
Citation: Mezina, A.; Ometov, A.

Detecting Smart Contract

Vulnerabilities with Combined

Binary and Multiclass Classification.

Cryptography 2023, 7, 34.

https://doi.org/10.3390/

cryptography7030034

Academic Editor: Josef Pieprzyk

Received: 9 May 2023

Revised: 24 June 2023

Accepted: 5 July 2023

Published: 7 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

Detecting Smart Contract Vulnerabilities with Combined
Binary and Multiclass Classification
Anzhelika Mezina 1 and Aleksandr Ometov 2,*

1 Department of Telecommunications, Faculty of Electrical Engineering and Communications,
Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic; xmezin00@vut.cz

2 Electrical Engineering Unit, Faculty of Information Technology and Communication Sciences,
Tampere University, 33720 Tampere, Finland

* Correspondence: aleksandr.ometov@tuni.fi

Abstract: The development of Distributed Ledger Technology (DLT) is pushing toward automating
decentralized data exchange processes. One of the key components of this evolutionary step is
facilitating smart contracts that, in turn, come with several additional vulnerabilities. Despite
the existing tools for analyzing smart contracts, keeping these systems running and preserving
performance while maintaining a decent level of security in a constantly increasing number of
contracts becomes challenging. Machine Learning (ML) methods could be utilized for analyzing and
detecting vulnerabilities in DLTs. This work proposes a new ML-based two-phase approach for the
detection and classification of vulnerabilities in smart contracts. Firstly, the system’s operation is set
up to filter the valid contracts. Secondly, it focuses on detecting a vulnerability type, if any. In contrast
to existing approaches in this field of research, our algorithm is more focused on vulnerable contracts,
which allows to save time and computing resources in the production environment. According to
the results, it is possible to detect vulnerability types with an accuracy of 0.9921, F1 score of 0.9902,
precision of 0.9883, and recall of 0.9921 within reasonable execution time, which could be suitable for
integrating existing DLTs.

Keywords: modeling; classification; vulnerability detection; distributed systems

1. Introduction

With the rapid development of distributed systems, smart contracts have become
one of the targets of vulnerability searches from both sides of the information security
barricade [1]. Essentially, a smart contract is an automatically executed transaction protocol
intended to manage, control, or document events according to the terms of a contract [2].
Because of the autonomy of the smart contract operation, it is almost impossible to reverse
the transaction in case of a successful attack on a contract in public systems [3]. Simulta-
neously, attacks on smart contracts exist and cause serious damage to existing systems.
As a few historical examples, USD 70 M was stolen in a DAO attack [4] followed by USD
300 M being blocked because of the MultiSig wallet of the company Parity [5]. Both attacks
succeeded because of vulnerabilities in the execution of smart contracts.

Naturally, some tools for checking smart contracts’ safety already exist, and many re-
searchers have put their careful attention into developing others [6–8]. Some use symbolic
execution technology, and other instruments are based on predefined patterns. Also,
there are tools based on data processing tools for finding and classifying vulnerable
smart contracts.

Nonetheless, DLT systems are aimed at data immutability. Additionally, such systems
can produce a lot of side transaction data during operation. Notably, one of the most
promising tools to proactively react to the changes in and misbehavior of information
exchange is related to ML algorithms. They could be used to operate over with this
information [9]. Considering that it is much more difficult to control distributed systems’

Cryptography 2023, 7, 34. https://doi.org/10.3390/cryptography7030034 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography7030034
https://doi.org/10.3390/cryptography7030034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0001-8965-6193
https://orcid.org/0000-0003-3412-1639
https://doi.org/10.3390/cryptography7030034
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography7030034?type=check_update&version=1


Cryptography 2023, 7, 34 2 of 20

processes than centralized systems, ML can assist in managing them in a (semi-)automatic
manner. With ML, it is possible to effectively predict the state of the distributed system,
find vulnerabilities, and explore attacks on the fly.

There are several reasons and perspectives for using ML for the smart contracts
analysis:

1. The research on and necessity of solutions, which can be applied in the real world, is
an actual problem.

2. The possible solution demonstrates a general way to apply ML to increase distributed
systems’ qualitative metrics.

3. Ethereum is one of the most popular platforms for creating decentralized applications,
which is why the proposed solution will have practical value and can be compared
with existing approaches for smart contract analysis in Ethereum. The quality dataset
Ethereum [10] for designing and testing ML solutions is publicly available.

Based on the above motivations, the main goal of this work is to develop a novel
ML-based framework, which predicts if the smart contract is vulnerable or not, and, if
vulnerable, classifies the vulnerabilities as one of the following types: suicidal, prodigal,
greedy, and suicidal prodigal contracts.

This paper’s contributions are as follows:

• We designed a two-phase ML-based framework that can detect vulnerable contracts
and determine the type of vulnerability.

• Our system focuses on the vulnerable contracts by filtering the non-vulnerable ones,
which can potentially save time and reduce computational load.

• After comparison with a single-phase classification, the proposed system has fewer
false-negative detection samples.

• We have proved that instead of the traditional method of application, either multiclass
or binary classification, it is possible to achieve better results using the two phases
consequently.

The rest of the paper is organized as follows: First, Section 2 describes the existing
solutions and recent approaches based on ML. Next, Section 3 provides a description of
the research methodology and scenarios. Then, the results are presented and discussed
in Section 4, while Section 5 highlights future aspects, challenges, and the integration of
aspects of the ML-based detection systems. The last Section 6 concludes the paper.

2. Related Work

This section outlines the state of the art of present tools used for the analysis of
smart contracts with a focus on ML applications, as well as highlights the research gap in
this domain.

2.1. Tools for Analysis of Smart Contracts

Several tools use symbolic analysis, representing the values of program variables
as symbolic expressions of the symbolic input values [11]. One of the earliest tools for
detecting vulnerabilities in smart contracts, which utilizes a symbolic execution technology,
is OYENTE [11]. It is based on the Control Flow Graph (CFG) [12]. The serious drawback
of this tool is that confirmations of flagged contracts are only performed manually. Simi-
larly, it can produce false-positive results due to imprecise modeling of domain-specific
elements [13]. Finally, the instrument can only achieve sufficient code coverage on realistic
contracts [9].

The Mythril tool [14] can distinguish between the following vulnerabilities: integer
overflow/underflow, re-entrancy vulnerability, delegate call to untrusted callee, unpro-
tected self-destruct instruction, authorization through tx.origin, and assert violation. One
of the advantages of this tool is the ability to work without access to the source code of
smart contracts. On the other hand, there is a limitation regarding invocation depth, as



Cryptography 2023, 7, 34 3 of 20

for all symbolic execution-based tools, i.e., vulnerability cannot be found because of the
balance between analysis speed and depth.

The Securify solution is proposed in [15]. It is based on compliance pattern analysis.
Its pipeline contains two steps. Firstly, it analyzes the contract’s dependency graph and
extracts semantic information from the source code. Secondly, it verifies compliance and
violation patterns [15]. Compared to OYENTE and Mythril, Securify performs better in
terms of various metrics and, overall, checks more vulnerabilities. The drawbacks of the
presented tool are not many. It operates under the assumption that all instructions in the
contract are reachable. Also, it cannot reason about numerical properties. Finally, it requires
expert knowledge to generate predefined patterns of vulnerability.

Nikolic et al. [16] proposed a tool called MAIAN, which labels vulnerable smart
contracts as suicidal, prodigal, or greedy. The proposed solution specifies trace properties,
which employ interprocedural symbolic analysis and concrete validation for exhibiting real
exploits. In general, the tool achieved an 89% true-positive rate. Despite the good results
(around 90% plus detection probability), the system has other advantages. The main one is
that it is possible to check contracts for bugs with MAIAN by running the contract. Also,
the tool does not use the contract’s source code for the analysis. Another problem is that
the validation of contracts can only be performed by MAIAN either on flagged contracts
that are alive within the forked Ethereum chain or on contracts with an existing source
code available.

2.2. ML for Smart Contract Analysis

The authors of [3] propose a so-called sequence learning approach for detecting
vulnerable smart contracts. They use deep learning algorithms to classify contracts as
weak/not vulnerable and develop Long-Short Term Memory (LSTM) neural networks. The
developed model shows a detection test accuracy of 99.57% and an F1 score of 86.04%.
Notably, it detected up to 92.86% of false-positive contracts classified by MAIAN. Similarly
to MAIAN, the proposed model does not need access to source codes. In addition, like
any ML model, it can constantly train on new contracts, thereby increasing its quality. An
important disadvantage of this model is that it classifies models as vulnerable and non-
vulnerable. Still, it does not give any information about the class of vulnerability. Moreover,
the model analyses the sequence of opcodes; however, by learning opcode sequences it
cannot consider the control flow of a smart contract, so the model can not find control flow
vulnerabilities.

Another work [17] proposes the slice matrix as a new feature for detecting vulner-
able contracts. Additionally, the authors experimented with Feedforward Neural Net-
work (FNN), Convolutional Neural Network (CNN), and Random Forest (RF). The training
process was independently conducted over three different vulnerabilities: “has short ad-
dress”, “is greedy”, and “has flows”. The results show that RF performs better than FNN
and CNN and that using NN with a slice matrix gives better results than using NN and
opcode features. However, applying the slice matrix feature with RF was not possible, and
its advantages still need to be fully explored.

Since CNN is usually used for image processing, transforming 1D data into 2D with
the following application of NNs is also a popular method of data processing. This method
was applied in [18]. The authors compiled the smart contract source code, transformed
bytecodes into code with a fixed size, mapped it to a contract-based image, and the
proposed CodeNet was trained on those prepared images. The model was trained on
four vulnerabilities. According to the results, this model performed better than well-known
tools, such as Mythril, Oyente, etc., with an accuracy of 98.79%.

The Graph Neural Network is proposed to be used for vulnerability detection in [19].
The approach consists of three phases: extracting security patterns from the source code,
constructing a contract graph and performing normalization, and vulnerability detection.
The proposed method was compared with state-of-the-art techniques, and achieved the



Cryptography 2023, 7, 34 4 of 20

following accuracies: reentrancy—89.15%, timestamp dependence—89.02%, and infinite
loop vulnerabilities—83.21%.

Another approach uses LSTM, an Artificial Neural Network (ANN), and a Gated Re-
current Unit model (GRU) to detect vulnerable smart contacts in the Internet of Things (IoT)
environment [2]. The proposed framework consists of three parts: the deployment layer,
the data preparation layer, and the prediction layer. The LSTM model achieved the best
results: accuracy—0.99, precision—0.92, and recall—0.88.

The authors of [20] utilize the traditional ML methods. The paper proposes the use of
extracted bigram features from simplified operation codes for training five ML algorithms
and two sampling algorithms. The best model is XGBoost, which achieved Micro-F1 and
Macro-F1 over 96%.

2.3. Summary

According to the literature review, the existing approaches have several drawbacks.
Firstly, many works are aimed at determining whether the contract is vulnerable. However,
just a few are focused on detecting vulnerability types and have a limited number of
vulnerabilities. Secondly, ML-based models have space for improvement: not all have
achieved high accuracy. Another interesting point is that many approaches utilize different
types of NN, but the traditional ML methods need more attention.

In this work, we addressed the named limitations and proposed a two-phase sys-
tem, which would determine not only if the contract was vulnerable, but also the type
of vulnerability.

3. Methodology

The main goal of this work is to develop an ML-based framework that predicts if the
contract is vulnerable or not and, if vulnerable, classifies the type of vulnerability.

One of the most important aspects of opcode analysis is reducing the number of false-
negative predictions, i.e., to decrease the number of cases when the contract is classified
as normal but, in reality, it is vulnerable. On the other hand, decreasing the false-positive
rate is also important, which means the system classifies the contract as vulnerable when it
is not. The developer needs to check it manually. Consequently, it takes time to analyze
the code, especially when it needs to be correctly labeled. Considering the mentioned
problems, this research aims to achieve high accuracy and F1 score and reduce the number
of false-negative results.

We begin with the introduction of several scenarios. In the first scenario, the clas-
sification is performed in a single phase, and in the second one in two phases. Both of
them utilize ML algorithms, including optimization techniques for the definition of optimal
hyperparameters. Flow-wise, the dataset description is provided first, and the experiment
details follow.

3.1. Dataset Description

The Ethereum dataset [3] was used to train and test the ML model. The dataset
contains the following parameters: contract’s address and opcode. An opcode is the
sequence of numbers corresponding to operation types for execution. The selection of
code can be explained by the fact that opcodes are very effective for the training of ML
algorithms for the task of detection of malware.

The authors provided the initial discussion on opcodes in [3]. The authors used
a dataset from Google BigQuery. They prepared the opcodes by parsing the contract’s
bytecode using the EVM instruction list. The labels were obtained using the MAIAN tool.
The resulting dataset was cleaned to remove false-positive prodigal and suicidal contracts
according to findings in [16]. A more detailed description regarding the dataset’s creation
is introduced in [3].

The contracts were categorized into 5 classes. The resulting dataset contains the
following labels:



Cryptography 2023, 7, 34 5 of 20

• Normal contracts where no vulnerability is detected.
• Suicidal contract that can be killed arbitrarily. In spite of the ability of some contracts

to kill themselves in emergency situations, in the case of improper implementation,
this ability can be exploited by any arbitrary account by executing the “suicide” in-
struction [16].

• Prodigal contracts refund the funds to owners, in the case of attacks, to the addresses
that have previously sent Ether or that present the specific solution. The contract is
considered vulnerable when a contract distributes to an arbitrary address which does
not belong to the owner, has never made a deposit of Ether in the contract, and has
not provided any data, which is difficult to forge [16].

• Greedy contracts remain alive and indefinitely lock Ether, allowing it to be released
without any conditions. Straightforward errors can occur in contracts which accept
Ether but either entirely lack instructions to transfer Ether out or these instructions are
unreachable [16].

• Suicidal and prodigal contracts have appeared after the cleaning and processing phases
of dataset creation according to the description in [3]. The contracts were flagged as
both classes.

The dataset contains 892, 913 samples: normal—884, 273, greedy—5801, prodigal—
1461, suicidal—1207, and suicidal and prodigal—171. The class distribution is depicted
in Figure 1.

gr
ee

dy

no
rm

al

pr
od

ig
al

su
ic

id
al

su
ic

id
al

 a
nd

 p
ro

di
ga

l

Class

0

1000

2000

3000

4000

5000

6000

C
ou

nt

5801
884,273

1461

1207

171

Figure 1. Class distribution in the selected dataset.

3.2. Description of ML Methods for Analysis

The following algorithms were used for the experiments:

• Decision tree predicts the target value using the sequence of simple rules.
• k-Nearest Neighbors (k-NN) assigns the class based on the most common class among

neighbors.
• Support Vector Machine (SVM) transforms the classes into a higher dimensionality and

searches the hyperplanes, which will separate the classes.



Cryptography 2023, 7, 34 6 of 20

• Random forest is the decision trees ensemble.
• Multilayer Perceptron (MLP) is the perceptron where backpropagation is applied.
• Logistic regression is the statistical technique to find the relationships between indepen-

dent variables and outcome values.

As an optimization technique, we used randomized search with 5-fold cross-validation.
This technique is based on the random selection of hyper-parameters from a given dis-
tribution in a defined number of iterations; thus, the combination of hyperparameters
for each algorithm was found in 50 iterations. On the one hand, this algorithm does not
guarantee the best combination of hyperparameters, compared with Grid search [21], which
tries every possible combination of parameters from a given search space. However, the
Random Search algorithm still can outperform Grid search. Taking into consideration that
the dataset is relatively large and the search space is relatively big, consequently, it will
be time-consuming and computationally demanding. Random Search is the preferable
optimization method in this case. The criterion for the selection of the best combination is
the achieved accuracy on the testing set.

The search space for each of the ML algorithms is presented below:

• Space for random forest:

– Number or estimators: 1 to 10;
– Number of features: 1 to 30;
– Depth: 2 to 30;
– Criterion: gini, entropy.

• Space for the logistic regression:

– C: 0.0001 to 10;
– Solver: newton − cg, lb f gs, sag, saga;
– Iterations: 1 to 200.

• Space for the decision tree:

– Max features: auto, sqrt, log2;
– Depth: 10 to 30;
– Criterion: gini, entropy.

• Space for MLP:

– Solver: lb f gs, sgd, adam;
– Hidden layer size: 100 to 250;
– maximum iterations: 10 to 150.

• Space for k-NN:

– Number of neighbors: 1 to 10;
– Weights: uni f orm, distance;
– Algorithm: auto, ball tree, kd tree, brute.

• Space for SVM:

– 0.001 to 10 with number of spaced samples 200;
– Kernel: poly, rb f .

3.3. Scenario 1
3.3.1. Data Preprocessing

As shown in Figure 1, the dataset is imbalanced, where 99% of samples are normal.
The model will label all samples as normal and can easily achieve an accuracy of 99%.
Because of that, the optimization technique, i.e., resampling, was applied to solve the
imbalance problem. Each class has 14,286 samples for the multiclass problem. For the
experiment, the dataset was divided into a training set (70%) and a testing set (30%).

Additionally, the opcodes were encoded with a tokenizer as the preparation step,
which helps to represent the given opcodes as integer sequences. The final dataset’s



Cryptography 2023, 7, 34 7 of 20

structure is depicted in Figure 2. Here, the initial opcodes are represented with 100 numbers,
which makes it possible to process the data with the ML methods mentioned above.

Figure 2. Training dataset structure.

3.3.2. Classification in One Step

The first scenario is relatively straightforward and has only three steps: data prepro-
cessing, classification, and evaluation. The workflow is depicted in Figure 3.

Data preprocessing

• Label encoding

• Tokenizer

• Resampling

Training set

Test set

Classifier

• Optimization 

techniques

• ML training

Trained 

models

Evaluation

• Compute 

metrics: Acc, 

F1, Recall, etc.

Figure 3. Contract classification executed in a single phase.

The preprocessing step is performed in the data preprocessing module. After that, the
prepared data are classified into one of the 5 classes: normal, greedy, prodigal, suicidal, or
suicidal and prodigal, using all mentioned ML methods.

To achieve the best results, the optimal hyperparameters for ML methods were found:

1. Random forest: number of estimators: 9; max features: 26; max depth: 21; criterion: gini;
2. Logistic regression: solver: newton − cg; max iterations: 178; C: 5.71;
3. Decision tree: max depth: 25; criterion: entropy; features: sqrt;
4. MLP: solver: adam; max iterations: 65; hidden layer sizes: 234;
5. k-NN: weights: distance; number of neighbours: 1; algorithm: ball tree;
6. SVM: kernel: rb f ; C: 6.73;

3.4. Scenario 2
3.4.1. Data Preprocessing

In this part of the experiment, all classes of vulnerabilities were replaced with only
one class “Vulnerable”. Thus, the dataset was prepared for binary classification. The initial
class distribution is depicted in Figure 4.

The second phase of this scenario needs samples which are only vulnerable and
contain information on vulnerability type. Because of that, for this part, the dataset was
prepared according to the mentioned requirements: the normal contracts were removed,
and the rest of the samples kept the vulnerability type as a label.

The following data processing step is similar to the first scenario: the data are resam-
pled and tokenized. After resampling, each class has 14, 286 samples. The dataset was
divided into training (70%) and testing (30%) sets.



Cryptography 2023, 7, 34 8 of 20

N
or

m
al

Vu
ln

er
ab

le
Class

0

200,000

400,000

600,000

800,000

C
ou

nt

884,273

8640

Figure 4. Class distribution for binary classification.

3.4.2. Classification in Two Phases

The second scenario has a more complex algorithm, introduced in Figure 5. The data
are preprocessed in the data preprocessing module in the first phase. The next phase is
performed with two classifiers: binary and multiclass. The first one is trained to distinguish
between vulnerable and normal contracts. The second one performs the classification of
vulnerability type: greedy, suicidal, prodigal, or suicidal and prodigal. This way, the two
classifiers are prepared for the following part of the experiment, and with the evaluation
metrics the best one is determined (more detailed results are introduced in Section 4).
Optimization techniques were also utilized in this part of the experiment to find the best
parameters.

Data 

preprocessing

Label encoding

Tokenizer

Resampling

Training 

set

Test set

Binary Classifier

Optimization techniques

ML training (2 classes)

Trained 

models Evaluation

Compute metrics: 

Acc, F1, Recall, etc.Multiclass Classifier

Optimization techniques

ML training (4 classes)
Trained 

models

Best 

binary 

classifier

Best 

multiclass 

classifier

Predict 

vulnerable 

samples

Vulnerable 

samples

Final evaluation 

Compute metrics: 

Acc, F1, Recall, etc.

Figure 5. Contract classification executed in two phases.



Cryptography 2023, 7, 34 9 of 20

For binary classification (vulnerable/non-vulnerable), the found parameters are as
follows:

1. Random forest: number of estimators: 7; max features: 12; max depth: 17; criterion:
entropy;

2. Logistic regression: solver: newton − cg; max iterations: 144; C: 0.71;
3. Decision tree: max depth: 25; criterion: entropy; max features: auto;
4. MLP: solver: lb f gs; max iterations: 147; hidden layer sizes: 136;
5. k-NN: weights: distance; number of neighbors: 3; algorithm: auto;
6. SVM: kernel: rb f ; C: 6.23;

For multiclass classification (type of vulnerability) the found parameters are as follows:

1. Random forest: number of estimators: 9; max features: 26; max depth: 21; criterion: gini;
2. Logistic regression: solver: newton − cg; max iterations: 178; C: 5.71;
3. Decision tree: max depth: 22; criterion: gini; max features: sqrt;
4. MLP solver: lb f gs; max iterations: 134; hidden layer sizes: 222;
5. k-NN weights: uni f orm; number of neighbors: 1; algorithm: brute;
6. SVM kernel: rb f ; C: 9.64;

After selecting the best model for binary classification, k-NN, the prediction of labels
was performed over the testing set. The samples labeled as vulnerable were analyzed with
the best model from multiclass classification, SVM. This analysis allows us to determine the
class of vulnerability. The last step is the evaluation of predictions. The proposed system
thus allows us to filter the non-vulnerable contracts and focus only on vulnerable ones.

4. Evaluation and Results
4.1. Utilized Metrics

To evaluate the trained model, a certain number of metrics were applied and are
introduced below.

Accuracy is the metric that shows the ratio of correct predictions of the model, calcu-
lated as

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

where TP—true positive, TN—true negative, FP—false positive, and FN—false negative.
Precision shows the ratio of true positives to the number of positively predicted

samples by

Precision =
TP

TP + FP
. (2)

Recall is a fraction of correctly predicted positive samples to the number of all true-
positive samples

Recall =
TP

TP + FN
. (3)

F1 is a combination of the recall and precision metrics, estimated as

F1 = 2 · Precision · Recall
Precision + Recall

. (4)

The specific metrics for computing accuracies are described below. The Normal
Contracts Accuracy (NCA) is calculated as

NCA =
NCCQ

NQ
, (5)

where NCCQ—the number of correctly classified normal contracts and NQ—the number
of normal contracts in the dataset.



Cryptography 2023, 7, 34 10 of 20

The Suicidal Contracts Accuracy (SCA) is the accuracy of the classification of suicidal
contracts, which is calculated as

SCA =
SCCQ

SQ
, (6)

where SCCQ—the number of predicted suicidal contracts and SQ—the number of suicidal
contracts in the dataset.

The Prodigal Contracts Accuracy (PCA) is the accuracy of the classification of prodigal
contracts, which is calculated as

PCA =
PCCQ

PQ
, (7)

where PCCQ—the number of predicted prodigal contracts and PQ—the number of prodigal
contracts in the dataset.

The Greedy Contracts Accuracy (GCA) is the accuracy of the classification of greedy
contracts, which is calculated as

GCA =
GCCQ

GQ
, (8)

where GCCQ—the number of predicted greedy contracts and GQ—the number of greedy
contracts in the dataset.

The Suicidal and Prodigal Contracts Accuracy (SPCA) is the accuracy of the classifica-
tion of suicidal and prodigal contracts, which is calculated as

SPCA =
SPCCQ

SPQ
, (9)

where SPCCQ—the number of predicted suicidal and prodigal contracts and SPQ—the
number of suicidal and prodigal contracts in the dataset.

False Negative Predictions (FNP) is the ratio of false-negative predictions to the total
number of samples in the dataset, which is calculated as

FNP =
FNQ

Q
, (10)

where FNQ—the number of false negative predictions and Q—the number of contracts in
the dataset.

As an engineering-representative metric, we use the 95% average prediction time,
which is the time of processing of the whole testing set divided by the number of samples
in this set. Consequently, the presented result is the average time per sample (contract).

4.2. Results for Scenario 1

The results of the classification into five classes are presented in Tables 1 and 2 (the “one-
phase scenario” part). According to the introduced results, the SVM algorithm achieved
the best results on almost all metrics: SCA—0.9998, PCA—0.9973, GCA—0.9858, and
false negative—0.0021. k-NN has the highest values for NCA—0.9958 and SPCA—0.9911.
Additionally, SVM also performed better for accuracy—0.9888, F1—0.9888, precision—
0.9889, and recall—0.9888. Furthermore, it took 0.312428 ms to classify one contract.



Cryptography 2023, 7, 34 11 of 20

Table 1. Accuracy estimation for 5 classes.

Model NCA SCA PCA GCA SPCA FNP

Random forest 0.9910 0.9946 0.9709 0.9564 0.9863 0.0090

Logistic regression 0.8873 0.9029 0.8789 0.7317 0.8190 0.0236

Decision tree 0.9612 0.9779 0.9511 0.9296 0.9669 0.0099

MLP 0.9850 0.9956 0.9943 0.9666 0.9937 0.0082

k-NN 0.9958 0.9951 0.9772 0.9732 0.9911 0.0106

SVM 0.9614 0.9998 0.9973 0.9858 0.9998 0.0021

The confusion matrix in Figure 6 shows the SVM classes detected correctly and which
of them were problematic. The algorithm failed to detect 38 greedy samples and la-
beled them as normal. Also, the algorithm determined 20 samples as prodigal when they
were greedy. On the other hand, 131 contracts were predicted as greedy, but they were
non-vulnerable.

Table 2. Results of each classification task in two scenarios.

Method Accuracy F1 Precision Recall Time, ms

One-phase scenario

5 classes

Random forest 0.9796 0.9795 0.9797 0.9796 0.000863

Logistic regression 0.8433 0.8433 0.8439 0.8433 0.000327

Decision tree 0.9573 0.9572 0.9572 0.9573 0.000373

MLP 0.9870 0.9870 0.9870 0.9870 0.00126

k-NN 0.9862 0.9862 0.9864 0.9862 2.707967

SVM 0.9888 0.9888 0.9889 0.9888 0.312428

Two-phase scenario

2 classes

Random forest 0.9732 0.9735 0.9569 0.9906 0.000939

Logistic regression 0.9189 0.9189 0.9143 0.9235 0.0007

Decision tree 0.9670 0.9668 0.9667 0.9669 0.00082

MLP 0.9713 0.9713 0.9665 0.9761 0.000931

k-NN 0.9732 0.9736 0.9528 0.9953 0.18213

SVM 0.9724 0.9726 0.9589 0.9866 0.151349



Cryptography 2023, 7, 34 12 of 20

Table 2. Cont.

Method Accuracy F1 Precision Recall Time, ms

4 classes

Random forest 0.9698 0.9697 0.9698 0.9698 0.001005

Logistic regression 0.8374 0.8370 0.8368 0.8374 0.000503

Decision tree 0.9500 0.9499 0.9499 0.9500 0.000431

MLP 0.9838 0.9837 0.9839 0.9838 0.001292

k-NN 0.9767 0.9764 0.9774 0.9767 0.133743

SVM 0.9899 0.9899 0.9900 0.9899 0.17381

Potential example solution

k-NN+SVM 0.9921 0.9902 0.9883 0.9921 0.329363

normal suicidal prodigal greedy suicidal and prodigal

Predicted label

no
rm

al
su

ic
id

al
pr

od
ig

al
gr

ee
dy

su
ic

id
al

 a
nd

 p
ro

di
ga

l

Ac
tu

al
 la

be
l

4084 7 10 131 14

1 4253 0 0 0

6 0 4377 6 0

38 1 20 4240 2

0 1 0 0 4238

0

500

1000

1500

2000

2500

3000

3500

4000

Figure 6. Confusion matrix for SVM in scenario 1.

The other methods provide somewhat worse results. Logistic regression has the
worst results: NCA—0.8873, SCA—0.9029, PCA—0.8789, GCA—0.7317, SPCA—0.8190,
false negative—0.0236, accuracy—0.8433, F1—0.8433, precision—0.8439, and recall—0.8433.
However, other methods have results for all metrics above 0.95, comparable with the best
results. However, logistic regression is the fastest algorithm for this task. It was able to
process one contract in 0.000327 ms because of the simplicity of the algorithm. Conversely,
the slowest method is k-NN, which classified the contract in 2.707967 ms, but it performed
relatively well for accuracy—0.9862, F1—0.9862, precision—0.9864, and recall—0.9862.



Cryptography 2023, 7, 34 13 of 20

4.3. Results for Scenario 2
4.3.1. Classification into Two Classes

The results for classification into two classes, i.e., binary classification, are shown
in Table 2 (two-phase scenario). All methods perform well and achieve results of more
than 90% for all metrics. As can be seen, the k-NN algorithm achieved the best results
for F1-score—0.9736, accuracy—0.9732, and recall—0.9953. This model is relatively time-
consuming: it identified a contract in 0.18213 ms. It wrongly labeled 210 normal contracts
as vulnerable, and 20 vulnerable ones as normal (see confusion matrix in Figure 7).

normal vulnerable

Predicted label

no
rm

al
vu

ln
er

ab
le

Ac
tu

al
 la

be
l

4101 210

20 4241

500

1000

1500

2000

2500

3000

3500

4000

Figure 7. Confusion matrix for binary classification (k-NN) for scenario 2.

Alternatively, the random forest performed with the same accuracy as k-NN, but took
less time for processing: 0.000939 ms.

The decision tree is the best for precision 0.9667 and has a comparable processing
speed to the fastest algorithm of 0.00082 ms. Despite its effectiveness in terms of processing
time, 0.0007 ms, logistic regression has the worst results: accuracy—0.9189, F1—0.9189,
precision—0.9143, and recall—0.9235.

4.3.2. Classification into Four Classes

This scenario’s second part is classifying detected vulnerable contracts into four
classes. A comparison of the methods during the training phase for this classification is
introduced in Tables 2 and 3. Like in binary classification, the SVM is the best according to
the metrics of accuracy—0.9899, F1 score—0.9899, precision—0.9900, recall—0.9899, time
for processing—0.17381 ms, SCA—0.9937, PCA—0.9777, and SPCA—0.9954. k-NN has
the best result for GCA—0.9981. It is worth mentioning that for almost all metrics, the
classification of four classes is performed better than for five classes. It is interesting to note
that the decision tree has worse performance according to such metrics as accuracy—0.95,
F1—0.9499, precision—0.9499, and recall—0.95, but it was the fastest algorithm in this
task—0.000431 ms.



Cryptography 2023, 7, 34 14 of 20

Table 3. Accuracy estimation for 4 classes.

Model SCA PCA GCA SPCA

Random forest 0.9805 0.9581 0.9691 0.9715

Logistic regression 0.8961 0.8771 0.7613 0.8132

Decision tree 0.9675 0.9436 0.9358 0.9527

MLP 0.9931 0.9688 0.9899 0.9836

k-NN 0.9803 0.9587 0.9981 0.9721

SVM 0.9937 0.9777 0.9930 0.9954

The confusion matrix is also introduced in Figure 8. Here, the main problem for SVM
is to distinguish between greedy and prodigal classes. The algorithm detected 38 greedy
contracts as prodigal and 12 prodigal contracts as greedy. However, mostly it did up to
7 mistakes in predictions.

suicidal prodigal greedy suicidal and prodigal

Predicted label

su
ic

id
al

pr
od

ig
al

gr
ee

dy
su

ic
id

al
 a

nd
 p

ro
di

ga
l

Ac
tu

al
 la

be
l

1743 1 0 2

1 1713 12 0

3 38 1697 6

7 0 0 1739

0

200

400

600

800

1000

1200

1400

1600

Figure 8. Confusion matrix for multiclass classification (with SVM) for scenario 2.

4.3.3. Final Results for Proposed System

The final evaluation is performed according to the mentioned workflow in Figure 5.
After filtering all contracts labeled by the binary classifier as non-vulnerable, the rest were
evaluated with a multiclass classifier. The total number of filtered samples is 16, 930 from
the initial testing set (21,429 samples). The final results were also summrized previously in
Table 2. Here, the classification of filtered samples is more accurate than the classification
of all samples, like in the first scenario. The confusion matrix for the final evaluation is
introduced in Figure 9. The final model performance was evaluated with the following



Cryptography 2023, 7, 34 15 of 20

metrics: accuracy—0.9921, F1—0.9902, precision—0.9883, recall—0.9921, SCA—0.9988,
PCA—0.9918, GCA—0.9804, and SPCA—0.9982. Naturally, these correspond to both
phases and, if classification is required by the integrator, it might take more time than just a
classification alone; see the discussion below.

normal suicidal prodigal greedy suicidal and prodigal

Predicted label

no
rm

al
su

ic
id

al
pr

od
ig

al
gr

ee
dy

su
ic

id
al

 a
nd

 p
ro

di
ga

l

Ac
tu

al
 la

be
l

0 0 8 58 1

0 4220 1 3 1

0 1 4361 24 0

0 3 23 4248 5

0 1 4 0 3968

0

500

1000

1500

2000

2500

3000

3500

4000

Figure 9. Final confusion matrix for scenario 2.

Interestingly, the binary classifier has labeled some normal contracts as vulnerable,
shown in the confusion matrix’s first row (actual label—normal). In total, 67 samples were
wrongly detected. Also, the multiclass classifier, in most cases, determined the correct type
of vulnerability. The main diagonal shows, with high numbers, the number of samples.
However, the classifier confused different prodigal and greedy classes: 23 greedy samples
were labeled as prodigal and 24 as greedy. This fact is shown with metrics PCA and GCA.
In the other cases, the model performed well. Finally, the processing time is computed:
0.329363 ms. This time shows how long it will take to process vulnerable contracts, which
includes binary classification and four-class classification for each contract.

5. Discussion
5.1. Numerical Perspectives

Two scenarios for contract analysis were implemented in this work. The first is a
classifier in a single phase, and in the second one, the two classifiers were pretrained to
perform the analysis.

The first scenario aimed to classify the given opcode into one of the five classes. The
main advantage of this is the simplicity of the workflow. The SVM algorithm achieved
the best results, and its accuracy is 0.9888. The MLP model provided relatively good
results. Considering that this is the simplest version of the neural network, some advanced
architectures of neural networks can be suitable for this task. The most complicated aspect
is to determine the greedy vulnerability correctly. Since this class has more samples in
the dataset, finding the patterns that would characterize it is more difficult. On the other



Cryptography 2023, 7, 34 16 of 20

hand, the other classes have fewer samples. These contracts were duplicated during the
resampling, and, consequently, the models were adapted for these samples, or, in other
words, overfitted.

For the second scenario, two classifiers were trained. For binary classification, the best
one was k-NN with an accuracy of 0.9732. These results show that the model can effectively
distinguish between normal and vulnerable contracts but sometimes needs to be corrected.
The main thing is that it has a low number of false negatives—just 20 samples among a
total of 8572.

The second part is classifying the vulnerability of contracts filtered in the previous step.
Here, the SVM model pretrained on four classes was used. According to the results from
the pretraining phase, this model achieved accuracy and F1 of 0.9899, i.e., the algorithm
could distinguish between different classes. However, as in the first scenario, the main
problem appears to be in differentiating between the prodigal and greedy classes. This
also can be seen in the PCA and GCA metrics, which are lower than the others. The final
classification also shows this problem: the PCA and GCA metrics are worse than SCA
and SPCA.

Another essential aspect is the time spent processing the contracts by these algorithms.
In the case of a one-phase scenario, the models which achieved higher performance (MLP,
k-NN, and SVM) need more time to process one contract. The logistic regression is the
fastest but with poor performance results. The choice of a model for a real-world scenario
depends on the situation: whether it is important to process the data fast or more accurately.
However, the difference in the achieved results between logistic regression and any of the
MLP, k-NN, and SVM models is significant, so it would be preferable to use any of these
three models.

In the case of the two-phase scenario, the behavior is similar, i.e., more complex
models, such as k-NN and SVM, achieved high results but were time-consuming. However,
the random forest can also be taken into consideration. It has good results and is one of
the fastest algorithms according to measures. It is worth noting that results for binary
classification regarding the time are better than for the five classes, at least when comparing
the mentioned k-NN, SVM, and MLP. The next step in the two-phase scenario is the
categorization of vulnerability. The most interesting models are also k-NN, SVM, and MLP,
since they achieved high values in different metrics. The time for classification is lower
than in the first scenario. On the one hand, the most successful is SVM in all metrics, but
because of the complexity of the model (which showed up in the time results), the MLP can
also be considered for real-world applications.

In this experiment, accuracy is the primary metric used for model selection in the
two-phase scenario; in this case, k-NN and SVM. Their achieved times are comparable
with the one-phase scenario. However, it should be mentioned that the provided time is
measured when the contract is vulnerable. In other words, it will go through two phases.
Despite almost the same processing time as in the one-phase scenario, time is still saved in
the second scenario. Not all contracts are vulnerable, so they will be processed during the
time in the same way in binary classification (as mentioned before, binary classification is
less time-consuming than multiclass classification). However, in the case that a contract is
vulnerable, it will be additionally categorized. On the other hand, the first scenario will
spend the same time on any contract.

Notably, the evaluation with accuracy, recall, precision, and F1 metrics showed that
the second scenario performed better than the first scenario. This fact suggests that two
classification phases are more suitable for real-world applications. Additionally, the tradi-
tional ML methods achieved high results, which means it is unnecessary to apply some
complex methods, which would take more time to process.

It is important to notice that training the models on more vulnerable samples for
real-world tasks is necessary. Even the resampling method cannot prevent the overfitting
problem, which can appear with a small number of samples.



Cryptography 2023, 7, 34 17 of 20

The proposed model can be considered for deployment in real-world applications.
Firstly, the model will filter the vulnerable contracts, and only after that will it continue
categorizing contracts.

The second aspect is the possibility of retraining. Since the two phases work separately,
they can also be retrained independently. As mentioned earlier, ML algorithms require a lot
of data for efficient execution, which is why enhancing the system during usage in real life
is possible. Even the growing number of attacks can be helpful for the model—the more
vulnerable samples it can use for training, the less incorrect detection it will perform in the
future. It is important to note that the proposed system is based on supervised learning.

Consequently, the model needs to be trained on labeled data. Here, the assistance of an
expert would be needed. Despite that, the model can determine the vulnerability patterns
with high probability, reducing the work for this expert, who would need to categorize
the contracts.

5.2. Future Perspectives

Detecting vulnerable smart contracts can provide several benefits for developers and
users of the Ethereum network (not focused specifically on financial segments but in
broader sense). Here are some key advantages:

• Overall Network Operation: Exploits targeting vulnerable smart contracts can disrupt
the Ethereum network’s operation and stability. Detecting and repairing vulnerabili-
ties with ML on the fly contributes to a more resilient and reliable network infrastruc-
ture, lowering the likelihood of service disruptions, congestion, or cascading effects
caused by breached contracts.

• Enhanced Security: The Ethereum ecosystem could be made more secure overall by
identifying vulnerable smart contracts [22]. Malicious actors may use vulnerabilities
to act unlawfully or affect the funds. The likelihood of such assaults can be greatly
decreased by identifying and addressing vulnerabilities, safeguarding user assets, and
upholding network trust.

• Protection of User Privacy: Certain smart contract flaws can reveal sensitive user
data or transaction details [23]. Detecting these vulnerabilities enables immediate
correction, limiting illegal access to personal information and protecting user privacy.

• Trust in the System’s Operation: Identifying and providing appropriate countermea-
sures to vulnerabilities in smart contracts contributes to the development of trust
among Ethereum developers and consumers [24]. Increased trust in the security of
smart contracts can lead to a greater adoption of Ethereum-based applications and
services, supporting network innovation and growth beyond state-of-the-art versions.

• Evolution of Best Practices: Vulnerability detection provides significant insights into
emerging threats in the smart contract world [24]. This knowledge can help the
Ethereum community define best practices, code standards, and security recommenda-
tions. Sharing this information aids in the entire ecosystem’s maturation and develops
a security-conscious development culture.

In summary, detecting vulnerable smart contracts in Ethereum offers numerous bene-
fits, including improved security, user privacy, network stability, trust and adoption, and
the evolution of best practices.

5.3. Integration Issues

While ML can be a useful technique for discovering vulnerabilities, it also brings
several limitations and obstacles when used. We further list some of the drawbacks of
employing ML for this purpose:

• Limited Training Data: A large volume of labeled training data is needed to train ML
models. Nevertheless, obtaining a significant and diversified collection of identified
vulnerabilities in the case of vulnerable smart contracts remains close to impossible.



Cryptography 2023, 7, 34 18 of 20

The restricted availability of labeled data may hamper the capacity to train precise
and reliable ML models.

• Evolving Attack Techniques: The landscape of smart contract flaws and attack methods
constantly changes [25]. ML models naturally use historical data to find trends
and predict future outcomes. Ethereum’s smart contract ecosystem is extensive and
diverse, with many contract types and functionalities. If trained on a single set of
contracts, ML algorithms might not generalize effectively to new contract kinds or
vulnerabilities. Adapting models to different contract architectures and keeping them
current with changing smart contract standards and practices can be challenging and
time-consuming.

• “Back box” issue: It can be difficult to comprehend how ML models come to their
conclusions because they frequently operate as black boxes when employed. In
security-critical applications, explainability is essential to promote openness and
confidence. It could be challenging for developers and integrators to comprehend
the logic behind found vulnerabilities if a machine learning model cannot explain its
predictions concisely.

• False Positives and False Negatives: ML models are prone to false positives, where
they mistakenly identify a non-vulnerable contract as vulnerable, and false negatives,
when they fail to recognize a contract as vulnerable. False positives can result in
pointless audits or interventions, while false negatives can leave vulnerabilities and
potential vulnerabilities undiscovered. It is still difficult to balance reducing false
alarms and correctly identifying risks.

• Scalability: Applying ML techniques for smart contract vulnerability detection in real-
life applications often requires significant computational resources and integration
phases. Training complex models, deploying them in production, and maintaining
them over time can be costly. Moreover, as the Ethereum network continues to grow,
the volume of smart contracts increases, posing scalability challenges for machine
learning-based detection approaches.

ML is becoming a central part of smart contract vulnerability detection. Nonetheless, it
is still often complemented by other techniques, such as static analysis, formal verification,
and manual auditing, to address these challenges and enhance the overall effectiveness
of smart contract security practices [20,26,27]. However, automation appears to be the
essential part of the process.

6. Conclusions

To take a step forward towards achieving better vulnerability detection, this work
proposed a system for vulnerability detection in smart contracts using ML algorithms. The
proposed method was tested on a real-world dataset and showed high performance on
all metrics. Here, two solutions were proposed: (1) The classification of five classes (one
normal and four vulnerable) is performed in a single phase. (2) The classification is per-
formed in two phases: firstly, with binary classification, and secondly, with a classification
of vulnerable contracts. Considering that the priority is to minimize false-negative results,
the second solution is preferable because the rate of false negatives is lower with binary
classification than with the classification of five classes.

The proposed system has some advantages compared to existing solutions. First,
the proposed one is based on ML; thus, it is possible to retrain the model on newer data
compared to other systems based on symbolic execution. The proposed solution predicts
fewer false-negative results and outperforms them. Compared with [3], the system provides
the same accurate results but allows for the vulnerability types to be distinguished within
good execution time bounds.

In the future, it is planned to add other vulnerability types. Also, it is possible to use
the approach of contract analysis described in [16], e.g., by the classification of contracts
using ML methods and automatic execution in the private fork [28], to test and check if the
classification is correct.



Cryptography 2023, 7, 34 19 of 20

Author Contributions: Data curation, A.M.; formal analysis, A.M.; roles/writing—original draft,
A.M.; visualization, A.M.; investigation, A.M.; software, A.M; writing—review and editing, A.O.;
funding acquisition, A.O.; investigation, A.O.; methodology, A.O.; project administration, A.O. All
authors have read and agreed to the published version of the manuscript.

Funding: The work of the last author was supported by the Jane and Aatos Erkko Foundation
through the CONVERGENCE of Humans and Machines project, as well as through the Finnish
Foundation for Technology Promotion (TES).

Data Availability Statement: Data are available in Open Access.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kushwaha, S.S.; Joshi, S.; Singh, D.; Kaur, M.; Lee, H.N. Systematic Review of Security Vulnerabilities in Ethereum Blockchain

Smart Contract. IEEE Access 2022, 10, 6605–6621. [CrossRef]
2. Gupta, R.; Patel, M.M.; Shukla, A.; Tanwar, S. Deep Learning-based Malicious Smart Contract Detection Scheme for Internet of

Things Environment. Comput. Electr. Eng. 2022, 97, 107583. [CrossRef]
3. Tann, W.J.W.; Han, X.J.; Gupta, S.S.; Ong, Y.S. Towards Safer Smart Contracts: A Sequence Learning Approach to Detecting

Security Threats. arXiv 2018, arXiv:1811.06632.
4. Mehar, M.I.; Shier, C.L.; Giambattista, A.; Gong, E.; Fletcher, G.; Sanayhie, R.; Kim, H.M.; Laskowski, M. Understanding a

Revolutionary and Flawed Grand Experiment in Blockchain: The DAO Attack. J. Cases Inf. Technol. (JCIT) 2019, 21, 19–32.
[CrossRef]

5. Parity Technologies. A Postmortem on the Parity Multi-Sig Library Self-Destruct. Parity Technologies. 2023. Available online:
https://parity.io/blog/a-postmortem-on-the-parity-multi-sig-library-self-destruct/ (accessed on 25 January 2023).

6. Chen, T.; Cao, R.; Li, T.; Luo, X.; Gu, G.; Zhang, Y.; Liao, Z.; Zhu, H.; Chen, G.; He, Z.; et al. SODA: A Generic Online Detection
Framework for Smart Contracts. In Proceedings of the Network and Distributed Systems Security (NDSS) Symposium 2020,
San Diego, CA, USA, 23–26 February 2020 .

7. Zhou, H.; Milani Fard, A.; Makanju, A. The State of Ethereum Smart Contracts Security: Vulnerabilities, Countermeasures, and
Tool Support. J. Cybersecur. Priv. 2022, 2, 358–378. [CrossRef]

8. Vacca, A.; Di Sorbo, A.; Visaggio, C.A.; Canfora, G. A Systematic Literature Review of Blockchain and Smart Contract
Development: Techniques, Tools, and Open Challenges. J. Syst. Softw. 2021, 174, 110891. [CrossRef]

9. Liao, J.W.; Tsai, T.T.; He, C.K.; Tien, C.W. Soliaudit: Smart Contract Vulnerability Assessment Based on Machine Learning and
Fuzz Testing. In Proceedings of the 6th International Conference on Internet of Things: Systems, Management and Security
(IOTSMS), Granada, Spain, 22–25 October 2019 ; IEEE: Piscataway, NJ, USA , 2019; pp. 458–465.

10. Google BigQuery. Kaggle Dataset. Available online: https://www.kaggle.com/datasets/bigquery/ethereum-blockchain
(accessed on 25 January 2023).

11. Luu, L.; Chu, D.H.; Olickel, H.; Saxena, P.; Hobor, A. Making Smart Contracts Smarter. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016 ; pp. 254–269.

12. Qian, P.; Liu, Z.; He, Q.; Huang, B.; Tian, D.; Wang, X. Smart Contract Vulnerability Detection Technique: A Survey. arXiv 2022,
arXiv:2209.05872.

13. Grishchenko, I.; Maffei, M.; Schneidewind, C. A Semantic Framework for the Security Analysis of Ethereum Smart Contracts. In
Proceedings of the International Conference on Principles of Security and Trust, Thessaloniki, Greece, 14–20 April 2018 ; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 243–269.

14. ConsenSys: Mythril. Mythril GitHub. Available online: https://github.com/ConsenSys/mythril/ (accessed on 25 January 2023).
15. Tsankov, P.; Dan, A.; Drachsler-Cohen, D.; Gervais, A.; Buenzli, F.; Vechev, M. Securify: Practical Security Analysis of Smart

Contracts. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada,
15–19 October 2018; pp. 67–82.

16. Nikolić, I.; Kolluri, A.; Sergey, I.; Saxena, P.; Hobor, A. Finding the Greedy, Prodigal, and Suicidal Contracts at Scale. In Proceedings
of the 34th Annual Computer Security Applications Conference, San Juan, PR, USA, 3–7 December 2018; pp. 653–663.

17. Xing, C.; Chen, Z.; Chen, L.; Guo, X.; Zheng, Z.; Li, J. A New Scheme of Vulnerability Analysis in Smart Contract with Machine
Learning. Wirel. Netw. 2020, 1–10. [CrossRef]

18. Hwang, S.J.; Choi, S.H.; Shin, J.; Choi, Y.H. CodeNet: Code-targeted Convolutional Neural Network Architecture for Smart
Contract Vulnerability Detection. IEEE Access 2022, 10, 32595–32607. [CrossRef]

19. Liu, Z.; Qian, P.; Wang, X.; Zhuang, Y.; Qiu, L.; Wang, X. Combining Graph Neural Networks with Expert Knowledge for Smart
Contract Vulnerability Detection. IEEE Trans. Knowl. Data Eng. 2021, 35, 1296–1310. [CrossRef]

20. Wang, W.; Song, J.; Xu, G.; Li, Y.; Wang, H.; Su, C. Contractward: Automated Vulnerability Detection Models for Ethereum Smart
Contracts. IEEE Trans. Netw. Sci. Eng. 2020, 8, 1133–1144. [CrossRef]

21. Liashchynskyi, P.; Liashchynskyi, P. Grid search, random search, genetic algorithm: A big comparison for NAS. arXiv 2019,
arXiv:1912.06059.

http://doi.org/10.1109/ACCESS.2021.3140091
http://dx.doi.org/10.1016/j.compeleceng.2021.107583
http://dx.doi.org/10.4018/JCIT.2019010102
https://parity.io/blog/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
http://dx.doi.org/10.3390/jcp2020019
http://dx.doi.org/10.1016/j.jss.2020.110891
https://www.kaggle.com/datasets/bigquery/ethereum-blockchain
https://github.com/ConsenSys/mythril/
http://dx.doi.org/10.1007/s11276-020-02379-z
http://dx.doi.org/10.1109/ACCESS.2022.3162065
http://dx.doi.org/10.1109/TKDE.2021.3095196
http://dx.doi.org/10.1109/TNSE.2020.2968505


Cryptography 2023, 7, 34 20 of 20

22. Ren, M.; Ma, F.; Yin, Z.; Fu, Y.; Li, H.; Chang, W.; Jiang, Y. Making Smart Contract Development More Secure and Easier. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Athens, Greece, 23–28 August 2021; pp. 1360–1370.

23. Bhardwaj, A.; Shah, S.B.H.; Shankar, A.; Alazab, M.; Kumar, M.; Gadekallu, T.R. Penetration Testing Framework for Smart
Contract Blockchain. Peer Peer Netw. Appl. 2021, 14, 2635–2650. [CrossRef]

24. Wang, H.; Li, Y.; Lin, S.W.; Ma, L.; Liu, Y. Vultron: Catching Vulnerable Smart Contracts Once and for All. In Proceedings of the
IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER), Montreal,
QC, Canada, 25–31 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4.

25. Atzei, N.; Bartoletti, M.; Cimoli, T. A Survey of Attacks on Ethereum Smart Contracts (SOK). In Proceedings of the Principles of
Security and Trust: 6th International Conference, POST 2017, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2017, Uppsala, Sweden, 22–29 April 2017; Proceedings 6; Springer: Berlin/Heidelberg, Germany,
2017; pp. 164–186.

26. Krichen, M.; Lahami, M.; Al-Haija, Q.A. Formal Methods for the Verification of Smart Contracts: A Review. In Proceedings of
the 15th International Conference on Security of Information and Networks (SIN), Sousse, Tunisia, 11–13 November 2022; IEEE:
Piscataway, NJ, USA, 2022; pp. 1–8.

27. Abdellatif, T.; Brousmiche, K.L. Formal Verification of Smart Contracts based on Users and Blockchain Behaviors Models. In
Proceedings of the 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 26–28
February 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5.

28. Zhidanov, K.; Bezzateev, S.; Afanasyeva, A.; Sayfullin, M.; Vanurin, S.; Bardinova, Y.; Ometov, A. Blockchain Technology for
Smartphones and Constrained IoT Devices: A Future Perspective and Implementation. In Proceedings of the IEEE 21st Conference
on Business Informatics (CBI), Moscow, Russia, 15–17 July 2019; IEEE: Piscataway, NJ, USA, 2019; Volume 2, pp. 20–27.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s12083-020-00991-6

	Introduction
	Related Work
	Tools for Analysis of Smart Contracts
	ML for Smart Contract Analysis
	Summary

	Methodology
	Dataset Description
	Description of ML Methods for Analysis
	Scenario 1
	Data Preprocessing
	Classification in One Step

	Scenario 2
	Data Preprocessing
	Classification in Two Phases


	Evaluation and Results
	Utilized Metrics
	Results for Scenario 1
	Results for Scenario 2
	Classification into Two Classes
	Classification into Four Classes
	Final Results for Proposed System


	Discussion
	Numerical Perspectives
	Future Perspectives
	Integration Issues

	Conclusions
	References

