoretical model
introduced by Oliveira et al. (2019), as it is currently
(as far know) the only model available for this purpose.
To identify the student’s flow experience, we used
the flow state scale (FSS) developed by Jackson and
Eklund (2002). We used this scale because it had been
previously validated by Hamari and Koivisto (2014) to
be used in the field of gamification, and according to
Oliveira et al. (2018), is one of the most popular scales
in studies in the area of educational technologies. To
analyze the data, we used SmartPLS 32, a software for
variance-based SEM using the partial least squares path
modeling (PLS-PM) method (Wong, 2013).

Both studies were organized in five main steps: i)
invitation ii) participation agreement iii) and iv) system
login and usage v) flow experience self-report iv) data
analysis. Figure 3 illustrates the steps of the process. In
steps iv) and v), the mouse click frequency is collected
and then submitted to data analysis.

1.Invitation 2. Agree to 
Participate

3. Log into 
the system

Participation 
ends

no

yes 4. System 
Usage

5. Answer the 
FSS

Data Analysis

Figure 3. Method (step-by-step)

In the first step, the participants were invited to use
the system. In the second step, participants had the
opportunity to read the “Informed Consent Form” and
decide about their participation in the study. In the third
step, those who agreed to participate in the study logged
into the system. In the fourth step, participants used the
system (i.e., a beginner-level English language course
for Eagle-edu and a logic reasoning quiz for QDGF).
At this stage, the number of students’ mouse clicks
was collected during the system usage. Immediately
after completing the tasks designated by the system,
in the fifth step, participants proceeded to answer the
FSS (Hamari and Koivisto, 2014; Jackson and Eklund,
2002).

3.2. Participants and data analysis

In the first study (conducted in the system
Eagle-edu), initially, a total of 25 students participated

2https://www.smartpls.com/

Page 1284



voluntarily. Participants were invited through social
media so that a heterogeneous sample could be
achieved. Self-reportedly, 19 of them identified as males
and six as females. Education levels included: high
school, undergraduate, or graduate. The average age
was 25 years, with a standard deviation of σ = 3.13.
One participant, however, was excluded as they were not
a native speaker of the language of the scale used in this
study.

In the second study, we had 101 participants ranging
from six levels of education (49 graduate students, 30
from high school, six at an MBA level, 10 Masters,
one Ph.D. recipient, and four participants with other
responses) whose age averaged approximately 18 years
old (standard deviation of σ = 10.55) and originated
from 15 countries (most significantly the USA with
a total of 39; 15 from India; 12 from Portugal and
11 from Poland). Each participant received $ 0.25
and was invited through a crowd-sourcing marketplace
“Amazon Mechanical Turk (MTurK)”3. In both studies,
we included an “attention-check” question.

To conduct the data analysis we used partial
least squares structural equation modeling (PLS-SEM).
This class of SEM is a well-established approach to
developing theories on exploratory research. It achieves
this by focusing on explaining the variance in the
dependent variables when examining the model. We
chose this method since it enables us to incorporate
unobservable variables measured indirectly by indicator
variables. Furthermore, PLS-SEM does not only allow
the estimation of complex cause-effect relationship
models with latent variables, it is robust despite a
small sample (J. Hair et al., 2016; J. Hair et al.,
2017). Following suggestions from J. Hair et al. (2016),
J. Hair et al. (2017), we used β values to map/model
the relationships between mouse frequency and flow
experience and Adjusted R2 to report the predictive
power.

4. Results

Initially, given that the method employed by
SmartPLS (PLS-SEM) is non-parametric (J. Hair et al.,
2014), there was no need to analyze the distribution
(normality) of the data. Furthermore, we estimated
model reliability to ensure that the FSS matched the
study data. Results are shown in Table 1 for the first
study, and Table 2 for the second study, demonstrating
that it was satisfactory for most dimensions of flow
experience. Ideal rates are: α ≥ 0.70, RHO A ≥ 0.70,
CR ≥0.70, AVE ≥ 0.50.

We then measured the discriminant validity. In

3https://www.mturk.com/

Table 1. Reliability results for the flow experience

dimensions for Study 1
α RHO A CR AVE

AE 0.963 -1.563 0.839 0.575
CSB 0.796 0.826 0.851 0.59
CTH 0.813 0.77 0.825 0.618
CG 0.809 0.43 0.644 0.389
LSC 0.853 -1.813 0.016 0.122
MAA 0.779 1.02 0.852 0.602
SC 0.699 0.498 0.697 0.459
TT 0.908 0.669 0.900 0.695
UF 0.896 1.004 0.922 0.750
Key:α: Cronbach’s; RHO A:
Jöreskog’s rho; CR: Composite
Reliability; AVE: Average; Variance
Extracted; AE: Autotelic Experience;
CSB: Challenge-Skill Balance;
CTH: Concentration on the Task at
Hand; CG: Clear Goals; LSC: Loss
Self-Consciousness; MAA: Merging of
Action and Awareness; SC: Sense of
Control; TT:UF: Unambiguous Feedback
Transformation of Time;

Table 2. Reliability results for the Flow Experience

for Study 2
α RHO A CR AVE

Flow 0.735 0.383 0.704 0.248
Key:α: Cronbach’s; RHO A: Jöreskog’s
rho; CR: Composite Reliability; AVE:
Average; Variance Extracted; AE:
Autotelic

the measurement model for study 1, the discriminant
validity was measured using the cross-loading metric.
The result showed that no construct’s items loaded
higher on another construct than itself (J. F. Hair et al.,
2014). Furthermore, the LSC and CG constructs were
removed from the model of Study 1 (Figure 4) because
the composite reliability criterion for including them
in the structural model was not satisfied. In other
words, the AVE metric was less than 0.5 for both
constructs. The second study presented the following
results: Flow = 0.498 and NMC = −0.203. Table
3 and Table 4 present the discriminant validity of the
studies.

Next, we analyzed if the mouse click frequency
predicts students’ flow experience by using PLS-SEM.
We used the regression coefficient (β) to analyze
the relationship between the variables and in the
p-values related to each β (this is done to check if
the relationships are indeed significant). Furthermore,
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Table 3. Discriminant Validity for Study 1
AE CSB CTH CG LSC MAA NMC SC TT UF

AE 0.758
CSB 0.371 0.768
CTH 0.438 0.419 0.786
CG 0.173 0.607 -0.081 0.623
LSC -0.224 -0.28 -0.439 -0.084 0.35
MAA 0.124 0.255 -0.121 0.14 0.193 0.776
NMC -0.243 -0.401 0.304 -0.547 -0.24 -0.326 1
SC 0.37 0.511 0.123 0.692 -0.162 0.265 -0.63 0.677
TT 0.565 0.18 0.34 0.137 -0.157 0.131 -0.198 0.453 0.833
UF 0.261 0.581 -0.003 0.821 -0.254 0.067 -0.368 0.526 0.095 0.866
Key: AE: Autotelic Experience; CSB: Challenge-Skill Balance; CTH: Concentration
on the Task at Hand; CG: Clear Goals; LSC: Loss of Self-Consciousness; MAA:
Merging of Action and Awareness; SC: Sense of Control; TT: Transformation of Time;
UF: Unambiguous Feedback.

Table 4. Discriminant Validity for Study 2
Flow NMC

Flow 0.498
NMC -0.203 1
Key: NMC: Number
of Mouse Clicks;

this study also utilized the R2 − value so that we
could acknowledge how effectively mouse clicks predict
flow experience (for greater reliability, we reported the
adjusted R2 − value). Table 5 presents the results for
Study 1 with the aforementioned metrics. Likewise,
Table 6 present the results for Study 2. Figure 4 and
Figure 5 present the path model for both studies.

In summary, the correlation between a single type
of data log (mouse click frequency) and the flow
experience fails to provide significant predictive power,
as revealed by the values of R2Adj (R2Adj = 0.031
in Study 1 and ranging from R2Adj = −0.004 in the
TT dimension to R2Adj = 0.370 in the SC dimension
in Study 2) and β (β = −0.530 in Study 1 and ranging
from β = −0.630 in the SC dimension to β = 0.304
in the CTH dimension as observed in Study 2) in both
studies. Our experimental results imply that the mouse
click frequency by itself cannot be used as a metric for
flow experience.

4.1. Discussion

In this paper, we analyze the possibility of predicting
students’ flow experience based only on the mouse
click frequency performed by the student when using
gamified educational systems. Throughout two studies,
we identified that the mouse click frequency alone is
not able to predict the flow experience of students when

using such systems.
Our results can be considered surprising, as they are

contrary to the results of recent studies which identify
that the mouse click frequency can be used to predict
experiences related to flow experience (Oliveira, Isotani,
et al., 2021; Z. Zheng et al., 2019), such as stress and
anxiety, as well as the theoretical model proposed by
Oliveira, Toda, Palomino, Rodrigues, Shi, et al. (2020),
who states that the mouse click frequency would be
related to some flow experience dimensions.

The study conducted by Z. Zheng et al. (2019)
utilized mouse activities inside IDEs (e.g., mouse
clicks) to track developers’ interactions during work to
recognize the flow state. Their findings point out an
overall recognition accuracy of 92.6%, suggesting the
effectiveness of their proposed approach. Oliveira, Toda,
Palomino, Rodrigues, Shi, et al. (2020) also presented
optimistic results as their work identified a significant
relationship between four types of data logs (including
NMC) and seven out of the nine aforementioned flow
experience dimensions.

In the study conducted by Oliveira et al. (2019), the
number of mouse clicks is seen as a theoretically related
behavior data to total concentration on the task at hand
(i.e., one of the flow experience dimensions). Oliveira
et al. (2019), despite putting forward this relationship
and presenting theoretical reasons for it, also proposes
that experimental studies be carried out to investigate
these relationships. In this way, our study brings insights
in the sense that possibly the theoretical relationships
proposed by Oliveira et al. (2019) are not confirmed in
practice.

Other studies were also conducted investigating
the relationships of user behavior data in educational
systems with their flow experience, however, studies that
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Table 5. Correlational matrix for Study 1
CI

β P-values 2,5% 97.5% Adj. R2

NMC →AE -0.243 0.468 -0.553 0.469 0.016
NMC→CSB -0.401 0.417 -0.777 0.632 0.123
NMC→CTH 0.304 0.399 -0.670 0.604 0.051
NMC→CG -0.547 0.262 -0.826 0.502 0.268
NMC→LSC -0.240 0.530 -0.715 0.553 0.015
NMC→MAA -0.326 0.247 -0.717 0.491 0.066
NMC→SC -0.630 0.235 -0.843 0.681 0.370
NMC→TT -0.198 0.533 -0.557 0.559 -0.004
NMC→UF -0.368 0.419 -0.782 0.523 0.096
Key: β: Regression Coefficient; CI: Confidence Interval; NMC:
Number of Mouse Clicks; AE: Autotelic Experience; CSB:
Challenge-Skill Balance; CTH: Concentration on the Task at
Hand; CG: Clear Goals; LSC: Loss of Self-Consciousness;
MAA: Merging of Action and Awareness; SC: Sense of Control;
TT: Transformation of Time; UF: Unambiguous Feedback

Table 6. Correlational Matrix for Study 2
CI

β P-Values R2 Adj 2.50% 97.50%
NMC→ Flow -0.203 0.334 0.031 -0.474 0.376
Key:β: Regression Coefficient; CI: Confidence Interval

analyzed mouse-related items performed the analyzes
comparing different types of associated data (different
types of related data mouse), but without analyzing
the data separately. One of the studies that directly
compared the relationship between user behavior data
concerning the mouse and the flow experience of
participants was that of Lee et al. (2014). In their
study, they identified that the average mouse click
duration was positively correlated with boredom but
negatively correlated to flow. In a comparative analysis,
it is possible to argue that although the mouse click
frequency is insufficient to predict students’ flow
experience, associating this information with other data
related to mouse actions can be an equally affordable
and viable alternative to predicting flow experience.

The study by Semerci and Goularas (2021) identified
that deep learning methods were able to extract
student behavioral patterns based on mouse interactions.
Although these behaviors cannot be generalized, given
the sample size of Semerci and Goularas (2021), it is
also an indication that a single mouse-related data is not
effective in predicting the flow experience. However, by
gathering more than one type of data log, it may become
a feasible approach to predicting flow experience, or
some of the dimensions that compose flow experience.

These results demonstrate that despite the use of
user behavior data in educational systems presenting

weak predictive power to model flow experience, they
are a promising alternative to predict different user
experiences, as the rapid growth in online educational
systems generates more and more behavior data
logs (Eberle and Hobrecht, 2021). However, our
findings make it clear that the mouse click frequency
alone cannot be used to predict the flow experience.
Nonetheless, the fact that the path coefficients in the
models are numerically high, although non-significant,
calls for further studies with larger sample sizes that will
allow for the stratification of the data.

In summary, our results indicate that predicting the
flow experience of students based only on the number of
mouse clicks during the use of an educational system is
not plausible. However, by comparing our results with
different studies, it can be argued that adopting multiple
mouse-related behavior data logs is the pathway to
accurately modeling individual dimensions of or flow
experience itself.

4.2. Limitations

This study has some limitations stemming from its
characteristics which we seek to attenuate throughout.
Initially, flow is a complex experience to measure,
with a total of nine dimensions observed in this
study. Also, The study was conducted remotely, thus,
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Mouse Clicks

TT
R² Adj = -0.004

AE
R² Adj = 0.016

-0.401-0.326
-0.368

0.304
-0.630

-0.198-0.243

SC
R² Adj = 0.370

CTH
R² Adj = 0.051 

UF
R² Adj = 0.096

MAA
R² Adj = 0.066

CSB
R² Adj = 0.123

Figure 4. Path Model for Study 1

FlowMouse Clicks -0.530
R² Adj = 0.031

Figure 5. Path Model for Study 2

non-observable external variables may interfere with the
participants’ experience. To mitigate this limitation, we
used only empirically validated instruments. Another
limitation comes from the limited sample size of the first
study, which might have impacted the robustness of the
calculated values obtained through SmartPLS. In both
studies conducted, only one type of education system
was used (i.e., gamified education systems). Thus, we
cannot guarantee that the results can be generalized to
other types of systems. The use of only one predictor
variable can reduce the results’ robustness, as the
surrounding noise is not captured. Thus, complementary
metrics, such as cursor position and behavior on the
screen, may be used along with other mouse-related
behavior data analyses.

4.3. Recommendations for future studies

Although we utilized databases from two different
studies, the number of participants is still limited
to conduct robust analyses, for example, machine
learning/deep learning. Thus, we suggest future
studies carry out experiments with a large number
of participants, which allows the use of this type
of technique for machine-learning-based predictive
modeling (possibly increasing the generalization of the
results).

Recent studies have increasingly realized that
students’ experiences can change according to their
characteristics. Therefore, further studies can collect
more data from students that allows for identifying
whether the prediction of the flow experience may vary
according these and other factors of students. We did
not have an adequate sample that will allow for stratified
(multi-group) analysis to uncover the moderating effect

of key demographic variables such as age, gender, etc.
Thus, future studies (with larger sample sizes) should
conduct multi-group analyses to uncover the moderating
effect of demographic variables.

In our study, we only used the number of mouse
clicks in our analysis, and our findings demonstrate
that it has little predictive power for flow experience.
However, other types of mouse-related data can also
be collected as well (e.g., mouse pointer movements).
If, on the one hand, our results show that the number
of mouse clicks alone is not enough to predict the
flow experience, on the other hand, the possibility
of using different types of mouse-related data also
represents an opportunity to identify a new low-cost way
of predicting the flow experience. The same can be
applied to different peripheral devices as Students may
prefer to use touchscreens or touch pads to interact with
educational systems. Thus, future studies may explore
all permutations of different data logs and input devices
in order to observe which combination leads to a more
accurate ecosystem for flow experience modeling.

5. Concluding Remarks

We conducted two data-driven studies analyzing
if mouse click frequency can be used as a single
variable to predict students’ flow experience. Our results
demonstrate that relying on such a strategy to model
flow experience is not reliable, as the mouse click
frequency alone does not present significant predictive
power. In future studies, we aim to replicate this
experiment by collecting data from various types of
educational systems. We also aim to include new kinds
of mouse-related behavior data (e.g., mouse movements)
and using novel data analysis methods, such as data
mining and deep learning techniques.
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