
Context Awareness for Navigation Applications

 FGI PUBLICATIONS № 158

 by

 Robert E. Guinness

Doctoral dissertation for the degree of Doctor of Science in Technology to be presented
with due permission for public examination and debate in Tietotalo Building, Auditorium

TB109, at Tampere University of Technology on the 21st of December 2015 at 12 noon.

KIRKKONUMMI 2015

Supervising professor
Professor Jarmo Takala, Department of Pervasive Computing, Tampere University of
Technology, Finland

Thesis advisors
Professor Ruizhi Chen, Conrad Blucher Institute for Surveying and Science, School of
Engineering and Computer Science, Texas A&M University – Corpus Christi, USA

Professor Heidi Kuusniemi, Department of Navigation and Positioning, Finnish
Geospatial Research Institute, National Land Survey of Finland

Preliminary examiners
Dr. Martin Werner, Mobile and Distributed Systems Group, Institute for Informatics,
Ludwig-Maximilians-Universität München, Germany

D.Sc.(Tech) Susanna Pirttikangas, Department of Computer Science and Engineering,
University of Oulu, Finland

Opponents
Dr. Martin Werner, Mobile and Distributed Systems Group, Institute for Informatics,
Ludwig-Maximilians-Universität München, Germany

D.Sc.(Tech) Jari Syrjärinne, HERE, a Nokia business, Finland

ISBN (printed): 978-951-48-0249-2
ISBN (pdf): 978-951-48-0250-8
ISSN (print): 2342-7345
ISSN (online): 2342-7353

Grano Oy, Vantaa 2015

ABSTRACT

This thesis examines the topic of context awareness for navigation applications and asks
the question, “What are the benefits and constraints of introducing context awareness
in navigation?” Context awareness can be defined as a computer’s ability to understand
the situation or context in which it is operating. In particular, we are interested in how
context awareness can be used to understand the navigation needs of people using mobile
computers, such as smartphones, but context awareness can also benefit other types
of navigation users, such as maritime navigators. There are countless other potential
applications of context awareness, but this thesis focuses on applications related to
navigation. For example, if a smartphone-based navigation system can understand when
a user is walking, driving a car, or riding a train, then it can adapt its navigation algorithms
to improve positioning performance.

We argue that the primary set of tools available for generating context awareness is
machine learning. Machine learning is, in fact, a collection of many different algorithms
and techniques for developing “computer systems that automatically improve their
performance through experience” [1]. This thesis examines systematically the ability of
existing algorithms from machine learning to endow computing systems with context
awareness. Specifically, we apply machine learning techniques to tackle three different
tasks related to context awareness and having applications in the field of navigation:
(1) to recognize the activity of a smartphone user in an indoor office environment,
(2) to recognize the mode of motion that a smartphone user is undergoing outdoors, and
(3) to determine the optimal path of a ship traveling through ice-covered waters. The
diversity of these tasks was chosen intentionally to demonstrate the breadth of problems
encompassed by the topic of context awareness.

During the course of studying context awareness, we adopted two conceptual “frameworks,”
which we find useful for the purpose of solidifying the abstract concepts of context
and context awareness. The first such framework is based strongly on the writings of a
rhetorician from Hellenistic Greece, Hermagoras of Temnos, who defined seven elements
of “circumstance”. We adopt these seven elements to describe contextual information.
The second framework, which we dub the “context pyramid” describes the processing of
raw sensor data into contextual information in terms of six different levels. At the top of
the pyramid is “rich context”, where the information is expressed in prose, and the goal for
the computer is to mimic the way that a human would describe a situation.

We are still a long way off from computers being able to match a human’s ability to
understand and describe context, but this thesis improves the state-of-the-art in context

awareness for navigation applications. For some particular tasks, machine learning has
succeeded in outperforming humans, and in the future there are likely to be tasks in
navigation where computers outperform humans. One example might be the route
optimization task described above. This is an example of a task where many different
types of information must be fused in non-obvious ways, and it may be that computer
algorithms can find better routes through ice-covered waters than even well-trained
human navigators. This thesis provides only preliminary evidence of this possibility, and
future work is needed to further develop the techniques outlined here. The same can be
said of the other two navigation-related tasks examined in this thesis.

II ABSTRACT

PREFACE

The research work presented in this thesis was carried out between November 2011 and
May 2014. I have chosen to complete a “compendium-style” dissertation, in part because
I have already had the pleasure of preparing a monograph when co-authoring a book
with Prof. Ruizhi Chen, published in July 2014. I have no great desire to repeat such an
experience yet. As many who have published such monographs can attest, it takes a lot
out of you!

Due to other responsibilities, as well as a bad case of the “it’s-not-good-enough-yet”
syndrome, it took me more than one year to finalize and publish some of the results of
my doctoral research in article format. With the aid of gentle nudging from my colleagues
and superiors, I prepared the summary content for this compendium mostly between
January and July 2015.

There are two particular experiences I’d like to share that also motivated me for completing
this dissertation. The first is when I was asked to be a reviewer for an article submitted
to one highly-esteemed journal. When I realized that my work, in my own opinion, was
superior to that which I was reviewing, I felt suddenly cured of the above-mentioned
syndrome. This is one of the side benefits of peer review. The second was when I was
participating in an interview of a now colleague (he got the job!). We asked him if he
could describe one achievement of which he was most proud. Instead of pointing to one
particular academic achievement, such as a highly-cited paper, he pointed out another
kind of achievement: the fact that he can look back at his publications and realize that
some of the early ones were poor but that there has been a steady improvement in
the quality over the years. Since hearing that, this is what I aim for: Not to publish the
perfect gem some day but to continually put out my work-in-progress for others to see
and hopefully benefit from. Then, refine and repeat.

There are many I would like to thank for their contributions to this thesis and to my
overall development. First and foremost, however, I thank God for the wonderful life and
opportunities He has given me and for always being with me. Next, I’d like to thank my
family for their many years of support, beginning with my parents but also including my
siblings, Erin and Joe. Nowadays I have my own family, and when someone completes a
dissertation in the midst of family life, there is often an unsung hero (or heroine) behind
the work. In my case, it is my wife, Anne-Mari, who spent many long days and evenings
taking care of our boys while I was completing this thesis. Thank you, my angel, for
everything. Then, to my children Pyry, Kilian, and Aarre: Thank you for bringing joy to
each day.

Next, I’d like to thank my thesis supervisors, Prof. Jarmo Takala, Prof. Ruizhi Chen, and Prof.
Heidi Kuusniemi. Thank you for all the support and guidance, as well as the opportunity
to complete this research under your supervision. Thank you also to Prof. Ling Pei, who
served as an instructor during my early days at FGI. Thank you to my pre-examiners,
Dr. Martin Werner (who will also serve as an opponent at my defense) and Dr. Susanna
Pirttikangas. A special thanks goes to Dr. Jari Syrjärinne who agreed to be my second
opponent on short notice. I’d also like to thank Dr. Valérie Renaudin, who also agreed to be
an opponent, but due to a last minute change in the defense date was unable to attend.

Lastly, I’d like to thank my colleagues and co-authors, who have made the environment in
which this work was completed very fun, interesting, and rewarding. There are so many of
you nowadays that I won’t attempt to name everyone individually, but please know that
I value each and every one of you. I have learned so much from my colleagues, and you
have made it a joy to come to work each day.

Kirkkonummi, 20.11.2015

Robert E. Guinness

IV PREFACE

TABLE OF CONTENTS

Abstract . i

Preface . iii

Table of Contents . v

List of Figures . ix

List of Tables . xi

Abbreviations . xiii

List of Publications . xvii

1. Introduction . 1

1.1 Background and Motivation . 1

1.2 Research Questions and Scope . 5

1.3 Key Issues in Navigation Research 6

1.4 Research Methodology . 8

1.5 Main Contributions . 10

1.6 Thesis Outline . 13

2. Principles of Navigation . 15

2.1 The Navigation System . 15

2.2 Methods for Determining Position and Velocity 17

2.2.1 Trilateration . 17

2.2.2 Dead Reckoning . 21

2.2.3 Positioning Based on Pattern Matching 23

vi Table of Contents

2.3 Functions Related to Course Planning and Maintenance 24

2.3.1 Route Optimization . 25

2.3.2 Visualization for Navigation 26

2.3.3 Hazard Detection and Avoidance 27

3. Principles of Machine Learning . 29

3.1 Roots of Machine Learning . 30

3.2 Modern Machine Learning . 31

3.3 Supervised Learning . 34

3.4 Unsupervised Learning . 39

3.5 Concluding Remarks . 44

4. Context Awareness in Navigation Research 47

4.1 Frameworks for Context and Contextual Reasoning 48

4.1.1 A Framework for Contextual Information 48

4.1.2 A Framework for Contextual Reasoning 52

4.2 Related Studies . 54

4.3 Analysis of Proposed Frameworks for Navigation Research 62

4.4 How to Sense and Use Context for Navigation Research 64

4.4.1 Sensing for Context Awareness in Navigation 64

4.4.2 Motion, Environment, and Activity Recognition 65

4.4.3 Higher-level Contextual Reasoning 66

4.4.4 Using Context in Navigation Services 67

5. Overview of Publications . 69

5.1 Summary of Publications . 69

5.2 Mapping of Publications to Research Areas 74

5.3 Author’s Contributions to the Publications 75

Table of Contents vii

6. Conclusions . 77

6.1 Summary . 77

6.2 Main Findings . 79

6.3 Significance of the Results . 82

6.4 Future Work . 83

6.4.1 Future Work in Investigated Applications 83

6.4.2 Future Applications . 85

6.4.3 General Issues and Potential Solutions 86

6.5 Concluding Remarks . 88

Bibliography . 91

viii Table of Contents

LIST OF FIGURES

2.1 Block diagram of navigation system 16

2.2 Trilateration using ranging . 18

2.3 Trilateration in 3D . 19

2.4 Principle of dead reckoning . 22

3.1 Training data for supervised learning 35

3.2 Input data for unsupervised learning and one clustering result 40

3.3 Further results from unsupervised learning 43

4.1 The Context Pyramid . 52

5.1 Mapping of included publications to research areas 74

x List of Figures

LIST OF TABLES

3.1 Example data for supervised learning 36

4.1 Publications related to mobility context 59

xii List of Tables

ABBREVIATIONS

ACM Association for Computing Machinery

AdaBoost Adaptive Boosting

ADL Activities of Daily Life

AESS Aerospace and Electronics Systems Society

AI Artificial Intelligence

AIS Automatic Identification System

ANN Artificial Neural Network

API Application Programming Interface

BC Before Christ

BN Bayesian Network

CHMM Coupled Hidden Markov Model

COTS commercial-off-the-shelf

CPU Central Processing Unit

CRF Conditional Random Fields

DBSCAN density-based spatial clustering of applications with noise

DT Decision Tree

DTS discriminative temporal smoothing

E East

xiv Acronyms

EM expectation-maximization

Five Ws Who, What, Where, When, and Why

FMS Future Urban Mobility Survey

GIS Geographic Information Systems

GMM Guassian mixture model

GNSS Global Navigation Satellite System

GPS Global Positioning System

GPSAR Google Play Services Activity Recognition

HCI Human-Computer Interaction

HDA Hazard Detection and Avoidance

HF-SVM Hardware-friendly Support Vector Machines

HIER hierarchical agglomerative clustering

HMM Hidden Markov Models

IBk instance-based k-nearest neighbor algorithm

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

IMU Inertial Measurement Unit

INS Inertial Navigation System

ION Institute of Navigation

IRO-2 Ice Forecast and Route Optimization

kMC k-means clustering

kNN k-Nearest Neighbor

Acronyms xv

KStar K* algorithm

lat latitude

LBS Location-Based Services

LDA Linear Discriminant Analysis

LoMoCo Location-Motion-Context

long longitude

LR logistic regression

LS-SVM Least Squares-Support Vector Machine

LSA latent semantic analysis

LWL Locally weighted learning

MAP maximum a posteriori

MCMC Markov chain Monte Carlo

MEMS microelectromechanical systems

MLE maximum likelihood estimate

MLP Multilayer Perceptron

N North

NB Naïve Bayes

OPTICS ordering points to identify the clustering structure

OS Operating System

PCA principal component analysis

PDA Personal Digital Assistant

PLANS Position Location and Navigation Symposium

xvi Acronyms

RF RandomForest

RSSI Received Signal Strength Indicator

SAR Synthetic Aperture Radar

SLAM Simultanous Localization and Mapping

SVM Support Vector Machines

UAVs Unmanned Aerial Vehicles

UCI University of California, Irvine

WGS84 World Geodetic System 1984

WLAN wireless local area network

LIST OF PUBLICATIONS

This thesis contains a compilation of five previously published papers, referred to as
[P#] throughout the text. The following publications are included:

[P1] R. Chen, R. E. Guinness, “Context Awareness” in Geospatial
computing in mobile devices. Boston: Artech House, ch. 8, pp.
150-170, 2014.

[P2] R. Chen, R. E. Guinness, “Contextual Reasoning” in Geospatial
computing in mobile devices. Boston: Artech House, ch. 9, pp.
171-197, 2014.

[P3] L. Pei, R. E. Guinness, R. Chen, J. Liu, H. Kuusniemi, Y. Chen, L.
Chen, and J. Kaistinen, “Human behavior cognition using smartphone
sensors,” Sensors, vol. 13, no. 2, pp. 1402–1424, 2013.

[P4] R. E. Guinness, “Beyond where to how: A machine learning approach
for sensing mobility contexts using smartphone sensors,” Sensors, vol.
15, no. 5, pp. 9962–9985, 2015.

[P5] R. E. Guinness, J. Saarimäki, L. Ruotsalainen, H. Kuusniemi, F.
Goerlandt, J. Montewka, R. Berglund, and V. Kotovirta, "A method
for ice-aware maritime route optimization,” in Position, Location and
Navigation Symposium–PLANS 2014, IEEE/ION, pp. 1371–1378,
2014.

xviii List of Publications

1. INTRODUCTION

1.1 Background and Motivation

We are currently witnessing an era of technological convergence that rivals some of
the great technological upheavals of modern history1. The steam engine, the electric
lamp, the transistor, the jetliner, the artificial satellite—it is in this same revered
company that we can place the technological revolution we are now undergoing.
According to authors Erik Brynjolfsson and Andrew McAfee, we are living in a
“second machine age” (where the first machine age began with James Watt’s steam
engine), which they describe as “an inflection point in the history of our economies
and societies because of digitization” [2, p. 11]. They define digitization as
“converting things into bits that can be stored on a computer and sent over a network”
[2, p. 10]. The resulting digital information has remarkably different properties
from the industrial products of the first machine age, a topic which Brynjolfsson
and McAfee explore in detail in their book. They define “digital technologies” as
“those that have computer hardware, software, and networks at their core” [2, p. 9].
It is within this wider context of digital technologies and the second machine age that
this thesis is best understood.

Digital technology is a broad category; therefore, it is useful to narrow the focus
to a few key technologies that are driving the development of the second machine
age. There are four specific technologies that have particular relevance to this
thesis: (1) mobile telecommunication devices, (2) the Internet, (3) positioning
technologies, and (4) a wide range of inexpensive yet highly capable sensors, namely
microelectromechanical systems (MEMS). We note that these four technologies have
converged over the course of a few decades, so that the changes are clearly evident
within one human generation (i.e. 20-30 years). All of these technologies came to

1 By “technological convergence”, we mean that a set of technologies has undergone rapid advances
simultaneously and thus have become available for technological uptake in combinatorial ways.

2 1. Introduction

a technological crossroads in the late 20th century and early 21st century, so that
a child born and raised in the 21st century will have vastly different technological
possibilities, compared to one born and raised in the 20th century.

The applications arising from this technological convergence span many different
areas, and we have no intention to cover these applications exhaustively in this thesis.
Instead we focus on one application area—navigation. The research scope of this
thesis will be defined more precisely in Section 1.2.

The first major manifestation of this technological convergence, especially with
respect to consumer markets, is the so-called “smartphone,” which incorporates or
supports all four of the above-mentioned technologies. Looking at the history of
mobile devices, it is difficult to say which mobile phone can be considered the
first smartphone. The first commercially-available phone with a Global Positioning
System (GPS) receiver, the Benefon Esc!, was released in 1999. In terms of
marketing, the Ericsson R380, released in 2000, was the first mobile phone to be
called a smartphone. In terms of the four technologies listed above, the Samsung
SCH-S310, introduced in 2005, was probably the first to exhibit all four. The first
iPhone was released in 2007, and the first Android phone was released in 2008.

About 64 million smartphones were sold globally in 2006 [3], and by 2008 this
number exceeded 139 million [4]. By 2012, there were already more than one billion
smartphones in use worldwide [5]. This number is forecast to reach nearly 2.5 billion
in 2015 [6]. These devices allow their users to stay “connected” virtually everywhere
they go, and consequently anyone can connect to these billion plus users from any
networked device, including desktop computers and “land-line” phones—no matter
where the user is located or traveling to. Ironically, in many technologically advanced
societies, it is now considered a societal and/or behavioral challenge for one to go “off
the grid” or “disconnected” for any extended period of time.

It is our view that the smartphone is only the first manifestation of this technological
revolution. Many other so-called “smart” devices are soon to follow: “smartwatches”
and the use of various wearable sensors may soon become a mainstay consumer habit.
In addition, the same technologies that have made smartphones possible and popular
are quickly making their way into existing everyday devices, including cars, home
appliances, and even toothbrushes. Furthermore, it is not just consumer markets that
are being transformed but also many industrial markets, ranging from manufacturing

1.1. Background and Motivation 3

to commercial shipping. It would be naïve to speculate exactly how this revolution
will play out in the coming decades, but it is clear that the developments are already
changing the lifestyles, habits, and possibilities of people living in the early 21st
century, especially those who can afford these (currently) “high-end” consumer
devices.

Aside from being a convergence of new digital technologies, is there any unifying
concept or principle that is underlying this technological revolution? Some would
argue that it is the increased levels of mobility that these technologies provide. Others
have rallied under the banner of ubiquitous computing or pervasive computing, which
describes the fact that computing devices can now be found nearly everywhere one
looks. Certainly these are two important characteristics giving wind to this revolution,
but we argue in this thesis towards another underlying principle that provides a
common thread and deep insight into how our relationship to these computing devices
is changing.

One common development, of course, is the increasing ability of computing devices
to fulfill various user desires, e.g. to download large amounts of data at high speeds,
to capture or render various high-quality multimedia content, to store and edit
content in various ways, etc. What is not advancing or expanding—at least, not
at any considerable rate—is the patience or attention span of the users themselves.
Therefore, users are expecting (consciously or not) that their devices will “do more”
with essentially the same total quantity and quality of human input. Fortunately,
however, these devices are rapidly advancing in their ability to know what their users
want or need without the user having to explicitly formulate and express these desires
to the computer.

It is our view that we are not even close to unleashing the full potential of computing
devices to understand their users. In many ways, smartphones and other so-called
smart devices are not yet “smart”. They have the “brawn” and not the brains, in the
sense that they are powerful and capable but deficient in understanding the user’s
needs.

The field of study related to how humans communicate with computers and vice
versa is known as Human-Computer Interaction (HCI), and this thesis finds relevance
in HCI. Essentially, we aim to reduce the need for explicit human-to-computer
communication by increasing the ability of computers to understand humans. This

4 1. Introduction

is the goal under which this thesis is motivated and focused—to improve our
understanding of how computing devices can better understand us and our needs.

The primary method by which this thesis aims to achieve this goal is through machine
learning. According to Tom Mitchell and co-authors, “machine learning research
seeks to develop computer systems that automatically improve their performance
through experience” [1]. This is our favorite definition of machine learning among
the many found in the literature, but we note that achieving such a system is incredibly
difficult. Most methods that go by the name of “machine learning” fail to meet
this definition in terms of automatically improving performance. Nonetheless, the
discipline of machine learning has grown in recent decades, and the set of techniques
going by the name of machine learning is indeed very powerful. In many ways,
machine learning has become the preferred framework for building up systems that
understand users’ needs. Some observers may note that such systems exhibit—or at
least attempt to exhibit—artificial intelligence.

Artificial Intelligence (AI) has been an elusive goal of computer science researchers
ever since the term was coined in 19552. Although computers have not yet replicated
human intelligence in a general sense, there are many tasks of increasing complexity
that computers can already perform equally well or even better than the most gifted,
well-trained humans. As detailed in [2], computers have been programmed to beat
even the best human players of the game-show Jeopardy!, to write corporate earnings
previews for Forbes.com that are indistinguishable from ones written by humans,
and to diagnose breast cancer from images of tissue as good as or even better than
pathologists can3. Such examples demonstrate the increasing practicality of artificial
intelligence, but what about understanding users’ needs? Is it possible for a computer
or computing system (including various sensors) to know what its user needs or wants
before he or she makes any keystroke or swipes any touchscreen? Such a system
would be considered by many to exhibit a high level of artificial intelligence.

2 Although McCarthy is usually credited with coining the term artificial intelligence, we note that
its first usage in the literature was a paper co-authored by McCarthy, Minsky, Rochester, and
Shannon [7]. Therefore, it is not entirely clear who first came up with this term, and in an interview
even McCarthy himself could not recall [8].

3 To be precise, what Brynjolfsson and McAfee describe is a system, known as C-Path, that helped
to diagnose breast cancer and also identified new features of breast cancer tissue that were shown
to be good features for predicting survival.

1.2. Research Questions and Scope 5

1.2 Research Questions and Scope

The goal stated above is ambitious and open-ended. To narrow it slightly, this thesis
aims to improve the state-of-the-art in a computer’s ability to understand situations or
contexts that humans find themselves in. Mobile computing researchers have adopted
the term context awareness to refer to this ability. In other domains, such as aviation,
maritime, and military domains, the term used is situational awareness (or situation
awareness)4. The science related to context awareness (or situation awareness) is
vast. Therefore, we have focused on one particular application area, navigation,
where context awareness may be applied.

In particular, this thesis will be organized around a central research question:

• What are the benefits and constraints of introducing context awareness in
navigation?

Highly-respected navigation researcher Dr. Paul Groves has called context one of the
key challenges for the next generation of navigation technologies [9], and we share
this view.

A secondary research question addressed in this thesis is:

• How can machine learning be used to build context or situation awareness, in
order to solve problems in navigation?

Given that machine learning has been successful in many other related application
areas, our hypothesis is that machine learning will prove to be an effective tool for
building context awareness for navigation applications.

By focusing on navigation, we have limited the scope of research to a
reasonably-sized domain. That being said, improvements in the state-of-the-art in
context awareness have wide-ranging applications, and it is our hope that the few
applications described in this thesis are seen only as examples and not as end goals in
themselves. There are a wide range of rich mobile applications that can be enabled
with the aid of context awareness, and researchers have identified context awareness
as one of the key open issues in mobile computing research [10].

4 For consistency, in this thesis we primarily use the term context awareness, but it can be considered
synonymous with the term situation(al) awareness.

6 1. Introduction

1.3 Key Issues in Navigation Research

Before we attempt to answer the above research questions, it would be prudent to
define what we mean by navigation and discuss some of the key issues in navigation
research. General principles in navigation will be discussed in more detail in Chapter
2.

No universally agreed definition of navigation exists [11]. In general, the definition
of navigation varies by industry. For example, the maritime, aerospace, and road
transport industries each have their own views of what is meant by navigation.
We mostly follow the delineation of navigation described in [11], which divides
navigation into two distinct concepts:

1. the determination of the position and velocity of a moving body with respect
to a known reference point.

2. the planning and maintenance of a course from one location to another,
avoiding obstacles and collisions.

The first concept is relatively straight-forward compared to the second. Over
the years, many techniques have been developed for determining the position
and velocity of moving bodies. Today, however, the “gold standard” method
for determining position and velocity is the use of Global Navigation Satellite
System (GNSS). GNSS receivers, which have in recent years become relatively
inexpensive and small, are capable of achieving position accuracy of below 10 m
under most circumstances worldwide. Velocity measurement accuracy, depending
on the technique used, can be on the order of a few cm/s [12]. The drawback of
GNSS is that it requires the acquisition and tracking of weak radio signals broadcast
from space. If the view to the sky (from the receiver’s perspective) is significantly
obstructed by, e.g. structures or vegetation, then the accuracy will degrade, and in the
worst circumstances no position or velocity solution will be obtained. For example,
in most indoor environments, unless the receiver is near a window or other glass
structure, it will be unable to perform positioning or velocity determination.

Therefore, one of the key research issues in navigation research with respect to the
first item above is developing methods for position and velocity determination in

1.3. Key Issues in Navigation Research 7

indoor and highly urban environments. There is not a single positioning technique
that works well in all environments, and thus solving the problem of ubiquitous
positioning requires a hybrid approach. Due to this fact, a ubiquitous positioning
system must also be capable of knowing when to utilize GNSS vs. some other
method. This is one of the areas where context awareness can benefit navigation.

The latter concept of “planning and maintenance of a course” includes topics such
as route optimization, navigation visualization (e.g. turn-by-turn navigation), and
hazard detection and avoidance. In particular route optimization is an important
topic in navigation, and there are a number of active research topics in this area,
e.g. dynamic optimization of road journeys to avoid traffic, safety optimization, fleet
management, etc. In certain contexts, “planning and maintenance of a course” may
include determining the required maneuvers and associated vehicle parameters for
achieving those maneuvers (e.g. in maritime navigation, the ship’s rudder positions
and engine power, etc.). Lastly, in the context of modern Location-Based Services
(LBS), this latter concept has come to include many ancillary functions that were
not part of traditional navigation systems. One example is the search and retrieval
of information concerning possible destinations. Especially in the case of navigation
being integrated into mobile devices, the dividing lines between “navigation” and
various other LBS functions is becoming increasingly blurred. For example, location
“check-in” services are being integrated into navigation applications, although a
check-in does not strictly fit into the above definition.

Finally, one active research area which combines the above two concepts is
Simultanous Localization and Mapping (SLAM), where the goal is to determine a
vehicle or pedestrian’s position (and velocity) while at the same time produce a map
of an unknown environment.

Given the wide gamut of functions that navigation systems must perform, depending
on the application, one of the other key issues in navigation is how can a navigation
system gather and maintain a “picture of the world” such that it has complete and
up-to-date information about how to best perform all of these functions. In this sense,
context awareness is ideally suited for navigation because it can provide this picture
of the world.

8 1. Introduction

1.4 Research Methodology

The research methodology adopted for this thesis varied according to several distinct
phases. In the first phase, a wide literature review was conducted on the subject
of context awareness. The results of this literature review are presented primarily
in Section 4.2 but also in the included publications. In the second phase of our
research, we aimed to synthesize the results of our literature review and formulate
a general theoretical framework for contextual information and contextual reasoning.
This work is reflected in Chapter 4 and publications [P1] and [P2]. Finally, the third
phase of our research focused on tackling three different research tasks related to
introducing context awareness into navigation applications. Determining how to
best accomplish these tasks required different research methods, depending on the
task, although the first two tasks were more closely linked compared to the third.
The tasks were: (1) to recognize the activity of a smartphone user in an indoor
office environment, (2) to recognize the mode of motion that a smartphone user is
undergoing outdoors, and (3) to determine the optimal path of a ship traveling through
ice-covered waters. These tasks are very different from one another, especially
the third task with respect to the first two, demonstrating the breadth of problems
encompassed by the topic of context awareness in the field of navigation. They also
demonstrate wildly different aspects of “understanding users’ needs” for different
types of users.

The first task provides possible enhancements for a navigation or position tracking
system that must work also indoors. As discussed briefly above, reliable and
everywhere-available indoor positioning is one of the biggest unsolved problems in
navigation. Context awareness is one way to help solve this problem. For example,
if the system detects that a user is sitting and working in a static position (e.g. seated
at a desk), then it can apply a positioning filter that assumes little or no changes
in user position (and perhaps go into a low-power-consumption mode), but when it
detects that the user has stood up, it can change the filter to one that assumes greater
possibilities for movement. If the system later detects that the user has done some
routine activity, e.g. fetched a fresh cup of coffee, it can apply a post-processing
filter to refine the position tracking history, perhaps removing outliers or some other
desired refinement.

Similarly, the second task is important for navigation because a navigation system

1.4. Research Methodology 9

designed to work outdoors can adapt and improve its performance based on the
motion mode in which it is used, but it would be easier if the user did not have to
manually change the modes of the navigation system when he or she transitions,
e.g. from walking to driving. In other words, a context-aware navigation system
would automatically know that a pedestrian user needs a pedestrian navigation system
and a driving user needs a car navigation system; it would adapt itself automatically
according to these different needs.

The third task is a rather classic problem in maritime navigation, but surprisingly this
function has been and continues to be performed in a manual way (i.e. the ship captain
or navigator manually choosing the route based on ice charts, local observations,
and experience). It is also becoming increasingly important to find efficient paths
through ice-covered waters due to the opening up of northern sea routes, as well as
increased wintertime maritime transport in general (e.g. in the Baltic Sea). In terms
of understanding the users’ needs, this capability means that if maritime conditions
change, such that the captain or navigator needs to alter the ship’s route (based on
changing ice conditions or other factors), an “ice-aware” navigation system could
automatically inform the ship’s crew that a new route is recommended and even
suggest the optimal route to the crew.

For the first and second tasks, we utilized a method from machine learning called
supervised learning, which is a quantitative research method. Supervised learning
will be discussed in more detail in Section 3.3, but in brief this method uses labeled
“training data” to measure the performance of a learning process. In the context
these two tasks, the learning task was to recognize activities and motion modes of
smartphone users. Thus, the performance on this learning task was measured by
comparing the inferred activity/motion with the actual activity/motion using labeled
data.

The third and final task was investigated using feasibility assessment, in which we
investigated the viability of developing an ice-aware maritime route optimization
system. In this research work, we studied the relevant state-of-the-art and proposed a
method for performing the desired route optimization. In this sense, our work can be
considered as constructive research. The chosen method is based on graph theory and
a breadth-first search algorithm. Finally, we implemented the method in software and
validated it by comparing the computed routes with historical routes. More details
on the methodology for this task are found in [P5].

10 1. Introduction

1.5 Main Contributions

This thesis explores an important link between machine learning and context
awareness and exploits this link to demonstrate possible applications in the field
of navigation. Firstly, the author has developed a generic conceptual framework
for the multi-step processing of raw sensor data into contextual information, which
had been largely lacking in the literature. Also, many studies on context awareness
either focus on a narrow area of context (e.g. [13] [14] [15] [16]) or do not provide
any clear framework or mechanism of how to encode a situation or context in
a systematic and comprehensive way (e.g. [17] [18] [19] [20] [21]). This thesis
proposes and describes a simple but powerful framework for describing a context
in terms of seven key questions, covered further in Chapter 4 and [P1]. Together,
these two conceptual frameworks benefit the research community by making the
abstract and ambiguous concepts “context” and “context awareness” more concrete
and clearly defined, as well as providing a methodological skeleton on which to build
context-aware systems.

In addition, this thesis examines three separate use case scenarios or applications of
context awareness related to the field of navigation. These correspond to the three
tasks described in Section 1.2 above. The remainder of this section describes the key
contributions related to these use case scenarios.

Firstly, the thesis presents a probabilistic Location-Motion-Context (LoMoCo)
model, combining location and motion context, used to detect human behavior
(i.e. activities) in an indoor office environment. The sensors used to detect the
human behavior include only sensors available in commercial-off-the-shelf (COTS)
smartphones, as well as access points in a wireless local area network (WLAN) used
for the positioning component. To our knowledge, this is the first study focused on
detecting office-environment activities that utilizes only smartphone-based sensors
and standard WLAN access points. This is significant because earlier studies mostly
relied on the installation of custom-designed sensors in the office environment or
wearable sensors that are not in common use in offices. For example, [22] relies
on sensors installed in an office chair and multiple cameras installed in an office
room to infer activity. As smartphones and WLAN access points are already widely
present in office environments around the world, the results of this research have more
potential for widespread application. Our method can be used anywhere within an

1.5. Main Contributions 11

office building where WLAN signals are present, provided the user has a smartphone.

A problem related to the above topic is the determination of whether a smartphone
user is indoors or outdoors. This is important contextual information because the
optimal positioning system differs depending on whether the user is indoors or
outdoors. Another important benefit of this contextual information is that it can be
used to conserve smartphone battery usage. Outdoor positioning systems, namely
those based on Global Navigation Satellite Systems (GNSS), are power intensive and
should be turned off automatically when the user is indoors. The method described in
this thesis for indoor-outdoor determination is, according to our knowledge, the first
smartphone-based probabilistic indoor-outdoor method described in the literature. A
similar method was published later as a patent application [23].

Next, this thesis includes a systematic evaluation of a large number of machine
learning algorithms applied to the problem of detecting “mobility contexts”,
including consideration of the computational cost of the resulting classifiers, due to
their intended use in resource-limited mobile devices. The number of algorithms
investigated and applied to this problem is larger than any other previous study,
according to our knowledge. Also, most existing studies dealing with mobility
context do not consider or evaluate the computational cost of classifiers, so our study
is novel in this aspect.

Furthermore, our study is the first research on mobility context to utilize GNSS,
accelerometers, and information from Geographic Information Systems (GIS) for
the purposes of detecting mobility context5. A similar study utilized GNSS and
GIS information but not accelerometers [13]. In particular, GIS is an important
source of information for detecting mobility context because it can be used to
determine proximity to relevant landmarks, such as train stations and bus stops.
Most earlier studies do not consider this important source of semantic information,
and our research provides strong evidence, as a result of feature selection, that such
information improves the context recognition result.

The main contribution of this study was to measure the relative performance of many
different types of classification algorithms applied to this particular machine learning
problem. Using default parameter values, the best performance was achieved using

5 This research was first published as a conference paper in 2013 (see [24]). The publication included
in this thesis is an extended version of this earlier study.

12 1. Introduction

the RandomForest algorithm. We also studied the influence of parameter tuning for
the RandomForest algorithm. After parameter tuning, we achieved an average recall
rate of >97.5% for our test data. We are not aware of any other study achieving
this level of performance for a comparable classification problem. One limitation of
this study is that exhaustive parameter tuning was not performed for every algorithm
type. Therefore, it is possible that other algorithms, after tuning, may achieve similar
or even superior performance.

Lastly, for the purposes of developing an “ice-aware” maritime navigation system,
we developed a novel method for route optimization. Compared to earlier works
in this area, our method is only the second graph-based approach to the problem of
route optimization through ice-covered waters. Compared to the earlier graph-based
approach, described in [25], our method is more computationally efficient, since it
uses the A* algorithm rather than Dijkstra’s algorithm. We note that in [25] only
a few tens of nodes were considered in the route optimization examples given, so
computational complexity was perhaps not an apparent issue. To find truly optimal
routes over large distances, however, it is necessary to consider thousands of nodes
or more. [26], published later than [P5], also used the A* algorithm. Compared to
[26], we incorporated into our method an operational constraint related to ice breaker
assistance, whereas the cost function used in [26] did not consider this issue. Another
advantage of our cost function is that the cost, expressed in the unit of time, is easier to
interpret. The cost function employed in [26] is a linear combination of four different
variables, and its physical meaning is difficult to interpret.

An earlier study tackling ice-aware route optimization expressed the problem as
a differential equation and used numerical methods to solve it, such as Powell’s
method [27]. Such methods, however, do not guarantee a global optimum. Due
to the complex nature of ice fields, local minima can be significantly worse than
the global optimum. The benefit of a graph-based approach is that shortest-path
algorithms exist that can guarantee an optimal solution. The main novelties in
our method are the design of a suitable graph structure that provides a reasonable
trade-off between realistic modeling of ship motion and computational complexity,
as well as the incorporation of ice breaker assistance into the cost function used in
optimization.

1.6. Thesis Outline 13

1.6 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 provides background
on the most important principles in navigation relevant to this thesis. Chapter 3
provides an overview of the principles of machine learning relevant to this thesis.
Chapter 4 provides a background on context awareness and summarizes our approach
to introduce context awareness to navigation research. Chapter 5 provides an
overview of the included publications and summarizes the results. Finally, Chapter 6
offers some conclusions that can be drawn from this thesis work and provides some
suggestions for future areas of research and development related to context awareness
for navigation applications.

14 1. Introduction

2. PRINCIPLES OF NAVIGATION

This chapter contains a concise overview of the principles of navigation. As stated
in Section 1.3, no universally agreed definition of navigation exists [11]. We have
adopted the definition of navigation described in [11], which divides navigation into
two distinct concepts:

1. the determination of the position and velocity of a moving body with respect
to a known reference point.

2. the planning and maintenance of a course from one location to another,
avoiding obstacles and collisions.

We have divided this chapter into three sections. Section 2.1 describes the navigation
system in general. Section 2.2 describes the first part of navigation, i.e. methods
for determining position and velocity. Finally, Section 2.3 describes the functions
of navigation falling under the second category of “planning and maintenance of a
course...”

2.1 The Navigation System

A navigation system is a system used to perform or assist in the functions described
above. In modern terms, it is a digital system consisting of one or more computational
units, memory units, navigation sensors, and in many cases, a user input and display
unit. A navigation system may communicate with other systems in a vehicle through
clearly-defined interfaces. In many navigation systems, particular those integrated
into mobile devices, the system communicates over a wireless network to obtain
assistance data, map data, or other ancillary data. Figure 2.1 shows a block diagram
of a typical navigation system.

16 2. Principles of Navigation

Navigation processor

Memory
unit

Display
N

av
ig

at
io

n
se

ns
or

s
Comm.

Input
device

Other
interfaces

Fig. 2.1: Block diagram of a navigation system.

The primary output of the navigation system is known as the navigation solution,
which consists of (1) the position and (2) velocity of the vehicle or object which
is being tracked. A third output, often considered part of the navigation solution,
is time. This is due mainly to the fact that GNSS receivers compute time as an
intermediate step to determining position. Since a time solution is also needed in
many navigation systems, it is natural to include time when speaking of the navigation
solution. Finally, some navigation systems also output the vehicle’s attitude (e.g. roll,
pitch, and yaw), especially in cases where the navigation system includes an Inertial
Measurement Unit (IMU).

In some cases, navigation systems may be designed to track objects remotely, but
in most cases the navigation system is physically attached to the vehicle or object
being tracked. In the case of mobile device positioning, the navigation system is
integrated with the mobile device, so there is no separate display, input device, or
communications channel. In fact, most navigation systems in mobile devices utilize
the host processor and memory of the mobile device, so the integration is indeed
very tight. In this context, the mobile device is the object being tracked, but since
the mobile device is normally close to the user, we often consider the user to be the
object being tracked.

The system requirements for a navigation system vary greatly depending on the
application. Different requirements may include accuracy, rate of navigation solution,

2.2. Methods for Determining Position and Velocity 17

mass, size, cost, reliability, and various functional requirements (route planning,
display, etc.). For example, in aviation and maritime applications, the emphasis is
on integrity, i.e. ensuring the navigation solution is within the stated error bounds
and rapidly informing the user whenever the desired accuracy cannot be ensured. In
consumer applications, the emphasis may be on delivering acceptable performance
at the lowest possible cost. Due to these varying requirements, there is a great variety
of products and solutions in the navigation industry, ranging from navigation systems
where almost all the functions are integrated into a single Integrated Circuit (IC) to
large, complex, and expensive systems such as those found on submarines.

2.2 Methods for Determining Position and Velocity

In this section we will briefly describe the major methods available for determining
position and velocity. Due to space limitations, we cannot cover all such methods,
but we will highlight the most important ones.

2.2.1 Trilateration

Today the most commonly used method for determining position is known as
trilateration. This method, although in use since the late 1940s, was made famous
by GPS and other GNSS, which employ this technique. Trilateration uses a
set of distance measurements from an unknown position to reference objects to
determine the unknown position1. The distance measurements are often referred to
as ranges. In two-dimensional space, a range to a single reference object constrains
the unknown position to a disk (or annulus). The width of the disk is determined
by the amount of error in the range measurement. Ranges to two reference objects
constrain the position to within one region or at most two mirrored contiguous
regions (see upper-right of Figure 2.2). By making range measurements to three
or more reference objects, the unknown position can be constrained to a small
two-dimensional contiguous space, as illustrated in the lower-right of Figure 2.2.

Extending this concept to three-dimensional space, each range measurement
constrains an unknown position to within a spherical shell. Two spherical shells

1 The positions of the reference objects are known to a high level of accuracy.

18 2. Principles of Navigation

Fig. 2.2: Example of trilateration using ranging in two dimensions. The final constrained
position space is shown in the lower-right image.

2.2. Methods for Determining Position and Velocity 19

Fig. 2.3: Example of trilateration using ranging in three dimensions. The final constrained
position space is shown in the lower-right image.

intersect in a three-dimensional shape known as a toroid (see upper part of Figure 2.3,
and two toroids, formed from a set of three range measurements, can intersect at most
in two mirrored contiguous volumes. In Figure 2.3 for simplicity, we illustrate the
case where the two toroids intersect to form one contiguous volume. In practice, if
any such “mirror” ambiguities exist, it is usually possible to disregard one of the two
volumes because it is, e.g. far from the Earth’s surface.

This is the principle upon which GPS and other GNSS are based, although the reality
of how these systems are implemented is a bit more complicated. A GNSS receiver
measures radio signals from satellites whose position can be determined using orbital
parameters. The radio signals contain time signals that can be used to determine the
time it took for the signals to propagate from the satellite to the receiver, and because
these signals travel at a known, nearly constant velocity (the speed of light), the travel

20 2. Principles of Navigation

time measurements can be converted to distance. The time measurements, however,
contain various biases, the most important of which is the time bias between the
GNSS system time and the receiver clock, known as the receiver clock bias. For
this reason, GNSS receivers require measurements from four or more satellites to
determine a position. The reason that the required number is four and not three, as
was depicted above, is because the receiver must also estimate the receiver clock bias.

Because it is well-known that this bias (and other biases) are contained in the
measurements taken from the satellites, these measurements are distinguished from
the true range and referred to as pseudoranges, defined as:

ρ ≡ r + ctu (1)

with
r =

√
(xs − xu)2 + (ys − yu)2 + (zs − zu)2 (2)

where r is the true range, (xs, ys, zs) are the coordinates of the satellite, (xu, yu, zu)
are the coordinates of the unknown position, tu is the receiver clock bias, and c is the
speed of light.

Because tu is common in all pseudorange measurements, its value
(
along with

(xu, yu, zu)
)

can be solved using the following system of equations:

ρ1 =
√
(x1 − xu)2 + (y1 − yu)2 + (z1 − zu)2 + ctu

ρ2 =
√
(x2 − xu)2 + (y2 − yu)2 + (z2 − zu)2 + ctu

ρ3 =
√
(x3 − xu)2 + (y3 − yu)2 + (z3 − zu)2 + ctu

ρ4 =
√
(x4 − xu)2 + (y4 − yu)2 + (z4 − zu)2 + ctu

(3)

where {ρi}4i=1 are the four pseudorange measurements and {(xi, yi, zi)}4i=1 are the
coordinates of the four reference objects.

Neglected from the above equations are other sources of error which are not
necessarily common to all pseudorange measurements, such as ionospheric and
tropospheric delays. Although there exist closed-form solutions to the pseudorange
equations that take into account these additional error sources, these generally
require more than four satellites in order to perform a linear regression and also to
estimate the error covariance matrix [28]. For this reason, it is more common to use
iterative techniques based on linearization or another estimation algorithm, such as

2.2. Methods for Determining Position and Velocity 21

the Kalman filter. More details on how to compute the navigation solution can be
found in [29] or [30].

Regarding velocity determination, recall that velocity is the time derivative of
position; if the position at two epochs can be estimated and the time between the two
epochs is known, then the velocity can be estimated as d/ΔT , where d is the distance
between the two positions and ΔT is the time difference. As GNSS receivers also
produce a time solution, it is possible to estimate the velocity in this way. This is a
simple and occasionally employed approach. Much better velocity accuracy can be
obtained, however, by utilizing the Doppler shift measurements that a GNSS receiver
must inherently measure.

The Doppler effect is a change in perceived frequency of a wave due to the relative
velocity between the object generating the wave and an observer. Because the
satellites are virtually always moving with respect to a GNSS receiver, the receiver
must measure this shift in frequency, known as the Doppler shift, in order to maintain
track of the signal. The Doppler shift can be converted into a pseudorange rate,
and given the pseudorange rates from four or more satellites, the receiver’s velocity
can be computed. The equations to obtain pseudorange rates can be obtained by
differentiating Eq. 3. The details of Doppler-based velocity estimation, however,
are beyond the scope of this chapter, and we refer the interested reader to [31]. It
will suffice to say that when velocity is estimated using this approach, the accuracy
improves several orders of magnitude compared to estimating velocity using simple
differencing.

2.2.2 Dead Reckoning

Perhaps the second most common method for position determination is known as
dead reckoning. Dead reckoning is a form of relative positioning, where the current
position is estimated iteratively from the known or estimated position of the previous
epoch. The basic equations of dead reckoning in two dimensions are the following:

Ni+1 = Ni + siΔt · cosαi

Ei+1 = Ei + siΔt · sinαi

(4)

where (Ni, Ei) are the coordinates in a local geodetic coordinate system at epoch
i, si is the speed at epoch i, Δt is the time difference between epochs i and i + 1,

22 2. Principles of Navigation

Fig. 2.4: Illustration of the principle of dead reckoning after [11]. The error bounds of the
estimated position increase with time.

and αi is the azimuth (or heading) with respect to North. In three-dimensions, the
equations are similar, but one must measure also the elevation with respect to the
Earth’s surface.

One of the main drawbacks of dead reckoning is that the error in the estimated
position will increase with respect to time and distance traveled. This principle is
illustrated in Figure 2.4.

Nonetheless, dead reckoning is a commonly employed positioning method whenever
an absolute positioning method is not available. It is also often used when a
positioning solution is needed at a higher rate than that which the absolute positioning
system can achieve. For example, it is common that low-end commercial GNSS
receivers can only compute a navigation solution at 1 Hz. If higher solutions rates
are needed, a dead reckoning method with a Δt less than 1 second may be desired.

There are many measurement techniques available to provide the velocity and
heading measurements needed to perform dead reckoning. One of the most
commonly used measurement devices is an Inertial Measurement Unit (IMU),
which consists of a set of inertial sensors, usually consisting of three orthogonal
accelerometers and three orthogonal gyroscopes. The use of IMUs for navigation
is known as inertial navigation and the complete system consisting of an IMU, a

2.2. Methods for Determining Position and Velocity 23

navigation processor, and associated hardware and software is known as an Inertial
Navigation System (INS). The details of inertial navigation are beyond the scope of
this chapter, but we refer the interested reader to [11]. INSs range in performance
and cost. The most accurate but expensive INSs may cost in excess of $100,000
and can achieve positioning accuracy of about 1 km after 1 hour of operation2. Less
expensive INSs based on MEMS technology may cost as little as $100, but they have
much worse performance.

Because dead reckoning requires measurements of speed and heading, this method
of positioning inherently includes velocity determination.

2.2.3 Positioning Based on Pattern Matching

The final method for positioning that we will discuss in this chapter is positioning
based on pattern matching. This method is often known as “fingerprinting” for
reasons that will soon become apparent. The basic principle in positioning based
on pattern matching is that a priori spatially-correlated information about the
environment is used to estimate the position based from an observed signal at an
unknown location. This is done by matching the observed signal against a database
of previously observed signals at known locations or a pre-computed signal-spatial
model, thus exploiting the spatial-correlation of the signals. There are many possible
methods for performing pattern matching against a database of signals, but a common
approach is to find the closest match in “signal space” according to some distance
metric. For example, consider the following two sets of measured signals:

s1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a=24
b=36
c=14
d=56

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

s2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a=13
b=26
c=34
d=55

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Each of these sets of measurements represents a signature or “fingerprint” of the
location where they were obtained. If the measurements are similar (i.e. distance
in signal space is small), then the two fingerprints are considered a match. A
commonly-used distance metric is the Euclidean distance, which for this example
is given by:

2 The positioning performance will depend significantly on the type of motion and speeds
experienced.

24 2. Principles of Navigation

d =
√
(ai − aj)2 + (bi − bj)2 + (ci − cj)2 + (di − dj)2 (5)

where {ai, bi, ci, di} and {aj , bj , cj , dj} are the four signal measurements in two
measurement sets si andsj , respectively. Such signals can be queried against a
database, and the best match according to this metric can be retrieved, or a more
elaborate algorithm such as k-Nearest Neighbor (kNN)-regression can be used.

In addition to the above approach based on a signal measurement at a single epoch,
some techniques utilize a sequence of measurements. For example, [32] uses a
time-series of magnetic field measurements to approximate the unknown starting
position using a Monte Carlo Localization (MCL) technique. The authors found
that in many indoor environments, positioning based on magnetic field could be
obtained with sub-meter accuracy after moving about 10 m in a straight line within
the environment.

Many possible signals can be used to perform this type of positioning, but some of the
more commonly used ones are WLAN received signal strength, other radio signals,
magnetic signals, or even images. WLAN-based fingerprinting is perhaps the most
common approach in indoor environments.

A drawback to positioning based on pattern matching is velocity determination can
only be performed using the simple differencing method described in Section 2.2.2.
In cases where the target being tracked is a pedestrian, an alternative approach for
velocity determination is step detection, where the pedestrian’s steps are detected
using, e.g. inertial sensors. In this case, the user velocity can be determined within
a few 10s of cm/s, provided a good estimate of the user’s step-length is available.
See [30] for more details on step detection.

2.3 Functions Related to Course Planning and Maintenance

As discussed in Section 1.3, there are a wide range of functions related to “the
planning and maintenance of a course from one location to another, avoiding
obstacles and collisions.” In this section we will describe only a few of the most
common and important ones relevant to this thesis.

2.3. Functions Related to Course Planning and Maintenance 25

2.3.1 Route Optimization

Route optimization, also referred to as course planning, path planning, route planning,
or simply routing, is the process of determining the optimal route or path that a
vehicle or person (or set of vehicles or persons) should take to arrive at a desired
destination or otherwise complete some desired task. The definition of optimal can
vary greatly depending on the application. For example, one may wish to minimize
the travel time, minimize fuel or other costs, maximize safety (i.e. minimize risk),
or perhaps optimize other characteristics of the journey such as comfort of the
passengers or “providing the most scenic route.” Fleet optimization is another topic
that is intrinsically linked to route optimization.

Historically route optimization has been primarily a manual task. Navigators or
other experienced persons would plan a route based on paper maps and detailed
knowledge of the environment and the vehicle. This has been one of the primary
roles of “navigators” in maritime shipping and aviation, for example. Algorithmic
route optimization, nonetheless, has a rather long history. For example, the “truck
dispatching problem” was studied by Dantzig and Ramser more than 50 years ago
[33]. Going even further back, the “traveling salesman problem,” introduced in its
early form in the 1800s, can be seen as a route optimization problem. It is only
within the past few decades, however, that computerized route optimization has been
realized in practice for navigation applications.

Many different approaches to route optimization have been developed. To tackle
route optimization, many techniques from the general field of mathematical
optimization can be applied, and the main difference between route optimization
methods lies in how the problem is formulated. One approach is to model the
environment using graph theory, where different locations are represented as nodes
in a graph and the edges or vertices in the graph are associated with a cost to travel
between the nodes. This is the approach we took in [P5]. The interpretation of
“cost” can vary according to the optimization criteria, e.g. it may defined according
to travel time, fuel consumption, risk, or even some multi-modal criteria. Another
approach comes from optimal control theory, where the cost is modeled as a function
of initial conditions, speed, geometry, vehicle controls, and environmental factors.
The problem is then to minimize a continuous-time cost function subject a set of
constraints and boundary conditions. Yet another approach is to consider a route as a

26 2. Principles of Navigation

particular point in a space of 3n dimensions, where n is the number of waypoints
in the route [27]. Each waypoint has two spatial coordinates and one temporal
coordinate3. The goal is then to find a point in this 3n-space that minimizes a
cost function. Analytic or numeric methods can be used, but in many cases the cost
function is complex and its derivative cannot be solved analytically. The drawback of
numeric approaches is that, in most cases, they cannot guarantee global optimality.

2.3.2 Visualization for Navigation

In order to “plan and maintain a course,” it may be necessary to provide a
visualization of the navigation situation. This is especially the case when there is
a human-in-the-loop, but visualization is of relevance even in the case of autonomous
robotics, since usually there is a desire for humans to check the computed route or
analyze the performance afterwards. Visualizing the navigation situation touches
on many topics in HCI, such as cartography, interface design, and geospatial
visualization. One topic that is trending in navigation is 3D navigation visualization.
Virtual reality and augmented reality are related research areas that have strong ties
to navigation.

We mentioned SLAM already in Section 1.3, another trending topic in navigation
that is linked to visualization. The goal in SLAM is not only to map and visualize
an unknown environment but to use the continuously refined map to constrain the
vehicle or person’s position. The visualization may consist of a simple 2D map, e.g.
the floor plan of a building, but the interesting part from a visualization perspective
is how to best represent uncertainty in the map.

Another interesting topic related to navigation visualization and relevant to this thesis
is visualization of context or situation awareness. This is a rather new research topic,
although some commercial solutions for visualizing situation awareness already exist
in the marketplace (e.g. [34]).

3 For aircraft or spacecraft, this model can be extended to three spatial coordinates, and the problem
is therefore solved in 4n-dimensional space.

2.3. Functions Related to Course Planning and Maintenance 27

2.3.3 Hazard Detection and Avoidance

The last phrase in the latter concept from navigation presented above is “avoiding
obstacles and collisions.” This is the role of Hazard Detection and Avoidance (HDA).
HDA is most prevalent in aviation and spaceflight, but it is also an important system
function in maritime transportation and robotics in general. With the increasing
research and development in autonomous cars, HDA will continue to grow in
importance. Context awareness has clear relevance with respect to HDA, since the
existence of hazards can be considered one aspect of context.

Perhaps the most developed application of HDA is in the aviation industry, where
such systems are also known as Airborne Collision Avoidance Systems (ACAS).
One particular implementation of ACAS standards is the Traffic Alert and Collision
Avoidance System (TCAS). Modern aircraft are equipped with several ACAS
modules, including Ground Collision Avoidance Technology (GCAT), which warns
pilots when they are danger of ground collisions and in some cases may take control
of the aircraft to avoid a collision, and also a Midair Collision Avoidance System
(MCAS). The International Civil Aviation Organization (ICAO) mandates that larger
aircraft are equipped with a TCAS, which consists of a transponder that broadcasts
the aircraft’s position, speed, and heading. The transponder can also receive and
decode radio signals from other aircraft, and these signals are used to warn the
pilots if another aircraft comes within a protected volume around their own aircraft.
The size of the protected volume depends on the altitude, speed, and heading of
the aircraft. If a potential collision is detected, the TCAS of two aircraft can
communicate and automatically negotiate the best collision avoidance maneuvers.
A related technology, known as Automatic Dependent Surveillance - Broadcast
(ADS-B) broadcasts similar information, but it is mainly used for surveillance and
tracking of aircraft by the air traffic control system.

Finally, an even more challenging area of HDA research is MCASes specifically
designed for Unmanned Aerial Vehicles (UAVs). In the case where there is
no human-in-the-loop, an effective design for MCAS for UAVs must be entirely
autonomous, and reliable systems are required in order to integrate UAVs into
non-segregated airspace. This remains an active area of research and development.

In terms of spacecraft, the main role of HDA is to detect and avoid orbital debris,
which may be come from either natural sources, such as micrometeroids or other

28 2. Principles of Navigation

space material, or human-made sources such as debris from satellites and spent rocket
stages. Particularly in Low-Earth Orbit (LEO) orbital debris is increasingly a huge
danger to spacecraft. Due to several notable collisions between defunct satellites (or
even intentional destruction of satellites using ballistic missiles), LEO is scattered
with hundreds of thousands of pieces of debris. For example, the International Space
Station (ISS) has had to make more than a dozen evasive maneuvers to avoid orbital
debris in its history. Occasionally the crew are required to enter and seal a “lifeboat”
when a imminent potential collision is detected, in order to minimize the risk to
life. Orbital debris detection is conducted using both ground-based and space-based
methods. The US Department of Defense (DoD) tracks more than 500,000 pieces of
debris orbiting the Earth using mostly ground-based radar.

Finally, maritime transport is another application where HDA is applicable. In
general, large ships are equipped with radar and sonar (i.e. echo sounders) to
detect potential hazards, such as other ships, icebergs, ocean debris (such as floating
shipping containers), and shallow waters. Since the 1980s, the International Maritime
Organization (IMO) began requiring larger commercial ships to carry Automatic
Radar Plotting Aids (ARPA), a type of computer system which interface with the
ship’s radar to aid in avoiding collisions with other ships. A newer technique more
recently required on large commercial ships is the Automatic Identification System
(AIS), which works in a similar way to ADS-B. Position, speed, and heading are
broadcast to the vessel traffic services (VTS) and to other ships, and the received AIS
data are typically integrated into the ship’s Electronic Chart Display and Information
System (ECDIS) and radar displays. AIS data also being increasingly integrated into
ARPA.

3. PRINCIPLES OF MACHINE LEARNING

This chapter will provide background on the topic of machine learning, whose role in
this thesis was outlined in the introduction chapter. We illustrate the main concepts
using examples relevant to context awareness.

Our preferred definition of “machine learning research” was also given in the
introduction chapter, but it is worth repeating here:

Machine learning research seeks to develop computer systems that
automatically improve their performance through experience [1].

Stated slightly differently, machine learning is concerned with developing and
analyzing algorithms used by computer systems that automatically improve their
performance through experience. An earlier definition, widely attributed to Arthur
Samuel, is that machine learning is “the field of study that gives computers the
ability to learn without being explicitly programmed”1. This definition also implies
automatic learning, but it suffers from the problem that the meaning of “learn” is not
precisely defined.

As is the case in some fields, the discipline known as “machine learning” has drifted
somewhat from its original defining aims. This will become more evident later on
in this chapter when we describe the major types of machine learning problems that
have developed over the past 30+ years.

The chapter is organized as follows. Section 3.1 presents a historical perspective of
machine learning. Section 3.2 provides an overview of the modern notion of machine
learning. Section 3.3 describes supervised learning, and Section 3.4 describes
unsupervised learning. Finally, Section 3.5 provides a few concluding remarks on
the topic of machine learning.

1 We have been unable to recover the original source of this quote. Some references cite [35], but
the quote is not found in reprints of this article.

30 3. Principles of Machine Learning

3.1 Roots of Machine Learning

Some of the earliest works in machine learning (and artificial intelligence in general)
involved computer-based games, such as chess and checkers [36]. Although he
did not use the term explicitly, many of the early ideas in machine learning were
developed by Claude Shannon in a 1950 paper on computer chess [37]2. Arthur
Samuel further developed these ideas during the 1950s, but his preferred game
was checkers [35]. Perhaps the most famous game-playing computer program was
initiated at Carnegie Mellon University in 1985 for the game of chess. This project
was later transitioned to IBM, culminating in the computer Deep Blue® beating the
chess master Garry Kasparov in a six-game match-up in 19973. Nowadays, similarly
advanced chess programs can run on a personal computer or even a smartphone
or tablet. A full literature review of computer chess is beyond the scope of this
thesis, but we refer the interested reader to [38] [39], and [40]. Our intention in this
section is use computer chess to illustrate that the early pioneers in machine learning
aimed to develop computers that could automatically learn to perform a task through
experience.

The strategy in developing Deep Blue was to encode into a program both the rules
of chess, as well as the tactics and strategies of great chess masters, attempting to
cover as many possible situations in chess, also known as chess positions, as possible.
After a long period of development, Deep Blue eventually succeeded in beating the
best human chess players. The main reason for this success was the ability of the
computer to evaluate hundreds of millions of chess positions per second, whereas a
human chess player relies less on computational power and more on intuition and
experience to evaluate the strengths and weaknesses of different chess positions.

Examining the strategy by which Deep Blue was developed, this approach hardly
fits the above definition of machine learning. To create Deep Blue required many
years of highly “manual” work of programmers refining the set of strategy rules,
testing the program against human players, and repeating this process. Thus, it falls
short of the aim of automatically improving performance. Although this strategy

2 According to colleagues’ accounts, computer visionary Alan Turing also began considering
computer chess during the 1940s.

3 We note that Kasparov has accused IBM of cheating by letting human players intervene in one of
the matches.

3.2. Modern Machine Learning 31

was ultimately successful in creating a master chess player, when reading Shannon
or Samuel’s papers on such subjects, it becomes clear that their aim was not simply
solving the direct problem of playing chess or checkers, but rather they used these
games as a means of demonstrating a completely revolutionary idea in computer
science–that computers might be able to learn by themselves.

3.2 Modern Machine Learning

In this section, we describe the modern notion of machine learning, which, as we
have already alluded to, has developed into something a bit different from what
the early pioneers in machine learning had envisioned. That is, today there is a
well-established community of machine learning researchers and practitioners whose
focus is not entirely the same as what Shannon, Samuel, Mitchell, or other machine
learning pioneers had in mind. Our intention in pointing this out is not to denigrate
the discipline of machine learning as a whole but rather to emphasize those aspects
of the discipline which fall short of the original goals of machine learning.

Let us first present a few other definitions of machine learning found in recent
textbooks on the subject:

Machine learning is programming computers to optimize a performance
criterion using example data or past experience [41].

This definition appears quite close to that of [1], if we assume that “example data”
can be generated automatically. This may be true in some cases, but in most methods
described in [41], the example data are data that have been manually labeled with the
“correct” value relative to the performance criterion that is to be optimized. Although
programs using such methods can improve their performance by obtaining more
example data, if the example data cannot be generated automatically, then the method
would fall short of the definition of [1].

Another recent definition is given by [42], which defines machine learning as:

a set of methods that can automatically detect patterns in data, and then
use the uncovered patterns to predict future data, or to perform other
kinds of decision making under uncertainty (such as planning how to
collect more data!).

32 3. Principles of Machine Learning

This definition includes the “automatic” aspect, similar to [1], although we prefer
the definition of [1] due to its simplicity. Also, note that there is no reference to
improving performance with experience.

We note that some books on machine learning (e.g. [43]) omit to precisely define
the concept, perhaps because it has come to encompass many diverse methods. One
book goes so far as to explicitly refuse to define machine learning in any principled
way:

The kind of learning techniques explained in this book...are
called machine learning without really presupposing any particular
philosophical stance about what learning actually is [44].

Mitchell, on the other hand, also provides a precise definition of the concept of
learning in the context of machine learning:

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E [45].

Continuing with formalisms, many learning tasks can be expressed in terms of
learning a mathematical function between the inputs to the task and the desired
outputs. In other words, the learning task is to find some optimal mapping between
the inputs and the possible outputs. This can be expressed as follows:

f : x → y (6)

where f is a function, x is a vector of inputs of arbitrary dimension, and y is an output
with y ∈ Y = {y1, y2, ...ym}, corresponding to the set of all possible outputs (which
may or may not be finite).

Machine learning techniques differ mainly in how they express and learn this
unknown function f(x), also known as a model. They also differ in the form in which
y (and therefore the set Y) are expressed. For example, Y may be a continuous range
or a finite, discrete set. When the learning task involves a continuous-valued output
value, it is called regression.

When the output variable is discrete, we call it classification, since the possible values
generally represent different classes or categories. In this thesis, our goal was to

3.2. Modern Machine Learning 33

output context, and most aspects of context (e.g. motion modes and activities) were
represented as discrete sets of classes, but in the case of [P5], the ice environment
was described mostly with continuous variables.

In some cases, the output of the model may be best represented in probabilistic form.
In such cases, the machine learning algorithm actually estimates the conditional
probability p(y|x). This distribution, p(y|x), may be intrinsically important to the
application at hand, or it may be an intermediate step towards determining the most
likely value of y according to:

y = argmax
y∈Y

p(y|x) (7)

This is known as the maximum a posteriori (MAP) estimate of y. One of the benefits
of estimating p(y|x) is that it provides a measure of the confidence of the output y.

Algorithms designed to learn p(y|x) are known as discriminative approaches. An
alternative approach is to first learn a model of the joint probability p(y,x) and then
condition on x to derive p(y|x). These are known as generative approaches.

Apart from the distinctions regression vs. classification and discriminative vs.
generative, there are two main categories of machine learning techniques, based on
how the unknown function f is learned or approximated. The first category is known
as supervised learning. In supervised learning, a “trainer” supervises the learning
process. The goal is essentially then to transfer the knowledge of the trainer or
supervisor in the form of a mathematical or computerized model. More details on
supervised learning will be covered in Section 3.3.

The other main category is known as unsupervised learning. In unsupervised
learning, the learning process is not guided in any significant way. The goal
is essentially to uncover patterns that are implicit in the data but unobvious.
Unsupervised learning can be considered automatic, but what can be very challenging
in unsupervised learning is to define a notion of performance (recall the definition of
machine learning given at the start of the chapter). In this thesis, we have focused
primarily on supervised learning, but some research on context awareness also uses
unsupervised learning, so we present one example from unsupervised learning in
Section 3.4 to illustrate its potential role in context awareness.

34 3. Principles of Machine Learning

3.3 Supervised Learning

As stated above, supervised learning uses a “trainer” to supervise the learning
process. In most cases, the trainer has encoded his or her knowledge in the form
of labeled data, also known as training data. In terms of the function f expressed
above, the training data consist of input-output pairs D = {(xi, yi)}Ni=1, where xi

is an input of arbitrary dimension, yi is a “labeled” output, and N is the number of
training samples, such that D provides examples of values of the function y = f(x).
In simple terms, the training data provide sample input data that are labeled with the
correct or desired output.

It is usually the case that the training data does not exhaustively define the unknown
function f . If, however, certain assumptions can be made about the function, then
the function might be fully specified by a finite set of training data. In the simplest
case, where f is linear and x is one-dimensional, then only two training samples
are needed to specify the relationship between x and y4. Most practical examples
of machine learning algorithms, however, are more complicated due to (1) higher
dimensionality, (2) non-linearity, and (3) error present in the training data.

Let us consider a simple example from the domain of context awareness. Suppose we
would like to develop a smartphone application that needs to know whether the user is
walking, running, or standing still (i.e. static). We refer to these as mobility contexts.
The smartphone has a GPS receiver that can record the user’s position and speed, and
it also has a three-axis accelerometer that can measure acceleration. Instead of using
the raw accelerometer signal, we define a feature from the accelerometer data, known
as dynamic acceleration:

ad = var({
√
a2xi + a2yi + a2zi}Ni=1) (8)

where var(·) is an operator that computes the variance over some time-series of data
(e.g. one second of acceleration data); axi, ayi, azi are the accelerations in the x, y,
and z directions, respectively, for some given time epoch i; and N is the number of
samples in the time-series.

A researcher, Mary, has painstakingly collected a dataset for developing this
context-aware application and labeled whether she was walking, running, or standing

4 Recall that two points define a straight line.

3.3. Supervised Learning 35

Speed (m/s)
0 1 2 3 4 5 6

D
yn

am
ic

 a
cc

el
er

at
io

n
(m

2 /s
4)

0

10

20

30

40

50

60

70

80
Training data for smartphone mobility contexts

walking
running
static

Fig. 3.1: Example training data for supervised learning. The data are similar to those shown
in Table 3.1. Note the partial overlap between the “walking” and “running”
classes.

still. Some sample data are shown in Table 3.1 below, consisting of two dimensions of
input data, (speedi, aid), and the labeled output. In order to keep the size reasonable,
only 35 data samples are shown in the table. In Figure 3.1, similar data are plotted,
but now we include 1000 samples from each class.

With these data in mind, the goal of supervised learning is to
find the function or model f that maps the input data xi =

(speedi, aid) to the correct output class yi ∈ {‘walking’,
‘running’, ‘static’}, such that the number of errors are minimized. In this
context, errors are defined as input data that are mapped to the wrong output class,
also known as misclassifications.

36 3. Principles of Machine Learning

Table 3.1: Example data for supervised learning. The data consist of two-dimensional input
data from smartphone sensors and a labeled output class.

ID Speed (m/s) Dyn. accel. (m2/s4) Label

1 2.56 21.10 walking
2 0.94 28.78 walking
3 1.24 31.22 walking
4 2.99 36.66 walking
5 1.24 36.43 walking
6 0.64 29.88 walking
7 0.73 34.13 walking
8 1.68 28.56 walking
9 2.72 32.96 walking
10 1.82 38.57 walking
11 2.10 30.70 walking
12 2.80 49.59 running
13 4.01 47.41 running
14 3.10 61.96 running
15 1.98 54.44 running
16 2.33 53.92 running
17 5.48 44.49 running
18 4.14 52.38 running
19 2.69 52.85 running
20 4.73 44.02 running
21 1.22 48.76 running
22 4.88 47.78 running
23 0.40 2.89 static
24 0.92 0.92 static
25 0.36 1.48 static
26 1.16 3.37 static
27 0.00 5.76 static
28 0.28 3.27 static
29 0.60 0.70 static
30 0.45 2.97 static
31 1.44 1.79 static
32 0.11 1.45 static
33 1.36 1.51 static
34 1.06 0.03 static
35 0.81 1.28 static

3.3. Supervised Learning 37

Based on the above figure, before employing any machine learning, several
observations can be made. We clearly see three clusters of data, corresponding to
the three mobility contexts. The cluster corresponding to the “static” context is well
separated from the other two, but in the case of the “walking” and “running” contexts,
there is some overlap. Another important observation is that in the “walking” data,
some of the values for speed are very close to 0 m/s. This could be due to errors
in the data (i.e. the data from the GPS receiver might have some error) or labeling
errors made by Mary. Similarly, the static data contain many points where the speed
is non-zero. It is very common with this type of data that some labeling errors
are present in the training set. For example, at the transition points between the
walking and static contexts, it is difficult to accurately label which data corresponds
to “walking” and which corresponds to “static”5.

Once the labeled data are collected and the desired input features are generated,
the next step is model selection, in which the optimal model is determined through
quantitative performance measures. Correctly measuring the performance requires
dividing the labeled data into three distinct sets: (1) the training set, (2) the validation
set, and (3) the test set. To aid in model selection, one often performs precursory data
exploration, in which different features are plotted to study their distribution and how
well the different classes are separated. For example, the observations made in the
previous paragraph can be considered a type of data exploration (for another example,
see [P4]). For example, if it is clear that the classes are linearly separated, then
a simple linear classifier [e.g. Linear Discriminant Analysis (LDA)] may perform
well.

Three important interrelated concepts should now be introduced: generalization,
underfitting, and overfitting. Generalization refers to the idea that supervised learning
should “generalize” beyond the specific examples given in the training data. In other
words, the goal is not simply to map the inputs to the outputs for the given training
data but rather to find a mapping function or model that works well on some yet
unseen data. If the goal were simply to fit a function to the training set, then it would
be trivial to write a function that performs with zero errors (e.g. a simple lookup table
would do the job).

Overfitting refers to the situation where the supervised learning algorithm has
5 One technique to avoid such labeling errors is to remove these transition points entirely from the

training data.

38 3. Principles of Machine Learning

produced a mapping function that follows the training data in too much detail. Keep
in mind that every labeled dataset is somehow incomplete and imperfect. If the
training results in a function that does not properly take into account the gaps and the
noise in the training data, then it will overfit the training data and will not generalize
well.

It is also possible that a model underfits the training data. This usually means that
the mapping function is overly simple, for example, using a linear model for data
that are inherently non-linear. Therefore, good generalization lies in between the two
extremes of underfitting and overfitting.

The goal of learning is more precisely defined as minimizing the generalization error,
which is the average error rate that will be produced by any future data, and this
means finding a model that neither overfits nor underfits. Of course, it is difficult
to estimate the true generalization error. This is the reason for dividing the labeled
data into three distinct sets. The test set is not used at all in the learning process
but is reserved for estimating the generalization error after learning has already taken
place6.

A test set provides a way to measure the generalization error after the learning process
and to see whether any overfitting or underfitting is occurring, but the question
remains: How does one determine the right type of function or model to fit to the
training data, i.e. perform model selection? The answer in short is that we use the
validation set to measure the relative performance of different models and choose the
best one for final testing. In detail, the model selection process proceeds as follows:

1. Choose a hypothesis set H containing different hypothesis function types to be
used in model selection. This hypothesis set can be of one particular function
class, such as the set of all linear functions or can be of several different classes.
The goal is to include within the hypothesis set a class of functions that match
well with the underlying data under investigation. This is, however, non-trivial
and may require some precursory data exploration.

2. Given the hypothesis set H , for each hypothesis class Hi ∈ H , use the training
set D to find the best function hi ∈ Hi . For example, if Hi is the set of all
linear functions of the form h(x) = a ∗ x + b, then this step is equivalent to

6 The purpose of the validation set will become clear further below.

3.4. Unsupervised Learning 39

finding the parameters a and b that best match the training data, according to
some linear regression estimator, e.g. the least squares estimator.

3. Now we have a set of fitted functions, each from a different hypothesis class.
That is, for each Hi, we have a corresponding fitted function hi. Let us denote
these as Hbest−in−class = {hi}N1 , where N is the number of hypothesis classes.
The next step is to choose the best hi from this set. For this, we use the
validation set to measure the error rate and choose the function with the lowest
error, which we denote hbest, and its hypothesis class is denoted by Hbest.

4. Finally, fit a new function hi ∈ Hbest using the training set plus the validation
set, and measure its error using the test set. Since the test set was not used in
the learning process, the resulting error rate can be considered an estimate of
the generalization error.

Depending on the amount of labeled data available, and the complexity of the
underlying structure in the data, it may be necessary to repeat this process with
different divisions of the labeled data into the respective training set, validation
set, and test set. The standard technique for this repetition process is known as
cross-validation. Due to space limitations, we will not cover cross-validation in
detail, but it was employed in [P3] and [P4].

So far we have discussed general concepts in supervised learning but not any specific
algorithms. Several examples of supervised learning algorithms will be described in
[P2].

3.4 Unsupervised Learning

Unsupervised learning is, in many ways, quite similar to supervised learning, except
that there are no labeled data. In other words, there are only input data, and the
goal is to learn something about the structure or patterns in the input data. In this
way, unsupervised learning is very similar to traditional statistical methods, where
the goal is to infer a statistical model from a set of data. Many unsupervised learning
methods, such as density estimation, come straight from statistics. Others differ only
in the name or some other superficial characteristics. Especially in recent years, there

40 3. Principles of Machine Learning

are large overlaps between statistics research and unsupervised learning research7.

Consider again the data presented in Table 3.1 and Figure 3.1. Suppose Mary had not
gone to the trouble of labeling the data with the actual mobility context associated
with each data sample. We would have then only a two-dimensional dataset of input
data, and we could make a similar plot as Figure 3.1, except the legend would be
missing and we would also not have the information necessary to label the samples
with different colors as in Figure 3.1. The top part of Figure 3.2 shows such a plot.

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80
Unlabelled data for smartphone mobility contexts

Speed (m/s)

D
yn

am
ic

 a
cc

el
er

at
io

n
(m

2 /s
4)

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80
Probability of belonging to the first cluster

Speed (m/s)

D
yn

am
ic

 a
cc

el
er

at
io

n
(m

2 /s
4)

static
walking
running

Po
st

er
io

r P
ro

ba
bi

lit
y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 3.2: The top plot shows example input data for unsupervised learning. The bottom plot
shows one result from the EM-based clustering. The color of the points shows the
posterior probability that the points belong to the first component in a GMM. Data
labels are shown strictly for demonstration purposes. In a real situation, no such
label would be available to interpret the unsupervised learning result.

7 This is also true to a certain extent in supervised learning, but the similarity is more striking in
unsupervised learning.

3.4. Unsupervised Learning 41

One unsupervised learning task would be to identify different clusters or groups
present in the data. Depending on the data and the application, it may or may not
be apparent how many clusters are inherently present in the data, so the number of
clusters may also be a parameter to determine as part of the unsupervised learning
task. There are a plethora of different unsupervised learning algorithms available in
the literature that perform clustering. Possibilities include k-means clustering [46],
OPTICS [47], and the expectation-maximization (EM) algorithm [48]. In particular,
the EM algorithm has its roots in statistics and can fit observed data to an arbitrary
statistical model.

To provide an example of clustering, we used the EM algorithm to fit a Guassian
mixture model (GMM) to the data that we have previously seen in the top half of
Figure 3.2. A GMM is of the form:

p(x|Θ) =
K∑
k=1

πkφk(x;θk) (9)

where x is a random vector, K is the number of components in the mixture model,
φk(x;θk) are normal distributions with parameters θk = (μk,Σk), πk are mixing
weights satisfying π1 + ... + πK = 1, πk ≥ 0, and Θ = {π1, ..., πK , θ1, ..., θK} is
the complete set of model parameters8.

The EM algorithm itself is a widely-used iterative algorithm used to find the
maximum likelihood estimate (MLE) of the model parameters (which we denote
with Θ as above) for an underlying distribution p(x|Θ) used to model a given dataset,
which we denote as D = (x1, ...,xN) [49]. The MLE is obtained by maximizing a
function Q equal to the expected value of the log-likelihood L(Θ|D,Y), given the
observed data D and the current parameter estimates Θ(i−1):

Q(Θ,Θ(i−1)) = E[logL(Θ|D,Y)|D,Θ(i−1))] = E[log p(D,Y|Θ)|D,Θ(i−1))]

(10)

where Y = (y1, ..., yN) is a vector of latent variables that indicate to which
component of the GMM a given data sample xj belongs. The latent variables can
be expressed in various ways, but perhaps the simplest expression is that yj = k

when xj belongs to component k. In the above equation i indexes the current

8 The notation used for the GMM is similar but not identical to that given in [49].

42 3. Principles of Machine Learning

iteration interval of the algorithm, so Θ(i−1) represents the parameter estimate from
the previous iteration (or the initial estimate, if i = 1).

Before applying the EM algorithm to find the parameters Θ of a GMM, one must
decide on the number of components K to incorporate into the GMM. As we shall
see, each component k in the model will correspond to a cluster in the final clustering
result; thus, this step is, in practice, the same as determining the number of clusters,
and we can consider K to be a hyperparameter in the estimation problem.

Various methods can be used to determine the best value for K. For low-dimensional
data, a practical method is to simply plot the data (as we did in the top half of
Figure 3.2) and try to visualize the inherent number of clusters. For high-dimensional
data (D > 3), this simple approach is not necessarily adequate, nor does it support
the goal of automation described earlier. Therefore, a more sophisticated, systematic
approach is preferred, such as the one described in [50]. In the interest of space, we
assume in this example that the choice of K is already clear, and for these data K = 3

seems to be a reasonable choice.

The next step is simply to apply the EM algorithm to determine the parameters Θ of
our three-component GMM. A detailed description of the EM algorithm is beyond
the scope of this thesis, but here we provide a brief overview.

First, EM requires an initial estimate of Θ, and various initialization techniques to
provide sensible initial estimates can be found in the literature. A simple approach is
to use the given dataset D: e.g. select K random samples to initialize μk and use the
covariance matrix of D for each of the initial K covariance matrices Σk [51].

After initialization, the algorithm then alternates between computing an expectation
function (known as the E-step) and finding the parameters Θ that maximize this
function (known as the M-step). At each E-step, the algorithm calculates a new
Q(Θ,Θ(i−1)). In the M-step, an updated estimate Θ(i) of the parameter set is
obtained by maximizing Q(Θ,Θ(i−1)), according to:

Θ(i) = argmax
Θ

Q(Θ,Θ(i−1)) (11)

The algorithm terminates when Q(Θ,Θ(i−1)), evaluated at Θ = Θ(i), converges
towards a maximum value (i.e. improvement is below some threshold value �).

Finally, once the parameters Θ are estimated, we can determine the posterior
probability that a data sample xj belongs to a particular component k of the GMM,

3.4. Unsupervised Learning 43

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80
Probability of belonging to the second cluster

Speed (m/s)

D
yn

am
ic

 a
cc

el
er

at
io

n
(m

2 /s
4)

static
walking
running

Po
st

er
io

r P
ro

ba
bi

lit
y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80
Probability of belonging to the third cluster

Speed (m/s)

D
yn

am
ic

 a
cc

el
er

at
io

n
(m

2 /s
4)

static
walking
running

Po
st

er
io

r P
ro

ba
bi

lit
y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 3.3: These two plots continue the results presented in Figure 3.2. The coloring used
in the top plot shows the posterior probabilities that the points belong to the
second component in a GMM, whereas the bottom plot shows the same for the third
component. As in Figure 3.2, the data labels are shown strictly for demonstration
purposes.

according to its so-called “membership weight” [51]:

wk
j = p(yj = k|xj ,Θ) =

pk(xj |θk)πk∑K
m=1 pm(xj |θm)πm

(12)

Recall that each component of the GMM corresponds to a cluster, and therefore the
membership weight for a given k is the posterior probability that the data sample
belongs to cluster k. The bottom half of Figure 3.2 and Figure 3.3 show the posterior
probabilities for our example data, corresponding to membership in each of the three

44 3. Principles of Machine Learning

clusters. Note that a dividing line between each cluster can be drawn where the
posterior probability reaches 0.5.

Relating this example back to context awareness, we can see from the clustering
results that the data can be grouped into three distinct classes, although we have no
clear interpretation for these classes in terms of contexts. Nonetheless, we can deduce
that two of the classes are somewhat similar relative to the third class (in terms of
the two features investigated). Such a result can be useful for context awareness
purposes. One purpose is for studying and visualizing the possibility of separating
the data into different contexts or situations; if no clusters are evident, it may be very
difficult to perform classification with the given features.

Another way to use clustering is as a guide for how to collect training data. A large
amount of unlabeled data can be collected and clustered, and then more targeted data
collection campaigns can be planned in order to “label” each cluster. Essentially,
the clustering results can help one to decide how much labeled data to collect from
different segments of the feature space.

Yet another application of clustering is detecting abnormal situations or behaviour.
For example, if a particular data sample falls well outside of known clusters of
data, then even if the cause of abnormality is unknown, it can be flagged for further
investigation. Such techniques are common in applications such as failure detection
and security monitoring. Finally, in the context of navigation, clustering and other
unsupervised learning techniques can be useful for understanding how different
signals might be used for positioning using pattern matching techniques (as discussed
in Section 2.2.3).

3.5 Concluding Remarks

Machine learning is clearly a wide topic covering many different concepts and
techniques. Our purpose in this chapter was to introduce the most important
principles and to elucidate how machine learning can be used to endow computing
systems with context awareness. Further examples and details will be given in the
included publications. We have emphasized the necessary role of labeled data in
supervised learning. We have also demonstrated how a similar result can be achieved
through the use of unsupervised learning, although measuring the performance of the

3.5. Concluding Remarks 45

result is somewhat problematic.

46 3. Principles of Machine Learning

4. CONTEXT AWARENESS IN NAVIGATION RESEARCH

As stated in the introduction, context awareness is the term adopted by mobile
computing researchers to describe a computer’s ability to understand (i.e. be aware
of) the situation or context in which it is operating. In navigation research, of
particular emphasis are the human context (i.e. the computer user’s situation) and
the environment context, but device-specific or vehicle-specific context can also be
important to the extent that it can affect the user and his or her goals and ability
to achieve them. Examples include: (1) low battery of a mobile device may affect
how the user uses the device and even cause him or her to alter plans based on this
situation, (2) low fuel level in a car can cause the driver to stop for more fuel, (3)
equipment failure in an aircraft can cause the pilot to initiate an emergency landing,
etc.

Many definitions of context and context awareness have been proposed, usually
reflecting different discipline-specific perspectives. The word context figures
prominently in diverse fields including linguistics, psychology, neuroscience, law,
and computer science. Due to the great number of definitions, some researchers
have used techniques such as latent semantic analysis (LSA) and principal component
analysis (PCA) to find the relationships between the many definitions of context [52]
[53]. Others (e.g. [54]) have attempted to formalize the concept mathematically.

Let us start by seeing how context is defined in a dictionary. In the Merriam-Webster
Dictionary, the word context has two definitions [55]:

1. the parts of a discourse that surround a word or passage and can throw light on
its meaning

2. the interrelated conditions in which something exists or occurs :
ENVIRONMENT, SETTING

48 4. Context Awareness in Navigation Research

In this thesis, we adopt the second definition. This is because we are not directly
concerned with human discourse but rather with conditions of an environment or
setting that can be “understood” by computers. Clearly, these two definitions are
interrelated—discourse is the way that humans articulate their understanding of an
environment or setting. Put in another way, natural language is how humans encode
contextual information. In this thesis, we focus on techniques that computers can use
to sense, represent, and process context without human intervention. When we refer
to context, we refer directly to the conditions in the environment/setting rather than
representations of context, such as discourse. As noted in Section 1.2, situation can
be used as a synonym for context. We see no reason to distinguish between the two
terms, although we note that some formalisms make a distinction (see [56]).

With this working definition of context established, we proceed to the remainder of
the chapter, which is organized as follows. First, in Section 4.1 we provide two
simple frameworks for specifying a context (i.e. the “interrelated conditions”) and
for contextual reasoning. Next, Section 4.2 provides a review of relevant context
awareness literature, paying particular attention to studies relevant to the three tasks
described earlier in Section 1.2. Section 4.3 analyzes the differences between our
proposed context frameworks and one popular representation of context found in
the literature. Finally, Section 4.4 describes the processing chain used to build
up context-aware navigation services, beginning with sensing, proceeding up to
context recognition and higher-level reasoning capabilities, and finally integrating
these capabilities into services.

4.1 Frameworks for Context and Contextual Reasoning

In this section we describe two separate but related frameworks for working with
context and contextual reasoning. These frameworks are also covered later in [P1]
and [P2], so here we provide only a brief introduction, in order to summarize the ideas
and emphasize the author’s contributions within the context of the whole thesis.

4.1.1 A Framework for Contextual Information

Because context is such an abstract concept, it is useful to choose some techniques for
describing a particular context. These techniques can be used to build a framework

4.1. Frameworks for Context and Contextual Reasoning 49

for expressing contextual information. The goal of this section is to describe one such
technique. We make no claim that this technique or framework is an authoritative one,
nor that it is complete in the sense of exhaustively covering the concept of context.

In our view, the goal of context-aware systems is essentially to mimic the way that
humans understand and describe situations, contexts, conditions, or events (we use all
these terms almost interchangeably, although they may emphasize different aspects,
such as fixed versus dynamic elements). According to this goal, we might employ
the classic technique of journalism (since journalism is an age-old craft for describing
conditions and events), known as the Five Ws: Who, What, Where, When, and Why
[57]. This technique can be traced back to the late 2nd century BC when Hermagoras
of Temnos defined seven elements of circumstance, which includes (in addition to
the Five Ws) “in what manner” and “by what means” [58].

Using these questions as a framework (with a slightly different order), the following
provides an example of elements of a particular context:

What: A small gathering of colleagues for lunch
Who: Present are Mary, Philip, George, and Anita
Where: 60.1609°N, 24.5460°E (WGS84); inside the lunch-room of the Finnish

Geospatial Research Institute (FGI) in Masala, Finland
When: Tuesday, 10 March 2015 at 11:03AM
Why: Because it is lunchtime, and it is the custom for this group of colleagues

to eat lunch together.
In What Manner: Mary’s smartphone is experiencing small, sporadic

movements, but it mostly remains in a constant orientation. Mary’s
smartwatch is experiencing more dramatic but also sporadic movements.
Both sources of motion data are consistent with a user who is sitting and
having a casual conversation and/or eating lunch. Multiple human voices
are engaged in conversation of an informal and lively manner.

By What Means: All of the above information has been sensed or reasoned
by the sensors and software existing in a smartphone and a smartwatch,
plus some additional sensor data recorded by a networked node installed
in the lunch-room. In this case, the smartphone is a Samsung Galaxy S5
with Android 4.4.2 Operating System (OS), which includes a GPS receiver,
WLAN-based positioning engine, Bluetooth connectivity, microphone

50 4. Context Awareness in Navigation Research

and audio analyzer, ambient light sensor, accelerometers, gyroscopes,
compass, and magnetometers. The smartwatch is an LG G Watch with
accelerometers, gyroscopes, Bluetooth connectivity, microphone, and an
audio analyzer. It runs Android Wear 5.0.1.

This depiction of the situation is not likely to win a Pulitzer Prize in Journalism,
probably because the situation is not particularly interesting. Also, note that it has
not been formulated completely into prose but rather is more like a set of notes that
a journalist might jot down for later use (except maybe for the latitude and longitude
coordinates and the motion description). The “By What Means” section can also be
thought of as notes as to the “source” that the journalist might record along with the
other information (especially if the account is second-hand).

The seven elements of circumstance can be interpreted as different elements of
context, according to the following guidelines:

• “What” usually refers to the activity context, that is, what is actually happening.
In some contexts, there might be little “action” taking place, but it may also be
of interest for some purposes that “nothing is happening”.

• “Who” refers to the human characters in the context. When speaking about
context-aware mobile devices, the user of the mobile device in question is
usually the main character, whereas others in the environment can be thought
of as supporting characters. The “who” portion can also be summarized as the
user and social context.

• “Where” refers to the location context. The most important point to note is that
location can be expressed in many different ways: geographic coordinates,
an address, or some semantic representation such as “the Finnish Geospatial
Research Institute” or perhaps more personalized, such as “my workplace”.
“Where” can also refer to the environment context, which includes information
about the location where the action takes place. For example, does the action
take place indoors or outdoors? Is the location a home, business, etc.?

• “When” is the time and date context. We need only to be careful about
specifying things like time zones. In addition, it may be important to encode
some common sense or semantic knowledge about meaningful aspects, such

4.1. Frameworks for Context and Contextual Reasoning 51

as “this is after work hours” or “today is a holiday”. Time can be specified
either as a specific moment, such as in the example above, or as a time or date
segment (e.g. 10–20 March 2015).

• “Why” can be thought of as the motivational context, e.g. Why is the user
doing that? Why is this event taking place? Etc. It could also be appropriate
to encode information about whether the context is normal or unusual, as well
as an explanation for the unusual events. For example, if a person normally
commutes to work along routeA, and in the present he or she is driving along
routeB, then “why” would be a good place to capture the fact that “there was
an accident along routeA, so the alternate routeB was chosen”.

• “In What Manner” is a bit of a “catch all” category. It is used to provide
additional details that do not fit nicely into any of the other categories. This is
less than ideal for any formal system of context, but rather than attempting to
list out all the possible categories of context (which is probably impossible),
we believe it is more practical to have an “other” category. One way that
we use this category is to capture the motion context. This is similar to the
activity context, but it is more focused on detailed attributes of the motion. For
example, if the current activity of a user is “dancing”, then “in what manner”
might be used to capture the type of dance and the tempo in which the user is
dancing.

• “By What Means”, as mentioned above, is to capture the source of the
contextual information. It includes information about the devices and sensors
used in the context-aware system, as well as the reasoning methods employed.

Further details about this framework are covered in [P1]. As context-aware systems
develop, we suspect that our framework may change slightly. It is difficult to
anticipate what types of contextual information will become important in the future,
but this framework should be broad enough to encompass most types of contextual
information. Also, our intention is not to have a rigid framework that constrains all
future context-aware systems, but rather it is to provide a rough skeleton upon which
to experiment and build more elaborate and detailed context ontologies.

52 4. Context Awareness in Navigation Research

Rich

Context

Activity-Level

Descriptors

Simple Contextual

Descriptors

Features/Patterns

Physical Parameters

Raw Sensor Data Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

In a meeting at work concerning next year’s budget.

Have been sitting at the conference room table in

Room 309 for 30 minutes. Also, present in the

meeting are three work colleagues: Joe, Jenn-

ifer, and Oliver. Meeting scheduled for 1 hour.

Sitting in a budget meeting in Room 309,

listening to others speak and occasional-

ly talking. Three people are present.

Sitting, standing, attending bud-

get meeting, in Room 309,

talking, listening, with Joe, etc.

Statistical properties

location(x, y, z, t),

acc(x, y, z, t), etc.

sensor output, GPS

messages, event

triggers, Blue-

tooth, etc.

Fig. 4.1: The “context pyramid” shows the different levels of processing to build
context-aware systems, starting from raw sensor data at the bottom and working
up to “rich context” at the highest level.

4.1.2 A Framework for Contextual Reasoning

In this section, we present a framework for contextual reasoning, which we define
as the process of forming higher level inferences about context from lower-level
information. This topic and the associated framework are covered in greater detail in
[P2] and partly also in [P3]. We conceptualize the process of contextual reasoning
as a pyramid, dubbed the “context pyramid”. This context pyramid is shown in
Figure 4.1 below. On the left side is an example of contextual information. Inside
the pyramid and forming separate layers are different types of data or information
related to context. Between each level a step in the contextual reasoning processing
chain is inherent. We have not given specific labels to the processing steps, due to the
difficulty in generalizing about the processing steps, but we will attempt to describe
some common processing steps below.

At the bottom of the pyramid lies the raw input to the context-sensing system, such
as sensor data. The difference between the first and second level in the pyramid
is that in Level 2, some “pre-processing” of the data may have been performed,

4.1. Frameworks for Context and Contextual Reasoning 53

such as reference frame transformation or filtering out noise. In the next level of
processing, statistical features are extracted from the data, such as mean values or
frequency domain features computed from time-series data. The distinction between
“pre-processing” and statistical feature extraction can be a bit blurry in some cases,
but generally-speaking Level 2 data usually have a clear physical meaning, whereas
Level 3 data might have only a mathematical or statistical meaning.

Next, Level 4 is achieved after the Level 3 data are subjected to a function or
algorithm that performs contextual classification or in some cases regression. We
have proposed that this function or model can be built using machine learning
techniques, as described in Chapter 3. This step in the process will be covered further
in Section 4.4.2. Level 4 data are in the form of simple contextual descriptors, which
can be thought of as “atomic” elements of context. They each should belong to one
of the seven categories described in Section 4.1.1 above.

Then, Level 5 is achieved by combining multiple simple contextual descriptors into
an activity-level description of the context, including the main pertinent contextual
details. This process is described in more detail in Section 4.4.3 and again machine
learning is the primary tool used to achieve this level in the context pyramid.

Finally, Level 6 combines all available contextual information into a rich context. The
aim at this level is to approach a description of the context that is indistinguishable
from human-written prose. As was the case between Levels 2 and 3, the difference
between Levels 5 and 6 can be sometimes blurry. In some context-aware systems
there may be fewer processing steps or perhaps more, so even the number of levels
should not be taken as dogma. We believe, however, that the general process will
always follow the overall trend illustrated in the context pyramid.

As a further example, take the case of an ice-aware maritime route optimization
system (i.e. Task 3), which is very different from the example contextual information
given in Figure 4.1. At the bottom of the pyramid would lie raw data concerning the
ice field, e.g. data from Synthetic Aperture Radar (SAR) or other sources. The first
step is to extract physical parameters from the raw data, such as a grid of values for
ice thickness and ice concentration, or other system parameters such as the location
of an ice breaker. Next, one might perform statistical analysis on the ice data, e.g.
applying Gaussian process regression for the purposes of interpolation. Then, one
uses features from Level 3 and a ship performance model, in order to estimate the

54 4. Context Awareness in Navigation Research

ship’s theoretical speed at coordinate (lat, long). Machine learning is one of the
possible tools for building the ship performance model.

This type of contextual information is analogous to a Level 4 simple contextual
descriptor (i.e. the in what manner context). Next, the planned route, computed using
the Level 4 contextual information and the route optimization algorithm, is roughly
analogous to an Activity-Level Descriptor at Level 5 because it is a higher-level
context inferred from lower-level contextual information. Finally, combining the
optimal route with other navigational information, such as weather information,
maritime traffic information, etc., produces a rich contextual description describing
in detail the ship’s current situation, i.e. Level 6 at the top of the pyramid.

4.2 Related Studies

There is a vast corpus of context awareness literature. A comprehensive review
of recent context awareness literature would require covering hundreds, if not
thousands, of different studies. The review found in [59], which only looks at
journal articles published between 2000 and 2007, covered well over 200 different
studies. Searches of several major databases of scientific publications (e.g. IEEE
Xplore Digital Library, ACM Digital Library, SpringerLink) using the keyword
“context-aware” each yielded thousands of results. Clearly, these publications will
vary greatly in their relevance to this thesis. To help focus on only the most relevant
literature, we only include publications related to the three context awareness tasks
described in Section 1.4. We also provide a brief overview of the early context
awareness research.

According to our review of the literature, the first explicit reference to context
awareness was in a 1994 paper by Schilit and Theimer, where they use the
term context-aware computing to describe software that can “adapt according to
its location of use, the collection of nearby people and objects, as well as the
changes to those objects over time.” [60]. Earlier, however, we can find strong
but implicit references to the concept of context awareness. For example, in the
1991 article, titled “The Computer for the 21st Century,” Weiser provides a fictional
account of a number of different automated or computer-assisted functions made
possible by “ubiquitous computing” [61]. Although not specifically highlighted by
Weiser, the necessity of these computers to understand context is clearly evident.

4.2. Related Studies 55

Another article, published in 1992 by Want et al., may be the first implementation
of a context-aware device described in the literature, even though the authors
did not use the term “context-aware” [62]. By the mid-1990s, many different
implementations of context-aware devices can be found, including the ParcTab,
stick-e notes, CyberGuide, and CyberDesk. By 2001, the research field was active
enough to support a special issue of the journal Human-Computer Interaction, which
provides an excellent review of the state-of-the-art in context awareness for that time
period [63].

Going further back, however, the concept of context has been studied in computer
science research for many years. As early as 1963, John McCarthy, one of the “fathers
of AI”, began developing situation calculus as a “formal system in which facts about
situations, goals and actions can be expressed” [64]. A situation is defined as “the
complete state of affairs at some instant of time”, thus, it is roughly equivalent to our
definition of context. Beginning in 1987, McCarthy began to consider the concept of
context explicitly and attempted to formalize it [65].

Formalisms of context, however, do not appear to have led directly to the realization
of any context-aware software or devices, except for perhaps one example, Cyc
[66]. The context-aware devices and applications of the 1990s mostly consisted
of location-aware devices, and in our opinion, they do not require an elaborate
formalism of context. Nonetheless, the work of McCarthy and others pioneers
who offered formalisms of context are worthy of mention in the history of context
awareness. In particular, we refer the interested reader to [54] [67] [68] [56], and
[69]. In addition, [70] and [71] provide excellent reviews of context in artificial
intelligence.

∗ ∗ ∗

We now review literature specifically related to the three tasks described in
Section 1.4.

In terms of the first task, recognizing the activity of a smartphone user in an indoor
office environment, there are only a few studies basing their results on smartphone
sensors, and they mainly rely on location awareness. For example, one early study
described user tests of a context-aware Personal Digital Assistant (PDA) application,
which can be considered a proto-smartphone-like mobile device, designed to be

56 4. Context Awareness in Navigation Research

used in an office environment [72]. The main source of contextual information
was location, but the application also used contextual information from calendar
events that the user had previously recorded in the application. For example, if a
user scheduled an event at a particular time and marked it as a meeting, then the
system would automatically suggest meeting-related services when the meeting time
approached and the user had entered the meeting room. The described system,
however, was not capable of automatically inferring office activities independently
from user-supplied information.

More recently, [73] described a pilot study related to smartphone-based context
awareness of “mobile knowledge work”, which may partly take place in office
environments. The article, however, mainly discusses the research problem in
general, as well as describing the pilot data collection campaign. The article does
not go into any detail on the results of analyzing the collected data, nor the planned
analysis methods.

If we include studies using non-smartphone sensors to detect office-related activities,
we encounter several other relevant studies. For example, [74] used a microphone
and a USB camera to detect different office activities and motion patterns, including
“rest,” “moving near door,” “conversation,” “nobody around,” etc. They used two
machine learning techniques to detect motion and activity: Incremental Hierarchical
Discriminant Regression (IHDR) trees and Hidden Markov Models (HMM). [18]
similarly used a set of cameras to detect whether an office worker is working alone or
in a meeting, or whether the office is empty. For activity detection, they used adaptive
background modeling, which makes use of Gaussian mixture densities [75].

Another example is [76], which used a richer set of sensors, including two USB
cameras, a pressure sensor, and an acceleration sensor (a Wii remote controller) built
into an office chair. This study focused on detecting location and posture context,
such as leaning back in the chair, leaning on the desk, or upright sitting posture.
They primarily used k-means and kNN clustering to perform context recognition.
Similarly, [77] presented a so-called “smart office chair” designed to measure an
office worker’s mental and physiological states, such as sleepiness and concentration.
The details of the recognition algorithm, however, are not given in the paper.

One study used a combination of mobile phone sensors and room occupancy sensors
installed in an office environment [78]. The resulting application, called WorkSense,

4.2. Related Studies 57

was able to detect when and where meetings and conversations took place. By
sensing social interactions, the authors were also able to identify project groups
automatically.

Other relevant studies have focused on using wearable sensors to detect different
activities, some of which are common in office environments. For example, [79]
used accelerometers attached to various parts of a person’s body. Although they
did not specifically focus on an office environment, some of the activities they
addressed are very relevant. These include sitting, standing, walking, writing on a
whiteboard, typing on a keyboard, and shaking hands. The authors used a naïve
Bayes classifier for activity recognition. Similarly, [80] used wearable sensors to
detect several different office-related activities (typing, cleaning a whiteboard, using
an elevator, etc.). The authors evaluated the use of kNN and Multilayer Perceptron
(MLP) classifiers for activity recognition1.

Finally, [81] studied context recognition in a meeting room environment, using a
suite of sensors including: a microphone array, passive infrared sensors, and an
illumination (light) sensor. They detected different states of activity in the meeting
room, such as: presentation, monologue, discussion, room idle, people entering
room, and room in use. They do not describe their context recognition algorithm
in any great detail, but it appears to be a heuristically-defined rule-based algorithm.

The relatively small number of studies related to context awareness in an office
environment suggests this is a fairly immature research topic. We can conclude from
our literature review that the research in this thesis is rather novel, especially with
regards to smartphone-based context awareness for office environments.

∗ ∗ ∗

With regards to the second task, recognizing modes of motion that a smartphone
user is undergoing outdoors, there are comparatively many relevant studies. Despite
this fact, to our knowledge no systematic review of this research area has been
published, but a few related reviews are available. For example, [82] reviews
literature on the use of GPS to study health-related physical activity. The focus of this
review, however, is mostly on assessing health behavior, rather than on methods to
detect different mobility contexts. [83] reviews smartphone-based “opportunistic user

1 MLP is a type of Artificial Neural Network (ANN).

58 4. Context Awareness in Navigation Research

context recognition”, which includes some literature on mobility context recognition,
and similarly [84] reviews “anticipatory mobile computing”. While useful in our
review of the literature, none of these reviews focus specifically on mobility context
awareness, and they exhibit significant gaps in this regard.

Due to the large number of relevant studies, we will not describe them individually,
but pertinent facts from these studies can be found in Table 2.1. We make no
claim that this compilation of publications on the subject is exhaustive, but it is,
according to our knowledge, the most comprehensive compared to existing literature.
We decided to include also studies that utilized wearable sensor modules, since this
research is closely linked to smartphone-based research. All of the listed studies used
supervised machine learning techniques, except for [85], which evaluated several
different unsupervised learning techniques.

Note also that many of the studies investigate not solely mobility contexts but also
other contexts, such as Activities of Daily Life (ADL) or various posture contexts
(sitting, lying down, etc.). In Table 2.1, we have only identified the relevant
motion-related modes. Some other motion-related contexts, such as using an elevator
or walking upstairs/downstairs, were investigated by a few studies, but we listed
only those modes common to a significant number of studies. For those studies
incorporating additional contexts, we have identified these contexts collectively using
the symbol “+”. Lastly, we point out that some of the included studies investigated
indoor motion modes, even though our research task was to study outdoor mobility
contexts.

4.2. Related Studies 59

Table 4.1: Publications related to mobility context. The definitions for the abbreviations
used for algorithms/techniques are given in the Abbreviations section provided
above. The abbreviations used for the motion modes are as follows: S =
static (including standing, sitting, etc.), W = walking, R = running/jogging, B
= riding a bicycle, D = driving a motor vehicle, MT = any kind of motorized
transport (including car, bus, train, etc.), RB = riding a bus, RT = riding a
train/tram/light-rail, and RS = riding a subway/metro. “+” indicates that other
motion modes are also covered by the publication.

Year Author(s) & Citation Device(s) Used Algorithm(s) /
Technique(s)

Evaluated

Motion
Modes
Studied

2000 Foerster, Smeja &
Fahrenberg [86]

accelerometers rule-based S, W, B, +

2002 Lee & Mase [87] sensor module fuzzy-rule-based S, W, +
2005 Lester et al. [88] sensor module AdaBoost, NB S, W, R, B, +
2005 Ravi et al. [15] sensor module DT, kNN,

SVM, NB,
meta-classifiers

S, W, R

2006 Pärkkä et al. [89] various sensors rule-based, DT,
ANN

S, W, R, B,
RB, +

2006 Pirttikangas,
Fujinami, &
Nakajima [80]

sensor modules ANN, kNN S, W, R, B, +

2007 Suutala,
Pirttikangas &
Röning [90]

sensor modules SVM, HMM,
SVM-HMM,

DTS

S, W, R, B, +

2008 Kunze &
Lukowicz [91]

sensor modules DT, kNN, BN S, W, R, B, +

2008 Jin et al. [92] sensor modules fuzzy-rule-based S, W, R, +
2009 Yang [93] mobile phone DT, NB, kNN,

SVM, HMM
S, W, R, B, D,

+
2010 Reddy et al. [94] mobile phone DT, kMC, NB,

ANN, SVM,
CHMM,

DT+DHMM

S, W, R, B,
MT,

2010 Pei et al. [95] mobile phone rule-based S, W, +

60 4. Context Awareness in Navigation Research

Table 4.1 – continued from previous page
Year Author(s) & Citation Device(s) Used Algorithm(s) /

Technique(s)
Evaluated

Motion
Modes
Studied

2010 Frank et al. [96] sensor module NB, BN, HMM S, W, R, +
2011 Stenneth et al. [13] mobile phone DT, NB, BN,

RF, ANN
S, W, B, D,

RB, RT
2011 Pei et al. [97] mobile phone DT, BN, SVM S, W, +
2011 Susi, Borio, &

Lachapelle [98]
sensor module DT, NB, kNN S, W, R, +

2012 Bancroft et al. [99] sensor modules NB, rule-based S, W, R, B,
MT, +

2012 Anguita et al. [100] mobile phone SVM, HF-SVM S, W, +
2013 Guinness [24] mobile phone 20 different

algorithms
S, W, R, D,
RB, RT, +

2013 Susi, Renaudin, &
Lachapelle [101]

sensor modules DT S, W, +

2013 Feng &
Timmermans [102]

sensor module BN W, R, B, D,
RB, RT

2013 Hemminki, Nurmi
& Tarkoma [103]

mobile phone HMM,
Adaboost, meta

classifier

S, W, RB, RT,
RS

2014 Stenneth [104] mobile phone NB, BN, DT,
RF, ANN,

meta-classifiers

S, W, B, D,
RB, RT

2014 Xia et al. [105] mobile phone SVM S, W, B, D
2014 Elhoushi et

al. [106]
mobile phone DT W, R, B, MT

2014 Parvainen et
al. [107]

mobile phone DT, SVM,
MAP

S, W, R, B,
MT

2014 Yu et al. [14] sensor module
+ mobile phone

DT, AdaBoost,
SVM

S, W, R, B,
MT

2014 Kwon, Kang, &
Bae [85]

mobile phone GMM, kMC,
HIER,

DBSCAN

S, W, R, +

4.2. Related Studies 61

Table 4.1 – continued from previous page
Year Author(s) & Citation Device(s) Used Algorithm(s) /

Technique(s)
Evaluated

Motion
Modes
Studied

2014 Sankaran et al. [16] mobile phone rule-based,
GPSAR, FMS

S, W, MT

2014 Chiang, Yang &
Tu [108]

mobile phone DT, kNN, NB,
SVM

S, W, R, B, D,
+

2015 Yu & Cho [109] mobile phone DT, SVM,
ANN

S, W, R, D,
RB, RT, RS

∗ ∗ ∗

Regarding the third task, determining the optimal path of a ship traveling through
ice-covered waters, only a few highly-relevant studies are available in the literature.
The earliest is [27]. As discussed briefly in Section 1.5, this work expressed the
route optimization problem as a differential equation and used numerical methods
to solve it, namely Powell’s method. As a result, their system cannot guarantee
that the computed route corresponds to a global optimum. Similarly, [110] uses a
genetic algorithm for route optimization in ice-covered waters. Genetic algorithms
have better capabilities to escape from local minima, but they still do not guarantee a
global optimum.

The first study to adopt a graph-based approach is [25]2. The authors present a
method for ice-aware route optimization that uses Dijkstra’s algorithm to find the
optimal route. In the examples given in the paper, only a few tens of nodes were
shown for the sea area under consideration. For such small graphs, Dijkstra’s
algorithm is tractable, but for larger graphs with many edges, Dijkstra’s algorithm
does not scale well. To overcome this challenge, [26] uses the A* algorithm, which
uses a heuristic to guide the search process. Our method, published prior to [26],
also uses the A* algorithm. One difference between [P5] and [26] is that the cost

2 As reported in [110], [111] also used a graph-based approach, but it is only available in Korean.
[25] appears to be an extension to [111].

62 4. Context Awareness in Navigation Research

function we developed takes into account possible ice breaker assistance. [26] does
not consider this case.

Another related study is [112]. While it does not consider route optimization
explicitly, the author investigates ship performance in varying ship conditions. The
results are thus applicable to route optimization. Other examples of research in this
area include [113], [114], and [115].

Lastly, the project Ice Forecast and Route Optimization (IRO-2), discussed in [116],
is very relevant to this topic, but scientific results are not yet available publicly.
A preliminary publication reports on tests of the project’s prototype ice-aware ship
routing system, but the authors only describe performance of the ice forecast model,
not the routing system itself [117].

4.3 Analysis of Proposed Frameworks for Navigation Research

In this section, we analyze the proposed frameworks described in Section 4.1 in
comparison to an existing definition of context found in the literature and describe
why the proposed frameworks are particularly well-suited for navigation research.
One of the most similar categorical frameworks of contextual information, compared
to ours, can be found in [118]:

Context-aware applications look at the who’s, where’s, when’s and
what’s (that is, what the user is doing) of entities and use this information
to determine why the situation is occurring.

This framework for context overlaps ours in terms of the first four questions (what,
who, where, and when), however, it does not treat why as a “first-class citizen” of
context but rather as an output of a context-aware application. Our view is that why,
i.e. the motivational context, is an important aspect of context. It is true, however,
that it is often more challenging to determine the motivational context compared
to other aspects of context, but why can also be an input to higher-level context
reasoning processes, so we see no need to treat it differently compared to other
aspects of context. Earlier we gave an example of the why context from navigation:
that “there was an accident along routeA, so the alternate routeB was chosen”.

4.3. Analysis of Proposed Frameworks for Navigation Research 63

Another example could be taken from an autonomous driving application, where a
car owner might in some cases like to drive above the speed limit. Under normal
circumstances, perhaps the autonomous driving system would not allow this, but, for
example, in an emergency this limitation might be removed. The why context would
be the natural category in which to encode this kind of information regarding the
reasons for operating in a particular mode.

In addition to this difference, the framework of [118] lacks two other categories from
our proposed framework: “In What Manner” and “By What Means.” Earlier we
described “in what manner” as a kind of “catch all” category. The justification for
having such a category is that there often arise cases where a piece of contextual
information does not fit nicely into any of the other categories, but these examples
are scattered such that it would not be desirable to have many distinct categories to
cover each of these cases. An example from navigation that comes to mind is:

What: Aircraft in flight between JFK and LAX
Where: 38.6272°N, 90.1978°W, FL310 (i.e. about 31,000 feet altitude)
In What Manner: Flying at 805 km/h and experiencing heavy turbulence

One could argue that particular context categories could be added for specific
applications, such as aviation, but our goal in enunciating this framework is to
produce a general, flexible framework that can be used consistently in many, if not
all, applications.

Finally, the “By What Means” category captures the sources of the contextual
information. In this way, it somewhat of a “meta-context” category, since it contains
information about the context information and not about the context itself. In a
certain sense, however, the sources of contextual information are important aspects
of context as well. For example, we propose to include in this category information
about the devices and sensors used in the context-aware system, which we argue are
an important part of context. This is certainly the case in navigation research, but we
believe it would also be the case in other areas of context awareness research. It is not
clear in which category this type of information would be included in the definition
of [118].

64 4. Context Awareness in Navigation Research

4.4 How to Sense and Use Context for Navigation Research

In Section 4.1 we mainly discussed context and context awareness at a general
theoretical level. In this section, we will describe how we approached the problem
of sensing and using context in navigation research at a more detailed, practical
level. The sub-section structure follows roughly the levels in the previously described
“context pyramid”, although we have combined some levels in the interest of space.
In the last sub-section, we further enforce the motivation for introducing context
awareness to navigation research.

4.4.1 Sensing for Context Awareness in Navigation

As stated in the introduction to this chapter, this thesis focuses on techniques
that computers can use to sense, represent, and process context without human
intervention. Thus, the goal is to “sense” context using automated means. This means
utilizing various sensors that can measure the environment and other aspects about
the situation in which a device and the user of the device find themselves.

When applying these techniques to navigation, there are a few obvious choices of
sensors that can help determine the context. For example, sensors that can determine
the position and velocity of the user or vehicle in question are natural choices
(e.g. GNSS receivers). Other sensor choices, however, may be less obvious. For
example, we stated in the introduction that a navigation system can perform better
by recognizing the mode of motion a user or vehicle is undergoing. It may have one
mode with a navigation algorithm optimized for when a user is driving and another
mode optimized for when the user is walking. The choice of which sensors to use
to recognize these different motion modes is non-trivial. In this thesis, we have
adopted a practical approach of choosing the sensors that are already available in
smartphones (i.e. [P3] and [P4]). In general, however, the choice requires a careful
understanding and consideration of the requirements of the navigation application,
and the researcher must investigate the unique attributes of each context that must
be recognized. A period of experimentation with different possible sensors may be
required.

Also, specific sensors often have different options in terms of sampling rate,
sensitivity, resolution, or other parameters. Each of these parameters may have

4.4. How to Sense and Use Context for Navigation Research 65

an impact on the final context-aware system. In resource-constrained applications,
such as in mobile devices, one must not only consider the context recognition
performance of the system but also other factors, such as power consumption,
memory requirements, etc. In this thesis (namely [P3] and [P4]), we were mainly
constrained by the rate at which sensor data could be recorded on the smartphones
used in the research. When we attempted to record data from all of the available
sensors at the highest possible data rates, the data collection software would often
become unresponsive and occasionally also crash. Thus, through experimentation
we obtained a balance between data recording rates and stability of the software.

In addition to the choice of sensors and sensor parameters, one must determine what
types of features to generate or “extract” from the raw sensor data (recall Level 2
and Level 3 of the context pyramid). In this regard, existing literature dealing with
similar context awareness areas is one of the best guides, but of course we aim also
to find novel features not found in the state-of-the-art. In this thesis, for example,
we use features such as the distance of the user to the nearest train station (computed
using the user’s current location and the locations of train stations available in a GIS
database), capitalizing on the fact that train journeys virtually always start and end at
train stations.

Discovering novel features to use in context awareness requires ingenuity on the part
of the researcher and also experimentation. It is often not possible to determine the
most useful features for context awareness a priori. Only after a process of feature
selection can the value of different features be evaluated quantitatively (see [P4]).
For example, some features that we envisioned would be useful for distinguishing
between motion modes turned out to improve the performance negligibly.

4.4.2 Motion, Environment, and Activity Recognition

In navigation applications, the motion (“in what manner”), environment (“where”),
and activity (“what”) contexts are three particularly important aspects of context
awareness. In most cases, these cannot be determined directly from sensors. Instead
some type of model must be adopted in order to interpret the sensor data and arrive
at the desired contextual result. Continuing the example from the section above,
a navigation system that has different modes for driving, walking, etc. must adopt
a model for each of these motion modes, where sensor data (or features from the

66 4. Context Awareness in Navigation Research

sensor data) are the inputs to the model, and the output is the most probable motion
mode. Determining the best model to use for recognizing different contexts is, in
our view, one of the most challenging aspects of context awareness research. We
have investigated the use of machine learning techniques for building and optimizing
models of this type.

Recalling Chapter 3, the process of model selection must be performed to find the
best model for inferring context from sensor data. This process was employed in
[P3] and especially in [P4]. Different types of models perform differently in different
domains. The “no free lunch theorem,” discussed in [P2] states that no single machine
learning algorithm performs better than any other across all problems. Thus, model
selection is unavoidable if one wants to optimize the performance of the model.

We again emphasize that thorough data exploration can help guide the selection of
model hypotheses and also to a certain extent in feature extraction and selection.
By plotting different pairs of features, one can visualize how the context classes are
separated. When the feature dimensionality is high, however, it is difficult to visualize
class separation in this way and techniques from unsupervised learning may be more
effective. For example, using algorithms like DBSCAN or OPTICS, one can generate
two-dimensional plots representing clusters of data of arbitrary dimension.

Another issue that must be considered at this level in the processing chain is how
to divide up the context space into distinct classes. We will return to this subject
in Section 6.4.3, but for example, in the case of mobility context, there are many
possible sets of mobility modes that can be used to divide up this aspect of context
(e.g. motorized transport can be grouped together as one context, or different forms
of motorized transport can be treated as separate mobility contexts). We argue in
Section 6.4.3 that some level of standardization in this regard is sorely needed in
context awareness research. The correct choice, however, really depends on the
application, i.e. how the context results will be used. Clustering or other unsupervised
learning techniques may also help guide the choice because they can reveal how
feasible it is to separate different class sets with the available data.

4.4.3 Higher-level Contextual Reasoning

In addition to the type of modeling approach described above, it may be the case that
higher-levels of contextual reasoning are needed, where the inputs to the contextual

4.4. How to Sense and Use Context for Navigation Research 67

reasoning model consist of outputs from a lower-level model. For example, in [P3]
we used the output of motion mode classification, together with location, in order
to reason about higher-level activity contexts from a workplace environment, such
as “fetching coffee,” “having lunch,” “working,” etc. In some context awareness
research, activity recognition is not performed in hierarchical fashion, but our
research has shown this to be an effective strategy. In [P3] it not only produced
promising classification performance, but this hierarchical approach has the added
benefit that the results at the separate layers are more easily interpreted and can be
used independently for different purposes.

The methodology used for higher-level contextual reasoning is much the same as
presented above, but the major difference is that the labeled data consist of outputs
from a lower-level process of context inference together with the desired final output.
It will often be the case that some of the input data to this higher-level process contain
errors propogating from the lower-level processes, but these errors can be treated in
the same way that noise from sensor data is treated. Given enough training data,
machine learning algorithms are generally able to minimize the effects of such errors.

4.4.4 Using Context in Navigation Services

It is important to note that context awareness is not an end goal in itself, but rather
we would like to use context awareness to improve various navigation services. In
order to demonstrate the usefulness of context awareness in a navigation service,
[P5] integrates context awareness into a maritime route optimization system. The
specific aspects of context that are utilized in [P5] are the environment context, in
terms of information about the sea and ice environment, the location context, the
speed of the ship, and contextual information about the icebreakers (i.e. icebreaker
waypoint locations). The resulting route optimization system is said to be “ice
aware,” since it especially takes into consideration the current ice conditions and
icebreaker information.

The main benefit of introducing context awareness in this particular case is that
route planning can be performed in a more automated manner. Currently, maritime
routes are mostly planned manually by experienced navigators. Especially in ice
conditons, the navigator must integrate many different sources of information in
various formats. This is a difficult task for a human to perform and one that is

68 4. Context Awareness in Navigation Research

particularly well-suited for computers. The main challenge is incorporating into
the route optimization system many different operational considerations that affect
the route planning functions, such as safety, economic factors, or maritime traffic
conditions. By virtue of the general nature of our context framework, all of these
aspects can be considered as part of context in one way or another.

The results described in this thesis are merely a starting point in integrating context
awareness into an ice-aware route optimization system, and much further work is
needed before the system can be implemented operationally or commercially. Future
work in this area is discussed briefly in Section 6.4.1.

The details of how to integrate context into navigation services will vary greatly
depending on the requirements of the service, but in navigation there are several
aspects of context that are particularly important. A few, such as motion,
environment, and activity, have been mentioned earlier, and this thesis emphasizes
those aspects. Other obvious examples include location, speed, and conditions of
the vehicle (if applicable). In road transportation, traffic conditions are increasingly
being incorporated into navigation services. Traffic can be considered as part
of the environment context. Another important type of contextual information is
semantic information about the location, such as whether a particular area is a
commercial, residential, or recreational space. Many databases containing such
semantic information have been built in recent years, and these are increasingly
available as Application Programming Interfaces (APIs) for use in, e.g. mobile
applications.

5. OVERVIEW OF PUBLICATIONS

This chapter provides an introduction and overview of the five publications included
in this compendium thesis. Two of the publications, [P1] and [P2], are excerpted
from the book Geospatial Computing in Mobile Devices, published by Artech House
in 2014. Two others, [P3] and [P4], were published in the peer-reviewed open access
journal Sensors. The final publication [P5] was published in the 2014 Proceedings of
the Position Location and Navigation Symposium (PLANS), jointly organized by the
Aerospace and Electronics Systems Society (AESS) and the Institute of Navigation
(ION). AESS is an affiliate society of the Institute of Electrical and Electronics
Engineers (IEEE).

The remainder of this chapter is organized as follows: Section 5.1 briefly summarizes
the publications. Section 5.2 maps the included publications to different research
areas. Section 5.3 describes the author’s contributions to each publication.

5.1 Summary of Publications

Now, we briefly summarize the included publications.

[P1] presents the concept of context awareness at a conceptual level, as well as tracing
its historical development. It presents a conceptual framework for describing context,
adapted from the seven elements of circumstance, first introduced by Hermagoras
of Temnos in the 2nd Century BC. Our main motivation was that we were not
satisfied with any of the existing frameworks in the literature in terms of being
comprehensive, simple, yet flexible. The publication also aims to show at a practical
level how different aspects of context awareness can be implemented in a mobile
device. Examples are given for the Android OS.

[P2] presents the concept of contextual reasoning, which is defined as the process of
forming higher-level inferences about context from lower-level information. From

70 5. Overview of Publications

this definition, we elaborate a conceptual model of contextual reasoning, which we
call the “context pyramid”. The context pyramid describes contextual reasoning
as a series of processing steps at different levels, starting with raw sensor data at
the base of the pyramid and working up to the peak of the pyramid, where rich
context is realized. We argue that machine learning is an ideal technique available for
contextual reasoning, and we provide several examples of different machine learning
techniques, such as naïve Bayes’ classifiers, Hidden Markov Models (HMM),
Bayesian Networks, and Support Vector Machines (SVM).

[P3] combines indoor positioning technologies and smartphone sensors to detect
different human activities in an office environment. We provide a real-world
implementation of the context pyramid on a smartphone, resulting in a contextual
reasoning capability, which we call the “cognitive phone”. The key technologies
we utilize include ubiquitous positioning, motion recognition, and human behavior
modeling. We combine these technologies into a single probabilistic model,
which we call the LoMoCo (Location-Motion-Context) model. In this paper, we
demonstrate the feasibility of the fifth level in the context pyramid—Activity-Level
Descriptors.

The location accuracy we achieved using WLAN-based indoor positioning was about
2–5 meters, depending on the type of space. The positioning performance was better
in corridor areas and the worst in lobby areas. We used Received Signal Strength
Indicator (RSSI) as the observable and used the pattern matching or fingerprinting
approach for positioning. Training data were collected to estimate a Weibull function
representing the WLAN signals in the environment. Finally, for position estimation
we used the Histogram Maximum Likelihood algorithm.

We also describe our implementation of a probabilistic method for indoor-outdoor
detection based on GPS and WLAN signals. For motion recognition, we used
the techniques of supervised learning, described in Chapter 3. We performed
extensive feature selection, using the sequential forward selection (SFS) algorithm,
from thirteen different features derived from the smartphone sensors. Finally, we
evaluated several different supervised learning algorithms such as decision trees and
LDA, but the best performance was achieved using a Least Squares-Support Vector
Machine (LS-SVM) classifier, which produced an average recall rate of 92.9%. The
most common errors were confusion between “sharp turning” and “gradient turning,”
which is not surprising because these motions are very similar.

5.1. Summary of Publications 71

Next, we used Bayesian inference to determine the most probable activity class, using
the location and motion modes as inputs. Locations were represented discretely
at the room-level. The detected activities included “fetching a coffee,” “fetching
water,” “taking a break,” “having lunch,” “working”, and “undefined context,” which
included any activity not otherwise defined. Average recall rate for all contexts was
90.3%. The most common misclassifications were when “undefined contexts” were
misclassified as one of the other defined activities. This is not surprising given that
the training data collected for “undefined context” consisted of various activities,
such as fetching paper from a printer or using a toilet. Our results suggest that it is a
challenge to build a strong classifier for a “none of the above” type context class.

Finally, we measured the battery drain of the smartphone that polled sensor data at a
high rate, similar to the rates used in the above research. We varied the set of sensors
that were turned on to see their relative influence. Less than 5% of the battery was
used after 40 minutes with only the inertial sensors turned on. The most significant
battery drain was when GPS was turned on, in which case around 20% of the batter
was drained during 40 minutes. These results support our view that GPS should only
be used when necessary in outdoor environments. From these results, the importance
of “indoor-outdoor” context awareness is also supported.

[P4] investigates the use of smartphone sensors, geospatial information, and machine
learning to sense mobility contexts, including walking, running, driving and using
a bus or train. Our aim was to evaluate techniques that could be used in real-time
or near-real-time (<5 s). We also measured the computational complexity of the
resulting classifiers because this impacts smartphone battery usage.

It is important to point out that for this application, we are not interested in the time
complexity of the training phase but rather the testing phase. This is because training
can be done offline where time and power resources are not as constrained. Although
it is insightful to consider the time complexity of the testing phase analytically, it
is not possible to compare the computation time of different classifiers using pure
analysis. This is because the time complexity of different classifiers depends on
parameters specific to each classifier, and in some cases complexity is dependent of
the training data. For example, in decision trees, the time complexity is linear with
the number of non-leaf nodes in the tree. Since the size of the tree is dependent
on the training data, it is not possible to analyze the time complexity without first
building the tree with training data. For this reason, we measured time complexity

72 5. Overview of Publications

computationally for our particular data set.

We investigate a wide range of supervised learning techniques for classification,
including decision trees (DT), support vector machines (SVM), naïve Bayes
classifiers (NB), Bayesian networks (BN), logistic regression (LR), artificial neural
networks (ANN) and several instance-based classifiers (KStar, LWL and IBk). A
total of seven features were extracted from two different smartphone sensors (GPS
and accelerometers). One of the most novel features used was the distance of the
user from the nearest train station or bus stop. This was computed using locations
from a GIS database. We performed feature selection to identify the most important
features from our dataset for detecting mobility context. These results showed that
all features except “speedChange” were useful for detecting mobility contexts. In
particular, the GIS features appear to be very useful for detecting mobility context,
e.g. performance using one classifier improved from 93.8% to 97.1% when the GIS
features were added. Individually, the best performing feature was speed, which is
perhaps not surprising in the case of mobility context.

In terms of parameter tuning, we focus on the best performing classifier,
RandomForest, which is a type of ensemble decision tree algorithm. Using a hold-out
set, we tune its parameters to find the optimal performance. RandomForest requires
the setting of two parameters, F representing the number of features used in random
selection for building the decision trees and K representing the number of trees to
grow. Using grid search, we found that the best choice for F is two, especially in the
cases where K > 10. As K increases, the performance asymptotically improves, but
for values above 30, the improvements are very minor. After tuning, average recall
rate above 97.5% were achieved1.

Finally, we measured computational complexity in terms of Central Processing Unit
(CPU) time needed for classification, in order to provide a relative comparison
between the algorithms in terms of battery usage requirements. As a result of our
measurements, we are able to rank the classifiers from lowest to highest complexity
as follows: SVM, ANN, LR, BN, DT, NB, IBk, LWL and KStar. CPU times were
measured on a desktop PC not a smartphone, so the results only provide information
about the relative complexity of the classifiers. The RandomForest algorithm,
although it does not generate the simplest classifier in terms of computational cost,

1 Note that the performance results for the model selection and parameter tuning portions of this
paper are not directly comparable because the performances was measured with different test sets.

5.1. Summary of Publications 73

provides the best performance with reasonable complexity. SVM and ANN are very
good in terms of testing complexity. SVM time complexity scales linearly with
the number of features and support vectors and also depends on the type of kernel
used. ANN scales with the number of neurons and the complexity of the network.
RandomForest time complexity is affected mostly by the choice of parameter K. Our
CPU measurement times were made with K = 10, and at this setting, RandomForest
took about 3 times longer for testing compared to SVM. Lastly, according to our
results, IBk, LWL, and KStar are very expensive at the testing phase (i.e. the
inference phase). Their time complexity scales linearly with the amount of training
data used. They are often referred to as “lazy classifiers” because they do the bulk of
the computation, not during training, but during testing.

[P5] examines the feasibility of an ice-aware maritime route optimization algorithm
and presents a novel method for such purposes. Our aim is to increase the safety
and efficiency of maritime transport under icy conditions. Earlier works in this area
mainly used numerical methods that could not guarantee global optimum solutions.
Our proposed method combines several elements, including (1) a sea spatial model,
(2) ship maneuverability model, (3) sea ice model, and (4) ship performance
model. The sea spatial model is a rectilinear grid of points, masked by a boolean
criteria—whether the depth of the sea is greater than a chosen threshold (normally the
draught of the ship). The ship maneuverability model consisted of a set of neighbor
grid points with respect to each grid point, defining edges between nodes in a graph.
The purpose of this model is to discretize the number of directions in which the ship
can travel, making the route optimization algorithm more computationally tractable.
The sea ice model used, called HELMI, was developed by the Finnish Meteorological
Institute. Lastly, the ship performance model was previously developed by co-authors
as originally presented in [27].

Route optimization is performed using the A* algorithm, which is a graph-based
search algorithm that uses a heuristic to guide (i.e. speed up) the search process. The
heuristic we used was the Euclidean distance between the current search point and
the desired destination, divided by the maximum speed of the ship over open water.

The main novelty in this research is the development of an intuitive cost function that
takes into account ice conditions and available icebreaker assistance. From a context
awareness perspective, the ice conditions and status of the icebreaker system are the
main aspects of context utilized in this application. The focus of this paper, however,

74 5. Overview of Publications

was not on detecting context but on applying context awareness in order to build up
a context-aware navigation service. This research is also the first application of the
A* algorithm to long-range maritime route optimization. We present example results
based on the method, using the Baltic Sea as a case study. Generated routes are
compared with historical routes under the same ice conditions to provide preliminary
validation of the method. Further validation will require more extensive research,
including field trials using the generated routes in real ice conditions.

5.2 Mapping of Publications to Research Areas

Figure 5.1 presents a mapping between the included publications [P1]-[P5] and
different areas of research within the topic of context awareness. These areas can be
divided into three broad areas according to the subject matter and methodology used:
(1) background and literature review, (2) concepts and theory, and (3) different use
case scenarios. Publications [P1] and [P2] fall primarily within the first and second
areas, respectively. Publications [P3]-[P5], although containing some elements from
the first two areas, mainly deal with different use case scenarios where context
awareness can be applied.

Background
Literature Review

Concepts
Theory

Use Case Scenarios

Smartphone
Navigation
[P3] [P4]

Maritime
Navigation

[P5]

Car
Navigation

[P1]

[P2]

Fig. 5.1: Mapping of included publications to research areas. Many use case scenarios have
yet to be explored. Further discussion on future use case scenarios can be found
in Section 6.4.2.

5.3. Author’s Contributions to the Publications 75

As Figure 5.1 indicates, there are many potential use case scenarios that are not
addressed in this thesis. Our original research plan was to cover as many different use
case scenarios as possible, but due to time constraints and project limitations, only
two separate use case scenarios could be investigated. Our plans to cover additional
use case scenarios will be discussed briefly in Chapter 6.

5.3 Author’s Contributions to the Publications

This section outlines the main contributions of the author of this thesis to the included
publications.

[P1]: The thesis author was the main author of this chapter, whereas the co-author
provided only editorial comments to a near-final draft. The thesis author conducted
all the necessary background literature review and independently decided on the
detailed contents of the chapter. The author also came up with the idea to
use Hermagoras’s “seven elements of circumstance” to organize and describe the
different elements of context. The author also independently identified and collated
the various Android Application Programming Interfaces (APIs) relevant to context
awareness.

[P2]: The thesis author was the main author of this chapter, whereas the co-author
provided only editorial comments to a near-final draft. Similar to the case of
[P1], the thesis author conducted all the necessary background literature review
and independently decided on the detailed contents of the chapter. The author
created all of the figures in the chapter and originated the concept of the “context
pyramid”. Finally, one of the main contributions of this chapter is the formulation
and description (including figures) of rather complex mathematical concepts (e.g.
Support Vector Machines) in such a way that they are easily understandable for
someone with basic knowledge in algebra and probability.

[P3]: The thesis author was the second author of this publication, but the first author
has affirmed in writing that the thesis author’s contribution was roughly equal to
that of the first author. The thesis author contributed equally to the design and
implementation of the experiments. Implementation of the data collection application
on a smartphone was primarily the responsibility of the thesis author. He also assisted
in the analysis of the test results. In addition, he was the originator of the idea used for

76 5. Overview of Publications

indoor-outdoor detection based on GPS signal-to-noise ratio and WiFi signal strength
and implemented this method on a smartphone. The thesis author contributed to the
development of the WiFi fingerprinting indoor positioning system and prepared the
test environment by measuring and marking reference points and setting up additional
WiFi access points. As stated earlier, he was the originator of the “context pyramid”
concept, which is also described and employed in this paper. He was also the
originator of the idea of using a graph-based grouping of the reference points. Lastly,
he contributed to the preparation of the manuscript, including writing some sections
and editing it in its entirety.

[P4]: The thesis author was the sole author of this publication and received assistance
only in data collection, as well as general guidance from his supervisors. He also
implemented all the necessary software used in the experiments, apart from the Weka
software platform used in the data analysis. Some extensions to Weka, in terms of
automating analysis and integrating Weka with Matlab, were also implemented by
the author.

[P5]: The thesis author was the first author of this publication and was the originator
of the idea of using a graph-based approach and the A* algorithm for ice-aware route
optimization. He formulated the concept of combining a sea spatial model, ship
maneuverability model, sea ice model, and ship performance model. In particular,
the ship maneuverability model, which defines the graph structure and discretizes
the ship’s maneuverability, was the thesis author’s own invention. Furthermore, he
implemented the optimization algorithm in Matlab, basing the implementation only
roughly on an open source implementation. The cost function was developed mainly
by the thesis author, although various preliminary ideas were discussed together with
the second author. The parts of the method that were not developed or provided by
the thesis author were the resistive ship speed model, the ice data, and the historical
ship data, all of which were provided by co-authors. Finally, the thesis author led the
manuscript preparation, writing most sections, preparing all figures, and editing the
manuscript in its entirety.

6. CONCLUSIONS

This chapter offers some conclusions based on our research. It is organized as
follows: Section 6.1 briefly summarizes the thesis. Section 6.2 outlines our main
findings. Section 6.3 explains the significance or potential impact of the results.
Section 6.4 describes our future work planned in the areas addressed by this thesis.
Finally, Section 6.5 provides a few concluding remarks.

6.1 Summary

The overall goal of this thesis was to improve our understanding of how computing
devices can better understand us and our needs. As argued in this thesis, such
understanding is often embodied, at least partly, in a concept known as context
awareness. The primary method used to endow computers with context awareness
has been—and we argue it will continue to be—machine learning.

In examining these topics, we have narrowed the focus to application areas related
to navigation. Despite this narrowing of application areas, there are still many
diverse needs in navigation, and this thesis focused on three particular use cases
within navigation where context awareness is deemed beneficial: (1) detecting of
different human activities inside a typical office environment to improve indoor
location tracking, (2) detecting different “mobility contexts” of a smartphone user to
improve outdoor location tracking, and (3) enabling “ice aware” route optimization
for ships sailing in ice-covered waters to improve and automate the route planning
needs of such ships. These use cases demonstrate the breadth of potential application
areas of context-aware technology. Three of the included publications ([P3]–[P5])
aim to improve the state-of-the-art in these application areas by introducing either
novel methods, novel combinations of existing methods, or in-depth analysis of the
performance of existing methods.

78 6. Conclusions

In addition to examining these application areas, this thesis has extensively reviewed
the literature concerning context awareness and machine learning. In presenting and
summarizing these topics, we have attempted to provide clear, tutorial-like examples,
in order to aid readers unfamiliar with these subjects. We also provide a chapter on
navigation to familiarize the reader with the intended application area.

In presenting the conceptual underpinnings of context awareness, we have introduced
two conceptual frameworks for understanding context awareness and contextual
reasoning. The first was adapted from the writings of an ancient Greek orator
Hermagoras of Temnos, known as the “seven circumstances”. The second,
which we have dubbed the “context pyramid,” describes the process of contextual
reasoningin terms of six levels ranging from raw data to “rich context”. These two
frameworks, general in nature, can assist the researcher and developer aiming to
build context-aware systems by dividing the problem up into different categories of
contextual information and steps in contextual reasoning.

On the topic of machine learning, this thesis has examined the original goal of
machine learning, as envisioned by pioneers such as Arthur Samuel. We emphasize
the concept of automatic learning using computer chess as an example. We then
examine the modern notion of machine learning, including the two major types,
supervised learning and unsupervised learning. We provide a tutorial-like example
of both types of learning, using an example problem from context awareness.

During this overview on machine learning, we have emphasized the importance and
benefits of automatic learning. That is, supervised learning usually requires manual
labeling of training data, whereas unsupervised learning can largely meet the desire
for automated learning, although it often requires some human interpretation of the
results.

Finally, the included publications provide further details on machine learning and
its application to context awareness, and in particular [P3] and [P4] demonstrate the
use of machine learning in problems related to navigation. Lastly, [P5] provides an
example application of context awareness in the field of navigation, i.e. an ice-aware
route optimization method.

6.2. Main Findings 79

6.2 Main Findings

In Section 1.2, we identified two overall research questions addressed by this thesis.
These questions are implicitly discussed in various parts of the thesis, including the
five publications. In this section, we explicitly summarize our findings regarding
these questions.

What are the benefits and constraints of introducing context awareness in navigation?

The main benefit of introducing context awareness in navigation is to increase
the level of automation that can be achieved in performing navigation functions.
Although humans are inherently good at recognizing and understanding context,
computers are relatively deficient in this ability. Nonetheless, the techniques
described in this thesis and other state-of-the-art context awareness research help
to endow computers with such abilities. Several examples have been given related
to the three tasks investigated in this thesis, and their application to navigation has
been described. Without these abilities, the user of a navigation system would have
a greater burden in terms of explicitly switching into different navigation modes, or
performing manual integration of data.

In the particular case of maritime navigation applications, awareness about ice
conditions (as a function of space and time) can be exploited to perform automated
route optimization. Such capability could augment or even replace the currently
human-intensive task of route planning performed by crews of ships sailing in
ice-covered waters. Our research showed that graph-based approaches are feasible
for modeling maritime transportation in ice-covered waters and that the A* algorithm
can be applied to find optimal paths. In order to realize an implementation of the
A* algorithm, our research presents a simple but novel cost function that takes into
account the operational constraints posed by ice breaker assistance. Essentially, this
cost function captures contextual information about a ship’s theoretical speed through
an ice field, taking into account the ship’s own ice-breaking performance and possible
assistance from an ice breaker. The results of this method allow different proposed
routes to be compared, in terms of voyage times, and provides decision support for
the final selection of the ship’s planned route.

The main constraint of context awareness in navigation is that the level of detail
concerning context that can be recognized by computers is relatively low. Although

80 6. Conclusions

the abilities in the state-of-the-art are rapidly increasing, still a human can much
better describe the important elements of context in a succinct yet rich manner.
Furthermore, the models developed for context awareness are not error free. In
our research work, we achieved successful context recognition in the range of 90%
to 98% of the studied cases. Efficient, fail-safe methods to deal with errors from
context awareness systems must be developed in an application-specific manner. This
topic has not been investigated in this thesis, and the literature on the subject remains
scarse.

Another constraint of context awareness in navigation is that context awareness
systems consume resources, in terms of the power, mass, and cost used for sensors,
computational units, etc. If the improvement to the navigation system is only
marginal, or if the user does not feel significantly burdened by the manual alternative
to a context-aware system, then it will be difficult to justify the use of these extra
resources. This research area is perhaps still to immature to determine with certainty
whether the benefits associated with context awareness justify the costs, especially in
the domain of navigation.

How can machine learning be used to build context or situation awareness, in order
to solve problems in navigation?

This thesis, in particular [P3] and [P4], shows that machine learning is a powerful
tool to enable context awareness, in order to solve various problems in navigation.
We employ a number of different supervised learning algorithms, and in particular
the method of building classification models via supervised learning suits the problem
area very well. Although we did not compare the use of supervised learning against
other types of model building, we can at least conclude that machine learning
produces performance levels that are quite promising from a research standpoint. We
have shown that smartphones can reliably detect different mobility contexts (>97%
recall rate) and detect different office-environment activities (>90% recall rate). We
have also introduced a method to detect whether a user is indoors or outdoors.
Existing algorithms from supervised learning provide adequate levels of performance
for these use cases, although generalization to large user populations will require the
collection of more extensive training data. Especially in the case of context-aware
smartphone applications, context awareness is presently feasible and can be realized
using existing machine learning techniques.

6.2. Main Findings 81

Another point concerning the above research question concerns how machine
learning techniques should be evaluated. Although machine learning constitutes
a powerful set of methods for endowing computers with context awareness, a
systematic evaluation of different available machine learning algorithms should be
undertaken when applying machine learning to the problem of context awareness,
especially if the aim is to maximize performance. This important fact is often
overlooked by navigation researchers working on context awareness. After evaluating
the performance of 20 different supervised learning algorithms, we determined that
the RandomForest algorithm performed the best on our dataset. Our results also
showed that performance is optimized only after applying extensive feature selection
and parameter tuning. Another general recommendation from our research is that,
due to the need to train many different classification models (with various feature
sets and parameter settings), a high level of automation for this type of analysis is
desirable, and we developed some software tools to improve the automation of this
type of analysis.

One limitation of supervised learning is that the cost of obtaining labeled data is, in
general, quite high. This issue will be discussed further in Section 6.4.3.

In this thesis, we have primarily investigated machine learning techniques that are
built upon assumptions that the input data are independent and identically distributed.
This is one major limitation of our research, since it is clear that most aspects of
context are temporally correlated. Some machine learning techniques which exploit
temporal correlations, such as HMMs are discussed in [P2], but thus far we have
not applied these techniques in our context awareness research. This topic will be
discussed further in Section 6.4.1.

In summary, our overall research on the use of machine learning in context awareness
shows the feasibility of developing context-aware navigation applications for the
three use-case scenarios investigated. In addition, our research suggests many
other applications of context awareness are evident in emerging technologies related
to navigation. We believe context awareness will play an even stronger role
in navigation in the future, especially as so-called “smart devices” continue to
proliferate.

82 6. Conclusions

6.3 Significance of the Results

This thesis contributes to the overall body of knowledge on context awareness,
which as previously discussed, has many potential applications in the field of
navigation. We have introduced two general and flexible frameworks related to
context awareness—one for the systematic encoding of contextual information and
the other for the processing of raw sensor data into “rich context”. These frameworks
serve as a methodological skeleton on which other researchers and developers can
build new context-aware systems, not only in navigaion but more generally.

Much of this thesis focuses on context awareness that can be achieved using only
the sensors in smartphones. Because of the widespread prevalence of smartphones
in modern society, the results of smartphone-based context awareness research have
a strong potential for widespread adoption. We can compare this to previous context
awareness studies that rely on custom sensors being installed in the environment.
By requiring installation of new hardware into the environment, the cost of adoption
increases. According to our knowledge, our research is the first to look at enabling
office-related context awareness using only smartphone sensors and standard WLAN
access points.

Regarding the performance results reported in our mobility context research, it is
difficult to determine definitively whether or not our results represent an improvement
over the state-of-the-art. This is due to the fact that we have not compared our results
against those obtained with comparable datasets. This issue will be further discussed
below in Section 6.4.3. What we can conclude confidently is a methodological
fact: that extensive analysis, consisting of evaluating different machine learning
algorithms, performing feature selection, and systematically tuning parameters of the
algorithm, will result in better performance regardless of the dataset1. Surprisingly,
many research works in context awareness, especially in the navigation community,
overlook this fact and report results from evaluating only one or a few machine
learning algorithms and without reporting any results of parameter tuning. We hope
that the methodology and results described in this thesis provides a new example as
to the benefits of such detailed analysis.

Lastly, our research demonstrates the feasibility of developing an ice-aware maritime

1 Admittedly, this is not a novel finding.

6.4. Future Work 83

navigation system, specifically to provide automatic route optimization. Although
further refinement is needed, the proposed methods have the potential to provide
significant savings for the maritime transportation system. After presenting
these methods to Director-General of the Finnish Ministry of Transportation and
Communications, Mr. Pekka Plathan, he commented that this research has the
potential to save billions for the Finnish maritime industry. Further innovations,
improvements, and validation work, however, are required before such savings can
be realized.

Ice-aware route optimization can not only bring economic benefits for the maritime
industry, but it also has the potential to provide safety benefits. The methods
described in this thesis are flexible in that the cost function can be modified to
optimize non-economic factors as well. For example, using models for the risk that
ice poses towards damaging ships or getting the ship completely stuck in the ice, one
can design an appropriate cost function aimed to minimize these risks.

6.4 Future Work

In many ways, this thesis has only scratched the surface in exploring context
awareness for navigation applications. In tackling the broader goal “to improve our
understanding of how computing devices can better understand us and our needs,” we
feel even less compelled to declare our work complete. This section outlines some of
our planned future work in developing context-aware navigation applications.

Our future work can be divided into three broad categories: (1) future work in the
three application areas covered by the included publications, (2) future work in new
application areas, and (3) future work that can benefit context awareness broadly.
These areas of future work will be discussed in separate sub-sections below.

6.4.1 Future Work in Investigated Applications

In our research on detecting office-environment contexts, we investigated a small
number of different workplace contexts, including working in one’s office, having
lunch, taking a break, and fetching coffee or water. There are obviously a large
number of other workplace contexts that could be investigated, such as having a

84 6. Conclusions

meeting, giving a presentation, having an impromptu conversation, talking on the
phone, etc. In our research, we grouped all “non-defined” contexts into a single
category called “undefined context”. Also, we conducted this research in only
one particular office environment. Extending this research to many diverse office
environments and types of work would improve the robustness of the results.

Another way to improve this line of research would be to expand the sources of
raw data to include other sensors. For example, smartphones have microphones, and
sound could be an important source of contextual information. In fact, we informally
explored using audio as a feature, but there are some challenges in this regard. For
example, when the phone is in the pocket, the audio signal becomes very muffled and
contact with clothing can cause loud undesirable signals. Nonetheless, we believe
audio is an important source of contextual information, and we aim to explore this
further in the future.

Also, different social context aspects of the workplace environment will be included
in our future research. In this thesis, we did not address social context at any
depth, but especially in an office environment, it should be feasible to recognize
different social contexts because in many workplaces the identities of most of the
people present are largely known. Using various proximity sensing technologies, a
smartphone could apply contextual reasoning about different social contexts, such as
“with the boss,” “with subordinates,” “with colleagues,” “with a customer,” etc. Such
contextual information may not be needed necessarily for navigation applications,
but it would certainly have other applications related to mobile computing.

On the subject of mobility contexts, we also plan to expand the range of contexts
under investigation, such as cycling, riding trams, riding metros, etc. In addition,
we plan to investigate whether we can recognize a number of other mobility-related
leisure activities, such as hiking, berry or mushroom picking2, playing golf,
dog-walking, etc.

Also, in this thesis, for detecting mobility context we only utilized two smartphone
sensor types, namely GPS and accelerometers. In the future, we aim to include
other types of sensors, such as gyroscopes, pressure sensors, microphones, and light
sensors.

Lastly, we plan to expand the number of test subjects participating in the collection
2 These are popular leisure activities in Finland.

6.4. Future Work 85

of training data. This is important to ensure that the trained models are robust. In
this thesis, we asked the test subjects to keep the smartphone in a particular location
(pants pocket), so in future research we will also study the effects of placement of the
smartphone in different locations, such as a backpack, handbag, belt “holster,” etc.

In both [P3] and [P4], all of the machine learning algorithms utilized operate
independently on each data sample. That is, no time dependence between the data
samples is exploited. As already mentioned in Section 6.2, contexts are strongly
correlated with time, so we would expect to improve context recognition performance
by using models that exploit these temporal correlations. Our future work will
focus on such models and algorithms, including HMMs, Conditional Random Fields
(CRF), and Markov chain Monte Carlo (MCMC) methods.

On the subject of ice-aware route optimization, further work is needed to validate
the proposed method. This should include further analysis of historical data from
Automatic Identification System (AIS), as well as simulator-based studies and actual
testing of routes at sea. Also, in this thesis the route optimization method focused
on minimizing travel times for ships, but in the future other aspects should be
investigated, such as fuel usage, operational efficiency, safety, and reliability. Lastly,
contextual information regarding the ice conditions should be enriched compared
to the model used in this thesis. For example, the current model does not take
into account ice compression, which can have a large effect on ice-going ship
performance.

6.4.2 Future Applications

In Figure 5.1 we hinted at future application areas or “use case scenarios,” many
of which fall outside the domain of navigation. Several of the highlighted use case
scenarios are part of near future work. For example, in one recently initiated project,
we aim to develop a “tactical situation awareness system” for soldiers.

Military applications of context awareness are particularly promising because the
cost limitations are not as strict as in other application areas and specially-designed
sensors can be installed, e.g. attached to various body parts of a soldier (helmet,
boots, chest, etc.) or to other military equipment, providing a rich set of raw sensor
data from which to generate context awareness. On the other hand, in military
applications, reliability requirements are very high, and typically there is a strong

86 6. Conclusions

requirement for real-time functionality. For example, if a system is designed to detect
when a soldier is in danger or injured, then false negatives, as well as false positives
could prove very costly.

Another application area that has strong potential is healthcare and fitness
monitoring. With the growing popularity of “wearable devices,” such as
smartwatches and small heart-rate monitors, such applications have greater
widespread consumer appeal. Many devices already exist that can, e.g. monitor
calorie usage by tracking steps, but it remains a challenge to reliably and
automatically detect different activities such as walking, running, cycling, hiking,
etc. This is, of course, strongly overlapping with the topic of [P4], but we believe
healthcare and fitness monitoring can go much beyond mere “mobility context” and
incorporate other aspects, such as recognizing social interactions, detecting abnormal
health or changes to a person’s routine that might affect health and fitness, and
warning users of dangerous or unhealthy situations. The concept of a “personal health
assistant” is not really a matter of science-fiction but could be realized in the coming
years. Context awareness and machine learning are the technologies that are likely to
make this concept a reality.

6.4.3 General Issues and Potential Solutions

Lastly, we have noticed in our research several general issues that are relevant to
context awareness in a broad sense. These issues are summarized as follows:

1. Supervised learning requires labeled data, and labeled data are expensive.

2. There is a lack of standardization in context awareness research.

3. Many context awareness experiments are not easy to repeat or independently
verify.

The first general issue above is related to the use of supervised learning, which
is often the adopted approach in many research works (such as in [P3] and [P4]).
While supervised learning has many advantages compared to unsupervised learning,
it can be very costly and time-consuming to generate the required labeled data.
Furthermore, it is generally the case that the more data that can be collected, the

6.4. Future Work 87

more performant and reliable the resulting model will be. For example, if we are
aiming to develop a context-aware smartphone application that works well across a
large population of users, then we will need to collect training data from a large,
diverse population of test users. This is very costly, especially in a research setting.

There are two potential solutions to this issue. The first is that researchers and
developers would publish and share their training data. This would benefit the
overall research community. We have practiced this approach in publication [P4],
and there are a few other examples of data sharing in the context awareness literature
(e.g. [14] [119]). Generally, this is not a common practice in context awareness
research. The second approach would be to collect a sizable amount of labeled
training data, and then to supplement it with unlabeled data (which is less costly to
collect). Performing machine learning using a combination of labeled and unlabeled
data is known as semi-supervised learning. This topic is outside the scope of this
thesis but will be explored in our future work. As an example of this approach,
a research and development team could collect a limited amount of labeled data
using its own staff and volunteers and then supplement it with a large amount of
crowdsourced unlabeled data. This is exactly the approach we are taking in a recently
initiated project called MyGeoTrust (see [120]). The other approach was discussed
in Section 3.4; using unlabeled data to strategize about and prioritize the collection
of labeled data.

The second general issue has to do with standardization. To put it precisely, there is a
lack of standardization in context awareness research, and this issue makes it difficult
to compare results among different studies. As described in Chapter 4, context is
understood in many different ways, and there is no one “correct” way to categorize
and organize the context space. Table 2.1 demonstrates this problem.

This lack of standardization is understandable, due to the fact that different
researchers have different applications in mind and different ideas about how to
segregate the context space, but it would be more beneficial for the overall research
community if some level of standardization were applied. Many context ontologies
have been proposed in the literature (e.g. [121] [122] [123] [124] [125]), and one of
these could form the basis of a context ontology standard. Then, when presenting
results, researchers could reference these standards, i.e. “the following classification
results are according to standard X.Y...”. Also, there is no reason to limit results to one
particular standard; data could be processed, according to several different standards

88 6. Conclusions

and presented in the same publication. The problem is that no forerunners for a
standard have emerged, and no good software tools for working with the proposed
ontologies have been made available (to our knowledge). In our future work we aim
to contribute to and advance the notion of standard context ontologies, including open
source tools for working with such ontologies.

The last general issue we would like to discuss is somewhat related to the second
issue, and the solution is ironically similar to the first solution described above.
One of the long-standing tenets of scientific research is reproducibility. Experiments
should be described in enough detail so that other researchers can independently
verify the results. In the case of context awareness research, this means that an
independent researcher should be able repeat another researcher’s data collection,
apply the same algorithms, and achieve similar, if not identical, results. In reality,
there are so many complex factors related to the environment, devices, and test
subjects that collecting comparable data that produces comparable results is not
always realistic.

The solution is straight-forward. As an alternative, context researchers should
always publish the data upon which their results are based, along with sufficient
documentation so that the data is usable by independent researchers. As already
stated, this is rarely done in context awareness research. It is, however, a
common practice in the machine learning community to test techniques against
benchmark data. For example, the University of California, Irvine (UCI) maintains a
repository of over 300 datasets that can be used for machine learning research [126].
Unfortunately, very few of these datasets relate to context awareness. A few other
sources of open data for context awareness research exist, including the Mobile
Data Challenge (MDC) Dataset collected as part of the Lausanne Data Collection
Campaign [127] and data from the University of Helsinki’s “Context project” [128].
We aim to follow open data practices in our future work and also to actively promote
this practice, either by promoting the use of UCI’s machine learning repository or by
setting up a dedicated portal for context awareness research.

6.5 Concluding Remarks

The remainder of this thesis consists of reprints of the five included publications
described earlier. The order of the publications has been chosen to go from the most

6.5. Concluding Remarks 89

general to more specific and detailed applications. They can be read, however, in any
order, depending on the reader’s specific interests.

90 6. Conclusions

BIBLIOGRAPHY

[1] T. Mitchell, B. Buchanan, G. DeJong, T. Dietterich, P. Rosenbloom, and
A. Waibel, “Machine learning,” Annual Review of Computer Science, vol. 4,
pp. 417–433, 1990.

[2] E. Brynjolfsson and A. McAfee, The second machine age: work, progress,
and prosperity in a time of brilliant technologies. New York: W. W. Norton &
Company, 2014.

[3] Canalys.com, Ltd., “64 million smart phones shipped worldwide in 2006.”
Available online: http://bit.ly/1HSNZBZ, 2007.

[4] Gartner, “Gartner says worldwide smartphone sales reached its lowest growth
rate with 3.7 per cent increase in fourth quarter of 2008,” March 2009.

[5] N. Mawston, “Worldwide smartphone population tops 1 billion in Q3 2012.”
Available online: http://bit.ly/1DZuyYo, October 2012. (archived on 26
February 2015).

[6] “Smartphone users expected to hit 2.5 billion next year.” The Korea Times,
Available online: http://bit.ly/1HSO5cQ, 2014.

[7] J. McCarthy, M. Minsky, N. Rochester, and C. Shannon, “A proposal for the
Dartmouth summer research project on artificial intelligence,” AI Magazine,
2006. Reprint of proposal originally written in 1955.

[8] D. Crevier, AI: The tumultuous history of the search for artificial intelligence.
Basic Books, Inc., 1993.

[9] P. D. Groves, L. Wang, D. Walter, H. Martin, K. Voutsis, and Z. Jiang, “The
four key challenges of advanced multisensor navigation and positioning,” in

92 Bibliography

Position, Location and Navigation Symposium-PLANS 2014, 2014 IEEE/ION,
pp. 773–792, IEEE, 2014.

[10] S. Abolfazli, Z. Sanaei, A. Gani, F. Xia, and L. T. Yang, “Rich mobile
applications: genesis, taxonomy, and open issues,” Journal of Network and
Computer Applications, vol. 40, pp. 345–362, 2014.

[11] P. D. Groves, Principles of GNSS, inertial, and multisensor integrated
navigation systems. Artech house, 2013.

[12] M. Petovello, “How does a GNSS receiver estimate velocity?.” Available
online: http://bit.ly/1GwTuJN, March/April 2015. Inside GNSS.

[13] L. Stenneth, O. Wolfson, P. S. Yu, and B. Xu, “Transportation mode detection
using mobile phones and GIS information,” in Proceedings of the 19th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pp. 54–63, November 2011.

[14] M.-C. Yu, T. Yu, S.-C. Wang, C.-J. Lin, and E. Y. Chang, “Big data small
footprint: The design of a low-power classifier for detecting transportation
modes,” Proceedings of the VLDB Endowment, vol. 7, no. 13, pp. 1429–1440,
2014.

[15] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, “Activity recognition
from accelerometer data,” in Proceedings of the national conference on
artificial intelligence, vol. 20, pp. 1541–1546, July 2005.

[16] K. Sankaran, M. Zhu, X. F. Guo, A. L. Ananda, M. C. Chan, and L.-S.
Peh, “Using mobile phone barometer for low-power transportation context
detection,” in Proceedings of the 12th ACM Conference on Embedded Network
Sensor Systems, pp. 191–205, ACM, 2014.

[17] H. Yan and T. Selker, “Context-aware office assistant,” in Proceedings of the
5th international conference on Intelligent user interfaces, pp. 276–279, ACM,
2000.

[18] M. Danninger and R. Stiefelhagen, “A context-aware virtual secretary in a
smart office environment,” in Proceedings of the 16th ACM international
conference on Multimedia, pp. 529–538, ACM, 2008.

Bibliography 93

[19] H. W. Gellersen, A. Schmidt, and M. Beigl, “Multi-sensor context-awareness
in mobile devices and smart artifacts,” Mobile Networks and Applications,
vol. 7, no. 5, pp. 341–351, 2002.

[20] P. Nurmi and P. Floréen, “Reasoning in context-aware
systems: a position paper.” Available online:
http://www.cs.helsinki.fi/u/ptnurmi/papers/positionpaper.pdf, 2004.

[21] M. Tähti, V.-M. Rautio, and L. Arhippainen, “Utilizing context-awareness in
office-type working life,” in Proceedings of the 3rd international conference
on Mobile and ubiquitous multimedia, pp. 79–84, ACM, 2004.

[22] Y. Manabe, H. Saito, K. Akiyama, R. Ikeda, S. Kanda, and K. Sugawara,
“Perceptual functions for context-awareness of an office worker,” in Cognitive
Informatics (ICCI), 2010 9th IEEE International Conference on, pp. 583–589,
IEEE, 2010.

[23] L. M. Marti, R. Mayor, and S. M. Ma, “Managing states of location
determination.” US Patent Application 13/715,710, 19 June 2014.

[24] R. E. Guinness, “Beyond where to how: A machine learning approach
for sensing mobility contexts using smartphone sensors,” in Proceedings of
the 26th International Technical Meeting of The Satellite Division of the
Institute of Navigation (ION GNSS+ 2013), (Nashville, TN), pp. 2868–2879,
September 2013.

[25] J.-H. Nam, I. Park, H. J. Lee, M. O. Kwon, K. Choi, and Y.-K. Seo,
“Simulation of optimal arctic routes using a numerical sea ice model based
on an ice-coupled ocean circulation method,” International Journal of Naval
Architecture and Ocean Engineering, vol. 5, no. 2, pp. 210–226, 2013.

[26] M. Choi, H. Chung, H. Yamaguchi, and K. Nagakawa, “Arctic sea route path
planning based on an uncertain ice prediction model,” Cold Regions Science
and Technology, vol. 109, pp. 61–69, 2015.

[27] V. Kotovirta, R. Jalonen, L. Axell, K. Riska, and R. Berglund, “A system
for route optimization in ice-covered waters,” Cold Regions Science and
Technology, vol. 55, no. 1, pp. 52–62, 2009.

94 Bibliography

[28] C. R. Colon, “An Efficient GPS Position Determination Algorithm.” Air Force
Institute of Technology, Available online: http://1.usa.gov/1KFZnPK, 1999.

[29] E. Kaplan and C. Hegarty, Understanding GPS: principles and applications.
Artech house, 2005.

[30] R. Chen and R. E. Guinness, Geospatial computing in mobile devices. Boston:
Artech House, 2014.

[31] P. Misra and P. Enge, Global Positioning System: Signals, Measurements and
Performance Second Edition. Lincoln, MA: Ganga-Jamuna Press, 2006.

[32] J. Haverinen and A. Kemppainen, “Global indoor self-localization based on
the ambient magnetic field,” Robotics and Autonomous Systems, vol. 57,
no. 10, pp. 1028–1035, 2009.

[33] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,”
Management science, vol. 6, no. 1, pp. 80–91, 1959.

[34] “Luciad - geospatial situational awareness.” Company website:
http://www.luciad.com/, 2015.

[35] A. L. Samuel, “Some studies in machine learning using the game of checkers,”
IBM Journal of research and development, vol. 3, no. 3, pp. 210–229, 1959.

[36] A. Turing, Chess, ch. The Essential Turing, Seminal Writings in Computing,
Logic, Philosophy, Artificial Intelligence, and Artificial Life plus The Secrets
of Enigma. Oxford University Press, 2004. Reprint of paper originally printed
in 1953.

[37] C. E. Shannon, “XXII. programming a computer for playing chess,” The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, vol. 41, no. 314, pp. 256–275, 1950.

[38] F.-H. Hsu, Behind Deep Blue: Building the computer that defeated the world
chess champion. Princeton University Press, 2002.

[39] D. Spicer and K. Tashev, “The quest to build a thinking machine: A history of
computer chess,” CompuComputer: New exhibit showcases game’s past and
museum’s future, May 2006. A publication of the Computer History Museum.

Bibliography 95

[40] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Upper
Saddle River, New Jersey: Prentice Hall, 3rd edition ed., 2010.

[41] E. Alpaydin, Introduction to machine learning. MIT press, 2014.

[42] K. Murphy, Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

[43] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

[44] I. H. Witten and E. Frank, Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, 2005.

[45] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.

[46] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-means clustering
algorithm,” Applied statistics, pp. 100–108, 1979.

[47] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS: Ordering
points to identify the clustering structure,” SIGMOD Rec., vol. 28, pp. 49–60,
June 1999.

[48] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” Journal of the royal statistical society.
Series B (methodological), pp. 1–38, 1977.

[49] J. A. Bilmes et al., “A gentle tutorial of the EM algorithm and its application
to parameter estimation for Gaussian mixture and hidden Markov models,”
International Computer Science Institute, vol. 4, no. 510, p. 126, 1998.

[50] N. Vlassis and A. Likas, “A greedy EM algorithm for gaussian mixture
learning,” Neural processing letters, vol. 15, no. 1, pp. 77–87, 2002.

[51] P. Smyth, “Note set 4: Finite mixture models and the
EM algorithm.” Lecture notes for course on Probabilistic
Learning at University of California–Irvine, Available online:
http://www.ics.uci.edu/ smyth/courses/cs274/notes/notes4.pdf, 2015.

[52] P. W. Foltz, W. Kintsch, and T. K. Landauer, “The measurement of textual
coherence with latent semantic analysis,” Discourse Processes, vol. 25, no. 2,
pp. 285–307, 1998.

96 Bibliography

[53] M. Bazire and P. Brézillon, “Understanding context before using it,” in
Modeling and Using Context: Lecture Notes in Computer Science (A. Dey,
B. Kokinov, D. Leake, and R. Turner, eds.), Springer Berlin/Heidelberg, 2005.

[54] J. McCarthy, “Notes on formalizing context,” in Proceedings of the
13th International Joint Conference on Artificial Intelligence, (San Mateo,
California), pp. 555–562, Morgan Kaufmann, 1993.

[55] “Context.” Merriam-Webster Dictionary, Available online:
http://bit.ly/1LK7K2O, 2015.

[56] V. Akman and M. Surav, “Steps toward formalizing context,” AI magazine,
vol. 17, no. 3, p. 55, 1996.

[57] Wikipedia, “Five Ws — Wikipedia, the free encyclopedia.” Available online:
http://bit.ly/1SIXRkI, 2015.

[58] B. S. Bennett, “Hermagoras of temnos,” Classical Rhetorics and Rhetoricians:
Critical Studies and Sources, p. 187, 2005.

[59] J.-y. Hong, E.-h. Suh, and S.-J. Kim, “Context-aware systems: A literature
review and classification,” Expert Systems with Applications, vol. 36, no. 4,
pp. 8509–8522, 2009.

[60] B. Schilit and M. Theimer, “Disseminating active map information to mobile
hosts,” Network, IEEE, vol. 8, no. 5, pp. 22–32, 1994.

[61] M. Weiser, “The computer for the 21st century,” Scientific American, vol. 265,
no. 3, pp. 94–104, 1991.

[62] R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The active badge location
system,” ACM Transactions on Information Systems (TOIS), vol. 10, no. 1,
pp. 91–102, 1992.

[63] T. Moran and P. Dourish, “Introduction to this special issue on context-aware
computing,” Human-Computer Interaction, vol. 16, no. 2-4, pp. 87–95, 2001.

[64] J. McCarthy, Programs with common sense. Defense Technical Information
Center, 1963.

Bibliography 97

[65] J. McCarthy, “Generality in artificial intelligence,” Communications of the
ACM, vol. 30, no. 12, pp. 1030–1035, 1987.

[66] D. Foxvog, “Cyc,” in Theory and Applications of Ontology: Computer
Applications, pp. 259–278, Springer, 2010.

[67] R. V. Guha, Contexts: a formalization and some applications, vol. 101.
Stanford University Stanford, CA, 1991.

[68] J. McCarthy and S. Buvac, “Formalizing context (expanded notes),” in
Computing Natural Language, CSLI, Lecture Notes (A. Aliseda, R. J. van
Glabbeek, and W. D., eds.), pp. 13–50, Center for the Study of Language and
Information, Stanford University, 1998.

[69] S. Buvač and I. A. Mason, “Propositional logic of context,” in Proceedings of
the eleventh national conference on artificial intelligence, sn, 1993.

[70] P. Brézillon, “Context in artificial intelligence: I. a survey of the literature,”
Computers and artificial intelligence, vol. 18, pp. 321–340, 1999.

[71] V. Akman, “Context in artificial intelligence: a fleeting overview,” in La svolta
contestuale (C. Penco and V. Akman, eds.), Milano: McGraw-Hill, 2002.

[72] M. Tähti, V.-M. Rautio, and L. Arhippainen, “Utilizing context-awareness in
office-type working life,” in Proceedings of the 3rd international conference
on Mobile and ubiquitous multimedia, pp. 79–84, ACM, 2004.

[73] M. Heiskala, E. Palomäki, M. Vartiainen, K. Hakkarainen, and H. Muukkonen,
“A research framework for the smartphone-based contextual study of
mobile knowledge work,” in Design, User Experience, and Usability. User
Experience Design for Diverse Interaction Platforms and Environments,
pp. 246–257, Springer, 2014.

[74] X. Huang, J. Weng, and Z. Zhang, “Office presence detection using
multimodal context information,” in Acoustics, Speech, and Signal Processing,
2004. Proceedings.(ICASSP’04). IEEE International Conference on, vol. 3,
pp. iii–773, IEEE, 2004.

98 Bibliography

[75] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for
real-time tracking,” in Computer Vision and Pattern Recognition, 1999. IEEE
Computer Society Conference on., vol. 2, IEEE, 1999.

[76] Y. Manabe, H. Saito, K. Akiyama, R. Ikeda, S. Kanda, and K. Sugawara,
“Perceptual functions for context-awareness of an office worker,” in Cognitive
Informatics (ICCI), 2010 9th IEEE International Conference on, pp. 583–589,
IEEE, 2010.

[77] K. Kiyokawa, M. Hatanaka, K. Hosoda, M. Okada, H. Shigeta, Y. Ishihara,
F. Ooshita, H. Kakugawa, S. Kurihara, and K. Moriyama, “Owens luis–a
context-aware multi-modal smart office chair in an ambient environment,” in
Virtual Reality Short Papers and Posters (VRW), 2012 IEEE, pp. 1–4, IEEE,
2012.

[78] K. K. Rachuri, C. Efstratiou, I. Leontiadis, C. Mascolo, and P. J. Rentfrow,
“Smartphone sensing offloading for efficiently supporting social sensing
applications,” Pervasive and Mobile Computing, vol. 10, pp. 3–21, 2014.

[79] N. Kern, B. Schiele, and A. Schmidt, “Multi-sensor activity context detection
for wearable computing,” in Ambient Intelligence, pp. 220–232, Springer,
2003.

[80] S. Pirttikangas, K. Fujinami, and T. Nakajima, “Feature selection and activity
recognition from wearable sensors,” in Ubiquitous Computing Systems,
pp. 516–527, Springer, 2006.

[81] H. Park, J. Park, H. Kim, J. Jun, S. Hyuk Son, T. Park, and J. Ko, “Relisce:
Utilizing resource-limited sensors for office activity context extraction,”
Systems, Man, and Cybernetics: Systems, IEEE Transactions on, vol. 45,
pp. 1151–1164, Aug 2015.

[82] M. J. Duncan, H. M. Badland, and W. K. Mummery, “Applying GPS
to enhance understanding of transport-related physical activity,” Journal of
Science and Medicine in Sport, vol. 12, no. 5, pp. 549–556, 2009.

[83] S. A. Hoseini-Tabatabaei, A. Gluhak, and R. Tafazolli, “A survey on
smartphone-based systems for opportunistic user context recognition,” ACM
Computing Surveys (CSUR), vol. 45, no. 3, p. 27, 2013.

Bibliography 99

[84] V. Pejovic and M. Musolesi, “Anticipatory mobile computing: A survey of the
state of the art and research challenges,” ACM Computing Surveys (CSUR),
vol. 47, no. 3, p. 47, 2015.

[85] Y. Kwon, K. Kang, and C. Bae, “Unsupervised learning for human activity
recognition using smartphone sensors,” Expert Systems with Applications,
vol. 41, no. 14, pp. 6067–6074, 2014.

[86] F. Foerster and J. Fahrenberg, “Motion pattern and posture: correctly assessed
by calibrated accelerometers,” Behavior research methods, instruments, &
computers, vol. 32, no. 3, pp. 450–457, 2000.

[87] S.-W. Lee and K. Mase, “Activity and location recognition using wearable
sensors,” IEEE pervasive computing, vol. 1, no. 3, pp. 24–32, 2002.

[88] J. Lester, T. Choudhury, N. Kern, G. Borriello, and B. Hannaford, “A
hybrid discriminative/generative approach for modeling human activities,” in
Proc. of the International Joint Conference on Artificial Intelligence (IJCAI),
pp. 766–772, 2005.

[89] J. Pärkkä, M. Ermes, P. Korpipää, J. Mäntyjärvi, J. Peltola, and
I. Korhonen, “Activity classification using realistic data from wearable
sensors,” Information Technology in Biomedicine, IEEE Transactions on,
vol. 10, no. 1, pp. 119–128, 2006.

[90] J. Suutala, S. Pirttikangas, and J. Röning, “Discriminative temporal smoothing
for activity recognition from wearable sensors,” in Ubiquitous Computing
Systems (H. Ichikawa, W.-D. Cho, I. Satoh, and H. Youn, eds.), vol. 4836 of
Lecture Notes in Computer Science, pp. 182–195, Springer Berlin Heidelberg,
2007.

[91] K. Kunze and P. Lukowicz, “Dealing with sensor displacement in
motion-based onbody activity recognition systems,” in Proceedings of the 10th
international conference on Ubiquitous computing, pp. 20–29, ACM, 2008.

[92] J. Yin, Q. Yang, and J. Pan, “Sensor-based abnormal human-activity
detection,” Knowledge and Data Engineering, IEEE Transactions on, vol. 20,
no. 8, pp. 1082–1090, 2008.

100 Bibliography

[93] J. Yang, “Toward physical activity diary: motion recognition using simple
acceleration features with mobile phones,” in Proceedings of the 1st
international workshop on Interactive multimedia for consumer electronics,
pp. 1–10, ACM, 2009.

[94] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava, “Using
mobile phones to determine transportation modes,” ACM Transactions on
Sensor Networks (TOSN), vol. 6, no. 2, pp. 13:1–13:23, 2010.

[95] L. Pei, R. Chen, J. Liu, W. Chen, H. Kuusniemi, T. Tenhunen, T. Kröger,
Y. Chen, H. Leppäkoski, and J. Takala, “Motion recognition assisted
indoor wireless navigation on a mobile phone,” in Proceedings of the 23rd
International Technical Meeting of The Satellite Division of the Institute of
Navigation (ION GNSS 2010), pp. 3366–3375, 2010.

[96] K. Frank, M. Nadales, P. Robertson, and M. Angermann, “Reliable real-time
recognition of motion related human activities using MEMS inertial sensors,”
in Proceedings of the 23rd International Technical Meeting of The Satellite
Division of the Institute of Navigation (ION GNSS 2010), pp. 2919–2932,
2001.

[97] L. Pei, R. Chen, J. Liu, H. Kuusniemi, Y. Chen, T., and Tenhunen, “Using
motion-awareness for the 3d indoor personal navigation on a smartphone,”
in Proceedings of the 24th International Technical Meeting of The Institute
of Navigation (ION GNSS 2011), Portland, Oregon, USA, September 20-23,
2011.

[98] M. Susi, D. Borio, and G. Lachapelle, “Accelerometer signal features and
classification algorithms for positioning applications,” in Proceedings of
the 2011 International Technical Meeting of The Institute of Navigation,
pp. 158–169, 2011.

[99] J. B. Bancroft, D. Garrett, and G. Lachapelle, “Activity and environment
classification using foot mounted navigation sensors,” in Proceedings of the
2012 Indoor Positioning and Indoor Navigation (IPIN) Conference, 2012.

[100] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human
activity recognition on smartphones using a multiclass hardware-friendly

Bibliography 101

support vector machine,” in Ambient assisted living and home care,
pp. 216–223, Springer, 2012.

[101] M. Susi, V. Renaudin, and G. Lachapelle, “Motion mode recognition and
step detection algorithms for mobile phone users,” Sensors, vol. 13, no. 2,
pp. 1539–1562, 2013.

[102] T. Feng and H. J. Timmermans, “Transportation mode recognition using
gps and accelerometer data,” Transportation Research Part C: Emerging
Technologies, vol. 37, pp. 118–130, 2013.

[103] S. Hemminki, P. Nurmi, and S. Tarkoma, “Accelerometer-based transportation
mode detection on smartphones,” in Proceedings of the 11th ACM Conference
on Embedded Networked Sensor Systems, p. 13, ACM, 2013.

[104] L. Stenneth, Detecting Human Activities Using Smartphones and Maps. Ph.D.
thesis, University of Illinois at Chicago, February 2014.

[105] H. Xia, Y. Qiao, J. Jian, and Y. Chang, “Using smart phone sensors to detect
transportation modes,” Sensors, vol. 14, no. 11, pp. 20843–20865, 2014.

[106] M. Elhoushi, J. Georgy, M. Korenberg, and A. Noureldin, “Robust motion
mode recognition for portable navigation independent on device usage,” in
Position, Location and Navigation Symposium-PLANS 2014, 2014 IEEE/ION,
pp. 158–163, IEEE, 2014.

[107] J. Parviainen, J. Bojja, J. Collin, J. Leppänen, and A. Eronen, “Adaptive
activity and environment recognition for mobile phones,” Sensors, vol. 14,
no. 11, pp. 20753–20778, 2014.

[108] J.-H. Chiang, P.-C. Yang, and H. Tu, “Pattern analysis in daily physical activity
data for personal health management,” Pervasive and Mobile Computing,
vol. 13, pp. 13–25, 2014.

[109] J.-M. Yu and S.-B. Cho, “A low-power context-aware system for smartphone
using hierarchical modular Bayesian networks,” in Hybrid Artificial Intelligent
Systems, pp. 543–554, Springer, 2015.

[110] M. Choi, H. Chung, H. Yamaguchi, and L. W. A. De Silva, “Application of
genetic algorithm to ship route optimization in ice navigation,” in Proceedings

102 Bibliography

of the International Conference on Port and Ocean Engineering Under Arctic
Conditions, 2013.

[111] I. H. Park, J. H. Nam, and K. S. Choi, “A graphical approach to determine the
optimal sea route of icebreakers in arctic region,” in Proceedings of the Korean
Association of ocean science and technology societies join conference, June
2011. Published in Korean.

[112] J. Esa, “Fuel and economic efficiency of an ice-going vessel on the northern
sea route,” Master of Science thesis, Aalto University, June 2015.

[113] J. Montewka, F. Goerlandt, P. Kujala, and M. Lensu, “Towards probabilistic
models for the prediction of a ship performance in dynamic ice,” Cold Regions
Science and Technology, vol. 112, pp. 14–28, 2015.

[114] D. LaPrairie, M. Wilhelmson, and K. Riska, A transit simulation model for
ships in Baltic ice conditions : Documentation of the calculation routine.
Helsinki University of Technology, 1995.

[115] P. Valanto, S. J. Jones, E. Enkvist, and K. Izumiyama, “The resistance of
ships in level ice,” Transactions of the Society of Naval Architects and Marine
Engineers, vol. 109, pp. 53–83, 2001.

[116] B. H. Fock, A. Beitsch, D. Broehan, M. Dobynin, A. Gierisch, L. Kaleschke,
T. Pohlmann, and K. H. Schlünzen, “Ice forecast and route optimization,”
2012. Poster presented at the SMOSIce User Workshop, Hamburg, Germany.

[117] M. Dobrynin, B. H. Fock, A. M. Gierisch, T. Pohlmann, L. Kaleschke,
H. Schlünzen, et al., “Prediction of arctic sea ice for ship routing: Forecast
experiment and ship cruise,” in OTC Arctic Technology Conference, Offshore
Technology Conference, 2015.

[118] A. K. Dey and G. D. Abowd, “Towards a better understanding of context
and context-awareness,” Tech. Rep. GIT-GVU-99-22, Georgia Institute of
Technology, 1999.

[119] F. J. Ordónez, P. de Toledo, and A. Sanchis, “Activity recognition using
hybrid generative/discriminative models on home environments using binary
sensors,” Sensors, vol. 13, no. 5, pp. 5460–5477, 2013.

Bibliography 103

[120] R. E. Guinness, H. Kuusniemi, J. Vallet, T. Sarjakoski, J. Oksanen, M. Islam,
M. Syeed, H.-M. Halkosaari, P. Kettunen, M. Laakso, and M. Rönneberg,
“MyGeoTrust: A platform for trusted crowdsourced geospatial data,” in
Proceedings of the 28th International Technical Meeting of The Satellite
Division of the Institute of Navigation (ION GNSS+ 2015), (Tampa, Florida),
2015.

[121] H. Guermah, T. Fissaa, H. Hafiddi, M. Nassar, and A. Kriouile, “An ontology
oriented architecture for context aware services adaptation,” arXiv preprint
arXiv:1404.3280, 2014.

[122] H. Chen, T. Finin, and A. Joshi, “An ontology for context-aware pervasive
computing environments,” The Knowledge Engineering Review, vol. 18,
no. 03, pp. 197–207, 2003.

[123] X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung, “Ontology based
context modeling and reasoning using OWL,” in Pervasive Computing and
Communications Workshops, 2004. Proceedings of the Second IEEE Annual
Conference on, pp. 18–22, Ieee, 2004.

[124] T. Gu, X. H. Wang, H. K. Pung, and D. Q. Zhang, “An ontology-based
context model in intelligent environments,” in Proceedings of communication
networks and distributed systems modeling and simulation conference,
vol. 2004, pp. 270–275, 2004.

[125] T. Strang, C. Linnhoff-Popien, and K. Frank, “CoOL: A context ontology
language to enable contextual interoperability,” in Distributed applications
and interoperable systems, pp. 236–247, Springer, 2003.

[126] M. Lichman, “UCI machine learning repository.” Available online:
http://archive.ics.uci.edu/ml/, 2015.

[127] J. K. Laurila, D. Gatica-Perez, I. Aad, O. Bornet, T.-M.-T. Do, O. Dousse,
J. Eberle, and M. Miettinen, “The mobile data challenge: Big data for mobile
computing research,” in Pervasive Computing, no. EPFL-CONF-192489,
2012.

[128] M. Raento, A. Oulasvirta, R. Petit, and H. Toivonen, “ContextPhone:

104 Bibliography

a prototyping platform for context-aware mobile applications,” Pervasive
Computing, IEEE, vol. 4, pp. 51–59, Jan 2005.

PUBLICATIONS

PUBLICATION 1

R. Chen, R. E. Guinness, “Context Awareness” in Geospatial computing in mobile devices.
Boston: Artech House, ch. 8, pp. 150-170, 2014.

© 2014 ARTECH HOUSE. Reprinted with kind permission.

149

Chapter 8

Context Awareness

Up to this point, this book has focused on two fundamental aspects of geospatial
computing: (1) methods to compute one’s position and (2) methods to store and
visualize location-referenced information. These elements provide the basis for
location awareness and for creating and consuming mobile LBSs, a topic that was
covered in detail in Chapter 7.

The next topic, context awareness, may at first seem like a departure from the
topics covered in the previous chapters, which focused mainly on location. In fact,
this chapter is a broadening of our focus because, as we shall see, location
awareness falls under the larger umbrella of context awareness. We will consider
various definitions of this term, but a precursory (and open-ended) definition
might simply be that context awareness is the superset of location awareness and
many other types of awareness about a mobile user’s environment, activities, and
state of being.

Although context awareness has existed as a computer science research topic
for nearly 20 years, the topic has in recent years received increasing interest,
largely due to the proliferation of mobile devices in everyday life, as discussed in
Chapter 1. It is simultaneously an extremely promising yet challenging topic,
given the wide range of capabilities it encompasses.

This chapter presents context awareness at a conceptual level and provides
historical perspective on the development of the field. In addition, we attempt to
show at a practical level how different aspects of contextual awareness can be
implemented in a mobile device. Due to space limitations, we have selected one
popular mobile platform, the Android operating system, in order to show specific
code examples of several concepts. We will also point readers toward methods of
the Android API classes that they can use to implement their own context-aware
applications. Similar capabilities are available in other major mobile platforms,
such as iOS and Windows Phone 7/8, but unfortunately space does not allow us to
demonstrate them here.

150 Geospatial Computing in Mobile Devices

8.1 DEFINING CONTEXT AND CONTEXT AWARENESS

Context is one of those words, like system and information, that is difficult to
define precisely. It is used prominently in many fields, including linguistics,
psychology, neuroscience, law, and computer science, but ironically the definition
of context depends heavily on its context of use. Loosely speaking, we can say
that context is a category of information, but there is no general agreement on
which types of information belong to this category.

Some researchers have studied the etymology of the word context and have
even attempted to formalize and to build consensus concerning the definition [1–
4]. Although these semantic topics are beyond the scope of this chapter, we
require some working notional definition of context before we can define and
examine context awareness (this chapter) or discuss contextual reasoning
(Chapter 9).

Note that whatever definitions we adopt, they will surely reflect the particular
focus of this book, namely mobile geospatial computing. In fact, in defining these
concepts, we notice a definite trade-off between generality and concreteness. We
have tried to be as general as possible without losing our focus on how context
awareness can be implemented in mobile devices.

8.1.1 What Is Context?

In the Merriam Webster Dictionary [5], we find two definitions of the word
context:

• The parts of a discourse that surround a word or passage and can throw light

on its meaning;
• The interrelated conditions in which something exists or occurs:

ENVIRONMENT, SETTING.

In this book, we adopt the second definition because we are not directly

concerned with human discourse but rather with conditions of an environment or
setting (i.e., geospatial information) that can be sensed by machines (i.e.,
computers and sensors). Clearly, these two definitions are interrelated in the sense
that discourse can be (and most usually is) used as a representation of an
environment or setting.

In other words, natural language is a common form in which contextual
information is encoded. Our focus though is on techniques to sense and represent
context automatically. Hence, when we refer to context, we refer directly to the
conditions in the environment. When we use the term contextual information, we
refer to representations of context, either in natural language or other form.
Furthermore, when we want to explicitly distinguish between the two types of

 Context Awareness 151

context defined above, we will use the terms discourse context and conditions
context, respectively.17

In lieu of a formal and generally accepted definition of context, the above
dictionary definition (second one) is broad enough to serve as a working definition
for use in exploring context awareness. We will further elucidate this concept with
a framework and example below.

There are a few general notes regarding context to cover before we dive
deeper into the topic. First, note that our definition implies that the specific
“conditions” relevant to context are dependent on the “something” to which the
context applies. In other words, context is always specified from a particular
viewpoint or frame of reference of an object or person. This is similar to the
concept in physics, where a physical measurement like velocity is defined within a
particular frame of reference. Within the domain of mobile geospatial computing,
our frame of reference most often will be the mobile device itself, although
oftentimes we take the frame of reference to be the same as that of the mobile
user.

Second, we must choose some techniques for describing a particular context
that help to build a framework for our contextual information. If our goal is to
describe a particular context in natural language, then we might employ the classic
technique of journalism (since journalism is an age-old craft for describing
conditions and events), known as the five Ws: who, what, where, when, and why
[6]. In fact, this technique dates back at least to the late second century BC when
Hermagoras of Temnos defined seven elements of circumstance, which include
(in addition to the five Ws) “in what manner” and “by what means” [7].

Using these questions as a starting point (with a slightly different order), we
list possible elements of a particular context with a demonstrative example:

What: A small, impromptu gathering of colleagues.
Who: Mary, a smartphone user, as well as three of Mary’s coworkers who are

nearby.
Where: 60.1609°N, 24.5460°E (WGS84); inside the main lobby of the FGI,

specifically inside Mary’s pocket.
When: Friday, 20 April 2014 at 12:03 p.m.
Why: This gathering occurred because Mary and her colleagues are going out

to lunch together. They are waiting for a fifth colleague, Steve, to arrive.

17 The word context is also used in some image analysis literature to refer to pixels in the
vicinity of a particular pixel (e.g., the neighbors of that pixel). See references [8–10] for
examples. This choice of terms is, in fact, related to the discourse definition of context; just
as the surrounding discourse can shed light on a particular word or phrase, the surroundings
of a particular pixel can help in interpreting its value. In any case, this meaning of context
is in some ways different from conditions context, and we mention this usage merely to
caution the reader not to confuse the two.

152 Geospatial Computing in Mobile Devices

In what manner: Mary’s smartphone is experiencing small, sporadic
movements, consistent with the phone being in the pocket of someone
who is standing and having a casual conversation.

By what means: All of the above information has been sensed or reasoned by
the sensors and software existing in a smartphone, or acquired via a
networked resource. In this case, the smartphone is a Samsung Galaxy S4
with Android 4.3 OS, which includes a GNSS receiver, WLAN-based
positioning engine, Bluetooth module, microphone and audio analyzer,
ambient light sensor, accelerometers, gyroscopes, and magnetometers.

This account of the situation is not likely to yield a Pulitzer prize in

journalism, but it is enough to get a basic sense about what the mobile user is
doing, as viewed from the perspective of her mobile device. We will see later how
this contextual information can be used to create context-aware applications that
record a user’s activities and even anticipate his or her needs.

There are of course many other contextual elements we could list, including
details about the smartphone itself (e.g., battery level and mobile network that it is
connected to) or about the immediate surrounding environment (e.g., the weather
conditions outside). Like a good journalist, however, we only include the most
relevant facts that are necessary to understand the situation at hand. If, for
example, the weather outside were particularly noteworthy, we might have
included it in the list, but we can assume from its omission that most probably it is
nothing exceptional or affecting to the situation.

Last, we note that there are some elements omitted from this list that are
certainly both contextual and relevant, such as details about the user’s state of
mind or what the topic of conversation is. This illustrates the point that our
contextual information will in some ways always be incomplete. In the domain of
mobile geospatial computing, we are limited to the information that can be
obtained or reasoned by a mobile device. As mobile technology rapidly advances,
the breadth of information available to mobile devices will surely increase, but it
will always face limitations, especially compared to the robust and subtle sensing
ability of the human being.

8.1.2 What Is Context Awareness?

Now that we have a basic notion of context and a simple example to aid our
understanding, we can define the term context awareness. Although this term
inherits the same difficulties facing the term context, it is otherwise straight
forward to define. Context awareness is the quality of having knowledge (being
aware) of context. We say a device or application is context-aware if it possesses
this quality, and we define context-aware computing as the set of computational
techniques designed to obtain and use context.

Using the journalistic framework described above, we can describe one
objective of context-aware computing as the building up of a description of a

 Context Awareness 153

particular situation or context. As an ultimate goal, this description should be
indistinguishable from the description that a perceptive (human) journalist would
compose. Thus, the process can be roughly framed as 1) acquiring information
from sensors and other sources and 2) translating this information into prose (or
ordinary spoken language).

Just as a person can have different levels of awareness, a device or
application can have different levels of context awareness. To a certain extent,
nearly every mobile device is context-aware in the sense that it knows certain
details about its state (e.g. battery level, networks it is connected to, and whether
or not a phone call is taking place with it) and perhaps about its user or owner
(name, phone number, etc). We arbitrarily distinguish, however, between context-
aware and non-context-aware devices based on the amount and breadth of
contextual information that the device can obtain and whether it possesses sensors
and software that are employed specifically for the purpose of obtaining
contextual information. Admittedly, this is a blurry definition, and this type of
classification is often a matter of opinion.

Don’t be surprised if some of this starts to sound a bit “sci-fi.” The goal of
creating a context-aware device is related to one of the primary prerequisites of
artificial intelligence (AI). A machine exhibiting AI must have a general
representation of the world, especially concerning the objects and beings in its
immediate surroundings [11]. We shall see, however, that a device can achieve
some elements of context awareness without even coming close to achieving AI.
Hence, the two subjects are related but distinct.

Last, in order to aid the reader’s understanding, we present briefly an example
of a real-world, present-day context awareness product—Google Now. The web
site for this product provides a succinct description of its context awareness
capabilities [12]:

Google Now gets you just the right information at just the right time.

It tells you today’s weather before you start your day, how much traffic to
expect before you leave for work, when the next train will arrive as you’re
standing on the platform, or your favorite team’s score while they’re playing.
And the best part? All of this happens automatically. Cards appear throughout
the day at the moment you need them.

Of course, none of these capabilities would be possible without a source of

contextual information, such as the user’s position, preferences, or activity (e.g.,
leaving for work). It is precisely the acquisition of this type of information that we
will explore further in this chapter; we will learn how to process it in Chapter 9.

154 Geospatial Computing in Mobile Devices

8.1.2.1 Is Location Awareness Part of Context Awareness?

As stated above, location awareness is one element of context awareness, thus we
could claim that any device that is location-aware is therefore, to a certain extent,
context-aware. In fact, location awareness can be viewed as an important pioneer
and forerunner in context awareness. There is no doubt that location is one of the
most important elements of context, hence the focus of much of this book on
positioning methods. This is one aspect of the “geospatial era,” discussed in
Chapter 1, where many forms of computing are adopting location as a central
contextual element. The most recent advances in mobile technology, however,
point to a future where mobile devices will be aware of much more than just
location. In fact, positioning technologies are becoming so ubiquitous that a
location-aware device may not seem noteworthy enough to merit the special
distinction of being context-aware. Indeed, our view is that location awareness is a
necessary precursor to context awareness (at least for the vast majority of
applications) but does not in itself imply context awareness.

8.1.2.2 Relation Between Context Awareness and Situation Awareness

Some readers may note that a related term situation awareness (or situational
awareness) is commonly used in certain disciplines. The distinction between
context awareness and situation awareness is largely of a historical nature rather
than conceptual. The former comes from mobile computing researchers, whereas
the latter is rooted in military aviation.

Originally, situation awareness referred to the pilot’s “awareness of
conditions and threats in the immediate surroundings” [13], and its importance
was known as early as World War I, especially by German flying ace Oswald
Boelke [14]. Eventually situation awareness was also used to refer to machine
awareness of such conditions and threats. Furthermore, the term became popular
in a plethora of fields outside of aviation applications, including maritime18 or
ground-based operations, and even outside of military applications [15]. Hence,
today the concepts are essentially the same, and the two terms can be used almost
interchangeably. Because context awareness is more commonly used in mobile
computing, whereas situation awareness is more commonly used in military,
safety, and security applications, we will primarily use the former in this book.

8.2 WHY IS CONTEXT AWARENESS IMPORTANT?

Now that we have a basic understanding of the concept “context awareness,” it is
worth asking the question, “Why is context awareness important?” Given its

18 Also known as maritime domain awareness.

 Context Awareness 155

prominence as a topic in computer science research, there should be compelling
reasons for why it is studied.

As Anind Dey, one of the pioneers of context awareness, and others have
pointed out, the goal of creating context-aware devices is largely about improving
the richness and ease of human-computer interaction [16]. If a computer can be
made more aware of the conditions and environment in which it and its users
reside, then there will be less need for the users to explicitly tell the computer
what it is they need the computer to do. To a certain degree, the computer will
“know” what our needs are. This is because developers will have prescribed what
is typically needed in a given situation into an application designed to serve such
needs (or allowed the user to specify his or her needs in given situations).

A simple example could occur when a mobile device detects that you will be
late for a meeting (because you are 30 minutes by car from the meeting place with
only 15 minutes until the meeting starts), and could automatically send a message
to a contact saved in your mobile device and identified in your mobile calendar as
the organizer of the meeting. Therefore, to a large extent, context awareness is
about increasing the automation capabilities of our computing devices, or
minimizing the amount of human-computer interaction that is required to perform
a given task.

Many other examples of such context-enabled capabilities could be listed
here, but like many worthy scientific and technological endeavors, it is impossible
to say what the most important reason for pursuing context awareness is. It is a bit
like speculating in the early 1960s about the importance of the Internet (or
Intergalactic Computer Network, as it was known in an early phase) that we see so
clearly from our vantage point in the twenty-first century. Certainly at that time
computer scientists could see the value of networking together four to eight
mainframe computers to share resources and transfer data, but they could hardly
envision at that time how such entities as Google, Facebook, Twitter, and Skype
would change the way that billions of people operate on a daily basis; how
businesses would operate; and even how revolutions would be organized!
Similarly, although we can see some of the immediate promises of context
awareness for mobile computing, we must rely on our intuition and curiosity to
believe that making computers aware of context is an effort that will pay off in
countless, unimaginable ways.

8.3 HISTORY OF CONTEXT-AWARE COMPUTING

It is worthwhile to review the history of context awareness from the literature and
see how the concept has developed and been employed. Reviewing this history is
challenging, however, due to the wide and varying use of the concept “context,”
as discussed above. Some argue that the topic of context can be traced back to

156 Geospatial Computing in Mobile Devices

Frege [18, 19] or Russell [20], where the role of context in determining the
meaning of symbols and words is discussed [17–20].19 These philosophical issues
regarding the word “context” are not, however, essential for a practical
understanding of context awareness, so we will only mention them in passing
during this brief review.

In a similar vein, we can find studies from the 1950s and 1960s, where
context is used in various applications, such as machine recognition of
handwriting, printed text, and verbal speech [21–23]. These works, however, are
primarily concerned with discourse context rather than conditions context.
Discourse context is fundamentally different from conditions context because in
the former there is (by definition) a human in the loop, whereas representations of
the latter could be generated automatically.20 As we stated at the onset, we are
interested in automatic methods; hence these studies are only of peripheral
interest.

In some sense, however, discourse (i.e., natural language) is relevant to
context awareness because it can be used to infer conditions context. Thus,
natural language processing can help provide inputs to context-aware
applications. A full survey of natural language processing techniques is beyond
the scope of this book, so the reader is referred to Porzel’s extensive coverage of
the topic in [24].

As mentioned above, the subject of context awareness exhibits strong ties to
the field of AI. As early as 1963, one of the “fathers of AI,” John McCarthy,
described the concept of a fluent (later called situational fluent), which we might
also call a contextual proposition or contextual statement. A fluent is expressed as
a function of a situation, which is described as “the complete state of affairs at
some instant of time.” One simple example of representing a fluent that McCarthy
provides is raining(s), which indicates that it is raining in situation s. From
this example, we can clearly see the parallel between a set of fluents for a
particular situation and a context [25].

It is curious to note, however, that McCarthy does not explicitly use the term
context until a 1987 paper titled “Generality in Artificial Intelligence” [26]. Even
then, he does not provide an explicit definition of context nor comment on its
relation to the concepts of fluent or situation. Nonetheless, this paper seems to be
the spark that set off an intense effort to study and even formalize the concept of
context. By the early 1990s, we can find important works on formalizing context
and on contextual reasoning [1, 2, 27, 28]. Although this literature does not

19 Russell does not explicitly use the term “context,” but one can recognize its implicit presence.
20 Computers, of course, can simulate human discourse and can even generate discourse about the
conditions context. Still, we feel justified in making this distinction because it seems that a computer
capable of human-like discourse requires first some knowledge of at least some elements of conditions
context. Hence, computer-generated discourse would constitute a particular use of conditions context,
rather than a method of acquiring conditions context.

 Context Awareness 157

directly herald an era of context-aware devices, it constitutes important theoretical
groundwork in the development of context awareness as a research topic.

Another important precursor to context awareness can be seen in the often
cited article “The Computer for the 21st Century,” published in Scientific
American [29]. In this highly readable article, Weiser envisions a future state of
technology where context awareness plays a crucial (albeit unspoken) role:

Sal awakens; she smells coffee. A few minutes ago her alarm clock, alerted by
her restless rolling before waking, had quietly asked, “Coffee?” and she had
mumbled, “Yes.”

This fictional account goes on to describe a number of automated and assisted

functions that are performed by ubiquitous computing devices, which in many
cases can be considered to be context-aware. When this article was published in
1991 it probably sounded like mostly science fiction. With the recent advent of
wireless devices like Fitbit (which can monitor sleep periods), such scenarios are
now on the verge of reality.

For the first reported implementation of a context-aware device, we look to
the Active Badge Location System, developed at the Olivetti Research Laboratory
in Cambridge, England, in the early 1990s [30]. Not surprisingly, this system was
focused exclusively on creating location awareness, especially for employees in
an office environment. A few years later, Schilit and Theimer were the first to
explicitly use the term context-aware computing, which they defined as “the
ability of a mobile user’s applications to discover and react to changes in the
environment they are situated in” [31].

By the mid 1990s, the study and development of “context-aware applications”
becomes an active area (e.g., PARCTAB, stick-e notes [32], CyberGuide [33],
CyberDesk [34]). The reader can find an excellent snapshot of the turn-of-the-
century, state-of-the-art in context-aware computing in a special issue of the
journal Human-Computer Interaction, published in 2001 [35]. What is clear from
the literature of this period is that context awareness had become a strong research
focus for several research groups, typified by prototype and architecture
development. It is also clear, however, that an abundance of challenges still
remained to achieving rich and robust context awareness.

During the past 10 years, context awareness research has continued to press
forward, and it has begun to work its way into several commercial products.
Several frameworks for context awareness have been developed by researchers.
One challenge that remains, however, is that no widespread standard yet exists for
representing contextual information.

As far as commercial products, the example of Google Now was given above,
but there are plenty of other examples as well. Dexetra currently offers an
application called “friday,” which keeps track of a user’s daily activities, such as
commuting, activity on social networks, and various uses of the user’s phone
(calls, photo-taking, etc.), as well as the location where these features were used.

158 Geospatial Computing in Mobile Devices

Qualcomm Retail Solutions offers a context awareness platform, called Gimbal,
with SDKs available for iOS and Android. Already in 2012, Samsung’s Galaxy S3
smartphone was marketed as a context-aware device with its ability to recognize
when a face is looking at the screen and control whether the screen stays on base
on this information. The Motorol Moto X, released in 2013, also exhibits many
context-aware features. These include sensing when the phone is picked up (in
order to turn on the screen and display notifications) and sensing certain hand
gestures (in order to activate the camera application). An application called
Motorola Assist21 uses context to detect activities like driving and sleeping. It
allows users to predetermine how to handle or respond to incoming text messages
and phone calls, based on the current activity (e.g., reading text messages to the
user while driving).

8.4 EXAMINING CONTEXT IN DETAIL

The remainder of this chapter examines in more detail the various elements of
context first introduced in Section 8.1.1. Some of these elements are more
straightforward to detect in a mobile device than others. For the more challenging
elements, we will provide only precursory coverage in this section.

8.4.1 What: The Activity Context

The first element of context is a high-level description of what activity is taking
place or what the overall current situation is.22 Examples could include: driving a
car, waiting at a bus stop, having lunch, and participating in a meeting. In practice,
there can be many possible ways to formulate such high-level activity or situation
descriptions, as well as many different techniques for classifying and sensing
them. The overall objective of classifying and sensing activities is often called
activity recognition, and a great deal of research has been conducted in this area
alone.

The optimal set of techniques to detect high-level context is specific to the set
of sensors or other data available, the scope of activities that one desires to detect,
as well as the specific requirements of the application (such as whether or not the
context must be detected in real time). Therefore, it is very difficult to provide
general guidance on how to perform activity recognition. In broad terms, however,
we can use one or more techniques from the fields of machine learning and

21 At the time of this writing, Motorola Assist was compatible with four different Motorola smartphone
models, including the Moto X.
22 We recognize that “situation” is essentially a synonym for context, but it is used here to embody the
highest level of contextual information that functions as a summary of the context. We also note that a
context may sometimes be characterized by a great deal of inactivity, but even “sitting idly” can be one
classification within a set of activity classifications.

 Context Awareness 159

pattern recognition. Specifically, the following signal processing techniques have
been used for activity recognition:

• Decision tree;
• Hidden Markov model;
• Naïve Bayes classifier;
• Support vector machine;
• Kalman filter;
• Particle filter.

We will provide further details on some of these techniques in Chapter 9.

Machine learning and pattern recognition are fields with a rich set of literature,
and we can only scratch the surface in this book. Readers wishing to go deeper are
encouraged to explore especially the references cited in Chapter 9.

8.4.2 Who: The User and Social Context

The second element of context is concerned with 1) who the user of the mobile
device is and, possibly, 2) the social context in which the user is situated.
Acquiring the identity of the mobile user is usually dependent on information the
user has stored in the mobile device and/or on privacy permissions that the user
has set to control access to various account information. For example, on Android
devices a user can create a local profile (see code example below), or personal
information can be imported via an account, such as Gmail, Facebook, or Twitter.
Most major web services offer an SDK for Android that allows privacy-controlled
access to profile information (e.g., Facebook SDK for Android [36]).

��
��	����
� ��	���
��������������������������������������	���
�������������������������	�
� � �����������������
������� ������ ���������
�������������������������	�
��
� � ��
���
������������������	���
�
� ���
� ������	������������������	�����
�������������������������
���
�����������������
� � ���
� � ��
���������	���������������	�����������������������	 ����� ����

160 Geospatial Computing in Mobile Devices

������� ���������������
��������
������������������������
�����������������
	�������
������	�	������
������������
��������
�������
�����������	����
�����
������������������
��

The amount and type of information that can be obtained via these methods

varies greatly based on the particular information source. For each particular user,
it also depends on what information that user has entered into his or her profile
and what accounts are accessible on the device. Therefore, it is important to
implement fallback methods, such as manual prompts, in case required user
information is not available via automated methods.

8.4.3 Where: The Location Context

As discussed above, location is an important element of context. Since much of
this book is concerned with describing mobile-based techniques to obtain a user’s
position, we will not repeat such descriptions here. In the Android platform, there
are various techniques used to obtain geographic coordinates (i.e., latitude,
longitude, and altitude) that hide much of the underlying complexity used to
calculate them. Most importantly, the LocationManager class provides
methods to obtain location (i.e., position) updates from either a GNSS23 or a
network-based provider. Table 8.1 below highlights the most important methods
from this class.

It is important to note that location can be expressed in many different forms,
such as in geodetic coordinates (see Section 2.1) or semantic descriptions like “at
home.” From the perspective of context awareness, it is often such semantic
descriptions that provide the most readily useful information. In this form, the
context is rather self-evident, whereas the contextual meaning of geodetic
coordinates (e.g., latitude and longitude) must be interpreted.

This interpretation could be relatively straightforward, such as querying a
database of points of interest (recall this topic from Chapter 7), or it could be
complex, such as analyzing the location history of a particular user to infer the
relevance of the location. In either case, it is clear that the relevant information is
not the geodetic coordinates themselves but rather the significance of the location
which the coordinates reference.

23 As noted in Chapter 1, GNSS is the preferred term when referring to satellite-based navigation
systems in general. In Android, there are classes and methods using the acronym GPS when most
modern mobile devices have multi-GNSS enabled receivers.

 Context Awareness 161

There is one other location-related topic that has not been covered elsewhere
in this book, that of microlocation sensing. This refers to the use of proximity-
based positioning (recall Section 2.2.6) to detect that a mobile device is within a
very small-scale region (e.g., centimeter and meter scale), such as near a user’s
desk or near a particular display in a store. This concept has also been referred to
as “hyper local.” As the size of the region becomes smaller, oftentimes the context
becomes clearer. For example, if a mobile device has localized itself as lying on
the nightstand next to the user’s bed, then the context is likely related to sleep.
Therefore, this topic is of particular relevance to context awareness.

Table 8.1
List of Useful Methods from android.location.LocationManager Class

Property Description
addGpsStatusListener Adds a GNSS status listener, which is powerful way to get low-

level updates from the GNSS receiver.

addNmeaListener Adds an NMEA status listener, which can receive NMEA sentences
as they are output from the GNSS receiver.

addProximityAlert Adds an event listener that is triggered when the device enters or
exits a given circular region (supplied as latitude/longitude/radius).

getAllProviders Returns a list of all available location providers.

getGpsStatus Returns a GpsStatus object, containing the current state of the
GNSS engine. Used in conjunction with
addGpsStatusListener.

getLastKnownLocation Returns a location object, containing the last known location from a
specified provider (i.e., GNSS or network).

requestLocationUpdates Used to set up events, which are triggered when a location update is
available from the specified provider (i.e., GNSS or network).

 There are several technologies related to microlocation sensing. For
example, in late 2013 Apple starting using devices called iBeacons in its stores to
detect at a fine scale where customers are located. These beacons use Bluetooth
low-energy RF signals to detect when mobile devices are nearby and
communicate with them accordingly. Qualcomm also offers devices called
Gimbal Proximity Beacons, which operate in a similar fashion but are designed to
interact with the Gimbal platform (mentioned in Section 8.3). Bluetooth low-
energy is not the only signal that is used for microlocation sensing. Samsung also
sells an add-on product for its mobile devices, called TecTiles, which are
programmable NFC stickers. They can be programmed to interact with a mobile
device whenever it is within NFC range (a few centimeters), allowing for
extremely fine-scale localization. Imagine the potential applications if such NFC
were deployed more widely. NFC tags could be integrated into such items as
pockets in clothing and in handbags, laptops and desktop computers (e.g., for

162 Geospatial Computing in Mobile Devices

identification purposes), and cashier or payment systems. The possibilities are
endless!

8.4.4 When: The Time and Date Context

The next element of context is trivial to obtain from a mobile device’s OS. For
example, in Android you can get the device’s system time with two lines of code:

� ���
� � ������

�		���������
� ������������������������������
���������������������������

A string representing the date and time (in local time zone) will be stored in the
variable dateTime for use in your application. The difficult part can come in
figuring out how to use this information.
 A date and time coordinate must be interpreted in much the same way a
location coordinate is interpreted. For example, 6:00 a.m. for one person might
represent a normal weekday wake-up time, whereas for another person it might
represent a precious “Do not disturb” sleep time. Similarly, 5:00 p.m. on
December 21 might represent an entirely different context than 5:00 p.m. on June
21 (especially at higher latitudes). Last, significant dates, such as holidays and
personal events (birthdays, anniversaries, etc.), must be inferred using some
additional information source. These difficulties make inferring the context from a
raw time and date measurement a nontrivial matter.

There are various techniques available for inferring the contextual relevance
of time and date information. The most obvious choice is by utilizing the built-in
calendar application with which most (if not all) mobile devices are equipped. The
drawback of this approach is that it relies on information supplied by the user,
which may not be complete or up-to-date. In most cases, however, it is the easiest
of the available options to implement.

An alternative approach would be to analyze the activity history of a user to
infer the likelihood that he or she would perform a certain activity, such as
commuting to or from work, during certain times, days of the week, or dates of the
calendar year. This approach, however, may not yield detailed enough information
for some applications, and it is considerably harder to implement.

8.4.5 Why: The Motivational Context

The fifth element of context—the motivational context—is perhaps the most
elusive of them all. It involves analyzing one or more other contextual elements in
order to infer a user’s intentions. The techniques used to perform such inferences
are largely dependent on the specific contextual domain or application where the
inferences will be utilized. We can already see several minor examples of
motivational context being applied in commercial devices, although clearly we are

 Context Awareness 163

in the early stages of development in this regard. For example, Motorola’s Moto X
smartphone uses its rich set of sensors and specialized processors, as well as the
features of Google Now, to infer the needs and desires of its users. This includes
sensing when the phone is picked up (in order to turn on the screen and display
notifications) and sensing certain hand gestures (in order to activate the camera
application).

In general, techniques from machine learning and pattern recognition could
be used. It is clear, however, that further research and development is needed
before motivational context can be inferred and utilized on a large scale. To build
up accurate models of human behavior and human intent, it may be necessary to
generate large amounts of training data, perhaps using a crowd-sourcing approach.
This topic will be considered further in Chapter 10.

8.4.6 In What Manner: Motion Context and Other Details of Context

The sixth element of context can rightly be judged as somewhat of a catch-all of
other contextual information. It is formed from the sixth component of
Hermagoras’s circumstance and can be used to groups together additional details
of a situation that do not fit into the other elements. For example, if the answer to
what is the activity “dancing,” then in what manner might include such concerns
as the type of dance and the tempo of the dance. In particular, motion attributes fit
nicely into this category. For example, one can use motion recognition techniques
to detect the particular mode of motion and to describe other motion attributes
such as speed, heading, and acceleration.

8.4.7 By What Means: The Context-Aware Device and the Methods of
Sensing Context

The last element of context includes descriptions of the context-aware device
itself, as well as the methods employed to sense the context. Given the wide range
of mobile devices available today (recall Chapter 1), it is important for an
application to be aware of details about the device it is operating on. This will
supply the application with information about the capabilities of the device and
about what other contextual information might be available to it. Some details
about the state of the device can even constitute a situation or context themselves
(e.g., low battery context).

Basic information about the device for use in an application, such as device
name, manufacturer, model, operating system, and build version, is generally
available via the OS’s APIs. For example, the Android APIs make available a set
of system properties in the class android.os.Build. See Table 8.2 for a list
of some of these properties, which may be useful for describing the mobile device.

In addition, it is generally straightforward to obtain contextual information
about the data communication functionalities of the mobile device, such as
whether or not a call is in progress and what cellular network or WLAN the

164 Geospatial Computing in Mobile Devices

mobile device is connected to. In Android, one can use the
TelephonyManager class to obtain information related to the cellular radio.
Examples of useful methods available from this class are shown in Table 8.3.
Similar information about the WLAN radio of an Android device can be obtained
using the WLANManager class. Alternatively, if one is interested in data
connectivity regardless of whether it is through mobile networks, WLAN,
Bluetooth, or other means, the ConnectivityManager provides basic
information about the connected or available data networks.

Table 8.2
List of Useful System Properties (Fields) from android.os.Build Class

Property Description
Device Codename given to the device (e.g., maguro)

Brand Brand-customized version of the operating system (e.g., Verizon)

CPU The name of the instruction set (CPU type + ABI convention) of
native code (e.g., armeabi-v7a)

Display An ID representing the build version of the operating system
(e.g., JRN84D)

Manufacturer Manufacturer of the device (e.g., Samsung)

Model Model name of the device (e.g., Galaxy Nexus)

Product Codename given to the firmware version of device (e.g., takju)

Radio Version of the cellular radio firmware (e.g., I9250XXKK6)

Serial Serial number of the device (e.g., 014682070502301D)

Version.release Version number of the device’s operating system (e.g., 4.1)

Other information about the device’s current state or condition, such as the
current battery state, amount of memory available, and current usage of the CPU,
is often also available. For example, in Android, detailed information about the
battery state can be obtained from the BatteryManager class. For memory usage,
use the ActivityManager. For CPU usage, there is no specialized method for
obtaining overall usage, but since Android is based on Linux, one can use the
/proc/stat file to obtain the desired information.

In addition to these classes and methods, Android offers a powerful technique
to make applications aware of various actions or events triggered on the device,
known as intent messaging. Intents are essentially intradevice messages, and by
setting up intent filters in an application, the app can receive these messages,
containing various types of information depending on the type of intent. A small
sampling of intents that are triggered automatically by different system events
includes: answering a phone call, pressing the “call” button, unlocking the
keyguard, starting the camera application, plugging in a headset, switching
airplane mode on or off, docking into a desktop or car dock, installing or

 Context Awareness 165

removing an application, rebooting or shutting down the device, low battery
warning, and low storage space warning.

Table 8.3
List of Useful Methods from android.telephony.TelephonyManager Class

Method Description
getCallState() Returns an integer representing the call state of device

(e.g., CALL_STATE_RINGING = 1)
getDataState() Returns an integer representing the data state of device

(e.g., DATA_CONNECTED = 2)

getDataActivity () Returns an integer representing the current data activity of the
device (e.g., DATA_ACTIVITY_OUT = 2)

getDeviceId() Returns an integer that uniquely identifies the device (IMEI,
MEID, or ESN) (e.g., 352563176148781)

getNetworkOperatorName() Name of the cellular network operator (e.g., FI SONERA)

getNetworkType() Returns an integer representing the type of cellular network
currently in use (e.g., NETWORK_TYPE_UMTS = 3)

getPhoneType() Returns an integer representing the type of radio used to
transmit voice calls (e.g., PHONE_TYPE_GSM = 1)

getSimSerialNumber() Serial number of the SIM card (e.g., 8893579030109339463)

getSubscriberId() Unique subscriber ID for mobile customer (e.g., IMSI)

isNetworkRoaming() Returns a Boolean value depending on network roaming state

Finally, custom intents can also be implemented, which in effect allows any

software component in the device to be aware of any action of any other
component, provided the appropriate intents and intent filters are specified.
Indeed, intent messaging provides a powerful means to implement various types
of context awareness in Android devices.

8.5 HOW TO USE CONTEXT

Now that we’ve seen an overview of the various elements of context, we will look
at how context can actually be utilized in context-aware applications. In order to
demonstrate this, we return to the fictional scenario outlined in Section 8.1.1,
where Mary and her colleagues are waiting for their colleague Steve to arrive, in
order to leave together for lunch.

It turns out that the colleagues had gathered for lunch after responding to an
“AreUin?” request from Mary, a mobile app that they frequently use in their
department to see who is interested in joining for lunch or for after-work social
outings. Steve had answered the request with “I’m in,” so it is a bit odd that he
hadn’t shown up in the lobby yet.

166 Geospatial Computing in Mobile Devices

Timo says to Mary, “Did you try calling Steve?”

“Yes, but he didn’t answer. Locator says that he’s in the lab. It could be though
that he left his phone there because it shows as completely static for the past hour
and connected to a PC. I’ll run and check.”

Meanwhile, Timo starts the “RestaurantFinder” app on his phone to look for
possible restaurants. The app sorts nearby restaurants according to the preferences
of those who are joining for lunch, whose identities have been sent from the
“AreUin?” app. RestaurantFinder shows at the top of the list that a new Mexican
restaurant opened up this week—only a 10-minute drive from their work—and
that Mexican food ranks highly among the group’s preferences.

“There’s a new Mexican place that opened up on Turuntie. You guys interested?”
asks Timo.

“Sure,” says Anindya, as the others also nod approvingly. At that moment, Mary
returns alongside Steve.

“Sorry guys, I had my headphones on and was working at the soldering table. Lost
track of time,” explains Steve.

“No worries, Steve. But you do know that AreUIn has a built-in reminder feature,
right?” replies Timo with a wink of the eye.

“Really? I didn’t know.”

“Yeah, it can even connect to your smartwatch, in case you don’t have your phone
on you. So you can rock out to Zeppelin and forget about us…until it vibrates as a
reminder,” jokes Timo. “Anyways, it’s good Mary found you because there’s a
new Mexican place nearby called Pancho’s, and I already checked to see if there’s
a table open. Not only was the answer yes, but they just sent me a coupon. 20%
off for groups of five or more! That sound OK to you, Mary?”

“Sounds great. I have a big car, so I’ll drive. Can you send me the address?”

“Done. Ok, let’s go!”

As our characters walk to the parking lot, Mary’s smartphone has already
started a navigation application to show the way to “Pancho’s.” Let’s turn away
for a moment and take a look at how context has been utilized in this story.

First, Steve’s position—more precisely the position of Steve’s phone—was
determined by the locator app. Furthermore, Mary had some contextual
information that Steve’s phone had been idle for some time and connected to a

 Context Awareness 167

PC. This is an example of how motion patterns and information about the phone’s
state can be used to provide additional details beyond mere position.

In addition, this example illustrates an important point; when the smartphone
is the sole sensing platform, the inference of user context is dependent on the
smartphone being in close proximity to the user. If Steve had simply left his phone
in the lab and was in another location, Mary would have been out of luck. This is
one of the reasons why context awareness may shift in the future toward wearable
devices, such as smartwatches. Such wearable devices can still communicate and
cooperate with other mobile devices, but in addition they have considerable
sensing and networking capabilities of their own. This technology is still in its
infancy, but already nearly a dozen manufacturers are selling various incarnations
of this idea. Wearable devices and sensors will be discussed further in Chapter 10.

Next, Timo used the social context, namely the identities supplied by the
“AreUIn?” app and their preferences stored by the RestaurantFinder app, to select
a suitable restaurant. RestaurantFinder also used the approximate position of
Timo’s phone to filter the choices, which is a typical feature in LBSs.

Last, Timo performed a context-dependent query to determine if the
restaurant currently had a table available for five people. The restaurant replied in
the affirmative and also appears to have engaged in what we might call context-
sensitive marketing: based on the busyness of the newly opened restaurant and the
opportunity to bring in five potentially regular customers, it offered a discount
coupon. Let’s return to the story to see if context was further employed during this
lunch outing.

After their meals at Pancho’s were served, the jovial colleagues got into a
lively discussion about soccer. “Barcelona is going all the way this year. Messi is
healthy now and playing incredibly well,” argues Steve.

“They will go far, but my pick is Bayern Munich. The team is just as strong
as last year’s, and Pep Guardiola is doing a great job as manager,” counters Timo.

“Hey guys, look.” Mary holds up her phone to show a notification. The
notification shows that the monthly department meeting starts in 15 minutes.

“Oh, man. I totally forgot. It’s the third Friday of the month, isn’t it?” notes
Anindya.

“Yep. I’m glad I put it in my calendar. Let’s get going. Waiter, check please!”

Here we see a somewhat more innovative use of context. Mary’s phone had

detected that she was located several kilometers from her workplace, in fact, a 10
minute drive. Since her calendar showed a meeting starting at 1:30 p.m., and it
was already 1:15 p.m., it displayed a high-priority notification. Apparently the
others had either not put this meeting into their calendars or had not set up such
notifications. Luckily for them, Mary had done both, so they avoid being late this
time.

This fictional example provides an example of how context can be utilized in
context-aware devices, namely smart mobile devices. From our introductory

168 Geospatial Computing in Mobile Devices

examination of context awareness in this chapter, it should now be fairly
straightforward to envision how these features could be implemented.
Admittedly, this example is not as “futuristic” and impressive as the ubiquitous
computing scenario that Weiser depicted in 1991. Our intention was to
demonstrate the concepts in this chapter and to provide a bridge to more advanced
context awareness capabilities researchers and developers can implement with the
current generation of mobile devices.

This example also demonstrates that context awareness, at least at the present
level of technology, does not completely replace human intelligence and initiative.
It can, however, go a long way in unburdening humans from various tasks, both
mental and physical (in a human-computer interaction sense), freeing our human
capacities for other purposes. Thus, the role of the context awareness researcher
and developer should be now clearer—we must minimize the burden required to
perform various tasks and open up new possibilities that would not be possible
without context awareness.

8.6 SUMMARY

This chapter introduced the concept of context in terms of its importance to
mobile geospatial computing. Since context is notoriously difficult to define, we
have presented an intuitive framework for understanding the various elements of
context, centered around seven questions: what, who, where, when, why, in what
manner, and by what means. This in turn was used to explore the concept of
context awareness, which we defined broadly as the quality of having knowledge
of context. We briefly examined context awareness from a historical perspective,
where we could see it blossoming as a research topic in the 1990s.

Next, we examined each of the elements of context in more detail, providing
some examples of how contextual information within particular elements can be
obtained. For several of these elements, including what, why, and in what manner,
the appropriate methods vary greatly depending on the desired contextual
information. In addition, these are often the most challenging elements to
implement. For these reasons, further coverage of these topics is reserved for
Chapter 9 on contextual reasoning.

Last, we used a fictional story, depicting a common workspace scenario in
order to demonstrate how context awareness can be used in mobile devices. This
story also highlighted several new concepts, such as social context and context-
sensitive marketing, which are increasingly important in modern mobile devices.

 Context Awareness 169

References

[1] McCarthy, J., “Notes on formalizing context,” Proceedings of the 13th International Joint
Conference on Artificial Intelligence, pp. 555-562, San Mateo, California: Morgan Kaufmann,
1993. [Online]. Available: http://bit.ly/OEHAyO.

[2] Akman, V., and M. Surav, “Steps toward formalizing context,” AI Magazine, Vol. 17, No. 3,
1996, pp. 55-72, available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.3474.

[3] Foltz, P. W., W. Kintsch, and T. K. Landauer, “The measurement of textual coherence with latent
semantic analysis,” Discourse Processes, Vol. 25, No. 2 & 3, pp. 285-307, 1998.

[4] Bazire, M., and P. Brézillon, “Understanding context before using it,” Modeling and Using
Context: Lecture Notes in Computer Science, pp. 113–192, A. Dey, B. Kokinov, D. Leake, and
R. Turner (eds.), Berlin, Heidelberg: Springer Berlin/Heidelberg, 2005, available:
http://dx.doi.org/10.1007/11508373_3.

[5] “Context,” In Merriam-Webster.com, 2012. [Online]. Available: http://www.merriam-
webster.com/dictionary/context.

[6] “Five Ws,” In Wikipedia.com, 2012. [Online]. Available: http://en.wikipedia.org/wiki/Five_Ws.

[7] Bennett, B. S., “Hermagoras of Temnos,” In Classical Rhetorics And Rhetoricians: Critical
Studies And Sources, pp. 187-193, M. Ballif and M. G. Moran (eds.), Westport, CT: Praeger
Publishers, 2005.

[8] Welch, J. R., and K. G. Salter, “A context algorithm for pattern recognition and image
interpretation,” IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-1 , No. 1, 1971,
pp. 24-30.

[9] Toussaint, G. T., “The use of context in pattern recognition,” Pattern Recognition, Vol. 10, 1978,
pp. 189-204.

[10] Swain, P. H., S. B. Vardeman, and J. C. Tilton, “Contextual Classification of Multispectral Image
Data,” NASA Technical Report SR-PO-00443, 1980.

[11] McCarthy, J., and P. J. Hayes, “Some philosophical problems from the standpoint of artificial
intelligence,” Machine Intelligence, Vol. 4, 1969, pp. 463-502.

[12] Google, Inc., Google Now web site, [Online]. Available: http://www.google.com/landing/now/.

[13] Morishige, R. I., and J. Retelle, “Air combat and artificial intelligence,” Air Force Magazine,
October 1985, pp. 91-93.

[14] Endsley, M. R., “Design and evaluation for situation awareness enhancement,” Proceedings of
the Human Factors Society—32nd Annual Meeting, 1988, pp. 97-101.

[15] Gilson, R. D., “Special Issue Preface,” Human Factors (Special Issue on Situation Awareness),
Vol. 37, No. 1, 1995, pp. 3-4.

[16] Dey, A. K., “Context-Aware Computing,” In Ubiquitous Computing Fundamentals, Boca Raton,
FL: CRC Press, 2010, pp. 321-352.

[17] Brézillon, P., “Context in human-machine problem solving: A survey,” The Knowledge
Engineering Review, Vol. 14, No. 1, 1999, pp. 1-34.

[18] Frege, G., The Foundations of Arithmetic, a Logico-Mathematical Enquiry into the Concept of
Number, transl. J. L. Austin, Oxford: Basil Blackwell, 1974. Originally published in German as
Die Grundlagen der Arithmetik, eine logisch mathematische Untersuchung über den Begriff der
Zahl, Breslau: Verlag von Wilhem Koebner, 1894.

170 Geospatial Computing in Mobile Devices

[19] Frege, G., “On sense and reference,” The Philosophical Review, Vol. 57, No. 3, 1948, pp. 209-
230. Originally published in German as “Über Sinn und Bedeutung,” Zeitschrift für Philosophie
und philosophische Kritik, Vol. 100, 1892, pp. 25-50.

[20] Russell, B., “On denoting,” Mind, New Series, Vol. 14, No. 56, 1905, pp. 479-493.

[21] Bledsoe, W. W., and I. Browning, “Pattern recognition and reading by machine,” 1959
Proceedings of the Eastern Joint Computer Conference, 1959, pp. 225-232.

[22] Miller, G. A., G. A. Heise, and W. Lichten, “The intelligibility of speech as a function of the
context of the test materials,” Journal of Experimental Psychology, Vol. 41, No. 5, 1951, pp.
329-335.

[23] Duda, R. O., and P. E. Hart “Experiments in the recognition of hand-printed text: Part II—
Context analysis,” 1968 Proceedings of the Fall Joint Computer Conference, 1968, pp. 1139-
1149.

[24] Porzel, R., Contextual Computing: Models and Applications, Heidelberg: Springer, 2011.

[25] McCarthy, J., “Situations, Actions, and Causal Laws,” Stanford Artificial Intelligence Project
Memo No. 2, 1963.

[26] McCarthy, J., “Generality in artificial intelligence,” Communications of the ACM, Vol. 30, No.
12, 1987, pp. 1030-1035.

[27] Giunchiglia, F. “Contextual reasoning,” Epistemologia, Special Issue on “I Linguaggi e le
Macchine,” Vol. XVI, pp. 345-364, 1993.

[28] Giunchiglia, F., and P. Bouquet “Introduction to contextual reasoning,” Perspectives on
Cognitive Science, Vol. 3, 1997, pp. 138-159.

[29] Weiser, M., “The computer for the 21st century,” Scientific American, Vol. 265, No. 3, 1991, pp.
94-104.

[30] Want, R., et al., “The active badge location system,” ACM Transactions on Information Systems,
Vol. 10, No.1, 1992, pp. 91-102.

[31] Schilit, B. N., and M. M. Theimer, “Disseminating active map information to mobile hosts,”
IEEE Network, Vol. 8, No. 5, 1994, pp. 22-32.

[32] Brown, P. J., “The stick-e document: a framework for creating context-aware applications,”
Electronic Publishing, Vol. 8, No. 2/3, 1995.

[33] Abowd, G. D., et al., “Cyberguide: a mobile context-aware tour guide,” Wireless Networks., Vol.
3, No. 5, 1997, pp. 421-433.

[34] Dey, A. K., G. D. Abowd, and A. Wood, “CyberDesk: a framework for providing self-integrating
context-aware services,” Knowledge-Based Systems, Vol. 11, 1998, pp. 3–13.

[35] Moran, T. P., and P. Dourish (eds.), “Special Issue on Context-Aware Computing,” Human-
Computer Interaction, Vol. 16, Nos. 2-3, 2001.

[36] Facebook, Inc., “Android SDK Reference,” [Online]. Available: http://bit.ly/PoIpbX.

PUBLICATION 2

R. Chen, R. E. Guinness, “Contextual Reasoning” in Geospatial computing in mobile devices.
Boston: Artech House, ch. 9, pp. 171-197, 2014

© 2014 ARTECH HOUSE. Reprinted with kind permission.

171

Chapter 9

Contextual Reasoning

In the last chapter we introduced the concepts of context and contextual
information. In this chapter, we look more deeply at how smartphones can obtain
and process this type of information. There are a number of terms that have been
suggested to encompass the idea of processing contextual information, such as
contextual thinking [1] and contextual intelligence [2]. We have chosen contextual
reasoning [3], but all of these terms are more or less equivalent. We will present
several examples of the techniques used for contextual reasoning, though we will
not attempt to be exhaustive in our coverage. To aid those wishing to go deeper in
this topic, we will point out ample references where additional information can be
found.

9.1 WHAT IS CONTEXTUAL REASONING?

We begin with a formal definition. Contextual reasoning is the process of forming
higher level inferences about context from lower level information. “Higher” and
“lower” are relative terms in this definition, where the higher levels are more
general and abstract, and the lower levels are more specific details that
individually don’t provide the “big picture” of a context. In colloquial terms, it is
the process of seeing the forest through the individual trees.

Figure 9.1 illustrates this process conceptually. Known as the “context
pyramid,” this figure divides the contextual reasoning process into six different
abstraction levels, although in practice there may be fewer or more levels,
depending on the application. The first level represents the raw data received from
sensors, whether we speak of hardware sensors like accelerometers and
gyroscopes, or “soft sensors” like a GNSS receiver or application code that detects
various states of the smartphone (e.g., low battery warning). In the next level of
abstraction, physical parameters are derived from the raw sensor data, such as the
speed that the user is moving or decibel level recorded by a microphone. In the
third level (which may be optional in some applications), various features or

172 Geospatial Computing in Mobile Devices

patterns may be extracted from the lower levels, such as combining successive
parameters to calculate a moving average or variance of the parameters.

The next three levels represent the “heart” of contextual reasoning. We move
from the realm of numeric data to more semantic representations of context. In the
first such level, simple contextual descriptors are inferred from the lower-level
data, such as the motion pattern of the user (e.g., standing and walking), or a
semantic representation of the user’s position (e.g., at work). In the next level,
several simple contextual descriptors may be combined to infer a higher-level
context, such as the user’s current activity. Finally, all of the available contextual
information, including information from external sources, may be combined to a
final level, which (if successful) can be described as a rich context.24 Ideally this
should be expressed in natural language in a form that approaches prose. This is
the final result of asking and answering the questions from the journalistic
framework described in Chapter 8.

9.2 A HYPOTHETICAL EXAMPLE

To make these concepts more concrete and to provide a geospatial computing
example, consider the following low-level information presented in Table 9.1
from a hypothetical example.

A logical high-level inference that might be made from this information is,
“Mary is walking to work.” This could probably be considered an activity-level
descriptor (level 5) in terms of the context pyramid as shown in Figure 9.1. If
additional contextual details were to be added, such as the time of day, weather
conditions, or any interesting events or details that occurred in the recent past,
then it might rise to the level of rich context. As one can imagine, the exact
boundaries between these levels are blurry, and the context pyramid should be
considered only as a tool for understanding the process of contextual reasoning.

Note that probably several intermediate steps were required in the process of
inferring, “Mary is walking to work.” For example, we might have calculated that
at Mary’s current position, she is 500m away from the FGI and that her heading
indicates she is going toward the street that leads to FGI.

Clearly humans make inferences like “Mary is walking to work” all the time.
It is one of the main functions of our brain to perform this kind of reasoning.
Sometimes there are a few intermediate steps performed in the subconscious, and
the inference is performed instantaneously. Other times, there may be many
intermediate steps, and the inference might require careful analysis of all the
available information. It might even require hypothesizing and probing for
additional information to confirm a hypothesis.

24 In using the adjective “rich,” we invoke the concept from AI of a rich object, which is defined as “an
object which cannot be completely described or represented but about which assertions can be made”
[33].

 Contextual Reasoning 173

Figure 9.1 The context pyramid.

Table 9.1
Example of Contextual Information, Its Source, and Corresponding Level

Information Source Level
Mary is located at 60.161 N, 24.542 E. GPS Level 2
Mary has a heading of 170 degrees. GPS Level 2
Mary is walking. Motion classifier Level 4
Mary works at FGI. Personal profile External
FGI is located at 60.161 N, 24.546 E. Significant location DB External

The same is true for computer-based contextual reasoning. Sometimes there is
enough available information and the inference is simple enough to be performed
in realtime without any human interaction. In other cases, it can be extremely
complex (probabilistic in nature), and require significant processing power. It may
even require additional input from the user (i.e., human-computer interaction).

Consider the following additional information related to the above example:

It is 6 p.m. on a Sunday evening.
Mary normally works from 9 a.m.–5 p.m. on weekdays.

From this additional information, a computer-based contextual reasoning
program might output that there is a 60% chance Mary is walking to work and a
40% chance she is walking somewhere else. Due to this ambiguity, the program
queries the system for additional information:

174 Geospatial Computing in Mobile Devices

Mary is walking with her dog.
Mary lives at 60.10 N, 25.00 E.

After this additional information and a few intermediate calculations, the program
outputs:

Mary is walking her dog, near her workplace and headed away from her
home.

We can see from this example that there are different inferences that can be made
from different subsets of low-level information. Furthermore, we see that, in
general, the richer the set of information we have to formulate our inferences, the
better chance we have of generating a correct one.

Finally, observe that contextual reasoning can also be thought of as a process
of encapsulation of information. For many applications, it is not interesting to the
user nor directly useful for the application that “FGI is located at 60.10 N, 25.10
E” or (worse) that “the standard deviation in Mary’s speed for the past 5 seconds
is 0.58 m/s.” What the application (or user) needs to know is “what is Mary
doing,” “who is she with,” “in what manner is this activity playing out,” and
similar higher level questions. Thus, contextual reasoning can be alternatively
thought of as the process of transforming the multitude of available information
into a more concise and useful contextual result, where the definition of “useful”
is highly dependent on the desired application.

9.3 WHAT ARE THE METHODS OF CONTEXTUAL REASONING?

The primary tool for making contextual inference is machine learning, also known
as statistical learning or pattern recognition.25 Machine learning is deeply rooted
in probability theory, decision theory, and information theory. Unfortunately, we
can’t cover all of these topics in this chapter, but we refer those readers who are
not familiar with these topics to introductory texts on machine learning, where
these topics are adequately covered. In truth, it could take years of careful study to
deeply understand the state-of-the-art in machine learning and contextual
reasoning. Fortunately, however, there are several simple, basic techniques that
work well for many applications. This section is intended to give a gentle

25 Historically, pattern recognition grew out of engineering disciplines, whereas machine learning is the
term adopted by most computer scientists [5]. For obvious reasons, statistical learning is the term
favored by statisticians. O’Connor humorously noted that at Stanford University there are two almost
identical courses offered: “machine learning” by the computer science department and “statistical
learning” taught by the statistics department [6].

 Contextual Reasoning 175

introduction to some of the common techniques of machine learning that are
applied to contextual reasoning.

9.3.1 Introduction to Machine Learning

According to Mitchell et al., “machine learning research seeks to develop
computer systems that automatically improve their performance through
experience” [4]. In the domain of contextual reasoning, this means that, given the
tools of machine learning, the more the system is used, the better it should be able
to reason about the context the user is in. The word learning is appropriate
because the system adaptively learns how to recognize different contexts that it
encounters, in the same way that a small child (or even adult) learns to recognize
different situations based on his or her experiences. In both cases (machine and
human), there is a set of inputs or stimuli that are used to reason that a certain
situation or context exists. The process of learning (which happens naturally and
almost automatically for humans) is figuring out the optimal way to transform a
set of inputs into the correct output—in our case, the context.

In general, the output of a machine learning algorithm can be of two types: 1)
one or more continuous variables represented by real numbers, 2) a discrete class,
which is normally represented by a textual descriptor (e.g., green, male, good, and
happy) or an integer or binary code, from a finite set of classes. When the output
is of the continuous type, the machine learning task is known as regression. When
it is of the discrete type, it is known as classification. Since context is primarily of
a discrete nature, we will focus mostly on classification in this chapter.

In classification, we can understand the learning problem as a process of
learning a function, f(·), that maps a vector of inputs x = (x1, x2,...xn) to the correct
output y � Y={y1, y2,...ym}. This is expressed symbolically as:

 :f y→x (9.1)

Note that the function need not be a deterministic one. It may consist of
probability distributions of the input and output variables, describing a stochastic
relationship between them. Ultimately, however, a classifier chooses a single class
based on the function’s inputs and using a particular selection criterion, such as
maximum likelihood.

Machine learning techniques mostly fall into one of two categories based on
how the function f is learned: 1) supervised learning and 2) unsupervised
learning. In supervised learning, a set of “training data” is used. The training data
is a limited set of input data for which the correct or optimal output is known [i.e.,
s = (x, y)]. This is sometimes known as labeled data because in most cases a
human has manually labeled the dataset with the correct output. Therefore, it is
usually laborious and costly to obtain such data. On the other hand, in
unsupervised learning no training data are used, and the goal is to recognize

176 Geospatial Computing in Mobile Devices

implicit patterns in the data. There is, in fact, a third category of machine learning,
known as semisupervised learning, in which both labeled and unlabeled data are
used. The aim in semisupervised learning is to combine techniques from
supervised and unsupervised learning and use all available data (labeled and
unlabeled) to achieve a better learning result. In this book, we will mainly focus
on supervised learning techniques, as they are the most commonly used in context
recognition.

Most of the techniques in machine learning have been developed to deal with
data samples that are independent from one another. For example, in a machine
learning algorithm to classify credit card applications as “high-risk” or “low-risk,”
it is reasonable to assume that one credit card application does not influence the
risk level of another credit card application. In contextual reasoning, however, our
data samples mostly (if not exclusively) come from time-series data, where the
assumption of independence does not strictly hold.

We can understand this intuitively from the fact that what a person is doing at
one moment usually affects what he or she does at the next moment. In other
words, a data sample at any given time epoch is dependent on the values of the
data at prior time epochs, especially those epochs immediately prior to the given
epoch. To a certain extent, we can choose to ignore these dependencies, in order
to use a machine learning model with a more simple structure, but the best
performance will be achieved when these time dependencies are taken into
account. The subset of techniques from statistics and machine learning that work
with this kind of data is known as time-series analysis [7] or sequential machine
learning [8, 9].

There are certainly many such techniques to choose from, each having
relative advantages and disadvantages. Table 9.2 presents a condensed list of
techniques from machine learning that could be applied to contextual reasoning. It
is not exhaustive, but provides a broad overview of the most important machine
learning techniques for contextual reasoning. A subset of these techniques will be
discussed at an introductory level in the sections below.

It is tempting when presented with a long list of machine learning techniques
to want to find and focus on the “best” one, applying it indiscriminately in any
given domain. The no free lunch theorem for supervised learning states, however,
that no single machine learning algorithm performs better than any other across all
problems. Thus, it is unavoidable that some process of comparison or analysis
must be carried out for any particular domain before the most appropriate machine
learning technique is chosen.

9.3.2 Naïve Bayes’ Classifiers

Before we turn to examples of sequential machine learning techniques, we start
with an example of a simple machine learning technique, in order to motivate
more complex concepts later on. This simple yet surprisingly effective classifier is
called the naïve Bayes’ classifier. It falls within a larger set of powerful graphical

 Contextual Reasoning 177

probability models, called Bayesian networks, but takes advantage of a few
simplifying assumptions.

Table 9.2
List of Machine Learning Techniques and Associated References

Supervised Learning References
Used with sliding window method:

Naïve Bayes’ [10-11] [13]
Bayesian networks [24]
Decision trees [25] [42]
LDA/QDA [34-36] [38-40]
Logistic regression [40-42]
SVMs/kernel machines [26-28] [34] [41]
Neural networks [40] [42]

Used directly on time-series data:
HMMs [18-19] [23] [35] [43]
Conditional random fields [29-32] [34] [43]

Unsupervised Learning References
Clustering [37]
Principal component analysis [36]
Self-organizing maps [44-46]

First, we assume that all data samples are independent and identically
distributed (iid). In other words, we ignore the time dependence between the data
samples, and we assume that the set of processes producing the data are stable
throughout the dataset (i.e., stationary processes). Second, although the data
samples may be multivariate, we assume that all of the measured variables are
conditionally independent from one another given the class. In many (if not most)
applications, these assumptions are not strictly true, but the time dependencies and
the possible dependencies between the measured variables are simply ignored in
order to reduce the problem to a more tractable solution, hence the name “naïve.”

Despite these simplifications, naïve Bayes’ classifiers have been shown to
perform well in a number of machine learning domains, including document
classification [10], image classification [11], and activity recognition [12, 13]. We
will use them as a starting point in our discussion of contextual reasoning because
they illustrate a number of fundamental concepts before we move on to more
complex machine learning techniques.

The basic structure of a naïve Bayes’ classifier is shown graphically in Figure
9.2, where the unshaded node represents a class set Ck = {c1,c2,…,cn} and the
shaded nodes represent a d-dimensional input vector x = (x1,x2,…,xd). The arrows
represent the dependencies between the classes and the input vector. The lack of
arrows between the variables in the input vector indicates that they are
conditionally independent given the class.

178 Geospatial Computing in Mobile Devices

Figure 9.2 Structure of the naïve Bayes’ classifier.

We assume that, in general, the class cannot be observed directly, whereas the
input vector can be; therefore, we would like to classify a dataset into classes,
according to this input vector. In other words, we want to know the posterior
probability distribution of Ck given x, which according to Bayes’ theorem is:

() (|) () (|)

(|)
() (|) ()

k k k k
k

k k
k

p C p C p C p C
p C

p p C p C
= =

∑
x xx

x x
 (9.2)

In order to evaluate the likelihood p(x|Ck), we would ordinarily need to

compute the product:

 1 1 1
2

(|) (| ,..., ,),
d

k i i k
i

p x C p x x x C−
=
∏

expressing the conditional dependence among the input variables within each
class, which may be very difficult if the number of input dimensions is large. By
assuming that the input variables are conditionally independent given the class,
the product reduces to:

 p(x Ck) = p(xi Ck)
i=1

d

∏ (9.3)

The most common way to evaluate � � �� is to use a training dataset, where

the values are of � are labeled with the correct class (i.e., supervised learning). If
� is composed of discrete variables (e.g., with multinomial distribution),
� �� �� ��an be estimated as the frequency that �� takes on a particular value for a
particular class; stated another way:

 Contextual Reasoning 179

 p xi = x j Ck =Cm() = count(xi = x j,Ck =Cm)
count(Ck =Cm)

 (9.4)

If � is composed of continuous variables, then other methods must be used to

estimate this class conditional density, such as a histogram, kernel estimator, or a
k-nearest-neighbor approach. Alternatively, one can use parametric methods,
especially if certain assumptions about the distribution can be made (e.g., that it is
Gaussian). For more details on parametric and nonparametric estimation methods,
see [14].

The prior probabilities of the classes, �����, can also be estimated using
frequency counts:

 p(Ck =Cm) =
count(Ck =Cm)

N
 (9.5)

where N is the total number of training samples. Thus, ���� � ��� is simply the
fraction of the training samples that are labeled with class ��. In some cases,
however, it may be that the training data disproportionately represent certain
classes compared to the real-world case. Therefore, one can use domain
knowledge to adjust the class priors appropriately. For example, in some
applications, it may be appropriate to use equal probabilities for each class. Just be
sure that the probabilities over all classes sum to one.

Note that in (9.2), the denominator will be the same for all classes. Since our
ultimate goal is to choose the most likely class [i.e., the largest posterior
probability,�� �� � �, it is not necessary to actually compute the value of the
denominator. Given data sample �� , one can find the largest value of
� �� � �� �� and classify the sample into the respective class given by the
arguments.

9.3.3 Hidden Markov Model (HMM)–Based Classifiers

In the next section, we turn to a slightly more complex but more powerful
machine learning technique that uses HMMs. Generally speaking, HMM-based
classifiers will perform better than simple naïve Bayes’ classifiers for time-series
data because they are able to model the time dependency in the data. For this
reason, HMMs are one of the most popular machine learning techniques for
contextual reasoning.

9.3.3.1 Markov Chains and the Markov Property

First, we introduce the concept of a Markov chain, a mathematical system used to
model stochastic processes that exhibit a Markov property, which will be

180 Geospatial Computing in Mobile Devices

described shortly. These processes are usually interpreted as belonging to a system
that can be, at any given time, in one state from a set of possible states, S. In this
chapter, we will consider only discrete state processes with a finite set of possible
states, S = {S1, S2,…SM}. The system transitions from one state to another in a
stochastic manner, meaning that the transitions can be analyzed using
probabilities. Such a system is represented graphically in Figure 9.3(a), where the
probabilities governing the evolution of states {1, 2, 3} are shown as arrows
between the nodes in the graph or as loops back onto themselves.

Figure 9.3 A Markov chain and associated transition probability matrix.

For example, if the system is in state 1 at time t, it has a 50% probability of
transitioning at time t+1 to state 2 and a 50% probability of remaining in state 1.
Note that the lack of an arrow or loop indicates a zero probability of that particular
transition. The full set of transition probabilities can also be expressed as an M x
M matrix, where M is the number of states, as shown in Figure 9.3(b) for this
example Markov chain. These correspond to conditional probabilities, where
element ij is the conditional probability of transitioning from the ith state to the jth
state at any epoch t.

When a Markov chain can be fully specified in this manner, it is said to be a
first-order Markov process. The two-dimensional structure of the transition
probabilities ensures that all of the information available to predict the next state
of the process is contained in the present state. In probability terms, this means
that the conditional probability of the system being in state sj at time t+1, given
knowledge that the system is in state si at time t, is equal to the conditional
probability of the same outcome at t + 1, given the same knowledge of the
system’s state at time t plus information of its state at time t − 1 and earlier; i.e.
stated another way:

 � � � � � � �� � � � �� �
 � � � � � � �� � � � �� � � � � � � �� �� � � � � �� (9.6)

When (9.6) holds for a system, we say it has the first-order Markov property. The
second-order Markov property is when the state at t + 1 depends on the current

(b) (a)

 Contextual Reasoning 181

state and the state at t − 1. This, however, would require a three-dimensional
transition probability matrix (M × M × M) to be fully specified. In general, it is
also possible for a system to have an nth-order Markov property, which would
require an n-dimensional transition probability matrix. Only first-order Markov
processes will be considered further in this chapter.

In other words, a (first-order) Markov process’ exact “path” to a particular
state does not provide any more useful information than the current state of the
system. An example of this kind of process would be a chess game, where in order
to assess the possible next move, the current configuration of the board is just as
useful as the exact sequence of moves in the game up to the current configuration.

9.3.3.2 Hidden States and Observable Signals

There are two differences between an ordinary Markov model and a HMM. The
first is that in HMMs, the state of the system at any given moment is not directly
observable (i.e., is hidden). Second, for each transition of states, the system
“emits” an observable signal, which is stochastically correlated with the
unobservable state. All that one can “know” about the system’s state is contained
in the observed signal (which may have several components), and one can make
probabilistic inferences about the state based on the correlation between the states
and the observations.

As an example, consider again a chess game. Suppose now that an observer is
far away and cannot make out the board but can see the players’ faces and
gestures and also knows something about their characters. For example, based on
previous experience, this observer knows that player 1 usually smiles broadly after
making a good move and often groans when she realizes she made a bad move.
Player 2 is much more calm and relaxed during the game but almost always smiles
the moment he realizes he has checkmate.

This could possibly be modeled using a HMM where the states are {game
even, player 1 winning, player 2 winning, player 1 wins, player 2 wins}. The
observed signals are the smiles, gestures, and sounds of the players, but the actual
state is “hidden” because the board is far away. Another variant of this example
would be where the observer just doesn’t know the rules of chess, so is unable to
assess the state, except at the very beginning and very end.26

HMMs can either be discrete or continuous, depending on the nature of the
observed signal. For simplicity we will consider only discrete HMMs in this
chapter, but many approaches have been developed to handle continuous
observation signals, for example, by describing the signal parametrically. See [19]
for examples.

Figure 9.4(a) shows a graphical representation of a HMM, similar to that of a
Markov chain but adding the observation signal. In this example, there are only

26 This would be an example of a partially HMM. See [15] for details.

182 Geospatial Computing in Mobile Devices

two possible states {1, 2}, and the lighter shading indicates they are not directly
observable. In this particular example, the transition probabilities constrain the
system to only occasionally change states, since most of the probability for each
state (90%) is concentrated in the loops. These transition probabilities are shown
as before in Figure 9.4(b). In addition, there are two possible output signals Y =
{X, O}. In state 1, these are expressed with equal probability, whereas state 2 has
a tendency to express more X’s than O’s (80% vs. 20%). These “emission”
probabilities are shown in Figure 9.4(c). In general, for discrete HMMs the
emission probabilities are given by an MxN matrix, where M is the number of
states and N is the number of observation symbols.27

Figure 9.4 A Markov chain and associated transition probability matrix.

9.3.3.3 Machine Learning Tasks Using HMMs

Now that we have laid out the basic concepts of HMM, let us explore how they
are used in machine learning and contextual reasoning. From here forward it will
be important to use clearly defined mathematical notation for HMMs in order to
keep the text concise. We adopt the notations listed in Table 9.3, which have
already been partially used above.

There are primarily four machine learning tasks that are commonly performed
with HMMs, and each task has its own standard algorithm. These tasks are
described as follows:

27 For continuous HMMs, the emission probabilities might be expressed by a parametric model (e.g., a
Gaussian with different parameters for each state).

(a) (b)

(c)

 Contextual Reasoning 183

• Supervised model learning. Given a sequence of observations ��� that are
labeled with the true sequence of states����, estimate the model parameters λ.28

• Unsupervised model learning. Given a sequence of observations ��� and an
initial guess of the model parameters λ0, find the set of parameters λn that
optimally matches the observations.

• Online recognition. Given a model λ and a sequence of observations ���, find
the most likely state si at time t. Repeat for each epoch, t=1,…,T to obtain the
sequence of states ����. This is also known as sequential processing.

• Offline recognition. Given a model λ and a sequence of observations ���,
find the most likely sequence of states ��� [i.e., maximum Pr(��� |���,λ)]. This
is also known as batch processing.

Table 9.3
Mathematical Notations of the HMMs

Notation Description
T The number of elements in a sequence of observations.
��� A sequence of observations, indexed from 1 to T.
M The number of possible states in the model.
� � ���� ���� � ��� The set of possible states.
S(t) The state at time t.
��� A sequence of states, indexed from 1 to T.
N The number of possible observation symbols.
Y = {y1, y2,…,yN} The set of possible observation symbols.
Y(t) The observation symbol at time t.

��� � ����� � � � � ���� � � ���

The conditional probability that the system will be in state sj at
time t+1, given the state si at time t. Also called the transition
probability from state i to j.

�� � ����� � � ���� � � ��� The probability that state sj will emit observation symbol yk.
Also called the emission probability for yk and sj.

� � ��� ������ ����� � ��� ��
����� � ��� ��� The set of emission probabilities for all observation and

symbols and states, also called the emission probability matrix.

� � �� � � � �� ����� � ��� �� The set of initial state probabilities for each state sj.

λ = {A, B, π} The complete parameter set of the model.

There are two subtle but important differences between task 3 and task 4.
First, task 4 is an offline task, so the algorithms used to achieve it can use the full
set of observations ��� at any time in its operation, whereas task 3 can only use

28 Note that we have just broken the assumption about the state of the system not being directly
observable. This is true only for the model learning phase (i.e., training). During the recognition phase,
we still assume the states are hidden.

184 Geospatial Computing in Mobile Devices

past observations. Second, task 3 operates at each epoch individually and will
produce an optimal choice of state at that particular epoch (given the available
observations), whereas task 4 chooses the optimal sequence ���, which has the
highest probability of producing the observations ���. In other words, they have
two distinct choices of optimality criterion, which can sometimes lead to differing
results.

Supervised Model Learning

This is the most straightforward of the four tasks. First, to estimate the transition
probability matrix A, we simply need to count up the occurrences of each
transition type i→j (including where j=i) for all i,j={1,…,M}. The transition
probabilities are then estimated as:

 aij =
count(S(t) = si,S(t +1) = sj)

count(S(t) = si)
 (9.7)

This will give us M2 transition probabilities, allowing us to fully specify the
matrix A. In practice, however, some of these transition probabilities will be
zero. This could be because the probability of that particular transition is actually
zero, or it could be simply because the transition is not represented in the limited
training sequence ����. Therefore, it is good practice to manually inspect the matrix
A and use one’s domain knowledge to determine if some possible transitions are
not represented in the dataset when they are indeed possible. One approach to
rectify this problem is to add a pseudocount to each such transition. The value of
the pseudocount can either be one (Laplace’s rule) or can be set to some other
positive integer value based on domain knowledge.

Next, to estimate the emission probability matrix B, we count for each state
the number of times each observation symbol has been expressed. The emission
probability is then estimated as:

 bj (k) =
count(Y (t) = yk,S(t) = sj)

count(S(t) = sj)
 (9.8)

Again we can use Laplace’s rule or some other pseudocount value, based on
domain knowledge, in order to correct any probabilities that would otherwise be
unreasonably set to zero.
 Last, we must estimate the initial state probabilities that should be specified in
π. In practice, the methods for setting this parameter are application-dependent.
The simplest approach is to set it to an equal value for each state that sums to one
over all states (i.e., 1/M). If for some particular application, it is more likely that
the HMM is initialized in some particular state or states, the values for these states
can be adjusted according to domain knowledge (maintaining that the probabilities

 Contextual Reasoning 185

over all the states sum to one). Another possibility is when the initial state of an
HMM is known with great certainty, the value for that state can be set to one and
all other initial state probabilities set to zero. Note that no matter how parameter π
is specified, its importance diminishes as t increases, so even the simple 1/M
approach may be adequate.

Unsupervised Model Learning

In this task, we would like to estimate the parameters of the HMM based on an
unlabeled observation sequence ���. In order to do so, we need an initial guess of
the parameters, λ0. The standard algorithm for optimizing the parameters based on
this initial guess and an observation sequence is called the Baum-Welch algorithm
or the forward-backward algorithm. A detailed treatment of this algorithm (which
includes several variants) is beyond the scope of this chapter, but we only mention
here that it is an expectation–maximization (EM) procedure, where an improved
estimate of the model parameters is given after each iteration, until converging to
a local maximum of��� ��� � . The result varies based on the initial guess of the
parameters, so one approach is to run the algorithm a number of times with
randomly generated initial guesses (subject to reasonable constraints). This won’t
necessarily yield a globally optimized set of parameters, but no finite time
approach to obtain a global maximum of �� ��� � is known. More details about
the Baum-Welch algorithm can be found in [14] or [19].

Online Recognition

Given a HMM defined by parameters λ and a history of observations ���, the goal
of this task is to determine the most likely state si at time t. In other words, we
need to find the state that gives the maximum probability �� ���� � � � � from the
set of all possible states, also known as the maximum a posteriori (MAP) estimate
of S(t):

 ������� � ������� ��� � � � �� � � � � (9.9)

In order to evaluate this probability, we use an identity called the Chapman–
Kolmogorov equation and the Markov property to obtain a prediction equation:

1 1

(() | (1)) ((1) | (1)) ()
M M

j ij i j i
j i

p S t s Y t a p S t s Y t s sδ
= =

= − = − = − −∑∑ (9.10)

where δ(sj − si) is the Dirac delta measure that is equal to zero for �� � �� and one
for �� � �� [16]. Then, given a new observation ����, we use Bayes’ rule to obtain
the updated equation:

186 Geospatial Computing in Mobile Devices

 1

() (() | (1))
(() | ())

() (() | (1))

j j
N

i i
i

b k p S t s Y t
p S t Y t k

b k p S t s Y t
=

= −
= =

= −∑

(9.11)

These two equations form the basis of the prediction and update steps of this
recognition algorithm, respectively. At each time epoch, the prediction density
� � � � �� ��� � �� is calculated and then updated using the new observation and
(9.11). This technique is often known as Bayesian optimal filtering or recursive
Bayesian estimation. In some references, it has been called the grid-based method,
presumably because the transition probabilities are represented as a grid (i.e.,
matrix) [16].

Offline Recognition

The goal of this task is to find the most likely sequence of states����, given a model
λ and a sequence of observations ���. Since this task is performed after all of the
observations in the sequence are available, there is more information available to
perform it compared to the online recognition task. Several different algorithms
have been used in order to perform this type of task, but the most commonly used
is the Viterbi algorithm [14].

The Viterbi algorithm defines two matrices, δ(i,t) and ψ(i,t). δ(i,t) represents
“best path” probabilities for traveling particular paths in the sequence of states.
For example, δ(3,4) is the probability of reaching state 3 at time 4 using the best
or most likely path to get there. ψ(i,t), on the other hand, represents “back
pointers” to the states that produce the most probable paths. For example, if ψ(3,4)
= 2, this means that, in order for the HMM to be in state 3 at time 4 with
maximum probability δ(3,4), it must be in state 2 at time 3. Using the same
notation δ(i,T) represents the probability of being in state i at the end of the
sequence (i.e., time T).

The algorithm starts at time epoch one and then recursively calculates the
successive values in δ(i,t) and ψ(i,t). When the values of δ(i,T) have been
calculated, the algorithm simply chooses the value of i that gives the maximum
δ(i,T) and then backtracks through the sequence using values of ψ(i,t) to determine
the most likely path.

Formally, the Viterbi algorithm is implemented in four steps: 1) initialization,
2) recursion, 3) termination, and 4) path backtracking [17], described as follows.

1) Initialization: The values of δ(i,t) and ψ(i,t) for time t=1 are set:

� �� � � ��������

� �� � � � � � � � � (9.12)

 Contextual Reasoning 187

Note that ψ(i,1) has no clear meaning, since it specifies a state of the
system prior to the first epoch. By convention it is set to zero, but it is
never actually used in the algorithm.

2) Recursion: The values of δ(j,t) and ψ(j,t) for times t=2,…,T are
recursively calculated:

1

1

(,) max (, 1) (()) 2

(,) arg max (, 1) 1

ij j
M

ij
M

j t i t a b Y t t Ti

j t i t a j M
i

δ δ

ψ δ

≤ ≤

≤ ≤

⎡ ⎤= − ≤ ≤⎧⎣ ⎦
⎪
⎨
⎪⎡ ⎤= − ≤ ≤⎣ ⎦ ⎩

 (9.13)

Note that we have changed the state index variable used in δ and ψ from i
to j. This is done in order to remain consistent with the notation for aij,
representing the probability of transitioning from state i to state j.
Therefore, here i represents the state at time t − 1 and j represents the
state at time t.

3) Termination: Select the maximum probability, PT, among the values of
δ(i,T) and the corresponding state, S(T), according to the following
criteria:

[]

[]
1

1

max (,)

() arg max (,)

T i M

i M

P i T

S T i T

δ

δ
≤ ≤

≤ ≤

=

=
 (9.14)

4) Path backtracking: Determine the corresponding most likely path (state

sequence) using the back pointers, ψ(i,t), and the following backward
recursion:

 () ((1), 1) 1, 2,...,1S t S t t t T Tψ= + + = − − (9.15)

9.3.3.4 Concluding Remarks about HMMs

This concludes our coverage of HMMs in this chapter. For readers not well-versed
in probability theory (especially concepts such as Markov chains), these sections
may have been challenging to digest. Fortunately, implementations of HMMs and
the related algorithms for working with them are readily available in many
programming languages (e.g., Java, C, and Matlab). In order to use them
correctly, it is necessary to understand the concepts outlined here at a basic level.
We have not addressed in this chapter various implementation details, such as
techniques to avoid numeric underflow or variations of the algorithms to reduce
memory requirements. Therefore, particular implementations may differ
somewhat from what was presented here. More detailed coverage of HMMs can
be found in [5, 18, 19].

188 Geospatial Computing in Mobile Devices

9.3.4 The Sliding Window Method

As mentioned in Section 9.2.1, most of the techniques in machine learning have
been developed to deal with independent and identically distributed (iid) data
(HMMs are an exception to this). Such methods, in their original form, do not
exploit the time dependence inherent in sequential data. A simple but effective
technique to benefit from the wide array of available machine learning techniques
yet also exploit this time dependency is the sliding window method, illustrated in
Figure 9.5 [20]. This method effectively encapsulates the (local) time dependence
of the data into a new data structure, a “sliding window,” allowing the time-series
data to be used in the same way as one would use iid data. As a result, one can use
any of the classical (iid) machine learning techniques to classify samples of this
sliding window.

Figure 9.5 The sliding window method.

The best way to elucidate the sliding window method is by example. Suppose
we have the following one-dimensional (unitless) data sequence:

()10 7,10,3,9,6,5,8,10,5,31X =

First, a window width, w, must be chosen. The best choice of window width

is dependent on the application and determines how much of the local time
dependence is preserved in the data. Large windows will capture more time
dependence but will also result in more computationally complex learning and
classification. Therefore, the best choice is a trade-off between classification
performance and computational time. In our example, we will choose a window
size of five epochs.

Next, the windows are composed, which will result in a new data structure,
Ht. This structure will have w*d dimensions, where d is the original
dimensionality of the data. In our case, Ht will be five-dimensional. There are two
slightly different approaches to composing the windows, depending on how one
wants to handle epochs 1 to w − 1, where there is not enough data to “fill” the
window. The first approach is keep the number of samples in Ht the same as that
of the original data and to use null values where necessary. For example, the first
three windows composed from ���� would be:

 Contextual Reasoning 189

1

2

3

(null,null,null,null,7)
(null,null,null,7,10)
(null,null,7,10,3)

H
H
H

=

=

=

The other approach is simply to reduce the length of Ht by w − 1. Thus, epoch five
from our original dataset becomes epoch one of Ht, and the first three windows
become:

1

2

3

(7,10,3,9,6)
(10,3,9,6,5)
(3,9,6,5,8)

H
H
H

=

=

=

In either case, as the window “slides” to the right in time, a new value from the
sequence ���� comes in at the last (rightmost) position in Ht and an existing value
(or null) slides out of the window with the values in between also being shifted
accordingly.

After all the windows in Ht have been composed, the ordering of Ht is no
longer important—it can now be regarded as a set instead of a sequence. In other
words H1, H2, H3, etc., can be shuffled like a deck of cards into any order. So long
as the individual elements within each window are not rearranged, the local time
dependence is preserved.

This is beneficial for many reasons. For example, in machine learning, data
are usually separated into different groups for training the classifier and later for
testing its performance. Now these groups can be chosen by randomly selecting
samples from the set Ht, thus ensuring there is no selection bias in these
groupings.

9.3.5 Bayesian Networks

Bayesian networks are directed graphical models, where nodes and directed links
(i.e., edges) between the nodes represent conditional dependencies between
variables (or sets of variables). As mentioned in Section 9.2.2, naïve Bayes’
classifiers are a special case from the general framework of Bayesian networks.
We saw in Section 9.2.2 that naïve Bayes’ classifiers assume the input variables in
the model are independent (i.e., no interconnecting arcs between them), but since
this assumption is often not correct, Bayesian networks in general can model this
interdependence among input variables. In fact, HMMs can also be viewed as a
specific type of Bayesian network, called a dynamic Bayesian network, with
certain constraints placed on its structure [23].

190 Geospatial Computing in Mobile Devices

Figure 9.6 Example of a Bayesian network.

In general, Bayesian networks can be used to represent any joint probability
distribution that consists of a product of conditional distributions. For example,
the Bayesian network shown in Figure 9.6 corresponds to the joint distribution
defined by the following equation:

1 2 3 4

1 2 3 1 2 4 2

(, , , ,)
() (|) (|) (| , ,) (| ,)

k

k k k k k

p C x x x x
p C p x C p x C p x C x x p x C x

=

(9.16)

In this way, Bayesian networks are a compact and intuitive means to express the
probabilistic relationships among observable variables and hidden variables, such
as the class label. Unfortunately, we don’t have space to cover in detail how
Bayesian networks are used in machine learning, but algorithms exist both to learn
the graph structure from a labeled dataset and to perform inference on a given
Bayesian network given unlabeled data. For detailed treatment of these subjects,
see [5] or [24].

9.3.6 Decision Trees

Decision trees, or tree-based methods (which include several variants such as
CART, ID3, and C4.5), comprise a simple but widely used machine learning
technique that functions as a hierarchical set of if-then-else statements. For
example, in the decision tree shown in Figure 9.7(a), classification is performed
starting from the top node. For a particular data sample, if the condition lying
between nodes 1 and 2 is satisfied (i.e., x1 > 5), the classifier moves to the second
node. Otherwise, it proceeds to node 3. The pattern is continued until a “leaf
node” is reached (denoted in Figure 9.7 using uppercase letters), at which point a
class label is assigned for that data sample.

 Contextual Reasoning 191

Figure 9.7 Example of a decision tree.

An alternative way to understand decision trees is that they divide an input
space into distinct class regions, where each boundary corresponds to one node
(i.e., “decision”) from the decision tree, as shown in Figure 9.7(b). Each region
can define a separate class (as in Figure 9.7), or several regions can be assigned to
the same class. It is not necessary that the boundaries are orthogonal like in our
example. In so-called oblique decision trees, linear combinations of variables can
be used, in order to define non-orthogonal boundaries.

The overall goal with decision trees is to correctly classify as many data
samples as possible, while minimizing the total number of regions (in order to
avoid the problem of overfitting). There are two main alternatives for how to
construct a decision tree. The first is to start with a single node and add one node
at a time, until a threshold performance criteria is met. The other approach is to
first grow a very large tree and then “prune” it (i.e., remove nodes), until a
satisfactory balance is achieved between the performance of the tree and its
complexity. A detailed discussion of decision trees can be found in [25].

9.3.7 Support Vector Machines (SVMs)

In recent years, SVMs have become a popular choice for building classifiers. The
mathematics involved in constructing an SVM classifier are rather complex and
beyond the scope of this book, but in this section we will provide sufficient detail
to understand the basic concepts of SVMs.

9.3.7.1 Defining a Feature Space Using Kernel Functions

SVMs work by defining a much higher-dimensional space, called a feature space,
mapped from the original input space. The added dimensions in the feature space
are formed from transformations of one or more input variables [e.g., �� ��� � ��� �

(b) (a)

192 Geospatial Computing in Mobile Devices

����� ���� � ���� �� ��. Generally speaking, it is not necessary to explicitly perform a
mapping from the input space to the feature space, but rather the so-called kernel
trick is used. The kernel trick uses a kernel function, ���� ����, which corresponds
to the inner product of the feature space. Here the indices i and j reference
different data samples in the input space, which are assumed to be vectors.
Common kernel functions used in SVMs include:

• Homogeneous polynomials: � �� ��� � �� � ��

��
• Inhomogeneous polynomials: �� �� ��� � �� � �� � �

��
• Gaussian radial basis functions: �� �� ��� � ��� �� �� � ��

�
, where

� � ��
• Hyperbolic tangents: �� �� ��� � ���� ��� � �� � � �

We will demonstrate the kernel trick with a simple example, where the input

space is two-dimensional (�2). Here we use a homogeneous polynomial kernel
function where d=2. We will compute the kernel function for two samples from
the input space, and for greater clarity we define these as x = (x1, x2) and y = (y1,
y2). Note that the subscripts now reference the dimension of the input space, as
opposed to earlier where they referenced the different data sample. The kernel
function for x and y is computed as follows:

� ��� � � � � � � ����� � ������
 � ������ � ��������� � ������ (9.17)

Inspecting (9.17), we can see that the corresponding feature space has three
dimensions, and the two data samples in this feature space become:

 � � � ����� ������ ���� (9.18)

 � � � ���� ������ ��� (9.19)

We can verify (9.18) by checking that � ��� � ���� � ����. As mentioned
above, it is not necessary to explicitly map the input space to the feature space.
Only the inner product, computed using the kernel function, is needed to build the
classifier. In our simple example, it may seem like this is a trivial advantage, but
in more complex examples, the feature space may consist of hundreds or
thousands of dimensions. In fact, if a Gaussian radial basis function is used, it is
usually evaluated using a Taylor series expansion. Therefore, the corresponding
feature space would have infinite dimensions. Fortunately, only the inner product
is needed, which can be truncated to desired precision by ignoring higher-order
terms.

 Contextual Reasoning 193

9.3.7.2 Maximum-Margin Hyperplanes

The main advantage of using a high-dimension space is that the data samples are
more easily separated by hyperplanes (planes in spaces of arbitrary dimension),
allowing linear classifiers to be defined in that hyperspace. These hyperplanes can
be considered as similar to the boundaries between the class regions defined in
decision trees (recall previous section). They are defined by maximizing the
distance between the nearest data sample and the hyperplane, the so-called
maximum margin. Such data samples lying nearest to the hyperplanes are called
support vectors because their position supports the definition of the decision
boundaries.

This concept is notionally depicted in Figure 9.8. The left side shows a two-
dimensional space with data from two classes that are not linearly separable. On
the right side, the data are remapped to a higher-dimensional space via a kernel
function and plotted in only two selected dimensions (where the linear separation
can be seen). The support vectors are the larger-sized data points lying closest to
the solid red line, and this line constrains the orientation of the hyperplane in the
high-dimensional space.

9.3.7.3 Concluding Remarks about SVMs

If one is interested in using SVMs to perform classification, it is not necessary to
know the mathematical details about how to construct a maximum-margin
hyperplane. Several open-source libraries exist for constructing SVMs and for
using them to perform classification (e.g., [26, 27]). For most users of SVMs, it is
probably sufficient to have a notional idea about how they function and perhaps

Figure 9.8 SVMs remap data into a higher-dimensional space, where the classes are linearly
separable.

194 Geospatial Computing in Mobile Devices

an understanding of how different kernel functions operate. Users can experiment
with different kernel functions applied to their own datasets. The performance of
the resulting SVM classifier will vary, depending on the dataset and the chosen
kernel function. Because the kernel functions contain one or more free parameters,
parameter tuning is often performed to optimize the performance. More detailed
coverage of SVMs, including techniques for parameter tuning, can be found in [5,
14, 28].

9.4 SUMMARY

In this chapter, we defined contextual reasoning as “the process of forming higher
level inferences about context from lower level information.” We presented this
process in the framework of the context pyramid, which aims to aid understanding
of contextual reasoning at the conceptual level. We also provided a hypothetical
example of this process within the domain of geospatial computing in
smartphones.

Next we presented the primary method of contextual reasoning, namely
machine learning. We presented three machine learning techniques in detail,
including the naïve Bayes’ classifier, HMMs, and the sliding window method.
Finally, we gave a brief overview of several other commonly used machine
learning techniques, including Bayesian networks, decision trees, and SVMs.
Detailed coverage of these techniques can be found in the cited references.

In conclusion, by combining the wide variety of sensor data and geospatial
information available in smartphones with state-of-the-art techniques of machine
learning, smartphones can be made to “reason” about the context in which their
users are living. This reasoning allows smartphones to become context-aware,
enabling a wide range of context-aware applications and services.

References

[1] Puccio, G. J., M. C. Murdock, and M. Mance, Creative Leadership: Skills That Drive Change,
San Diego, CA: Sage, 2007.

[2] Hurdus, J. G., and D. W. Hong, “Behavioral programming with hierarchy and parallelism in the
DARPA urban challenge and RoboCup,” Proceedings of IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems, 20-22 Aug. 2008, 2008, pp. 503–509.

[3] Giunchiglia, F., “Contextual reasoning,” Epistemologia, Special Issue on “I Linguaggi e le
Macchine,” Vol. XVI, 1993, pp. 345-364.

[4] Mitchell, T., et al., “Machine Learning,” Annual Review of Computer Science, Vol. 4, 1990, pp.
417-433.

[5] Bishop, C. M., Pattern Recognition and Machine Learning, New York: Springer, 2006.

 Contextual Reasoning 195

[6] O’Connor, B., “Statistics vs. machine learning, fight!” AI and Social Science (blog),
http://bit.ly/VtpHEX, 2008.

[7] Shumway, R. H., and D. S. Stoffer, Time Series Analysis and Its Applications: With R Examples,
New York: Springer, 2011.

[8] Kingsbury, N., D. B. H. Tayy, and M. Palaniswamiz, “Multi-scale kernel methods for
classification,” Proceedings of the 2005 IEEE Workshop on Machine Learning for Signal
Processing, 2005, pp. 43-48.

[9] Visatemongkolchai, A., and H. Zhang, “Building probabilistic motion models for SLAM,”
Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics, 2007,
pp.1629-1634.

[10] Ting, S. L., W. H. Ip, and A. H. C. Tsang, “Is naïve Bayes a good classifier for document
classification?” International Journal of Software Engineering and Its Applications, Vol. 5, No.
3, 2011, pp. 37-46.

[11] Boiman, O., E. Shechtman, and M. Irani, “In defense of nearest-neighbor based image
classification,” IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1-8.

[12] Tapia, E. M., S. S. Intille, and K. Larson, “Activity recognition in the home setting using simple
and ubiquitous sensors,” Pervasive Computing: Second International Conference, PERVASIVE
2004, pp. 158-175, A. Ferscha and F. Mattern (eds.), Berlin: Springer, 2004.

[13] Bancroft, J. B., D. Garrett, and G. Lachapelle, “Activity and environment classification using
foot mounted navigation sensors,” 2012 International Conference on Indoor Positioning and
Indoor Navigation, 2012.

[14] Alpaydin, E., Introduction to Machine Learning, Second Edition, Cambridge, MA: The MIT
Press, 2010.

[15] Bordes, L., and P. Vandekerkhove, “Statistical inference for partially hidden Markov models,”
Communications in Statistics––Theory and Methods, Vol. 34, No. 5, 2005, pp. 1081-1104.

[16] Ristic, B., S. Arulampalm, and N. Gordon, Beyond the Kalman Filter: Particle Filters for
Tracking Applications, Norwood, MA: Artech House, 2004.

[17] Liu, J., “Hybrid Positioning with Smart Phones,” In Ubiquitous Positioning and Mobile
Location-Based Services in Smart Phones, pp. 159-193, R. Chen (ed.), Hershey, PA: IGI-Global,
2012.

[18] Rabiner, L. R., “A tutorial on hidden Markov models and selected applications in speech
recognition,” Proceedings of the IEEE, Vol. 77, No. 2, 1989, pp. 257-286.

[19] Fraser, A. M., Hidden Markov Models and Dynamical Systems, Philadelphia, PA: Society for
Industrial and Applied Mathematics, 2008.

[20] Dietterich, T. G., “Machine learning for sequential data: A review,” Proceedings of the Joint
IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, 2002,
pp. 15-30.

[21] Wolpert, D., “The lack of a priori distinctions between learning algorithms,” Neural
Computation, Vol. 8, No. 7, 1996, pp. 1341-1390.

[22] Schaffer, C., “A conservation law for generalization performance,” Proceedings of the Eleventh
International Conference on Machine Learning, 1994, pp. 259-265.

[23] Ghahramani, Z., “An introduction to hidden Markov models and Bayesian networks,”
International Journal of Pattern Recognition and Artificial Intelligence, Vol. 15, No. 1, 2001, pp.
9-42.

196 Geospatial Computing in Mobile Devices

[24] Friedman, N., D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,” Machine Learning,
Vol. 29, 1997, pp. 131-163.

[25] Sutton, C. D., “Classification and Regression Trees, Bagging, and Boosting,” Handbook of
Statistics, Vol. 24, 2005, 303-329.

[26] Chang, C. C., and C. J. Lin, LIBSVM––A Library for Support Vector Machines,
http://bit.ly/VkqyrS, 2012.

[27] Katholieke Universiteit Leuven, Least Squares––Support Vector Machines, http://bit.ly/VkurwO,
2012.

[28] Steinwart, I., and A. Christmann, Support Vector Machines, New York: Springer, 2008.

[29] Sutton, C., and A. McCallum, “An Introduction to Conditional Random Fields,” Foundations
and Trends in Machine Learning, Vol. 4, No. 4, 2011, 267–373.

[30] Lafferty, J. D., A. McCallum, F. C. N. Pereira, “Conditional random fields: probabilistic models
for segmenting and labeling sequence data,” Proceedings of the Eighteenth International
Conference on Machine Learning, 2001, pp. 282-289.

[31] Klinger, R., and K. Tomanek, Classical Probabilistic Models and Conditional Random Fields,
Algorithm Engineering Report TR07-2-013, Technical University of Dortmund, 2007.

[32] Van Kasteren, T., A. Noulas, G. Englebienne and B. Kröse, “Accurate Activity Recognition in a
Home Setting”, In Proceedings of the 10th international conference on Ubiquitous computing
(UbiComp '08), pp. 1-9, 2008.

[33] Fisher, R.A, The use of multiple measurements in taxonomic problems. Annals of Eugenics,
7:179–188, 1936.

[34] Abidine, M. B., “Evaluating C-SVM, CRF and LDA classification for daily activity recognition,”
Multimedia Computing and Systems (ICMCS), 2012 International Conference on, 2012, pp. 272–
277.

[35] Ward, J. A., et al., “Activity recognition of assembly tasks using body-worn microphones and
accelerometers,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28, No.
10, 2006, pp. 1553-1567.

[36] Andreu, J., R. D. Baruah, and P. Angelov, “Real Time Recognition of Human Activities from
Wearable Sensors by Evolving Classifiers,” 2011 IEEE International Conference on Fuzzy
Systems, 2011, pp. 2786-2793.

[37] Phung, D., et al., “High accuracy context recovery using clustering mechanisms,” IEEE
International Conference on Pervasive Computing and Communications, (PerCom)2009, 2009,
pp. 1-9.

[38] Aziz, O., and S. N. Robinovitch, “An analysis of the accuracy of wearable sensors for classifying
the causes of falls in humans,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, Vol. 19, No. 6, 2011, pp. 670-676.

[39] Javed, J., H. Yasin, and S. F. Ali, “Human movement recognition using Euclidean Distance: A
tricky approach,” Image and Signal Processing (CISP), 2010 3rd International Congress on,
2010, pp. 317-321.

[40] Donohoo, B., et al., “Exploiting spatiotemporal and device contexts for energy-efficient mobile
embedded systems,” Proceedings of the 49th Annual Design Automation Conference, 2012, pp.
1274-1279.

 Contextual Reasoning 197

[41] Krishnan, N. C., and S. Panchanathan, “Analysis of low resolution accelerometer data for
continuous human activity recognition,” Acoustics, Speech and Signal Processing (ICASSP)
2008. IEEE International Conference on, 2008, pp. 3337-3340.

[42] Kwapisz, J. R., G. M. Weiss, and S. A. Moore, “Activity recognition using cell phone
accelerometers,” ACM SIGKDD Explorations Newsletter, Vol. 12, No. 2, 2011, pp. 74-82.

[43] Vail, D. L., M. M. Veloso, and J. D. Lafferty, “Conditional random fields for activity
recognition,” Proceedings of the 6th International Joint Conference on Autonomous Agents and
Multiagent Systems, 2007, pp. 1331-1338.

[44] Kohonen, T., “The self-organizing map,” Proceedings of the IEEE 78, no. 9, 1990: 1464-1480.

[45] Suzuki, S., et al., “Activity recognition for children using self-organizing map,” RO-MAN, 2012
IEEE, 2012, pp. 653-658.

[46] Huang, W., and J. Wu, “Human action recognition based on self organizing map,” International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2010, pp. 2130-2133.

PUBLICATION 3

L. Pei, R. E. Guinness, R. Chen, J. Liu, H. Kuusniemi, Y. Chen, L. Chen, and J. Kaistinen,
“Human behavior cognition using smartphone sensors,” Sensors, vol. 13, no. 2, pp. 1402–1424,
2013.

Distributed under the Creative Commons Attribution License (CC BY)
See: http://creativecommons.org/licenses/by/3.0/legalcode

Sensors 2013, 13, 1402-1424; doi:10.3390/s130201402

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors
Article

Human Behavior Cognition Using Smartphone Sensors

Ling Pei 1,*, Robert Guinness 1, Ruizhi Chen 1,2, Jingbin Liu 1, Heidi Kuusniemi 1, Yuwei Chen 1,
Liang Chen 1 and Jyrki Kaistinen 3

1 Department of Navigation and Positioning, Finnish Geodetic Institute, FIN-02431 Masala, Finland;
E-Mails: robert.guinness@fgi.fi (R.G.); ruizhi.chen@fgi.fi (R.C.); jingbin.liu@fgi.fi (J.L.);
heidi.kuusniemi@fgi.fi (H.K.); yuwei.chen@fgi.fi (Y.C.); liang.chen@fgi.fi (L.C.)

2 Conrad Blucher Institute for Surveying & Science, Texas A&M University Corpus Christi,
Corpus Christi, TX 78412, USA; E-Mail: ruizhi.chen@tamucc.edu

3 Psychology of Evolving Media and Technology Research Group, Institute of Behavioural Sciences,
University of Helsinki, 00014 Helsinki, Finland; E-Mail: jyrki.kaistinen@helsinki.fi

* Author to whom correspondence should be addressed; E-Mail: ling.pei@fgi.fi;
Tel.: +358-9-2955-5315; Fax: +358-9-2955-5200.

Received: 28 November 2012; in revised form: 26 December 2012 / Accepted: 15 January 2013 /
Published: 24 January 2013

Abstract: This research focuses on sensing context, modeling human behavior and developing
a new architecture for a cognitive phone platform. We combine the latest positioning
technologies and phone sensors to capture human movements in natural environments and
use the movements to study human behavior. Contexts in this research are abstracted as a
Context Pyramid which includes six levels: Raw Sensor Data, Physical Parameter,
Features/Patterns, Simple Contextual Descriptors, Activity-Level Descriptors, and Rich Context.
To achieve implementation of the Context Pyramid on a cognitive phone, three key
technologies are utilized: ubiquitous positioning, motion recognition, and human behavior
modeling. Preliminary tests indicate that we have successfully achieved the Activity-Level
Descriptors level with our LoMoCo (Location-Motion-Context) model. Location accuracy
of the proposed solution is up to 1.9 meters in corridor environments and 3.5 meters in
open spaces. Test results also indicate that the motion states are recognized with an accuracy
rate up to 92.9% using a Least Square-Support Vector Machine (LS-SVM) classifier.

Keywords: sensing; location; motion recognition; LS-SVM; cognitive phone; human
behavior modeling

OPEN ACCESS

Sensors 2013, 13 1403

1. Introduction

Human behavior modeling and activity interpretation are of increasing interest in the information
society. Social applications such as assisted living and abnormal activity detection draw a lot of
attention among scientists [1]. Meanwhile, smartphone sensing technologies are nowadays developing
at an incredible pace. The smartphone boasts a healthy variety of sensor options for sensing the social
environment. Various locating and context related sensors and network technology are embedded into
mobile phones, such as GPS, WLAN (a.k.a. Wi-Fi), cellular network antennae, Bluetooth, accelerometers,
magnetometers, gyroscopes, barometers, proximity sensors, humidity sensors, temperature sensors,
ambient light sensors, cameras, microphones, etc. With this array of input or stimulus options, coupled
with capable computational and networking functions, the smartphone becomes an attractive
“cognitive” platform, which has a great potential to achieve an enough high intelligence to take up on
the questions of social context, such as “Where are you?”, “What are you doing?”, “How are you
feeling?”, “Who are you with?”, “What is happening?”, and “Why are you here?”. This article presents
an approach to sensing human behavior using a cognitive phone and summarizes the current status of
our research work.

The question “where are you?” has been studied in the navigation and positioning fields for many
decades. With the explosive growth of the capabilities in handheld computing devices, an increasing
amount of research has been focused on positioning solutions using a mobile phone. In order to
achieve location awareness both indoors and outdoors, as shown in the Figure 1, three families of
smartphone-based positioning solutions have been studied extensively: satellite-based solutions,
sensor-based solutions, and RF (radio frequency) signal-based solutions [2].

Figure 1. Three families of smartphone-based positioning solutions.

For outdoors, navigation mainly relies on satellite-based technologies. Having a wide coverage and
high accuracy, standalone global navigation satellite systems (GNSS), namely for example the Global
Positioning System (GPS), are the most widely applied positioning technology in smartphones. Due to the
developments of visible GNSS constellations, the GNSS receiver of a smartphone has extended the
positioning capability to multiple satellites systems. For instance, the Chinese phone manufacturer ZTE,

Sensors 2013, 13 1404

together with Russian GLONASS chipset manufacturer AFK Sistema, has developed the first smart
phone which embeds both GLONASS and GPS receivers. In addition, assisted GPS, also known as
A-GPS or AGPS, enhances the performance of the standard GPS with additional network resources [3,4].

The existing RF infrastructures introduce some alternatives to positioning technologies on a
smartphone. Positioning methods using the cellular network and WLAN are now standard features of
various smartphones, such as iPhone and Android phones. Nokia has likewise developed a WiFi
triangulation system, which now means that the user is more likely to get a positioning fix while
indoors or in an urban canyon [5]. Furthermore, short-range RF signals such as Bluetooth [6–11] and
RFID [12] are also the options for making estimates of a mobile user’s location, for instance, by using
proximity, fingerprinting, or triangulating.

Built-in sensors of a smartphone offer the opportunity of continuous navigation when the
positioning infrastructures are unavailable. Typically, built-in sensors of a smartphone such as
accelerometer, magnetometer, and gyroscope can be utilized to calculate the smartphone’s speed,
heading, orientation, or motion mode. The above mentioned outputs can then be applied in a pedestrian
dead reckoning (PDR) algorithm to assist positioning in challenging environments where the GPS
performance is poor or WLAN positioning is unavailable [13–15]. In addition, the camera in a smart
phone is also a potential positioning sensor. Ruotsalainen [16,17] uses a camera on a Nokia N8
smartphone to detect the heading change of a mobile phone user. Taking advantage of
the magnetometer in modern smartphones, IndoorAtlas Ltd. (Oulu, Finland) pioneers magnetic
anomaly-based indoor positioning [18]. Lastly, hybrid solutions [19–21] are adopted to improve the
availability and reliability of positioning by integrating all three types of solutions.

Meanwhile, human motion has been widely studied for decades, especially in recent years using
computer vision technology. Poppe gives an overview of vision-based human motion analysis in [22].
Aside from vision-based solutions, sensor-based approaches are also extensively adopted in
biomedical systems [23–26]. Most of the previous motion recognition related research assumed that
the Micro-Electro-Mechanical Systems (MEMS) inertial sensors used are fixed on a human body in a
known orientation [27–30] (e.g., in a pocket, clipped to a belt or on a lanyard) and that an error model
can be obtained via training to a handful of body positions. Yang [31] uses a phone as the sensor to
collect activities for off-line analysis purposes. In general, human physical activity recognition using
MEMS sensors has been extensively applied for health monitoring, emergency services, athletic
training, navigation, [32,33]. Since motion sensors such as accelerometers, gyroscopes and
magnetometers are integrated into a smartphone, they bring the opportunity to assist navigation with
knowledge about the motion of a pedestrian [34].

Together these developments suggest that locating and motion recognizing capabilities can enable the
cognitive ability of sensing human behavior using a smartphone. For instance, Eagle and Pentland [35]
introduce a system for sensing complex social systems using Bluetooth-enabled phones. Adams et al. [36]
present online algorithms to extract social context: Social spheres are labeled locations of significance,
represented as convex hulls extracted from GPS traces. Anderson et al. [37] explore the potential for
use of a mobile phone as a health promotion tool. They develop a prototype application that tracks the
daily exercise activities of people, using an Artificial Neural Network (ANN) to analyse GSM (Global
System for Mobile communications) cell signal strength and visibility to estimate a user’s movement.
Choudhury and Pentland [38] develop methods to automatically and unobtrusively learn the social

Sensors 2013, 13 1405

network structures that arise within human groups based on wearable sensors. Choudhury et al. [39]
introduce some of the current approaches in activity recognition which use a variety of different
sensors to collect data about users’ activities. In this paper probabilistic models and relational
information are used to transform the raw sensor data into higher-level descriptions of people’s
behaviors and interactions. Lane et al. [40] survey existing mobile phone sensing algorithms,
applications, and systems. Campbell and Choudhury first introduce the Cognitive Phone concept and
enumerate applications utilizing cognitive phones in [41]. Even though the term Cognitive Phone has
not been officially defined yet, from the examples given by [41], the Cognitive Phone is argued to be
the next step in the evolution of the mobile phone, which has the intelligence of sensing and inferring
human behavior and context.

Similarly, this paper will introduce an approach to sensing human behavior, which primarily relies
on ubiquitous positioning technologies and motion recognition methods. In the above cognitive
research, positioning technologies such as GPS [36] and proximity [35] have been used for social
context sensing. However, only outdoor activities are available because GPS is unavailable. Bluetooth
proximity technology is applied for identifying users are close in terms of location. Different from the
above cognition research, this approach will fully utilize seamless locating technologies on a
smartphone for human behavior modeling purpose. In addition, motion states, which are usually
applied for detecting personal activities [31] or some positioning purposes [33,34], will also be used
for modeling human behavior in our proposed cognitive phone solution. A human behavior modeling
approach named Location-Motion-Context (LoMoCo) is proposed for fusing location and motion
information and inferring user’s contexts. The rest of this paper is organized as follows: Section 2
provides an overview of the background of this research; Section 3 presents the proposed methods of
ubiquitous positioning. We describe details of motion recognition in Section 4. Details of the LoMoCo
model are represented in Section 5. Section 6 evaluates the proposed solution with experimental
results. Finally, Section 7 concludes the paper and provides directions for future work.

2. Background and Related Work

This research is supported by a project titled INdoor Outdoor SEamless Navigation for Sensing
Human Behavior (INOSENSE), funded by the Academy of Finland. The goal of the project is to carry
out a study on sensing social context, modeling human behavior and developing a new mobile
architecture for social applications. It aims to build a new analysis system by combining the latest
navigation technologies and self-contained sensors to capture social contexts in real-time and use the
system to study human movement and behavior in natural environments.

We abstract the social context as a Context Pyramid, as shown in Figure 2, where the raw data from
diverse sensors is the foundation of the Context Pyramid. Based on the Raw Sensor Data, we can
extract Physical Parameters such as position coordinates, acceleration, heading, angular velocity,
velocity, and orientation. Features/Patterns of physical parameters are generated for further pattern
recognition in the Simple Contextual Descriptors, which infer the simple context such as location,
motion, and surroundings. Activity-Level Descriptors combine the simple contextual information into
the activity level. On the top of the pyramid, Rich Context includes rich social and psychological
contexts, which is ultimately expressed in natural language.

Sensors 2013, 13 1406

Figure 2. Context pyramid.

To implement the Context Pyramid, we break down the research into three modules as shown in
Figure 3. In module I, we sense the social context with navigation and audio/visual sensors with output
options such as position, motion, audio streams and visual contexts. The bottom three levels in the
Context Pyramid are implemented in this module. Next, we analyze the social context and model
human behavior in module II, which realizes the top three levels of the pyramid. Smartphone-based
social applications ultimately use the human behavior models derived from module II, or the low level
information from module I to demonstrate the use of sensing human behavior using indoor/outdoor
seamless positioning technologies. Figure 4 gives two examples of mobile social applications based on
the proposed architecture. On the left side is an application logging the location and motion of an
employee in a workplace. It is an indoor social application using WiFi localization and motion sensors.
On the right side is an application that interprets the commuting context of an employee, who works
outdoors, based on location obtained from GPS and motion information from built-in sensors.

In order to implement cognitive applications, such as those shown in Figure 4, we combine the
latest positioning technologies and smartphone sensors to capture human movements in natural
environments and use the movement information to study human behavior. Three key technologies are
applied in this research: ubiquitous positioning, motion recognition, and human behavior modeling,
which will be described in the following sections.

Sensors 2013, 13 1407

Figure 3. Architecture of a social application.

Figure 4. Application examples.

In order to implement cognitive applications, such as those shown in Figure 4, we combine the
latest positioning technologies and smartphone sensors to capture human movements in natural
environments and use the movement information to study human behavior. Three key technologies are
applied in this research: ubiquitous positioning, motion recognition, and human behavior modeling,
which will be described in the following sections.

3. Ubiquitous Positioning

Location as a simple contextual descriptor in the Context Pyramid is obtained using various
positioning technologies. In this research, we integrate three families of smartphone-based positioning
solutions, satellite-based, sensor-based, and network-based, to achieve the location
capability both indoors and outdoors. For outdoors, positioning mainly relies on satellite-based

I- Sensing Social Context with Navigation and
A/V sensors

II- Social Context Analysis and
Human Behavior Modelling

III- Smartphone-based Social Applications

Position, Motion,
Audion/visual context

Human behavior models

Sensors 2013, 13 1408

technologies. Assisted with the heading and speed estimated from smartphone sensors, the satellite-
based solution can also survive in the signal-deprived environments, such as urban canyons and
tunnels [42]. As outdoor positioning solutions have been fully discussed in many publications [43,44],
we mainly focus on indoor environments in this paper.

3.1. Indoor Outdoor Detection

Different positioning technologies are applied indoors and outdoors; therefore, to fulfill the
seamless positioning function, an environment-aware approach is adopted for detecting the indoor and
outdoor environments. The determination of indoor/outdoor status is performed using a combination of
GPS and WiFi information. The outdoor case is recognized when the number of GPS satellites and
their signal-to-noise ratio is sufficiently high. Conversely, the indoor case is recognized when the GPS
signals are sufficiently weak, but WiFi signal strengths are high.

As defined in Equation (1), the probability of being present indoors combines the observations of
GPS and WiFi:

 (1)

where ω [0,1] is the normalization weight of the indoor probability derived from GPS observation Pg
(X1 | Yg, Zg), which is estimated based on the GPS signal-to-noise ratio Yg and the number of visible
satellites Zg. The value of ω is 0.5 by default. However, it is adjustable based on prior knowledge. For
instance, when a user turns off WiFi on a smartphone, ω can be set as 1. The indoor conditional
probability Pw (X1 | Yw, Zw) is derived from WiFi observations including the RSSI of the strongest AP
Yw, and the number of visible APs Zw . Probability lookup tables are generated for retrieving the
probability based on the GPS and WiFi observations. The probability of being present outdoors can be
calculated as follows:

 (2)

Considering the battery capacity limitation of a smartphone, it is a wise option to turn off
unnecessary navigation sensors or decrease the sampling rate of a sensor in the procedure of seamless
positioning. For instance, we suggest using a lower WiFi scanning rate in outdoor environments and
suspending GPS indoors.

3.2. Fingerprinting Based Wireless Positioning

For indoor positioning, we adopt the fingerprinting approach of WiFi positioning. Received signal
strength indicators (RSSIs) are the basic observables in this approach. The process consists of a
training phase and a positioning phase. During the training phase, a radio map of probability
distributions of the received signal strength is constructed for the targeted area. The targeted area is
divided into a grid, and the central point of each cell in the grid is referred to as a reference point. The
probability distribution of the received signal strength at each reference point is represented by a
Weibull function [6,9], and the parameters of the Weibull function are estimated with the limited
number of training samples.

1 1 1() (| ,) (1) (| ,)g g g w w wP X P X Y Z P X Y Z� �� � � � �

2 1() 1 ()P X P X� �

Sensors 2013, 13 1409

During the positioning phase, the current location is determined using the measured RSSI
observations in real-time and the constructed radio map. The Bayesian theorem and Histogram
Maximum Likelihood algorithm are used for positioning [45,46].

Given the RSSI measurement vector = {O1, O2… Ok} from APs, the problem is to find the
location l with the conditional probability P(l|) being maximized. Using the Bayesian theorem:

 (3)

where P(|l)is the probability of observing RSSI vector given a location l, also known as
the likelihood, P(l) is the prior probability of a location l before observing , and P() is the marginal
likelihood which indicates the probability of obtaining a given RSSI measurement vector . In this
study, P() is constant for all l. Therefore, Equation (3) can be reduced to:

 (4)

We assume that the mobile device has equal probability to be located at each reference point, thus
P(l) can be considered as constant in this case. Using this assumption, Equation (4) can be simplified to:

 (5)

Now it becomes a problem of finding the maximum conditional probability of:

 (6)

where the conditional probability P(On|l) is derived from the RSSI distribution stored in the
fingerprint database.

4. Motion Recognition

Motion, as another simple contextual descriptor in the Context Pyramid, can be detected by motion
recognition methods. The possible motion states vary in different applications. Common motion states
include sitting, standing, standing with tiny movements, fast walking, walking slowly, sharp turning,
spot turning (a.k.a U-turning), gradient turning, running, using stairs, using an elevator, falling down,
lying, and driving. The motion states can be further constrained in a particular use case. Given motion
features, diverse classifiers can be applied for motion recognition. Feature selection and motion
classification will be discussed in the following two subsections.

4.1. Feature Selection

This paper limits the use case to an office scenario and the applied motion states are defined as
Table 1. In order to distinguish the above motion states, we currently retrieve the raw sensor data from
accelerometers, gyroscope, and magnetometers built in a smartphone. The features listed in Table 2 are
studied in this research. Raw data from a tri-axis accelerometer {ax,ay,az}, gyroscope {ωx,ωy,ωz}, and
magnetometer {hx,hy,hz} of a smartphone are collected, and physical parameters such as acceleration a,

]
)(

)()|([maxarg)]|([maxarg
OP

lPlOPOlP ll �

)]()|([maxarg)]|([maxarg lPlOPOlP ll �

)]|([maxarg)]|([maxarg lOPOlP ll �

�
�

�
k

n
n lOPlOP

1

)|()|(

Sensors 2013, 13 1410

linear acceleration |al|, horizontal acceleration ah, vertical acceleration av, angular velocity |ω|, heading
h, and so on, are calculated from the raw sensor measurements.

Table 1. Motion state definition.

State Definition
M1 Sitting.
M2 Normal walking.
M3 Fast walking.
M4 Standing, this might have some tiny movements.
M5 Sharp turning (heading change: 90° < θ ≤ 270°).
M6 Gradient turning (heading change: −90° < θ ≤ 90°).

Table 2. Feature definition.

Features Definition Applied Physical Parameters Raw Sensor Data

μ Mean

σ2 Variance

m Median

IQR=Q3-Q1
Interquartile

range (IQR)

 Skewness

 Kurtosis

Difference of two

successive

measurements

f1st 1st dominant frequency

f2nd 2nd dominant frequency

 Amplitude of the 1st

dominant frequency

Amplitude of the 2nd

dominant frequency

Amplitude scale of two

dominant frequencies

Difference between two

dominant frequencies

, , , , , , , , ,

, , , , , , , , , .

l ll
x y z h v h v

x y z h v x y z

a a a a a a a a a

h h h h� � � � � �
, , , , , , , , .x y z x y z x y za a a h h h� � �

, , , , , , , , ,

, , , , , , , , , .

l ll
x y z h v h v

x y z h v x y z

a a a a a a a a a

h h h h� � � � � �
, , , , , , , , .x y z x y z x y za a a h h h� � �

, , , , , , , , ,

, , , , , , , , , .

l ll
x y z h v h v

x y z h v x y z

a a a a a a a a a

h h h h� � � � � �
, , , , , , , , .x y z x y z x y za a a h h h� � �

, , , , , , , , ,

, , , , , , , , , .

l ll
x y z h v h v

x y z h v x y z

a a a a a a a a a

h h h h� � � � � �
, , , , , , , , .x y z x y z x y za a a h h h� � �

3

3

()
skewness

E xy �
�
�

�
, , , , , , , , ,

, , , , , , , , , .

l ll
x y z h v h v

x y z h v x y z

a a a a a a a a a

h h h h� � � � � �
, , , , , , , , .x y z x y z x y za a a h h h� � �

4

4

()
kurtosis

E xy �
�
�

�
, , , , , , , , ,

, , , , , , , , , .

l ll
x y z h v h v

x y z h v x y z

a a a a a a a a a

h h h h� � � � � �
, , , , , , , , .x y z x y z x y za a a h h h� � �

1diff t ty y y �� � h , ,x y zh h h

,a � , , , , , .x y z x y za a a � � �

,a � , , , , , .x y z x y za a a � � �

1stfA ,a � , , , , , .x y z x y za a a � � �

2ndfA ,a � , , , , , .x y z x y za a a � � �

1

2

st

nd

f
scale

f

A
A

A
� ,a � , , , , , .x y z x y za a a � � �

1 2st nddiff f fA A A� � ,a � , , , , , .x y z x y za a a � � �

Sensors 2013, 13 1411

Thirteen features from the time domain and frequency domain are applied to the above physical
parameters. The sequential forward selection (SFS) algorithm [47–49] is adopted for feature selection,
and Decision Tree (DT), Linear Discriminant Analysis (LDA), and LS-SVM (Least Square-Support
Vector Machines) are used as classifiers in the criterion function of SFS. The subset of features

 is selected for use in a SVM classifier, which achieves the highest accuracy

rate of 92.9%. The algorithm details of LS-SVM classification are described in the below subsection.

4.2. Classification

A supervised learning method is adopted for motion recognition. Classification algorithms such as
DT, LDA, and LS-SVM are investigated in this research. After comparing these classifiers, LS-SVM
is finally applied in this work because of the high accuracy of the recognition rate. Using a least
squares loss function and replacing the inequality constraints with equality constraints, LS-SVM
tackles linear systems instead of solving convex optimization problems in standard support vector
machines (SVM), which reduces the complexity of computation [50]. In the training phase, the
LS-SVM classifier constructs a hyperplane in a high-dimensional space aiming to separate the data
according to the different classes. This data separation should occur in such a way that the hyperplane
has the largest distance to the nearest training data points of any class. These particular training data
points define the so-called margin [51,52]. These parameters can be found by solving the following
optimization problem having a quadratic cost function and equality constraints:

 (7)

subject to [51]:

 (8)

with e = [e1···eN]T
 being a vector of error variables to tolerate misclassifications, sign function

y {−1,+1}, φ(•): d→ dh
 the mapping from the input space into a high-dimensional feature space of

dimension dh, ω a vector of the same dimension as φ(•), γ is a positive regularization parameter,
determining the trade-off between the margin size maximization and the training error minimization.
The term b is the bias. In this equation, the standard SVM formulation is modified using a least
squares loss function with error variables ei and replacing the inequality constraints with equality
constraints [51,52]. The Lagrangian for the problem in Equations (7) and (8) is [15,52]:

 (9)

where α are the Lagrange multipliers, also support values.
Taking the conditions for optimality, we set:

1

1 1arg min (,) arg min
2 2

N
T

i
i

J e e� � � �
�

� �
� �� �

� �
�

(()) 1 , 1,...,T
i i iy x b e i N� � � � � �

� �
1

(, , ,) (,) () 1
N

T
i i i i

i
L b e J e y x b e� � � � � �

�

� � � � � �� ��

Sensors 2013, 13 1412

 (10)

Whereas the primal problem is expressed in terms of the feature map, the linear optimization
problem in the dual space is expressed in terms of the kernel function [51,52]:

 (11)

where y = [y1···yN]T , α = [α1···αN]T
 , 1n = [1···1]T

1 × N and Ω N × N is a matrix with elements
Ωij = yiyj φ(xi)Tφ(xj), with i, j = 1, ..., N. Given an input vector x, the resulting LS-SVM classifier in the
dual space is [50]:

 (12)

where K(x,xi) = φ(x)Tφ(xi) is a positive definite kernel matrix. The support values αi are proportional to
the error of the corresponding training data points. This implies that usually every training data point is
a support vector and no sparseness property remains in the LS-SVM formulation. Note that high
support values introduce a high contribution of the data point to the decision boundary [51]. The choice
of the regularization parameter and the kernel hyperparameter δ in case of an RBF kernel, is out of the
scope for discussion in this paper. Hospodar gives an example of the kernel parameters selection in [50].

5. Human Behavior Modeling Based on LoMoCo Model

Modeling human behavior has great complexity, due to the wide range of activities that humans can
undertake and due to the difficulties in systematically classifying these activities [15]. The approach
taken in this research is to simplify the human behavior modeling using a Location-Motion-Context
(LoMoCo) model which combines personal location information and motion states to infer a
corresponding context based on Bayesian reasoning.

5.1. LoMoCo Model

Given a specific context, a person always performs movements with some particular patterns. For
instance, an employee usually sits in a break room while taking a break. He/she most likely stands in
front of a coffee machine and shortly walks back to the office in a context of fetching coffee. In this
research, we determine a context based on a LoMoCo model shown in Figure 5. In the LoMoCo
model, a context (Co) is represented by location patterns (Lo) and motion patterns (Mo). Assuming
that all the target contexts occur in n significant locations, we denote Ln(ti) as a context that occurs at

� �
�
�
�
�
�

�

�
�
�
�
�

�

�

�������
�
�

���
�
�

���
�
�

���
�
�

�

�

�

�

. ..., ,1 ,0 1)(0

,0

,00

),(0

1

1

NiebxyL

e
e
L

y
b
L

xyL

ii
T

i
i

ii
i

N

i
ii

N

i
iii

��
�

��

�

���
�

��
�

��
�

���

�

��
�

�
�
�

�

�
�
�

�

�	
nn

T
b

Iy

y

1
0

1
0

�
�

�
�

�
�

�� �

�

N

i
iii bxxKyxy

1
),(sign)(�

Sensors 2013, 13 1413

Ln at the time epoch ti. Pl(n) denotes the density of the context that occurs at the location n. A location
pattern (Lo) consists of the probabilities of all the possible locations. Similarly, motion patterns (Mo)
include a set of probabilities for each possible motion state. Mk(tj) indicates that a context includes a
motion state Mk of the time epoch tj.

Figure 5. LoMoCo Model.

5.2. Bayes Inferring

In order to infer the context, the LoMoCo model in this paper is represented using Bayesian
reasoning, which can not only determine the context but also provide with the probability of a
determined class. The classifier of LoMoCo model is designed based on the Bayes rule and trained by
supervised learning. In the training phase, we wish to approximate an unknown target function P(Y|X),
where Y is the context predefined, and X={x1,x2…xk} is a vector containing observed features which
are all conditionally independent of one another, given Y. Applying Bayes’ rule, we have:

(13)

Further, we get:

 (14)

where yi denotes the ith possible context for Y, and the summation in the denominator is over all legal
values of the context variable Y. In the training phase, we use the training data to estimate P(X|Y = yi)
and P(Y = yi) which are utilized to determine P(Y = yi|X = Xz) for any new vector instance Xz. For the
classification case, we are only interested in the most probable value of Y, so the problem becomes:

Co

Lo

Mo

Pl(2)

Pl(n)

Pl(1)

Pm(2)

Pm(1)

Ln(1)

Ln(2)

Mk(1)

Ln(ti)

Mk(tj)

Pm(k)
Mk(2)

1

(|) ()(|)
(|) ()

i i
i N

j j
j

P X Y y P Y yP Y y X
P X Y y P Y y

�

� �
� �

� ��

1
1

1 1

(|) ()
(| ...)

(|) ()

k

n i i
n

i k kN

n i j
j n

P x Y y P Y y
P Y y x x

P x Y y P Y y

�

� �

� �
� �

� �

�

��

Sensors 2013, 13 1414

 (15)

which simplifies to the following because the denominator does not depend on a context yi :

 (16)

In the LoMoCo model, the feature vector is suggested using observations with location and motion
state combined, where X = {Pl(1), Pl (2)… Pl (n), Pm (1), Pm (2)… Pm (k)}. In the case without motion
or location observations, feature vector can be only location patterns where X = {Pl(1), Pl (2)… Pl (n)} or
motion patterns where X = {Pm (1), Pm (2)… Pm (k)}. Pl (n) and Pm (k) are respectively calculated as:

 (17)

 (18)

where the # D{c}operator returns the number of samples in the set D that satisfy the condition c, and
|D| is the total number of samples in the set D.

6. Experimental Results

In order to demonstrate the proposed approach, we set up a test environment on the first floor of the
Finnish Geodetic Institute (FGI), as shown in Figure 6. Positioning tests and motion recognition tests
were performed in this environment to validate the positioning algorithms and motion recognition
methods proposed for determining the Simple Contextual Descriptors level in Figure 2. Then, an
employee-centric experiment was designed to verify whether we can achieve the Activity-Level
Descriptors layer of the pyramid in Figure 2 using the LoMoCo model. Taking into account the battery
capacity limitation of a smartphone, we conducted a battery drain test at last.

Figure 6. Test environment.

1
1

1 1

(|) ()
arg max [(| ...)] arg max

(|) ()
i i

k

n i i
n

y i k y kN

n i j
j n

P x Y y P Y y
P Y y x x

P x Y y P Y y

�

� �

� �
� �� �

� �� �
� �

� �� �
� �

�

��

1
1

arg max [(| ...)] arg max (|) ()
i i

k

y i k y n i i
n

P Y y x x P x Y y P Y y
�

� �
� � � �� �

� �
�

{ () }() ,0i
l

D L t nP n i D
D

�
� � �

{ () }
() ,0j

m

D M t k
P k j D

D
�

� � �

Sensors 2013, 13 1415

6.1. Positioning Results

This section presents the results of the above mentioned ubiquitous positioning technologies.
Because outdoor positioning performance using GPS has been thoroughly discussed in many
publications, for instance [43], we will mainly focus on the indoor positioning performance in this
section. The test was conducted in the FGI office where forty WiFi access points are distributed among
all the three floors and thirty of them might be detected on the first floor. Among all reference points,
at least one and at most fourteen access points can be simultaneously observed. An Android WiFi
fingerprint collection application was developed on a Samsung Galaxy Nexus. Using that application,
totally 43 reference points were selected for generating the radio map for the test area. The distance
between two adjective reference points is around 3–5 meters. Taking account into the factors which
might affect on RSSI measurements such as the variance of RSSI observations [45], inferences from
other radio systems [53], and the disturbance of human body, sixty samples were collected for each
reference point from four directions during approximately 1 minute. Each direction includes about 15
samples. During the positioning tests, a tester randomly walked throughout the test zone with a built-in
audio recorder in the same phone to provide a positioning reference: the tester made a mark by
speaking out the name of a reference point while passing by it. In total 560 samples were collected for
verifying the positioning accuracy. The entire test area is classified into three types of space: open
space, corridor, and semi-open space. Open space is a large space without obstacles, such as the main
lobby and break room shown in Figure 6. The corridor environment refers to a narrow hallway where a
person usually is oriented in one of only two directions. Semi-open space is an open space with some
obstacles, such as furniture or office partitions.

Finally, the statistical analysis results are listed in Table 3. Positioning results indicate 1.9 meters
errors in corridors, 2.7 meters errors in the semi-open space, and 3.5 meters errors in the main lobby
and break room. The above accuracies are high enough for room-level activity recognition.

Table 3. Positioning results (Unit: Meter).

Environment Open Space Corridors Semi-open
Mean error 3.5 1.9 2.7

RMSE 4.5 3.0 3.3
Maximum error 9.5 6.0 7.0
Minimum error 0 0 0

6.2. Motion Recognition Results

The proposed motion recognition method is verified by a set of dedicated tests. Note that a phone
can be placed at different positions on a user’s body, which impacts the sensor data patterns. In order
to reduce the complexity, the tester always kept the phone in his pants pocket and the orientation of the
phone was as shown in Figure 7. Provided with a sensor data collection application (developed by the
authors), four testers were involved in the sensor data collection during five days. In the FGI office
building, each tester performed six motion states which are listed in Table 1. For each tester,
more than 1,200 samples were collected. Thirteen types of features were extracted from the built-in
accelerometers, gyroscope, and magnetometers in a smartphone.

Sensors 2013, 13 1416

Figure 7. The phone in pants pocket.

Six motion states are detected by a Least Squares Support Vector Machines (LS-SVM)
classification algorithm. The results indicate that the motion states are recognized with an accuracy
rate of up to 92.9% for the test cases employed in this study. The confusion matrix in Table 4 shows
that major confusions existed between sharp turning (M5) and gradient turning (M6) because these two
motion states are processes depending on both the heading change and heading change rate. For
example, if a user’s heading changed 180 degrees in a second, the corresponding motion state will be
determined as sharp turning. However, if the user changes his/her heading in more than two seconds,
the motion state might be considered as gradient turning.

Table 4. Confusion matrix for the motion recognition from LS-SVM classifier (Unit: %).

 M1 M2 M3 M4 M5 M6
M1 99.5 0.5 0 0 0 0
M2 0 96.0 4.0 0 0 0
M3 0 0 100.0 0 0 0
M4 0 0 0 100.0 0 0
M5 0 0 0 16.7 64.8 18.5
M6 0 0 0 1.9 31.5 66.7

We also found that there are some misunderstandings between standing (M4) and sharp turning
(M5). The reason is related to the training phase, where testers started a sharp turn while standing
stationary, and also finished the sharp turning with a standing state. Thus, it was hard to label the sharp
turning samples from the entire training data to only include the sharp turn time segment. As a result,
even though a motion data set is labeled as a sharp turning state, it could include some standing states.

Despite the confusion in the turning states, the other motion states, such as sitting, normal walking,
fast walking, standing, achieve a perfect success rate in the tests, and therefore can be used effectively
for context determination.

6.3. Human Behavior Modeling Results

Activity-Level Descriptors in the Context Pyramid vary because the activity definitions and
scenarios are diverse. Each different activity has its own features. As a result, it is very difficult to
develop a universal model to classify activities in the Activity-Level Descriptors layer. However,

Sensors 2013, 13 1417

location and motion are two fundamental elements of human behavior, which can be used to infer
some human activities. For instance, sitting in an office might be translated as working, standing
beside of a coffee machine could be considered as fetching a drink. Therefore, we proposed the
LoMoCo model in Section 5. In order to demonstrate the usability of this model, we narrow down the
scope of human activities to an employee’s behavior with dedicated contexts in a workplace scenario
as shown in Figure 6. The goal of the tests is to determine the purpose of an employee using the break
room after he/she left his/her office. To simplify the problem, we define six contexts/activities in the
Activity-Level Descriptors:

1. C1: fetching coffee. The tester leaves his/her office and travels through the corridors
and main lobby. Then, he/she fetches coffee from a coffee machine located in the
break room. Finally, he/she returns to his/her office as long as his/her coffee is ready.

2. C2: fetching water. The tester leaves his/her office and travels through the corridors,
main lobby, and break room. Then, he/she fetches water from a dispenser located in
the kitchen. Finally, he/she returns to his/her office as long as his/her water is ready.

3. C3: taking a break. The tester leaves his/her office and travels through the corridors
and main lobby. Then he/she sits in the break room for a while. Finally, he/she returns
to his/her office after a break.

4. C4: having lunch. The tester leaves his/her office and travels through the corridors,
main lobby, and break room. Then, he/she prepares his/her food in the kitchen and has
his/her lunch in the break room. Finally, he/she returns to his/her office after lunch.

5. C5: working. The tester sits in his/her office in most of the time. However, this context
might also include some brief standing, turning, walking motion states.

6. C6: undefined context. Contexts which are not defined in the above are classified as
unknown context.

Figure 8 gives an example of the motion states sequence occurring in a fetching coffee context. The
tester firstly left the office while performing some turnings, and walked to the coffee machine. He/she
stood in front of the coffee machine while fetching coffee, and walked back to his/her office after the
coffee was ready. The example ended up with the tester sitting back in the office.

Figure 8. Motion states in fetching coffee context (C1).

0 20 40 60 80 100 120 140 160 180

1

2

3

4

5

6

Samples [s]

M
ot

io
n

St
at

e

Standing

Normal
walking

Normal
walking

Grandiet
turning

Sitting

Sharp
turning

Fast
walking

Sensors 2013, 13 1418

In this test scenario, we only require room-level accuracy location. Therefore, we use the ID of a
location to where the estimated reference point belongs. We organize the reference points in the test
area, as shown in Figure 9, into significant locations as shown in Table 5:

Figure 9. Graph of reference points.

Table 5. Location definition.

ID Location Reference Points ID
L1 Office R34-1~R37-1, R40-1~R43-1
L2 Corridors R13-1~R14-1, R22-1~R27-1, R33-1, R49-1~R52-1
L3 Main lobby R15-1~R21-1, R44-1~R48-1
L4 Break room R55-1~R61-1
L5 Kitchen R62-1~R63-1

Using Equation (17) in the LoMoCo model, the probability of each location is calculated for each
context/activity. On the other hand, the probability of each motion state is also counted by employing
Equation (18). During the training phase, twenty context samples covering four samples for each
context except C6 were collected for the model training. In the testing phase, four testers performed
sixty-seven contexts including fourteen C1, fifteen C2, ten C4, eight C3, and fifteen C5 context
samples respectively, and five abnormal contexts which are not predefined in the LoMoCo model. The
abnormal contexts included two contexts of fetching papers from a printer, two contexts of taking
break in the lobby and the last one was using toilet. By applying the proposed LoMoCo model, we
obtain the results as follows. Tables 6 and 7 show the results if only location features or motion
features, respectively, are applied in the LoMoCo model. In the case of only location features applied,
85.5% of contexts can be correctly detected. 28.6% and 21.4% C1 contexts are mistaken as C3 and C2
respectively because those contexts have similar location patterns. Furthermore, as shown in Table 7,

R1
3-1

R1
4-1

R1
5-1

R1
6-1

R1
7-1

R1
8-1

R1
9-1

R2
0-1

R2
1-1

R2
2-1

R2
3-1

R2
5-1

R2
6-1

R2
7-1

R3
3-1

R3
4-1

R3
5-1

R3
6-1

R3
7-1

R4
0-1

R4
1-1

R4
2-1

R4
3-1

R4
4-1

R4
5-1

R4
6-1

R4
7-1

R4
8-1

R4
9-1

R5
0-1

R5
1-1

R5
2-1

R5
3-1

R5
4-1

R5
5-1

R5
6-1

R5
7-1

R5
8-1

R5
9-1

R6
0-1

R6
1-1

R6
2-1

R6
3-1

Sensors 2013, 13 1419

similar motion patterns introduce confusions between C1 and C2, C3 and C4, C3 and C5 as well. If we
simultaneously take location features and motion features into account, as shown in Table 8, 90.3% of
all the contexts can be correctly recognized. Abnormal contexts are classified as similar predefined
contexts, for instance, the contexts of taking break in the lobby are recognized as C3, fetching a paper
from a printer is labeled as fetching water or coffee. Using a toilet which is close to the office is
labeled as the context of working.

Table 6. Confusion matrix for the context recognition with location features (Unit: %).

 C1 C2 C3 C4 C5 C6
C1 50 21.4 28.6 0 0 0
C2 0 100 0 0 0 0
C3 10.0 0 90.0 0 0 0
C4 0 0 12.5 87.5 0 0
C5 0 0 0 0 100 0
C6 0 100 0 0 0 0

Table 7. Confusion matrix for the context recognition with motion features (Unit: %).

 C1 C2 C3 C4 C5 C6
C1 28.6 64.3 7.1 0 0 0
C2 0 100 0 0 0 0
C3 0 0 100 0 0 0
C4 0 0 12.5 87.5 0 0
C5 0 0 6.7 0 93.3 0
C6 0 20.0 40.0 0 40.0 0

Table 8. Confusion matrix for LoMoCo model (Unit: %).

 C1 C2 C3 C4 C5 C6
C1 64.3 35.7 0 0 0 0
C2 0 100 0 0 0 0
C3 0 0 100 0 0 0
C4 0 0 12.5 87.5 0 0
C5 0 0 0 0 100 0
C6 20.0 20.0 40.0 0 20.0 0

6.4. Battery Drain Analyzing

Considering that the battery capacity is still limited, we conducted a 3.5 hours test to analyze the
battery drain on a Samsung Nexus phone equipped with a 1,750 mAh Li-ion battery. A
smartphone-based cognitive application as shown in the left image of Figure 4, which sampled the
motion sensors around 90 Hz and scanned WiFi and GPS at about 1 Hz in the Raw Sensor Data layer
of the Context Pyramid in Figure 2, was used for testing. The smartphone screen was kept off during
the test. As shown in Figure 10, we started the test when 60% battery was left.

Sensors 2013, 13 1420

Figure 10. Battery drain on a smartphone.

After 41 minutes with only motion sensors enabled, 2% battery was consumed. The battery was
drained even faster while WiFi scanning was on. Figure 10 indicates 10% battery used in 50 minutes.
The most energy-consuming case was turning on motion sensors, WiFi, and GPS insight of a
smartphone simultaneously and the battery drain rate was 27.5%·h−1 in such circumstance. Therefore,
GPS is suggested turning off or lowering the sampling rate indoors. With a fully charged battery and
without any extra applications running on a smartphone, the cognitive application would constantly
work 8.3 hours if only motion sensors and WiFi are turned on.

7. Conclusions

This research investigates context sensing, modeling human behavior, and developing a new
architecture for cognitive phone platform. We combine the latest positioning technologies and sensors
to capture human movements in natural environments and use the movements to study human
behavior. Contexts in this research are abstracted as a Context Pyramid which includes six levels: Raw
Sensor Data, Physical Parameter, Features/Patterns, Simple Contextual Descriptors, Activity-Level
Descriptors, and Rich Context. To achieve understanding of the Context Pyramid on a cognitive
phone, three key technologies are implemented: ubiquitous positioning, motion recognition, and
human behavior modeling. Preliminary tests indicate that we have successfully achieved the
Activity-Level Descriptors level with a Location-Motion-Context (LoMoCo) model with a correct rate
of 90.3%. Location accuracy of the proposed solution is up to 1.9 meters errors in corridor
environments and 3.5 meters errors in open space. Test results also indicate that the motion states are
recognized with an accuracy rate of up to 92.9%.

Despite the fact that the motion recognition solution proposed in this paper provides a high correct
motion recognition rate, the motion definition and feature selection vary from case to case. For
instance, even though it is easy to confuse sharp turning with gradient turning in motion recognition, it
will not effect on the classification if we merge them as one turning state in some cases. Therefore, in
the future, we will investigate the motion and feature selections to find out the most effective motion

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

Ba
tte

ry
 le

ve
l (

%
)

Time (Min)

Sensors
Only

Sensors+
WiFi

Sensors+
WiFi+
GPS

Stand by

Sensors 2013, 13 1421

states definition and features for context classification. Undefined contexts are not able to handle in the
proposed LoMoCo model yet. Therefore, we will improve the model to detect abnormal behaviors. In
the current stage, we successfully reach the Activity-Level Descriptors for individuals. Social activities
with a group of people will be studied in the near future. Additionally, in the next step of this research
work, we will focus on more complex human behavior modeling to reach the Rich Context level. The
psychological state and social media context will be considered in future work.

Acknowledgments

This work is a part of the INdoor Outdoor Seamless Navigation for SEnsing Human Behavior
(INOSENSE) project, funded by the Academy of Finland. The authors would like to thank Ahsan
Feroz and Tuomas Keränen from Aalto University, Finland, and Sampsa Salminen and Jari Takatalo
from University of Helsinki for helping to collect the data for this research.

References

1. Hu, D.H.; Zhang, X.X.; Yin, J.; Zheng, V.W.; Yang, Q. Abnormal Activity Recognition Based on
Hdp-Hmm Models. In Proceedings of the 21st International Joint Conference on Artifical
Intelligence, California, CA, USA, 11–17 July 2009; pp. 1715–1720.

2. Pei, L.; Chen, R.; Chen, Y.; Leppäkoski, H.; Perttula, A. Indoor/Outdoor Seamless Positioning
Technologies Integrated on Smart Phone. In Proceedings of the International Conference on
Advances in Satellite and Space Communications, Colmar, France, 20–25 July 2009; pp. 141–145.

3. Kraemer, I.; Eissfeller, B. A-GNSS: A different approach. Inside GNSS 2009, 4, 52–61.
4. Syrjärinne, J. Studies on Modern Techniques for Personal Positioning. Ph.D. Thesis, Tampere

University of Technology, Tampere, Finland, March 2001.
5. Laura, K.; Perala, T.; Piché, R. Indoor Positioning Using Wlan Coverage Area Estimates. In IEEE

Proceedings of International Conference on Indoor Positioning and Indoor Navigation (IPIN),
Zurich, Switzerland, 15–17 September 2010; pp. 1–7.

6. Pei, L.; Chen, R.; Liu, J.; Kuusniemi, H.; Tenhunen, T.; Chen, Y. Using inquiry-based Bluetooth
RSSI probability distributions for indoor positioning. J. Glob. Position. Syst. 2010, 9, 122–130.

7. Priyantha, N.B.; Chakraborty, A.; Balakrishnan, H. The Cricket Location-Support System. In
Proceedings of the 6th Annual International Conference on Mobile Computing and Networking,
Boston, MA, USA, 6–11 August 2000; pp. 32–43.

8. Bahl, P.; Padmanabhan, V.N. Radar: An In-Building RF Based User Location and Tracking
System. In Proceedings of Infocom—Nineteenth Annual Joint Conference of the IEEE Computer
and Communications Societies, Tel-Aviv, Israel, 26–30 March 2000; pp. 775–784.

9. Pei, L.; Chen, R.; Liu, J.; Tenhunen, T.; Kuusniemi, H.; Chen, Y. Inquiry-Based Bluetooth Indoor
Positioning via RSSI Probability Distributions. In Proceedings of the Second International
Conference on Advances in Satellite and Space Communications (SPACOMM 2010), Athens,
Greece, 13–19 June 2010; pp. 151–156.

10. Gomes, G.; Sarmento, H. Indoor Location System Using ZigBee Technology. In Proceedings of
Third International Conference on Sensor Technologies and Applications, Athens/Glyfada,
Greece, 18–23 June 2009; pp. 152–157.

Sensors 2013, 13 1422

11. Chen, L.; Pei, L.; Kuusniemi, H.; Chen, Y.; Kröger, T.; Chen, R. Bayesian fusion for indoor
positioning using bluetooth fingerprints. Wirel. Pers. Commun. 2012, 67, 1–11.

12. Ni, L.M.; Liu, Y.; Lau, Y.C.; Patil, A.P. Landmarc: Indoor location sensing using active RFID.
Wirel. Netw. 2004, 10, 701–710.

13. Pei, L.; Chen, R.; Liu, J.; Chen, W.; Kuusniemi, H.; Tenhunen, T.; Kröger, T.; Chen, Y.;
Leppäkoski, H.; Takala, J. Motion Recognition Assisted Indoor Wireless Navigation on a Mobile
Phone. In Proceedings of the 23rd International Technical Meeting of The Satellite Division of the
Institute of Navigation, Portland, OR, USA, 21–24 September 2010; pp. 3366–3375.

14. Liu, J.; Chen, R.; Chen, Y.; Pei, L.; Chen, L. iParking: An intelligent indoor location-based
smartphone parking service. Sensors 2012, 12, 14612–14629.

15. Pei, L.; Liu, J.; Guinness, R.; Chen, Y.; Kuusniemi, H.; Chen, R. Using LS-SVM based motion
recognition for smartphone indoor wireless positioning. Sensors 2012, 12, 6155–6175.

16. Ruotsalainen, L.; Kuusniemi, H.; Chen, R. Visual-aided Two-dimensional pedestrian indoor
navigation with a smartphone. J. Glob. Position. Syst. 2011, 10, 11–18.

17. Mulloni, A.; Wagner, D.; Schmalstieg, D.; Barakonyi, I. Indoor positioning and navigation with
camera phones. Pervasive Comput. 2009, 8, 22–31.

18. IndoorAtlas Ltd. Oulu, Finland. Available online: http://www.indooratlas.com (accessed on 22
October 2012).

19. Liu, J.; Chen, R.; Pei, L.; Chen, W.; Tenhunen, T.; Kuusniem, H.; Kröger, T.; Chen, Y.
Accelerometer Assisted Wireless Signals Robust Positioning Based on Hidden Markov Model. In
Proceedings of the IEEE/ION Position, Location and Navigation Symposium (PLANS) 2010,
Indian Wells, CA, USA, 3–6 May 2010; pp. 488–497.

20. Liu, J.; Chen, R.; Pei, L.; Guinness, R.; Kuusniemi, H. Hybrid smartphone indoor positioning
solution for mobile LBS. Sensors 2012, 12, 17208–17233.

21. Kuusniemi, H.; Liu, J.; Pei, L.; Chen, Y.; Chen, L.; Chen, R. Reliability considerations of
multi-sensor multi-network pedestrian navigation. Radar Sonar Navig. IET 2012, 6, 157–164.

22. Poppe, R. Vision-based human motion analysis: An overview. Comput. Vis. Image Understand
2007, 108, 4–18.

23. Chung, T.-Y.; Chen, Y.-M.; Hsu, C.-H. Adaptive momentum-based motion detection approach
and its application on handoff in wireless networks. Sensors 2009, 9, 5715–5739.

24. Fong, D.T.-P.; Chan, Y.-Y. The use of wearable inertial motion sensors in human lower limb
biomechanics studies: A systematic review. Sensors 2010, 10, 11556–11565.

25. Yang, C.-C.; Hsu, Y.-L. A Review of accelerometry-based wearable motion detectors for physical
activity monitoring. Sensors 2010, 10, 7772–7788.

26. Zeng, H.; Zhao, Y. Sensing movement: Microsensors for body motion measurement. Sensors
2011, 11, 638–660.

27. Musleh, B.; García, F.; Otamendi, J.; Armingol, J.M.; De la Escalera, A. Identifying and tracking
pedestrians based on sensor fusion and motion stability predictions. Sensors 2010, 10, 8028–8053.

28. Kavanagh, J.J.; Menz, H.B. Accelerometry: A technique for quantifying movement patterns
during walking. Gait Posture 2008, 28, 1–15.

29. Baek, J.; Lee, G.; Park, W.; Yun, B. Accelerometer signal processing for user activity detection.
Knowl. Based Intell. Inform. Eng. Syst. 2004, 3215, 610–617.

Sensors 2013, 13 1423

30. Chen, W.; Fu, Z.; Chen, R.; Chen, Y.; Andrei, O.; Kröger, T; Wang, J. An Integrated GPS and
Multi-Sensor Pedestrian Positioning System for 3D Urban Navigation. In Proceedings of Joint
Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009; pp. 1–6.

31. Yang, J. Toward Physical Activity Diary: Motion Recognition Using Simple Acceleration
Features with Mobile Phones. In Proceedings of the 1st International Workshop on Interactive
Multimedia for Consumer Electronics (IMCE), Beijing, China, 19–23 October 2009; pp. 1–10.

32. Frank, K.; Nadales, M.J.V.; Robertson, P.; Angermann, M. Reliable Real-Time Recognition of
Motion Related Human Activities Using MEMS Inertial Sensors. In Proceedings of the 23rd
International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland,
OR, USA, 21–24 September 2010; pp. 2906–2912.

33. Susi, M.; Borio, D.; Lachapelle, G. Accelerometer Signal Features and Classification Algorithms
for Positioning Applications. In Proceedings of International Technical Meeting of the Institute of
Navigation, San Diego, CA, USA, 24–26 January 2011.

34. Pei, L.; Chen, R.; Liu, J.; Kuusniemi, H.; Chen, Y.; Tenhunen, T. Using Motion-Awareness for
the 3D Indoor Personal Navigation on a Smartphone. In Proceedings of the 24rd International
Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, OR, USA,
19–23 September 2011; pp. 2906–2912.

35. Eagle, N.; Pentland, A. Reality mining: Sensing complex social systems. Pers. Ubiquitous
Comput. 2006, 10, 255–268.

36. Adams, B.; Phung, D.; Venkatesh, S. Sensing and using social context. ACM Trans. Multimed.
Comput. Commun. Appl. 2008, 5, 1–27.

37. Anderson, I.; Maitland, J.; Sherwood, S.; Barkhuus, L.; Chalmers, M.; Hall, M.; Muller, H.
Shakra: Tracking and sharing daily activity levels with unaugmented mobile phones.
Mob. Netw. Appl. 2007, 12, 185–199.

38. Choudhury, T.; Pentland, A. Sensing and Modeling Human Networks Using the Sociometer. In
Proceedings of the 7th IEEE International Symposium on Wearable Computers (ISWC2003),
Washington D.C., WA, US, October 2003; pp. 216–222.

39. Choudhury, T.; Philipose, M.; Wyatt, D.; Lester, J. Towards activity databases: using sensors and
statistical models to summarize people’s lives. Data Eng. Bull. 2006, 29, 49–58.

40. Lane, N.D.; Miluzzo, E.; Lu, H.; Peebles, D.; Choudhury, T.; Campbell, A.T. A survey of mobile
phone sensing. Commun. Mag. 2010, 48, 140–150.

41. Campbell, A.; Choudhury, T. From smart to cognitive phones. Pervasive Comput. 2012, 11, 7–11.
42. Pei, L.; Chen, R.; Liu, J.; Liu, Z.; Kuusniemi, H.; Chen, Y.; Zhu, L. Sensor Assisted 3D Personal

Navigation on A Smart Phone in GPS Degraded Environments. In Proceedings of 2011 19th
International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; pp. 1–6.

43. Kaplan, E.D.; Hegarty, C.J. Understanding GPS: Principles and Applications; Artech House
Publishers: Norwood, MA, USA, 2006.

44. Li, B.; Quader, I.J.; Dempster, A.G. On outdoor positioning with Wi-Fi. J. Glob. Position Syst.
2008, 7, 18–26.

Sensors 2013, 13 1424

45. Youssef, M.; Agrawala, A.; Shankar, A.U. WLAN Location Determination via Clustering and
Probability Distributions. In Proceedings of the First IEEE International Conference on
Pervasive Computing and Communications (PerCom 2003), Fort-Worth, TX, USA, 23–26 March
2003; pp. 143–150.

46. Roos, T.; Myllymaki, P.; Tirri, H.; Misikangas, P.; Sievänen, J. A probabilistic approach to
WLAN user location estimation. Int. J. Wirel. Inform. Netw. 2002, 9, 155–164.

47. Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res.
2003, 3, 1157–1182.

48. Hall, M.A. Correlation-Based Feature Selection for Machine Learning. Ph.D. Thesis,
The University of Waikato, Hamilton, New Zealand, April 1999.

49. Jain, A.; Zongker, D. Feature selection: Evaluation, application, and small sample performance.
Pattern Anal. Mach. Intell. 1997, 19, 153–158.

50. Hospodar, G.; Gierlichs, B.; Mulder, E.D.; Verbauwhede, I.; Vandewalle, J. Machine learning in
side-channel analysis: A first study. J. Cryptogr. Eng. 2011, 1, 293–302.

51. Luts, J.; Ojeda, F.; Van de Plas, R.; De Moor, B.; Van Huffel, S.; Suykens, J.A.K. A tutorial on
support vector machine-based methods for classification problems in chemometrics. Anal. Chim. Acta
2010, 665, 129–145.

52. Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neur. Process.
Lett. 1999, 9, 293–300.

53. Pei, L.; Liu, J.; Guinness, R.; Chen, Y.; Kröger, T.; Chen, R.; Chen, L. The Evaluation of WiFi
Positioning in a Bluetooth and WiFi Coexistence Environment. In Proceedings of 2nd
International Conference on Ubiquitous Positioning, Indoor Navigation and Location-Based
Service (UPINLBS 2012), Helsinki, Finland, 2–5 October 2012.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

PUBLICATION 4

R. E. Guinness, “Beyond where to how: A machine learning approach for sensing mobility
contexts using smartphone sensors,” Sensors, vol. 15, no. 5, pp. 9962–9985, 2015.

Distributed under the Creative Commons Attribution License (CC BY)
See: http://creativecommons.org/licenses/by/3.0/legalcode

Sensors 2015, 15, 9962-9985; doi:10.3390/s150509962
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Beyond Where to How: A Machine Learning Approach for
Sensing Mobility Contexts Using Smartphone Sensors †

Robert E. Guinness

Finnish Geospatial Research Institute, Geodeetinrinne 2, FI-02430 Masala, Finland;
E-Mail: robert.guinness@nls.fi; Tel.: +358-50-362-2796

† This paper is an extended version of a paper paper entitled “Beyond Where to How: A Machine
Learning Approach for Sensing Mobility Contexts Using Smartphone Sensors” presented at
26th International Technical Meeting of the Satellite Division of the Institute of Navigation
(ION GNSS + 2013), Nashville, Tennessee, 16–20 September 2013.

Academic Editor: Vittorio M.N. Passaro

Received: 26 February 2015 / Accepted: 9 April 2015 / Published: 28 April 2015

Abstract: This paper presents the results of research on the use of smartphone sensors
(namely, GPS and accelerometers), geospatial information (points of interest, such as bus
stops and train stations) and machine learning (ML) to sense mobility contexts. Our goal is
to develop techniques to continuously and automatically detect a smartphone user’s mobility
activities, including walking, running, driving and using a bus or train, in real-time or
near-real-time (<5 s). We investigated a wide range of supervised learning techniques for
classification, including decision trees (DT), support vector machines (SVM), naive Bayes
classifiers (NB), Bayesian networks (BN), logistic regression (LR), artificial neural networks
(ANN) and several instance-based classifiers (KStar, LWLand IBk). Applying ten-fold
cross-validation, the best performers in terms of correct classification rate (i.e., recall) were
DT (96.5%), BN (90.9%), LWL (95.5%) and KStar (95.6%). In particular, the DT-algorithm
RandomForest exhibited the best overall performance. After a feature selection process for a
subset of algorithms, the performance was improved slightly. Furthermore, after tuning the
parameters of RandomForest, performance improved to above 97.5%. Lastly, we measured
the computational complexity of the classifiers, in terms of central processing unit (CPU)
time needed for classification, to provide a rough comparison between the algorithms in
terms of battery usage requirements. As a result, the classifiers can be ranked from lowest to
highest complexity (i.e., computational cost) as follows: SVM, ANN, LR, BN, DT, NB, IBk,
LWL and KStar. The instance-based classifiers take considerably more computational time

Sensors 2015, 15 9963

than the non-instance-based classifiers, whereas the slowest non-instance-based classifier
(NB) required about five-times the amount of CPU time as the fastest classifier (SVM). The
above results suggest that DT algorithms are excellent candidates for detecting mobility
contexts in smartphones, both in terms of performance and computational complexity.

Keywords: context awareness; smartphone sensors; machine learning; classification;
mobility context; supervised learning

1. Introduction

Devices equipped with Global Navigation Satellite System (GNSS) receivers are approaching
ubiquity with the inclusion of GPS receivers (or GPS + GLONASS receivers) in nearly all modern
smartphones and increasingly in other highly mobile devices, such as tablets and so-called “smart
watches”. Although the GNSS receivers in consumer electronic devices tend to provide a less accurate
positioning result than professional-grade receivers, the quality and reliability is adequate for many
navigation and user tracking applications, as well as a growing number of location-based services.
Certain issues continue to challenge researchers, such as obtaining reliable positioning in indoor and
urban canyon environments, but it can be argued from some perspectives that the question of “where”
has largely been solved by the wide availability of low-cost, low-power-consuming GNSS receivers.

In addition, nearly all smartphones are equipped with a variety of other sensors, such as
accelerometers, gyroscopes and digital compasses, which could be used to understand the nature of
the user’s movement. This enables the smartphone to be aware of not only where the user is but how he
or she is moving. This provides additional contextual information, which may be useful for a variety of
different applications. A few examples envisioned within this study include detection that: “the user is
riding a bus”, “the user is driving a car”, “the user is walking”, etc. We use the term mobility context to
refer to contextual information related to the user’s mode of mobility.

The question of how a person is moving is related to the long-sought goal in mobile and ubiquitous
computing of creating context awareness. It is certainly not the only relevant question in context
awareness, but a solution that could reliably answer it would provide significant value in terms of
enabling context-aware applications. For a recent review of context-aware computing, see [1].

There are many potential applications where mobility context could be used: an application that
automatically searches bus or train timetables as the user walks towards a stop or station and accordingly
plans his or her route, an application that tracks a user’s carbon footprint as a result of using a car or other
means of transportation, functionality in a smartphone to automatically respond to incoming phone calls
with a message “Sorry, I’m driving...” whenever the user is driving or an application to track a user’s
physical activity (walking, running, etc.) for personal health monitoring. In addition, mobility context
can be used in the navigation subsystem of a smartphone in order to improve the navigation solution. For
example, when the smartphone detects that the user is walking, it could apply an optimized Kalman filter
to fuse measurements from the various sensors and account for shortcomings of the GNSS receiver (e.g.,

Sensors 2015, 15 9964

in an urban canyon environment). The mobile computing literature provides many other examples of
application concepts where mobility context plays a strong role (e.g., [2]).

Despite the great potential for applications of mobility context, a reliable solution to provide this
type of information is not yet available commercially, although several companies have attempted
such offerings. This depends, of course, on one’s definition of reliable, but a review of user feedback
to these commercial offerings suggests that users are not yet satisfied with the accuracy of existing
solutions. In addition, a frequent complaint is regarding the increased energy usage of these solutions
(i.e., quickly draining the smartphone’s battery). This suggests that the designers should take into account
the computational complexity of the algorithm that determines the mobility context.

Several researchers have performed relevant studies on mobility context recognition. For example, [3]
used a mobile phone with a GPS receiver and accelerometer to determine transportation modes of users,
achieving 93.6% classification accuracy with the use of discrete hidden Markov models. They did not,
however, distinguish between different types of motorized transport (e.g., car, bus, train, etc.), but
grouped all of these into a single class. Bancroft et al. [4] used a foot-mounted device (with GPS
receiver and inertial measurement unit) to determine different motion-related activities, such as walking,
running, biking and moving in a vehicle, reporting less than 1% classification error during 99% of
measurements. This study focused on applications for military personnel and first responders, where
the use of specially-designed foot-mounted devices is feasible. Although foot-mounted accelerometers
are gaining in popularity (e.g., Nike + iPod sensor), they are not yet ubiquitous in usage. Thus, solutions
that rely on foot-mounted devices are of limited applicability in the current consumer market.

Accordingly, our long-term goal is to develop a solution that detects a wide range of mobility
contexts (walking, running, biking, car, bus, train) using only devices that are truly ubiquitous in today’s
environment. Smartphones are an obvious choice, due to the rich set of sensors that they possess and
their widespread use among the general public. According to market research firm Strategy Analytics,
the number of smartphones in use worldwide surpassed one billion in the third quarter of 2012, and
they estimate that this figure will double by 2015 [5]. Thus, if a solution for the mobility context can be
developed that relies only on a smartphone, its potential impact is enormous.

This paper is an extension of a previously published conference paper [6], which was, to the authors’
best knowledge, the first study to combine the use of GPS, inertial sensors (e.g., accelerometers),
information from geographic information systems (GIS) and ML techniques in order to detect mobility
contexts. Several studies have used GPS, GIS and accelerometers with the aim of understanding
transport-related physical activity, and [7] provides a relatively recent review of this literature. A few
relevant studies have been published in more recent years. For example, [8] used GPS, GIS and
accelerometers to assess travel behaviors. No ML techniques, however, were used to classify the behavior
into different mobility contexts. Furthermore, the study was not implemented using smartphone-based
hardware. Elhoushi et al. [9] studied the use of GNSS and micro-electro-mechanical system (MEMS)
sensors, together with ML techniques, to detect the mobility context. The authors report overall accuracy
of nearly 95%; however, they do not specify which ML algorithm was used for classification. Other
studies have combined GPS and accelerometer data with GIS information, but for other purposes, such
as identifying the areas where children exerted the most physical activity [10]. What is consistently
lacking in many existing studies involving GPS, accelerometer and GIS information is a systematic use

Sensors 2015, 15 9965

and evaluation of available ML techniques for classification purposes, which is surprising given the
success of ML techniques in many other disciplines.

There are several studies utilizing ML and accelerometer data. Jin et al. [11] detected several motion
states using an armband-mounted accelerometer and a “fuzzy inference system”, which can marginally
be considered an ML technique. Other studies that used both accelerometer data and standard ML
techniques to determine mobility or activity-related contexts include [12–16]. They are all lacking,
however, in the use of GPS or GIS. There has been one study that used ML, GPS and GIS, but not
accelerometers [17]. In a later work by Stenneth, however, accelerometers were also used [18]. From
certain aspects, this is the most similar to our work compared to all other existing studies.

The main goal of this present study is to determine if a machine learning technique exists that,
given information provided by GPS, inertial sensors and GIS, can produce a classifier having both high
performance (in terms of recall rate) and low computational complexity. If this can be achieved, then it
offers strong support for the feasibility of detecting the mobility context using smartphones.

This paper is organized as follows. First, we describe in greater detail the overall methodology used
for creating a mobility context classifier. Next, we depict the experiments that we conducted in order to
collect data from various mobility contexts using a smartphone, including a description of the application
developed for this purpose. Thirdly, we discuss the specific procedures used to process and analyze the
collected data and present the results of the experiment. Finally, we draw some conclusions and discuss
our future work in this research topic.

2. Methodology

Since our goal is to detect mobility contexts, such as “user is walking” and “user is riding a bus”,
the main task is one of classification. One approach would be to use unsupervised learning techniques,
such as clustering, in order to organize the data into groups (i.e., classes) of high similarity without
specifying the groups a priori. In our case, however, we desire to obtain groups that have a clear
real-world interpretation, so it is more appropriate to define them according to our natural intuitions
about the mobility context. Furthermore, we would like some measure of “performance” of our resulting
classifier that is easy to interpret. An obvious choice is the rate at which the classifier produces the
“correct” classification of the user’s motion, i.e., the recall rate. Thus, it is necessary to manually label
the data instances with the correct class, leading to the methods of supervised learning.

The basic process used in this study is summarized in Figure 1, which follows the standard supervised
learning approach. In the training phase, a function is generated that maps each of the input vectors to a
target class:

f : x → y (1)

where x is the input vector and y ∈ Y = {y1, y2, ...ym}, i.e., the set of all possible classes. The exact
form of this function depends on the ML algorithm being used. In some cases, the algorithm produces
a probabilistic model of the class distributions, given the input vector, i.e., p(y|x). The function is made
deterministic by selecting the most likely class according to:

y = argmax
y∈Y

p(y|x) (2)

Sensors 2015, 15 9966

Finally, after the function is learned, its performance is measured during the testing phase (using the
testing set), where the values of y output from the function f are compared to the labeled values (i.e., the
“correct” classes). Note that the same function f is used in both the training and testing phases.

Because the performance will exhibit some variance, due to the finite size of the testing set, this
process is repeated and the results averaged. Specifically, we use 10-fold cross-validation.

Figure 1. Overview of the supervised learning process, as used in this study.

3. Experiment Design and Data Collection

For this study, we implemented a smartphone application for the Android operating system capable
of capturing accelerometer and GPS data. This application, called CommutingContext, also performed
several data processing and information retrieval functionalities, which will be described in further detail
below. The application was tested on a Samsung Galaxy Nexus smartphone, which is equipped with a
SiRF StarIV GSD4t GPS receiver and Bosch BMA180 three-axis accelerometer [19]. The smartphone
was running Android Version 4.1 (“Jelly Bean” release).

The data were collected over the course of one day during summer 2012 using two male test subjects,
aged between 30 and 40 years and of good physical health. As this study is of a preliminary nature,
no attempts were made to control for or analyze the possible effects of age, gender, height or other
characteristics of the test subjects on the collected data. All data were collected in the western Uusimaa
region of Finland.

The test subjects were asked to perform various mobility activities, including walking, running, riding
a bus, riding a train and driving a car and to do so in the same manner as they naturally would. The only
departures from normality were that the test subjects were asked to shake the phone at the start and end of
each test run (used as a signal for later calibrating the time system), and they were also asked at various
points during the tests to assume a “static” motion state (primarily after or before a “walking” motion
state). Lastly, the subjects were instructed to place the phone in their pants pocket, in order to maintain
some consistency in the smartphone’s placement and orientation.

Sensors 2015, 15 9967

In total, fifteen test runs were performed, varying in length and mobility contexts. Some details of
these test runs are presented in Table 1. Each of these test runs were either video + audio recorded or
audio recorded by a dedicated device, operated by an observer. The purpose of this was to allow us
to manually “label” the true mobility context as a function of time, providing a reference to measure
our classification performance against. About halfway through the experiment, we switched from
video + audio recording to audio-only recording, because we noted that this was sufficient for reference
purposes and also due to the potential privacy concerns with recording video on public buses or trains.

Table 1. Test runs comprising the dataset. W = walking; R = running; S = static;
MS = moving slowly; RT = riding train; RB = riding bus; D = driving.

Test Subject No. of Data Instances Time Length Motion Contexts

Subject 1 582 10:03 W, S
Subject 1 292 11:32 W, S
Subject 2 364 6:21 W, S
Subject 2 636 15:09 W, S, MS, RT
Subject 2 269 10:48 W, S
Subject 2 654 11:08 W, S, RT
Subject 2 583 9:46 W, S, MS
Subject 1 1266 21:42 W, S, MS, RB
Subject 1 278 4:39 W, S, R
Subject 2 176 2:56 W, S, R
Subject 1 293 4:53 W, S, R
Subject 1 765 16:38 W, S, RB
Subject 2 1017 17:11 W, S
Subject 1 593 10:41 W, S, D
Subject 1 730 12:34 W, S, D

Total 8498 2:46:01

3.1. The CommutingContext Application

The main purpose of the CommutingContext application was to collect GPS and accelerometer data
and to perform some basic data processing and information retrieval functions. A screenshot of this
application is shown in Figure 2.

One of the information retrieval functions that the application performed was to look up train stations
and bus stops in the vicinity of the user, using the position provided by the GPS and the smartphone’s
wireless data connection. Typically Universal Mobile Telecommunications System (UMTS) or Evolved
High-Speed Packet Access (HSPA+) connections were available during the experiment. Two separate
web-based services were used for these purposes: Google Places API for train stations [20] and the
Reittiopas API, provided by the Helsinki Regional Transport Authority [21]. The primary reason for
using Google Places API was its global availability. For bus stops, however, the Google Places API was

Sensors 2015, 15 9968

not comprehensive enough for the areas where the experiment was to be performed. The Reittiopas API,
on the other hand, is highly comprehensive and accurate, but is limited in scope to the areas serviced by
the Helsinki Region Transport (HRT) system (known in Finland as Helsingin seudun liikenne (HSL)).

Figure 2. Screenshot of the CommutingContext application.

Both of these web services return an array of station/stop objects for a given set of latitude/longitude
coordinates, ordered from nearest to furthest away. The application then uses the Android API’s built-in
method for calculating the precise distance between the user and the nearest station/stop.

Another important function of the application was to perform data processing operations, especially
with respect to the accelerometer data stream. Previous studies [14,22] have shown that an important
feature for motion classification is the variance (σ2) in the norm of the acceleration (|a|), defined by the
following equations:

|a| =
√

a2x + a2y + a2z (3)

σ2
t = σ2

t−1 + |a|2t−1 − |a|2t +
|a|2t − |a|2t−N

N
(4)

where |a|t−1 and |a|t represent the mean of |a| at times t − 1 and t, respectively, and N is the size of
the window over which σ2 is calculated. Because σ2 is calculated recursively, the memory required for
its calculation is bound by the window size, N . In our case, we used a window size of 50 accelerometer

Sensors 2015, 15 9969

measurements, which corresponds to slightly more than a one-second window. Preliminary tests
conducted during application development showed that the resulting acceleration signal produced from
this feature was sufficiently responsive to motion changes, such as walking and stopping. Using the norm
of acceleration also has the beneficial property that it is invariant under changes in the orientation of the
smartphone.

In total, the application recorded in a log file a total of fourteen features. Due to the importance of
GPS in this experiment, no data were recorded if there was an outage in the GPS solution. For debugging
purposes, a subset of these features was displayed in the user interface (see Figure 2). In addition,
the raw accelerometer data were recorded in a second log file for post-processing purposes. One
additional feature, which will be described in detail below, was produced from this accelerometer data
during post-processing.

4. Data Analysis

Now, we describe how the above methodology was implemented in this study. The first task was
to manually label the 8498 data instances with the correct mobility context, provided by the reference
recordings. A total of seven motion classes were defined, including: static, moving slowly, walking,
running, driving a car, riding a bus and riding a train. The distribution of these classes in the dataset
is shown in Table 2. Due to the differences between the time systems in the test smartphone and the
reference recording device, a “shake” signal was used to perform time calibration. This shaking of the
phone, which could be seen clearly in the acceleration data, allowed us to synchronize between the two
time systems for labeling purposes. Each mobility context and the associated transitions could be clearly
recognized in the video recordings, and the times of the transitions were noted. For the cases where audio
recordings were used, transitions were verbally noted by the observer during the experiment; thus, the
transition times were noted in a similar manner during post-processing.

Table 2. Distribution of the mobility classes.

Mobility Class No. of Instances Percentage

static 1144 13.5%
moving slowly 297 3.5%
walking 3443 40.5%
running 532 6.3%
driving a car 1135 13.4%
riding a bus 1482 17.4%
riding a train 465 5.5%

In addition, some other simple post-processing steps were performed in MATLAB, such as filling in
labels between the mobility transitions and removing extraneous data from the beginning and end of the
data files. We also removed data corresponding to circumstances not reflected in any of the classes, for
example walking up/down stairs near a train station (these times were noted in the reference recordings).

Sensors 2015, 15 9970

Finally, the data were formatted in MATLAB into a form that could be used in Weka, the software used
for the majority of our data analysis. The entire dataset is available via GitHub, see [24].

4.1. Selecting Features for Classification

The data contained a total of fifteen features, not including the class label. Four of these features were
related to the time system (elapsed time, wall time, Unix time and GPS time). Although some mobility
contexts could be correlated with respect to time of day (particularly for specific individuals, whose
commuting activities follow some routine), we wish our final solution to perform well independent of
such factors. Therefore, we removed these as classification features. Similarly, we removed latitude,
longitude and heading as features for consideration, since we would not expect these to be invariant
across all users. We considered the remaining eight features, described in Table 3, all to be candidates
for use in classification.

Table 3. Description of the features.

Feature Source Description

speed GPS Speed from GPS, converted to km/h.
speedChange GPS Difference in speed from previous GPS measurement.
accelVariance accelerometer Variance in the norm of the acceleration (Equation (4)) over the

moving window.
headingChange GPS Sum of absolute value of heading changes over the moving window.

accuracy GPS Accuracy rating from GPS, assumed to be meters of horizontalerror.
trainDistance GPS/GIS Distance to the nearest train station in meters.
busDistance GPS/GIS Distance to the nearest bus stop in meters.

1 HzPeak accelerometer Strength of 10-Hz peak in FFT of the accelVariance signal.

As mentioned above, one feature was not computed in real-time during the data collection, but
instead was computed during post-processing. This is the “1 HzPeak” feature. As this feature requires
a transformation to the frequency domain, we chose not to attempt to compute it in real-time for this
research. Although modern smartphone processors are certainly capable of computing such features in
real-time, using a fast Fourier transform (FFT) algorithm, for simplicity, we decided to perform this step
in post-processing. It was computed by taking an FFT of the variance of the norm of the acceleration
(as described in Section 3.1 above), using a sampling frequency of 125 Hz and operating on four-second
windows of accelerometer data. After examining the spectrum plots for many segments of the training
data, we decided to use as a feature the relative strength of the FFT peak at about 1 Hz. This feature pr

was computed as:

pr =
2 ∗ p0.98Hz

p0.73Hz + p1.22Hz

(5)

where p0.98Hz, p0.73Hz and p1.22Hz are the peaks at 0.98 Hz, 0.73 Hz and 1.22 Hz, respectively. The
feature pr can be intuitively understood as a signal related to walking, as most people normally walk
with a gait around 1 Hz in frequency. This is supported by previous research and also was evident in our
data in spectrum plots corresponding to periods of walking.

Sensors 2015, 15 9971

4.2. Algorithm Performance Comparison Using Weka

Weka is an open-source, widely-used software framework for ML and data mining [23]. It was chosen
because it supports a large number of ML algorithms, which have been tested and verified using many
different reference datasets. It is also suitable for developing new ML algorithms, although all of the
algorithms used in this study are standard ones distributed with the software package.

Table 4. Comparison of algorithm performance.

Classification Algorithm Accuracy (% Correct) Standard Deviation

Decision Trees
RandomForest 96.51 0.59
NBTree 95.40 0.71
J48graft 94.93 0.77
J48 94.83 0.81
RandomTree 94.45 0.93
LMT 93.25 1.29
FT 92.66 1.02
BFTree 93.77 0.83
REPTree 93.58 1.06
LADTree 85.37 1.29
SimpleCart 94.00 0.83

Artificial Neural Networks
MultilayerPerceptron 87.15 1.80

Bayesian Techniques
NaiveBayes 81.47 1.15
BayesNet 90.89 0.93

Logistic Regression
Logistic 83.41 1.05

Support Vector Machines
SMO 80.24 1.02

Instance-Based Classifiers
KStar 95.55 0.70
IBk(kNN = 5) 80.32 1.25
LWL 95.45 0.14

Baseline
ZeroR 40.52 0.06

Included in the Weka software package (Version 3.6.8) is the Weka Experiment Environment,
which allows one to perform repeated model training using different ML algorithms and employing
standard performance testing techniques, such as cross-validation. We used this environment to perform
classification on our dataset using a wide range of ML algorithms. Each algorithm was used to train and
test a model using 10-fold cross-validation. Because performance varies depending on how the folds are
partitioned, this procedure was repeated 10 times for each algorithm, in order to obtain adequate statistics

Sensors 2015, 15 9972

regarding classification accuracy. The full set of algorithms we employed, grouped by type, is listed in
Table 4, along with the key performance metric, classification accuracy (also known as recall rate).

In Table 4, we use naming conventions consistent with the Weka software package. These sometimes
differ from naming conventions used in the ML literature. For example, J48 is a java implementation
of C4.5, which was originally developed by Quinlan (see [25]). Due to space limitations, we will
not attempt to describe all of these algorithms in detail, but refer the reader to [26] or the Weka
software documentation for details [23]. Several of the algorithms will be described further in the
Discussion Section.

Here, we will mention only one algorithm, ZeroR, which provides a baseline for comparing to the
other algorithms. This is a trivial algorithm that simply classifies all of the testing instances as the most
frequent class in the training set (in our case, the “walking” class). Thus, all other algorithms should
perform at least as well as ZeroR (as is the case here).

It is important to note that all of the algorithms included in the Weka software package assume that
they will be applied to independent and identically distributed (i.i.d.) data. In fact, in nearly all of the ML
literature, it is assumed that the data of interest is i.i.d. In our application domain, however, this is clearly
not the case. Time series data from different mobility contexts are expected to be highly correlated in
time. This issue is handled in Weka by randomizing the order of the data instances, which obscures the
time dependence. See the Discussion section for further implications of this issue.

4.3. Feature Analysis

Because ML algorithms can sometimes suffer poor performance due to the “curse of dimensionality”,
we next endeavored to determine if better performance can be achieved by using a subset of the seven
features described above. Feature analysis is also of particular importance in this research domain
because different features have different costs, in terms of the amount of energy required to produce
them. Thus, feature analysis provides a means of multi-objective optimization, e.g., when the goal is to
achieve adequate performance while minimizing energy requirements.

In order to perform feature analysis, we performed a combination of greedy forward feature selection
(GFFS) and greedy backward feature selection (GBFS). We first re-ran the analysis for five algorithms
(chosen because of their good performance and diversity) using each feature individually (i.e., in each
analysis, only a single feature was utilized). The results, presented in the top section of Table 5,
indicate that speed, acceleration variance (accelVariance), distance to train station (trainDistance), speed
change (speedChange) and distance to bus stop (busDistance) are among the most important features
individually. In a similar fashion, we re-ran the analysis using all of the features minus a single feature
(varying the missing feature each time). These results, shown in the second sub-section of Table 5, show
that, for most of the algorithms and features, the classifiers do not degrade significantly when a single
feature is removed. In fact, for the case of RandomForest with speedChange removed, the resulting
classifier performed slightly better, and when headingChange was removed, there was a negligible
change in the performance. Furthermore, note that speedChange, although among the top individually
performing features, actually degrades the performance when a larger set of features is used.

Sensors 2015, 15 9973

Table 5. Feature selection analysis. LR, logistic regression; NB, naive Bayes.

Feature set RF J48 MP LR NB SV

Individual features

speed 72.9 73.8 71.4 67.7 71.5 55.5
accelVariance 64.2 70.7 62.2 57.4 55.6 57.3
trainDistance 61.6 69.0 56.1 51.7 53.9 50.7
speedChange 50.7 50.7 44.8 40.5 44.0 40.5
busDistance 49.7 56.9 45.6 43.4 43.3 42.9
accuracy 47.1 47.0 46.7 43.9 43.9 44.0
1HzPeak 46.3 51.6 49.8 45.0 43.6 40.5
headingChange 41.3 41.1 49.1 40.5 39.7 40.5

All features, except

speedChange 97.7 95.9 90.1 87.1 79.7 85.0
headingChange 97.1 95.5 87.8 85.5 81.6 81.9
accelVariance 96.5 94.3 85.6 81.6 81.2 74.3
accuracy 96.2 94.3 85.9 83.6 79.5 78.9
speed 96.1 94.2 85.2 79.8 74.1 75.5
busDistance 96.1 94.8 86.5 82.7 82.0 78.7
1HzPeak (all time-domain features) 96.5 94.8 87.1 83.4 81.5 80.2
trainDistance 94.3 92.9 83.1 82.1 78.8 79.4

All time-domain features, except

speedChange 96.7 94.9 86.9 83.5 81.4 80.2
headingChange 96.5 94.8 86.9 83.4 81.4 80.4
accelVariance 96.1 93.5 83.8 78.3 78.7 73.5
accuracy 95.6 93.6 85.1 81.8 78.0 77.6
busDistance 95.1 93.8 84.6 80.8 79.5 77.0
speed 94.6 92.1 83.0 77.6 72.9 73.1
trainDistance 93.3 92.0 82.4 81.1 76.7 77.8

Other subsets

{av, s, t, b, acc, 1hp} 97.6 96.0 90.2 87.1 79.5 85.0
{av, s, t, b, acc} 96.5 94.9 86.6 83.5 81.2 80.2
{av, s, t, b, 1hp} 96.3 94.6 85.5 83.5 78.6 79.1
{av, t, b, acc, 1hp} 96.1 94.5 82.5 79.9 70.1 75.7
{av, s, t, b} 93.8 93.8 84.5 81.8 77.5 77.6
{av, s, h, acc, sc, hc, 1hp} (no GIS) 93.8 92.4 84.8 80.6 79.4 76.3
{av, s, t} 92.4 92.4 81.0 77.4 76.3 72.0
{b, t, 1hp} 89.6 88.4 67.4 62.3 55.2 57.4
{av, s, b} 89.4 89.4 80.8 79.0 73.4 75.0

all 97.1 95.4 87.8 85.5 81.9 81.8

Next, we re-ran the five classifiers using only time-domain features and removing a single feature
among the seven remaining features. The reason we were interested in these results is because, in some
applications, it may be too costly in terms of energy to generate frequency-domain features. We wanted

Sensors 2015, 15 9974

to better understand the performance without the 1 HzPeak feature. To see the effects of removing
individual time-domain features, the results in the third sub-section of Table 5 can be compared to the
second to last row in the second sub-section, where all time-domain features were used.

Lastly, we re-ran the analysis using various small subsets of the features. A sampling of these subsets
is shown in the last sub-section of Table 5. None of these subsets were the best overall performer, but one
subset ({av, s, t, b, acc, 1hp}) was nearly as good and surpassed nearly all of the classifiers that used all
available features. Note also the subset containing all but the GIS-related features (i.e., {av, s, h, acc, sc,
hc, 1hp}) contains all of the features, except the two GIS-related ones. Its performance was about 3.4%
less than when using all features. This highlights the usefulness of GIS in this domain. This difference
would most likely have been more significant if the dataset had consisted of more instances of “riding a
bus” and “riding a train” (see Table 2).

Although the results in Table 5 do not represent an exhaustive feature selection procedure, they offer
some support that, with the possible exceptions of speedChange and headingChange, the features used
in this study are useful for classification and have minimal redundancy.

4.4. Parameter Tuning

Most ML algorithms specify one or more parameters that can be tuned in order to optimize
performance or other characteristics, such as the tendency to overfit the training data. The Weka
platform supplies the user with default parameters for each algorithm, usually based on some rule
of thumb or generally accepted set of values. Not all algorithms, however, have a set of universally
applicable parameter settings and should ideally be tuned according to training data. We selected the
RandomForest algorithm for further parameter tuning, because it performed the best in most of the above
evaluations. For parameter tuning, we used as our input data the feature set containing all features, except
speedChange. This choice was made because the feature analysis presented above showed that this was
the best set of features using the default parameter settings for RandomForest.

In the Weka implementation of RandomForest, there are three parameters that are user-defined:
(1) the max depth of the decision trees; (2) the number of attributes (i.e., features) used for random
selection during the learning process; and (3) the number of trees grown. Early analysis showed that the
recall rate was not very sensitive to the first parameter. We tested the performance at increasing values
for this parameter and found that somewhere in the range of 20 to 30, the performance leveled off and
remained constant for higher values. It is also possible to set this parameter such that no constraint is
placed on tree depth, and this is the setting we used in further analysis.

The default value in Weka for the second parameter (number of attributes used in random selection),
which we call F , is �log2M + 1�, where M is the total number of attributes available. For our dataset,
this parameter would default to F = 3. We wanted to determine if this was indeed the best setting for this
parameter or if better performance could be achieved with another value. Regarding the last parameter,
the number of trees grown (denoted by K), it is generally accepted that the generalization error converges
to a minimum as K increases. We wanted to see at which value an increase in K provides negligible
performance benefit, since increasing this also increases the complexity of classification.

Sensors 2015, 15 9975

In order to avoid the problem of overfitting from the parameter tuning process, we created a hold-out
test set of 10% from the original dataset using random sampling without replacement. As a result, the
class distribution of the hold-out test set is similar, but not identical to the class distribution of the entire
dataset. With the remaining 90% of data, we performed training and evaluation of the RandomForest
classifier using 10-fold cross-validation, while varying the parameters F and K using a grid search
approach. The results are shown in Figure 3. From the contour lines, we can see that for a small choice
of K (<10), there is no clear best choice of F . However, for K > 10, the best choice of F is clearly
two. This can be seen from the contour lines, because for all other values of K, a greater number of trees
is needed to achieve the same level of performance as for F = 2. We have highlighted one particular
point on this curve, where F = 2 and K = 30. The performance at this point is about 97.444%, which,
compared to the point F = 2 and K = 200, is only 0.2% worse in relative terms. Finally, we set F = 2

and re-trained the RandomForest classifier using the full 90% training data, but varying the value of
K, and evaluated the resulting performance using the 10% hold-out test set. The resulting performance
was 97.291% correctly classified samples. The purpose of the analysis using the hold-out test set is
to provide an estimate of how the classifier will perform on new, unseen data; however, to produce
an estimate of good confidence, a large amount of labeled data is needed. Given that this hold-out set
only contains 849 data samples and, for some classes, only a few tens of samples, the main value of
this estimate is that it lends support to the fact that the parameter tuning process did not introduce
significant overfitting. Taking together, the parameter tuning results and the hold-out set results provide
good evidence that a classification performance of around 97% can be achieved, although we caution
the reader that results from two test subjects moving about in one geographic region do not necessarily
generalize to a larger, global population of smartphone users.

Figure 3. Performance of Random Forest as a function of parameter settings.

Lastly, the results from the parameter tuning analysis suggest that for the types of applications
described in this paper, the choice of K could be a user-selectable parameter (e.g., 10 ≤ K ≤ 30),

Sensors 2015, 15 9976

since higher values will improve the performance, but also increase the computational complexity of the
classifier. Clearly, however, the results in Figure 3 show that increasing K to values above about 30 will
only provide minuscule improvements in performance, and it is a case where the law of diminishing
returns holds strong.

4.5. Computational Comparison of Algorithms

In order for a classifier to be feasibly implemented in a smartphone, its underlying classification
algorithm must be relatively simple; otherwise, classification cannot be performed in real-time or would
require an unreasonable amount of resources, draining the limited battery power of a smartphone.
For this reason, we next analyzed the computational complexity of the classifiers. We expect there to
be a direct linear relationship between computational complexity and battery usage, although this must
be confirmed in future studies (see [27]).

First, an important distinction must be made regarding the operations that we are analyzing.
As described above, ML algorithms necessarily involve two steps: model training and testing (in our
case, classification). In this analysis, the only portion that we are interested in is testing, because this
is what would be implemented in a smartphone in order to perform real-time classification. Model
training, on the other hand, is likely to be performed on a PC (or server) and the resulting models later
transferred to a smartphone. For most ML algorithms, model training requires vastly more computations
than testing/classification.

Measuring the relative complexity of the classification algorithms is straightforward, because Weka
can measure and save the CPU time used during the testing portions of each analysis run. Although
these times are likely to vary with the system and platform being used, they are suitable for purposes of
comparing the different algorithms. These tests were performed on a PC with an Intel Core i5-2450M
processor with a 2.5-GHz clock speed. The results are presented in Table 6.

The times represent the average amount of CPU time used to classify 1/10th of the samples in the
dataset (about 850 instances). To aid the reader in understanding the presented values, consider a system
that classifies the user’s mobility context at a rate of 1 Hz. If RandomForest were used, then the
classification part of the computation would require about 10 μs of CPU time each second, whereas
the classifier based on IBkwould require nearly 1 ms of CPU time each second. While both may be
feasible in principle to operate at a rate of 1 Hz, clearly the IBk classifier would consume significantly
more energy than the RandomForest classifier. Of course, the presented values were measured on a PC
rather than a smartphone, so the actual values in a smartphone-based implementation will differ from
those presented. The ratios between different classifiers in terms of CPU time, however, should remain
relatively consistent over similar implementations on different processors.

The CPU time measurement procedure was repeated 100 times (10 repetitions of 10-fold
cross-validation). Note that the standard deviation of many of these measurement times is high compared
to the actual times, especially for the faster algorithms. This is due to limitations in the precision of
the CPU time measurement provided by Weka. In the future, we aim to measure the CPU time for
classification using larger datasets and directly on various smartphone CPUs. The presented results

Sensors 2015, 15 9977

suffer from our current software limitations, but the main value at this stage in our result is to provide a
comparison between different algorithms.

From the above results, we can conclude that most decision tree-based algorithms are very fast
compared to other algorithms. SMOand MultiLayerPerceptronare also very fast algorithms for the testing
portion. Instance-based classifiers, on the other hand, are extremely slow for testing. This will be
discussed in further detail in the Discussion Section. Although the absolute speeds will certainly vary
under different processors and architectures, we have no reason to believe that the relative speed of these
different classifiers will differ significantly from one CPU to another. Nonetheless, this claim should be
confirmed in future work.

It is also true that future implementations of, for example, instance-based classifiers could be
parallelized and optimized for graphics processing units (GPUs), which are common in many modern
smartphones. Recent research results have shown a ten- to twenty-fold speedup in classification utilizing
GPUs and parallel versions of the k-nearest neighbors (kNN) algorithm [28]. A detailed consideration
of parallelization, however, is beyond the scope of the present study.

Table 6. Comparison of computational time.

Classification Algorithm CPU Time (ms) Standard Deviation

Decision Trees
RandomForest 7.96 7.84
NBTree 19.3 7.05
J48graft 3.74 6.70
J48 1.25 4.25
RandomTree 1.40 4.49
LMT 117 6.96
FT 762 54.5
BFTree 1.72 4.90
REPTree 1.09 4.00
LADTree 1.09 4.00
SimpleCart 1.25 4.25

Artificial Neural Networks
MultilayerPerceptron 3.28 6.39

Bayesian Techniques
NaiveBayes 13.26 6.79
BayesNet 6.55 8.05

Logistic Regression
Logistic 4.21 6.96

Support Vector Machines
SMO 2.65 5.90

Instance-based Classifiers
KStar 7.21 × 104 2.74 × 104

IBk (kNN = 5) 751 16.9
LWL 8.60 × 105 7.89 × 104

Sensors 2015, 15 9978

4.6. Error Analysis

Lastly, we measured the types of errors that occurred for the best classifier, i.e., RandomForest, using
all features, except speedCahnge. Classification errors are typically presented in the form of a confusion
matrix, where the true class labels and predicted labels comprise the rows and columns of the matrix,
respectively. This result is presented in Table 7 below, where the bold values show the correctly predicted
class label and the non-bold values show the various classification errors.

Table 7. Confusion matrix for the RandomForest algorithm applied to the dataset.

Predicted Label

Walk Static Slow Train Bus Run Car

A
ct

ua
lL

ab
el

Walking
Static
Moving Slowly
Riding Train
Riding Bus
Running
Driving Car

98.86 0.572 0.145 0.000 0.032 0.383 0.006

3.024 93.81 1.792 0.079 0.420 0.236 0.638

2.929 7.946 87.85 0.000 0.875 0.000 0.404

0.000 0.323 0.000 97.87 1.742 0.022 0.043

0.297 0.499 0.115 0.803 97.10 0.007 1.174

6.184 0.959 0.000 0.019 0.019 92.82 0.000

0.009 1.445 0.000 0.326 2.326 0.000 95.89

Here, we see that the most common errors include the following incorrect classifications: “moving
slowly” as “static”, “running” as “walking”, “static” as “walking”, “moving slowly” as “walking” and
“driving car” as “riding bus”. Note that the percentages are out of all instances within the respective
class, not out of the whole dataset. The accuracy/error percentages by class give a notion of how the
algorithm will perform when the smartphone is engaged in a particular mobility context. For example,
“walking” is detected with the highest accuracy, whereas “moving slowly” is detected with the least
accuracy, in terms of the correct classification rate.

Figure 4. Plot of accelVariance vs. speed for all mobility classes.

Sensors 2015, 15 9979

Lastly, a simple way to obtain a better understanding of the cause of errors is to use two-dimensional
plots of the features. Since we have seen above that speed and accelVariance are among the most
important features, we created plots to see the distribution of the classes with respect to these two
variables. Figure 4 below shows such a plot for the entire dataset. For greater clarity, Figure 5 shows
only the classes “walking” and “running”. Recall from Table 7 that 6.2% of the “running” instances
were confused with the “walking” class. This is not surprising in light of Figure 5, and we will discuss
this error type further in the section below.

Figure 5. Same plot for only “walking” and “running” classes.

5. Discussion

The main goal of this study was to determine if an ML algorithm exists that can produce a classifier
having both high performance (in terms of class prediction rate) and low computational complexity. The
results show that several existing ML algorithms achieved performance above 95% accuracy, but the
only ones that also have relatively low computational complexity (for classification) are decision-tree
algorithms. In particular, the RandomForest and NBTree algorithms performed well. RandomForest,
however, surpassed NBTree, both in terms of performance and complexity.

RandomForest is, in fact, an ensemble classifier, meaning it uses multiple classifiers, and the final
classification is performed by “voting” among the classifiers. For an overview of the method of random
forests, see [29]. Specifically, the Weka implementation is similar to the algorithm referred to as
“Forest-RI” in [29]. RandomForest creates an ensemble of such trees using randomly-selected attributes.

There is one difference between Forest-RI and the Weka implementation of RandomForest. Weka
uses REPTreeas the base classifier; The name of this algorithm comes from “reduced-error pruning”,
which means the decision tree is iteratively “pruned” (i.e., decision nodes are removed) and then tested
to see the effect on its performance [30]. Breiman’s algorithm uses unpruned trees.

Sensors 2015, 15 9980

As mentioned above, many of the algorithms used in this study contain one or more parameters
that can affect the classification performance. In all cases, except one, we used the default parameters
provided by Weka and did not attempt to optimize the parameter settings for performance. The exception
is for IBk, which is a classifier based on the kNN algorithm. We tried several values (1, 5, 10, 100) for
the k parameter and report in this paper only the best performer (k = 5). Further attempts at parameter
optimization of ML algorithms would likely require more labeled data, and as such, it is not emphasized
in this study.

Next, we note that two instance-based classifiers also performed well (KStar and LWL) in terms
of accuracy. In terms of computational complexity, however, these two algorithms were the worst
performers. This is due to the fact that instance-based classifiers essentially work by memorizing the
training data. During testing, the algorithms perform classification by searching through the training
instances to find the closest match. They are sometimes known as “lazy learners” because they
do not make any inferences until the testing phase. As such, they are not particularly suitable for
smartphone-based processing, unless a very efficient look-up scheme could be devised.

In general, the models produced by decision-tree algorithms are intrinsically simple, because they
consist of simply a set of if-then-else statements, which can easily be implemented in any programming
language. The Weka API even has the ability to output a java source representation of the decision
trees that it builds. Of course, the size of the tree (i.e., number of nodes) will affect its computational
complexity. Our results show, however, that even an ensemble of decision-trees, like RandomForest, is
not significantly more complex than, for example, Bayesian techniques or logistic regression. Although
the analysis of computational complexity was performed on a PC, the result in relative terms should be
similar if all of the classifiers were implemented on a smartphone. Our plan to demonstrate this will be
discussed in the section on Future Work.

As mentioned above, all the algorithms available in Weka make assumptions that the data will be i.i.d.,
which is not strictly the case with this dataset. This does not prevent the algorithms from being used
with time series data, but it does mean that the algorithms cannot take advantage of the time dependence
existing in the dataset [31].

One simple way to exploit the inherent time dependence would be to consider at each epoch the
latest n-outputs of the base classifier (e.g., RandomForest) and then produce an ensemble classifier that
chooses the majority from the n individual outputs. This would in effect “smooth” the classifier results
in the same way that a low-pass filter smooths a noisy signal. The disadvantage of this approach is that
the resulting ensemble classifier would not react as quickly to changes in the mobility context, since it
would rely on a memory of recent context states.

In practice, it is rather challenging to perform this kind of analysis using the techniques of machine
learning and the available software tools, although it could be achieved if explicitly planned during
the data collection or built into the analysis software. In general, machine learning techniques call for
randomized sampling from the labeled data to segregate the data into training and test data, as described
above. Since the smoothing technique described above requires consecutive data samples, one would
either need to have a method of randomly selecting many small sets of n consecutive data samples to
segregate the data into training and test sets or one would need to break the violationof random sampling
altogether. In the case of the latter, it would be very important to ensure that the data collection is done

Sensors 2015, 15 9981

in a way that some small time series of data from within the whole dataset is representative of the whole
dataset, especially in terms of class distribution. This is perhaps impractical, however, and we plan to
implement the former technique in our future research.

There exist some other statistical models that utilize time dependence more deeply, such as hidden
Markov models (HMMs) or conditional random fields (CRFs), which could provide better results than
the ML algorithms examined in this paper. Use of these models for detecting mobility context will be
another subject of future research.

Finally, we discuss some potential sources of the classification errors in our results. One likely source
is due to error in the speed measurements provided by GPS. For example, we observed that about 27%
of the data instances with the “static” class label have a non-zero speed measurement. In fact, more than
17% have a speed measurement >2 km/h. This level of error in speed measurements is probably largely
the reason for confusion between the “static”, “moving slowly” and “walking” classes. We attempted to
augment the GPS speed measurements using the acceleration data, but due to the large noise levels, this
proved unsuccessful. What is clear, however, is that if the error of speed measurements at low speeds
could be improved, either by next-generation GNSS receivers, GNSS-IMU integration or some other
means, then the classification results will also improve.

One of the most frequent classification errors was when “running” was confused with “walking”. As
discussed in the section above, this is due to a significant overlap between these two mobility classes
in terms of the features speed and accelVariance. This is perhaps not surprising, because when the user
is jogging slowly, the speed is very similar to that of fast walking. The average speed for all walking
instances is about 5.34 km/h with nearly 8% of instances having speeds greater than 7 km/h. This can be
compared to running, where the average speed is 10.1 km/h, and more than 6% of speed measurements
were less than 7 km/h.

In Figure 5, there is an even greater overlap in terms of accelVariance. It is possible that other features
of the accelerometer may be able to better distinguish between these two classes, for example the
1 HzPeak feature. Another possibility would be to collect data from additional inertial sensors, namely
MEMS gyroscopes, which are available in many smartphones.

6. Conclusions

This research demonstrated that, by combining data from GPS, accelerometers and GIS with
existing ML algorithms, one can build a highly-performing classifier for detecting mobility contexts
of smartphone users. Results from evaluating the performance of various ML algorithms using our full
feature set ranged from 80.2% to 96.5% in terms of the correct classification rate. Results from measuring
the computational complexity of the classification algorithms suggested that many of these classifiers can
feasibly be implemented in a smartphone, although future research must verify these preliminary results.

The only part of the process that would likely need to be implemented separate from the smartphone
is the training (model learning) phase, which can be done using a standard PC with the resulting model
then being transferred to a smartphone. Since training is performed off-line in supervised ML, it is not
required that it be implemented in a smartphone.

Sensors 2015, 15 9982

Furthermore, our analysis showed that decision-tree-based algorithms and, in particular, the
RandomForest algorithm are ideally suited for this type of application. The best performance was
achieved when this algorithm was used with six of our seven features (i.e., all features, except
speedChange), which resulted in an average accuracy of 97.7%. Although RandomForest is not the
least computationally complex of all of the algorithms analyzed, it is feasible to implement on modern
smartphones. This conclusion is supported by the fact that it required on average less than 8 ms of CPU
time to classify 850 instances, using a PC.

Finally, the most common classification errors were confusion between the “static”, “moving slowly”
and “walking” classes, as well as incorrect classification of “running” as “walking” and “driving car” as
“riding bus”. In terms of the features used in this study, these are the classes that are most challenging
to correctly detect. All mobility classes were correctly classified more than 90% of the time with the
exception of “moving slowly”. For this class, correct classification was only achieved 87.9% of the time
with nearly 8% of the error going to the “static” class and nearly 3% going to the “walking class”. This is
not surprising, given that “moving slowly” was defined somewhat as a bridge between these two classes.

7. Future Work

We hope that this work will serve as a baseline for future efforts for detecting mobility contexts.
We examined only the ML algorithms included in the Weka software package, so future work will include
extending our analysis to other existing ML algorithms, such as those based on hidden Markov models
and conditional random fields. Furthermore, we have begun preliminary work on a novel algorithm that
combines aspects of decision trees and hidden Markov models, which we plan to develop further.

In addition, we plan to implement several of the algorithms considered in this paper on the Android
OS and to measure the CPU usage on several different smartphones, in order to more definitively
demonstrate the feasibility of a purely smartphone-based solution.

We also plan to investigate other features that could be used as features for classification, including
other frequency domain features, as well as from additional sensors, such as gyroscopes. With regards
to gyroscopes, one possibility for the future is to use gyroscope data to reduce the error of the heading
measurements, which may result in the headingChange feature being of greater value in future studies. It
is also possible that other GIS type information could be used as features for classification. For example,
OpenStreetMap offers a web service that allows retrieval of road segments or other “nodes” from its
database [32]. These could be very useful for improving the detection of mobility contexts.

Lastly, it is clear that more mobility context data should be collected, including data from a wider
range of test subjects, more diverse environments and additional mobility contexts (e.g., cycling).
It should not be taken for granted that the performance results achieved from two test subjects will
generalize to a larger, more diverse population. Another interesting topic of study would be to investigate
the effects of placing the smartphone in different locations other than the user’s pocket, for example in a
backpack or handbag.

Sensors 2015, 15 9983

Acknowledgments

This work was supported in part by the INOSENSE project (Indoor Outdoor Seamless Navigation
for Sensing Human Behavior), funded by the Academy of Finland. The author wishes to thank Ling Pei
for his assistance with data collection, as well as Ruizhi Chen and Heidi Kuusniemi for supervision and
mentoring support. Thanks also to the Finnish Geospatial Research Institute for organizational support.

Conflicts of Interest

The author declares no conflict of interest

References

1. Dey, A. Context-Aware Computing. In Ubiquitous Computing Fundamentals; Chapman and
Hall/CRC: Boca Raton, FL, USA, 2010; pp. 321–352.

2. Campbell, A.; Choudhury, T. From Smart to Cognitive Phones. IEEE Pervasive Comput. 2012,
11, 7–11.

3. Reddy, S.; Mun, M.; Burke, J.; Estrin, D.; Hansen, M.; Srivastava, M. Using mobile phones to
determine transportation modes. ACM Trans. Sens. Netw. 2010, 6, 13:1–13:23.

4. Bancroft, J.B.; Garrett, D.; Lachapelle, G. Activity and environment classification using foot
mounted navigation sensors. In Proceedings of the 2012 Indoor Positioning and Indoor Navigation
(IPIN) Conference, Sydney, NSW, Australia, 13–15 November 2012.

5. Mawston, N. Worldwide Smartphone Population Tops 1 Billion in Q3 2012. Available online:
http://blogs.strategyanalytics.com/WDS/post/2012/10/17/Worldwide-Smartphone-Population-
Tops-1-Billion-in-Q3-2012.aspx (accessed on 27 April 2015).

6. Guinness, R.E. Beyond Where to How: A Machine Learning Approach for Sensing Mobility
Contexts Using Smartphone Sensors. In Proceedings of the 26th International Technical Meeting
of The Satellite Division of the Institute of Navigation (ION GNSS 2013), Nashville, TN, USA,
16–20 September 2013.

7. Duncan, M.J.; Badland, H.M.; Mummery, W.K. Applying GPS to enhance understanding of
transport-related physical activity. J. Sci. Med. Sport 2009, 12, 549–556.

8. Oliver, M.; Badland, H.M.; Mavoa, S.; Duncan, M.J.; Duncan, S. Combining GPS, GIS,
and accelerometry: Methodological issues in the assessment of location and intensity of travel
behaviors. J. Phys. Act. Health 2010, 7, 102–108.

9. Elhoushi, M.; Georgy, J.; Korenberg, M.; Noureldin, A. Robust Motion Mode Recognition for
Portable Navigation Independent on Device Usage. In Proceedings of the 2014 IEEE/ION Position
Location and Navigation Symposium (PLANS), Monterey, CA, USA, 5–8 May 2014.

10. Quigg, R.; Gray, A.; Reeder, A.I.; Hold, A.; Waters, D.L. Using accelerometers and GPS units to
identify the proportion of daily physical activity located in parks with playgrounds in New Zealand
children. Prev. Med. 2010, 50, 235–240.

11. Jin, G.; Lee, S.B.; Lee, T.S. Context awareness of human motion states using accelerometer.
J. Med. Syst. 2008, 32, 93–100.

Sensors 2015, 15 9984

12. Ravi, N.; Dandekar, N.; Mysore, P.; Littman, M.L. Activity recognition from accelerometer data.
In Proceedings of the National Conference on Artificial Intelligence, Pittsburgh, PA, USA, 11–13
July 2005; Volume 20, pp. 1541–1546.

13. Frank, K.; Nadales, M.; Robertson, P.; Angermann, M. Reliable Real-Time Recognition of Motion
Related Human Activities Using MEMS Inertial Sensors. In Proceedings of the 23rd International
Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2010),
Portland, OR, USA, 21–24 September 2010; pp. 2919–2932.

14. Pei, L.; Chen, R.; Liu, J.; Chen, W.; Kuusniemi, H.; Tenhunen, T.; Kröger, T.; Chen, Y.;
Leppäkoski, H.; Takala, J. Motion recognition assisted indoor wireless navigation on a mobile
phone. In Proceedings of the 23rd International Technical Meeting of The Satellite Division
of the Institute of Navigation (ION GNSS 2010), Portland, OR, USA, 21–24 September 2010;
pp. 3366–3375.

15. Pei, L.; Guinness, R.E.; Chen, R.; Lui, J.; Kuusniemi, H.; Chen, Y. Human Behavior Cognition
Using Smartphone Sensors. Sensors 2013, 13, 1402–1424.

16. Susi, M.; Renaudin, V.; Lachapelle, G. Motion Mode Recognition and Step Detection Algorithms
for Mobile Phone Users. Sensors 2013, 13, 1539–1562.

17. Stenneth, L.; Wolfson, O.; Yu, P.S.; Xu, B. Transportation mode detection using mobile phones
and GIS information. In Proceedings of the 19th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, Chicago, IL, USA, 1–4 November 2011; pp. 54–63.

18. Stenneth, L. Human Activity Detection Using Smartphones and Maps. Ph.D. Thesis, University
of Illinois at Chicago, Chicago, IL, USA, 2013.

19. El-Shiemy, N. The Promise of MEMS to LBS and Navigation Applications. Available
online: http://www.cwins.wpi.edu/workshop12/presentation/Application_panel/ElSheimy.pdf
(accessed on 27 April 2015).

20. Google. Google Places API Developer’s Guide. Available online: http://bit.ly/1vBPd20
(accessed on 26 February 2015).

21. Helsinki Regional Transport Authority. Reittiopas API Developer’s Guide. Available online:
https://www.hsl.fi/en/helsinki-regional-transport-authority (accessed on 27 April 2015).

22. Pei, L.; Lui, J.; Guinness, R.E.; Chen, Y.; Kuusniemi, H.; Chen, R. Using LS-SVM Based Motion
Recognition for Smartphone Indoor Wireless Positioning. Sensors 2012, 12, 6155–6175.

23. Weka project. Weka Documentation. Available online: http://bit.ly/1AaQEQf (accessed on
26 February 2015).

24. Guinness, R. Mobility Context data for 2013 ION Paper. Available online:
http://bit.ly/MLdata2013 (accessed on 24 April 2015).

25. Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann: San Mateo, CA, USA,
1993; Volume 1.

26. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data
mining software: An update. ACM SIGKDD Explor. Newsl. 2009, 11, 10–18.

27. Murmuria, R.; Medsger, J.; Stavrou, A.; Voas, J.M. Mobile Application and Device Power Usage
Measurements. In Proceedings of the 2012 IEEE Sixth International Conference on Software
Security and Reliability, Gaithersburg, MD, USA, 20–22 June 2012; pp. 147–156.

Sensors 2015, 15 9985

28. Nikam, V.B.; Meshram, B.B. Parallel kNN on GPU architecture using OpenCL. Int. J. Res.
Eng. Technol. 2014, 3, 367–372.

29. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32.
30. Elomaa, T.; Kääriäinen, M. An analysis of reduced error pruning. J. Artif. Intell. Res. 2001, 15,

163–187.
31. Dietterich, T.G. Machine learning for sequential data: A review. In Proceedings of the Joint IAPR

International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, Windsor, ON,
Canada, 6–9 August 2002; pp. 15–30.

32. OpenStreetMap. OpenStreetMap API Documentation. Available online: http://bit.ly/181w1zw,
2015 (accessed on 26 February 2015).

c© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

PUBLICATION 5

R. E. Guinness, J. Saarimäki, L. Ruotsalainen, H. Kuusniemi, F. Goerlandt, J. Montewka, R.
Berglund, and V. Kotovirta, "A method for ice-aware maritime route optimization,” in Position,
Location and Navigation Symposium–PLANS 2014, IEEE/ION, pp. 1371–1378, 2014.

© 2014 IEEE. Reprinted with kind permission.

A method for ice-aware maritime route optimization
Robert E. Guinness, Jarno

Saarimäki, Laura Ruotsalainen,
Heidi Kuusniemi

Department of Navigation and
Positioning

Finnish Geodetic Institute
Kirkkonummi, Finland

firstname.lastname@fgi.fi

Floris Goerlandt, Jakub
Montewka

Department of Applied
Mechanics

Aalto University
Espoo, Finland

firstname.lastname@aalto.fi

Robin Berglund, Ville Kotovirta
Department of Solutions for natural

resources and environment
VTT Technical Research Centre of

Finland
Espoo, Finland

firstname.lastname@vtt.fi

Abstract—We present a method for ice-aware maritime route
optimization. Our aim is to increase the safety and efficiency of
maritime transport under icy conditions. The proposed method is
based on the A* algorithm, developed by Hart et al. It uses a
model of maritime navigation, consisting of (1) a sea spatial
model, (2) ship maneuverability model, (3) sea ice model, and (4)
ship performance model. The sea ice model, which provides a
snapshot of the sea ice conditions, is based on previous work by
the Finnish Meteorological Institute. The ship performance
model, based on previous work by Kotovirta et al., estimates ship
transit speed as a function of ice conditions and ship design
parameters. The main novelties in this paper are the application
of the A* algorithm to maritime route optimization and
development of an associated cost function that takes into
account ice conditions and available icebreaker assistance. We
present preliminary results based on the method, using the Baltic
Sea as a case study. Generated routes are compared with
historical routes under the same ice conditions. Areas of future
work and needed enhancements are briefly discussed.

Keywords— routing; ice navigation; maritime navigation; route
optimization

I. INTRODUCTION
Conventionally, navigation and routing functions of vessels

are the responsibility of the vessel’s captain and his or her
designated crew, who rely on their extensive experience and
training to navigate the vessel safely and efficiently.
Increasingly, various data sources, such as electronic charts,
radar imagery, and Automatic Identification System (AIS)
information, are used to assist the captain in planning the
vessel’s route and in real-time navigation to adjust the route
based on the evolving conditions at sea. In challenging
maritime environments, such as in winter conditions at high
latitudes, these various data sources play a critical role [1]. As
the demand for maritime transport increases, especially in
northern and Arctic regions, the need for systems that
specifically address the problem of ice navigation is quickly
rising.

Despite the great success of automated route planning and
navigation for land vehicles, such as car navigators or online
driving directions services, maritime navigation and route
planning remains a mostly manual task, which requires
extensive training and great vigilance to be carried out safely
and efficiently. Various software systems have been developed

to assist the crew in routing and navigation functions, such as
the Jeppesen Vessel and Voyage Optimization Solution
(VVOS), as well as onboard Decision Support Systems (DSS),
which mostly aim to assist the captain in mitigating risks to the
vessel [2]. A large gap still remains, however, between the
available information sources and the ability to utilize them in
an efficient manner. Previous research has attempted to narrow
this gap, most notably the European project, Ice Ridging
Information for Decision Making in Shipping Operations
(IRIS) [3]. Most of the current commercial solutions and
systems, however, are not applicable or optimized for
navigation in ice-covered waters.

Furthermore, there are many documented instances where
poor navigation choices at sea, either due to lack of available
information or poor training, have led to suboptimal routes or
even unsafe routes to be used in ice-covered waters. For
example, in March 2010 around fifty vessels were stuck in
Baltic Sea ice, including six passenger ships, requiring
extensive icebreaker assistance to free the stuck ships. During
this episode a large passenger ship, MS Amorella, collided
with another passenger ship, MS Finnfellow [4]. Countries
with high latitude sea borders, such as Finland, Sweden, and
Russia, expend significant resources to maintain and operate
icebreaker fleets, in order to assist vessels that become stuck in
sea ice, as well as to produce channels in the ice for easier
transit (see e.g. [5]).

The goal of the present work is develop a method that takes
into account available information about sea ice conditions and
icebreaker operations, in order to determine optimal routes,
both in terms of minimizing crossing time and minimizing risk
of ships getting stuck or damaged due to severe ice conditions.
Due to the Baltic Sea being one of the busiest waterways in the
world that experiences significant ice coverage every winter,
this paper will focus on examples from this region.

The paper is organized as follows: We first review related
work especially in the areas of maritime route optimization and
ice navigation. In Section III, we describe (1) the model we
used for the sea environment, including a model of sea ice
conditions, (2) the assumptions we made about how ships can
maneuver in the sea environment, and (3) our model of ship
transit speeds as a function of ice conditions. In Section IV, we
describe icebreaker operations, in order to elucidate the role
they play in route planning. Section V presents the route
optimization method, which utilizes all the elements discussed

This work was supported in part by the Finnish Funding Agency for
Innovation (Tekes) under the ARCSAT project.

1371

in Sections III-IV. In Section VI, we discuss results of the route
optimization method, including preliminary validation of the
results based on historical route information. Finally, we
conclude our work in Section VII, summarizing the main
benefits of our proposed method and describing areas of future
work that still remain.

II. RELATED WORK
Research related to maritime route optimization can be

traced back primarily to a seminal 1960 paper by Hanssen and
James, which describes a system developed by the United
States Hydrographic Office to optimize transoceanic crossings,
utilizing predictions of wind, waves and current [6]. In the
years following, many different route optimization methods
have been proposed, however, few of them are applicable to
navigation in ice-covered waters. One notable exception is [3].
This method described in this paper employed a cost function
based on ship speed and navigation restrictions, such as
fairways and shallow water. The authors’ ship speed estimation
technique took into account ice conditions based on three ice
parameters, including level ice thickness, ridged ice thickness,
and ice concentration. They evaluated the use of three different
optimization techniques for minimizing this cost function, in
order to compute an optimal route, including Powell’s method,
the polytope method, and simulated annealing. The method the
authors chose for prototype implementation (Powell’s method),
however, cannot guarantee to find a global minimum of the
cost function [7]. In other words, an initial guess of the route is
supplied, and the method will find a local minimum of the cost
function with respect to the initial guess.

III. DEVELOPMENT OF A MARITIME MODEL
The purpose of this section is to describe the model of the

sea and ship motion that was used in this study. The model can
be divided up into four parts: (1) sea spatial model, (2) ship
maneuverability model, (3) sea ice model, and (4) ship
performance model.

A. Sea Spatial Model
The main difference between a car navigation application

and a maritime navigation application is that a car is assumed
to only travel on roadways, whereas a ship can generally travel
anywhere where the sea depth is greater than the ship’s draught
and in any direction within this area, provided only that it stays
within such area. This degree of freedom makes the route
planning problem more complex because there is an infinite
number of possible routes between any two given points.
Despite this fact, we note that similar routes will have similar
crossing times. Thus, we can divide the sea area into a finite
number of points and use this set of points as an approximate
model for the actual sea.

Let S represent a set of points in a discrete model of the sea
and m = ��� represent the number of points in this set. For each
point p � S, there will be associated information, such as its
latitude and longitude, the sea depth at that point, as well as
ice-related information, as will be discussed below. The
complete set of points S and this associated metadata are the
primary components of the model of the sea. We refer to this
part of the modeling process as a discretization of the sea.

There are a number of different ways to discretize a given
sea area, but in this work we chose the most simple approach,
which is to define a uniform grid of points with a suitable grid
spacing covering the whole sea area. The drawback of this
approach is that if the grid spacing is small (i.e. a dense grid of
points), there will be a large number of points, which leads to
more computation required for the routing algorithm. If the
grid spacing is large, then the required computation will be
less, but the resulting model will not accurately represent the
actual sea. That is, there will only be a limited number of
positions and directions in which the ship can travel. Fig. 1
shows an example grid applied across the Baltic Sea, where the
grid points are shown in red. In this example, the grid spacing
is relatively sparse (~20 km between each grid point). The
actual grid spacing used in this work was approximately 1 km.
This value, however, can be adjusted according to the
requirements of the end user.

Also shown in Fig. 1 is the concept of a depth mask, which
is a binary image representing where a ship can and cannot
travel based on the depth of the sea. If a given ship has a
draught of r, then the value of the depth mask is defined at each
coordinate in the image as follows:

 ��� � �� ������� � �
� ������� �� �� (1)

where ��� is the value of the depth mask at coordinate (i, j), ���
is the depth of sea at coordinate (i, j), and r is the draught of the
ship. If desired a safety factor can be applied, such that:

 � � �� � ���
	��� (2)

where ������� is the ship’s actual draught and � is a positive
value representing the safety factor. In Fig. 1, a value of r =
10m was used. The white regions represent the areas where the
depth mask has a value of 1, and the black regions represent a
value of 0.

 Note that because the depth mask is a function of a ship’s
draught, the resulting model of the sea is customized to a
specific ship or class of ships. In practice, any implementation
of this method should pre-compute a set of depth masks
appropriate for the set of ships for which the routing software
will be used. Thus, the software could apply the most suitable
depth mask as a lookup table prior to start of route
optimization.

B. Modeling Ship Maneuverability
 To model how a ship can move among the grid points
described above, we define a set of neighbors � and assume a
ship can move from its current position (i.e. grid point) to one
of its neighboring grid points defined by this set. For example,
if the set of neighbors were defined as �={north, south, east,
west}, then the set of vectors from the current position to each
of the neighbors (which we refer to as the set of direction
vectors �) would form the four cardinal compass directions. As
a result, the ship could only move in these four cardinal
directions. Since this is obviously not sufficient to accurately
describe the real maneuverability of a ship, additional
neighbors must be added to the set.

1372

 Let n = ��� = ���� represent the number of neighbors
defined in the ship maneuverability model. In this work, we
used n = 56 and defined the sets � and � as shown in the
Appendix (i.e. Table III)�. Note that because a uniform
rectangular grid of points was used, the length of each of the
vectors in set � is not necessarily the same. In fact, in defining
these sets, the aim was to keep the difference in compass
directions between the direction vectors as close to equal as
possible. Fig. 2 illustrates the sets � and � defined and used in
this work, where the red squares represent the neighbors
(relative to the central square drawn in green) and the blue
arrows represent the direction vectors. The average angle
between adjacent direction vectors is 6.43° with a minimum
separation of 4.97° and maximum of 8.13°.

 Thus, the set defined by � represents a discretization of the
maneuverability of a ship at sea, similar to how the set of grid
points S discretized the sea into a finite set of points. The
choice of n is a tradeoff between having an accurate model and
the computational complexity of the routing algorithm which
will use the model. Similar to the choice of grid spacing, n can
be adjusted according to the requirements of the end user.

 Together the sets S and � constitute a graph, consisting of
m nodes and a set of edges between the nodes, defined
according to �. In other words, � determines the connectivity
of the graph. Because nodes on the edge of the sea boundary do
not necessarily have n valid neighbors, the exact number of
edges depends on the dimensions of the sea area. The upper
bound for the number of edges, however, is m*n. Fig 3. shows
a portion of the graph structure used in this work (i.e. n = 56).
The blue lines show the edges drawn between nodes in the
graph (which are shown in red). The figure has been zoomed in
to cover only nine points because when zoomed further out, it
quickly becomes difficult to discern the edges separately.

1Note that the set � is uniquely defined by the set �. As such, a reference
to � implies the corresponding set � and vice versa.

C. Modeling Sea Ice

The ice data were obtained from the hindcasts generated
using the HELMI multicategory sea-ice model, developed at
the Finnish Meteorological Institute; for details see [8]. The
model resolves ice velocity, internal ice stress, ice
concentration and ice thickness. Thickness is resolved for
seven categories: five level ice categories, plus rafted ice and
ridged ice. The ice model is discretized in a curvilinear
coordinate system called a c-crid, a common solution when
there are both fields of velocities and velocity-dependent
properties to be solved. The grid has 415 nodes from west to
east and 556 nodes from south to north. The SW lower corner
coordinates are 56.74° N 16.72° E, NE corner coordinates
65.99° N 30.48° E, and the increment is 1/30 degrees eastwards
and 1/60 degrees northwards. This is approximately 1 NM in
both directions at 60°N.

Fig. 3. The blue lines represent connections between nodes which are
valid paths for a ship to travel. Only nine nodes are shown in the
figure, whereas in an area the size of the Baltic Sea, there may be tens
of thousands of nodes, depending on the chosen grid size.

Fig. 2. The set of neighbors � and direction vectors ������� ���
�������������������������

Fig. 1. Example of a depth mask for the Baltic Sea with a threshold
value r set to 10 m. The black regions represent unnavigable areas. The
red dots represent nodes in the discrete model of the sea. In the figure, a
node spacing of about 20 km is shown, but in practical implementations
a smaller spacing is generally used.

1373

Ice motion is determined by the momentum balance
equation, which takes into account the Coriolis force, wind and
water stresses, sea surface tilt term and internal friction of ice,
which is the divergence of internal stress tensor. The
magnitude of internal friction is used as the principal model
variable to describe compression. It is to be noted that the
viscous-plastic rheology does not describe elastic stresses and
the internal stress arises from the interactions of moving ice.
Forces arising in a static ice are included by assuming a
negligibly slow viscous creep. Roughly, the internal friction
term can be interpreted to describe the forces arising when ice
floes are pushed and sheared against each other, or broken and
heaped into ridges. Thus it is a good descriptor for the
interaction between dynamical ice cover and an ice-going ship.
This is manifested as ice forces against the ship hull and as the
closing of channels, or other phenomena that navigators
associate to compressive ice conditions. The internal friction
magnitude has typical values ranging from 0 to 10 N/m2. The
magnitude acts as a proxy for ice compression, scaled to semi-
empirical compression numeral 0-4, where 0 means no
compression and 4 stands for extreme severe compression, see
Table I. However, to estimate the actual local forces additional
scaling arguments must be taken into account such as floe size
and other ice cover geometry.

TABLE I. ICE COMPRESSION CONVERSION

Ice pressure
obtained from the

HELMI model
[10� N]

Practical scale

0 – 500 no significant compression 0

500 – 1000 mild pressure 1
1000 – 2000 moderate pressure 2
2000 – 3000 severe pressure 3

>3000 extreme severe pressure 4

D. Modeling Ship Performance in Ice
This chapter provides an outline of the adopted approach

for estimating ship performance in ice conditions, which is
used in the cost function of the path planning algorithm.

 Various advanced theoretical approaches have been
developed to estimate vessel performance in ice conditions,
including analytical models [10-11] and simulation-based
calculation procedures [12-13]. These typically require detailed
information regarding the ship hull design, while being limited
in application in real-world ice conditions as the mentioned
models only consider level ice. Methods based on full-scale
onboard data have been developed [14] and recently, a
probabilistic model based on a combination of data from the
Automatic Identification System (AIS) and ice information has
been developed [15, 23].

In the current approach to vessel performance, an approach
presented in Kotovirta et al. is applied [3]. While it has the
limitation of only accounting for level ice, ice ridges and pack
ice, its computational efficiency is beneficial in the context of
route optimization. The methodology is based on a semi-

empirical model by Lindqvist [16], as modified in La Prairie et
al. [17] and Riska et al. [18]. In ridged ice fields, the ship
transit speed vi,eq (m/s) is determined by numerically solving
following force balance equation, where ice resistance and
propulsion power are in equilibrium:

 ������� � �������� ���� ������ (3)

Here, Tnet is the net available trust (kN), Rtot the total ice
resistance (kN), hi the level ice thickness (m) and heq the mean
thickness of the ice rubble (m). hi and heq are derived from the
sea ice model (see Section IIC). The net available trust Tnet is
obtained from following simplified formula, see [19]:

 ������� � � � �

	
	��

� �

 �

	
	��

��� ����� (4)

Here, v is the average ship speed (m/s), vow the ship speed
in open water (m/s) and Tpull the bollard pull force (kN), i.e. the
available trust when a vessel is stationary with engines running:

 ����� � ��������
�
� (5)

with propulsion power Ps, propeller diameter Dp and quality
efficient for bollard pull Ke.

While not fully physically correct, the total ice resistance
Rtot is taken as a sum of resistance components stemming from
breaking through level ice Ri and passing through ridge rubble
Rr:

 ������� � ������ �� ������ �� (6)

Riska et al. [18] assume a linear relation for the relation
between level ice thickness and speed:

 �� � �� ��� (7)

with:

 �� � �� �
�����

������� (8)�
���������� ������������� �
������� ����������

and:

 �� � � ��������������� ������ (9)

�
�� � ��
�
��

��
��

The resistance in ridges Rr is calculated as:

�� � ��
���� �� ����������¡¢£��� £¤¥¦ £¤¥ §��

 ���������� �� ¨©ª«¬®

 ���¯�°±�� (10)

Here, �h is the friction between hull and ice, �2 the angle
with buttock line at B/4 with the horizontal, �2 the waterline
entrance angle at B/4, Lpar the length of the parallel midbody,
L, B and T the vessel length, width and draft, Awf the bow
waterplane area, and Fn the Froude number. All necessary
constants are given for the considered vessel in Table II.

The effect of ice concentration on ship performance in ice,
focusing on attainable speed and hull loads, has been studied
using a simulation model of ship dynamics in ice, applying

1374

analytical formulae for ice resistance [20]. The adopted
approach in the route optimization is based on empirical
formulae and a set of simplifying assumptions, see [3].

TABLE II. SHIP PERFORMANCE CONSTANTS

With an ice concentration C less that C0, the vessel is

assumed to manoeuver around ice floes and sail at the open
water speed vow. For ice concentrations higher than C1, the ship
operates at vi,eq, the speed through the ridged ice field. Between
C0 and C1, the resulting transit speed vtr is assumed as a linear
combination of vow and vi,eq:, assuming C0=70% and C1=95%:

 ��� � �
��� � � ��

�����������������
	�
�������

�� � � � ��
��
�� � � ��

� (11)

While the vessel performance is largely based on semi-
empirical formulations and does not account for effects of
compression, which can be significant [21], the approach leads
to a reasonable estimate of total transit time [3, 17].

IV. WINTER MARITIME SHIPPING IN THE BALTIC SEA
In spite of the sea ice in wintertime, most of the ports

around the Baltic Sea are kept open all year around for
shipping. This is possible thanks to specially built icebreakers

(8 Finnish, 9 Swedish, 2 Estonian, 3 larger and several smaller
Russian icebreakers operate in the Northern Baltic Sea) that
assist the merchant ships through the ice field.

Cooperation between the nations around the Baltic Sea
enables more efficient use of the icebreakers, as many ship
routes have common parts irrespective of the port of
destination. Especially in the Bay of Bothnia and the Sea of
Bothnia, the Finnish and Swedish icebreakers organize their
assistance activities as a joint fleet and the operating costs are
shared between the Finnish and Swedish governments based on
actual assistance provided and the port of destination of the
assisted ships.

To ensure efficient and safe navigation, the ships bound for
ports surrounded by ice have to fulfill some minimum
requirements regarding capability to navigate through the ice,
both from a safety (e.g. hull strength) and efficiency point-of-
view (e.g. machine power). These requirements have been
formulated into ice class rules defined by classification
societies. The Ice Class notation given by a Classification
society can be mapped to an Equivalent Finnish/Swedish ice
class using mapping tables issued by the Finnish and Swedish
authorities. The port-specific ice class restrictions (Ice
Restrictions for short) are determined by the maritime
Administration in the country of the destination port and are
updated depending on the ice conditions and forecasts. These
ice restrictions are published on the Internet and also included
in the daily ice charts issued by the national Ice Services.

A ship coming from the southern part of the Baltic Sea,
bound for a Swedish or Finnish port having a valid ice
restriction, is obliged to contact a coordinating point
announcing, among other things, the port of destination of the
ship. The coordinating point then checks that the ship fulfils the
ice class requirements and tells the ship the coordinates of the
next ice waypoint and also which icebreaker to contact. Often,
when the ship is considered capable of navigating
independently for part of the voyage (not necessarily having to
be escorted by an icebreaker), the ship is given several ice
waypoints defining a coarse route through the ice field. The
details on how to navigate through the ice field between the ice
waypoints, which may be separated by tens of nautical miles,
are left to the ship itself. The waypoints are often
communicated to the ship over VHF, but sending the ice
waypoints in digital form to the ship using e-mail or an AIS
addressed message, is becoming more and more common.
Icebreakers give lowest priority to ships which do not follow
these waypoints, the result of which is that ships in general
follow them whenever there is a significant chance of requiring
icebreaker assistance.

The ice waypoints are determined by the icebreakers and
registered in the Icebreaker information system, IBNet,
maintaining the overall set of valid points. The waypoints are
updated when needed as a consequence of changing ice
conditions. Some of the waypoints may be valid for weeks, but
often they are adjusted with 2 -3 days intervals. Satellite
images (especially Synthetic Aperture Radar images), ice drift
forecasts, ship speed monitoring (i.e. how ships have been able
to proceed through the ice field) and ice observations from
other icebreakers are used as background information. This

Constant Value Unit

�� 230 � ���

�� 4580 � ���

�� 1470 � ���

�� 290 � ���

 � 18900 � ��������

 � 670 � �������

 � 1550 � ��������

�� 850 � ���

�� 42 � ���

�� 1300 � ���

�� �����
� ����

-

L 193.7 m

Lpar 136 m

B 30.2 m

T 12.0 m

�h 0.05 -

�2 0.7156 rad

�2 0.6981 rad

Awf 496.79 m2

1375

information is then combined by the experienced icebreaker
captain into a set of waypoints that are registered in the IBNet
system and communicated to the ships. A tool that could
simulate different routing alternatives for ships with varying
capabilities could help the icebreakers to determine and adjust
the ice waypoints as part of an optimal (safe and efficient)
winter navigation system.

V. ROUTE OPTIMIZATION
The classic algorithm for route optimization, also known as

pathfinding, using graph structures is called A* [22]. A* finds
an optimal path according to a cost model and subject to the
constraints imposed by the graph structure. In our case the
graph structure includes the set of points S resulting from the
discretization of the sea, as described in Section IIIA, plus the
set of edges connecting the grid points, as described in Section
IIIB.

For the details of the A* algorithm, we refer to reader to
[Hart et al., 1968]. In short the algorithm begins at the origin
point, computes the cost to travel to that point’s neighbor nodes
(according to the cost model), and then sorts these neighbor
nodes in priority order according to the following heuristic:

 ��� � ��� � ��� (12)

where Fij is the value used for sorting, Gij is the cost to get to
the node with coordinates (i, j), and Hij is a heuristic estimate of
the cost to from node (i, j) to the destination. After computing
the value of Fij for each neighbor node, the algorithm chooses
the lowest Fij among all the nodes (i, j) on the so-called “open
list” and then computes Fij for the neighbor nodes with respect
to the chosen point (i, j), known as the current parent node.

The algorithm repeats this process recursively until the
destination node has been reached. As each neighbor node is
“visited” by the algorithm, the cost to get to that node from the
current parent node must be saved (i.e. Gij), as well as the
coordinates of that parent node. Because most nodes have
multiple parent nodes from which they can be visited,
occasionally the algorithm will revisit nodes already on the
open list. As Gij is recalculated, if it is less than the stored value
of Gij, the old value as well as the coordinates of the parent
node are replaced with the current values. This is because this
new path to the node (i, j) represents the shortest path to that
node among all attempted paths. In this way, the algorithm is
storing a set of candidate sub-paths between the origin and the
visited nodes in S. After the algorithm reaches the destination
node, it can trace back through the stored parent nodes to find
the best overall path between the origin and the destination.

Next, we define the cost model used by the function Gij. It
is a function of both the geometry (i.e. distance between nodes
in the graph), the ice conditions (i.e. estimated speed that the
ship can travel under given ice conditions, as derived in Section
IIIC), and the distance to the nearest icebreaker waypoint (as
discussed in Section V), namely:

 ��� � � �������������
	
�����	

������� (13)

representing a Riemann sum estimating the time it takes to
travel from the origin to the destination; (i,j) are the coordinates
of the point immediately before the destination point; the

summand contains v(k, dib), the estimated ship speed at point
(a, b) along the route and at distance dIB from the icebreaker
waypoints, and ������, the length of the line segment between
point k to point k+1. The function v(k, dIB) is defined as
follows:

 ���� �� 	 � �����	 ������ � ��
������� ������ � � � (14)

where vtr is defined according to Eq. 11 and vmax is the
maximum transit speed, normally corresponding to nominal
speed of the modeled ship in open water conditions. To
determine this value at any given point (a, b), we linearly
interpolated the two-dimensional grid of ship transit speeds
described in Section IIIB. dib is defined as the shortest distance
between the point (a, b) and the line formed by the icebreaker
waypoints, and c is a threshold value set to control how close to
the icebreaker waypoints the ship should come before it is to
receive icebreaker assistance. In this study, we used a value for
c of approximately 2 km.

The remaining element to define is the heuristic function
Hij. We used the following:

 ��� �
����������	�����������	�

����
 (15)

where xi is the x-coordinate of the node (i, j), xdest is the x-
coordinate of the destination, yj is the y-coordinate of the node
(i, j), ydest is the y-coordinate of the destination, and vmax is the
maximum. We used a local Cartesian coordinate system in
order to speed up computation.

VI. VALIDATION OF RESULTS AND DISCUSSION
Although a ship’s crew has great freedom in choosing its

route to their intended destination, in practice, especially in the
relatively narrow Baltic Sea, ships follow more restricted
pathways. Under ice conditions, ships need to follow
icebreaker instructions (i.e. waypoints), and thus they have
even less route options. Despite these constraints, there is much
to be gained by optimizing the route based on the best available
knowledge about the ice conditions. We see that the Baltic Sea
area is ideal for development and testing of ice-aware route
optimization, as it is one of the busiest ice covered sea areas,
and therefore there are statistical data about ship transits
available for validation, as well as model and observational
data about the ice conditions.

Nonetheless, one of the challenges in this research topic is
the difficulty of validating whether the chosen route
optimization algorithm actually produces optimal results. That
is, if the goal is to find a route that minimizes the crossing time,
how can one show that the generated route gives the minimum
time among all possible routes? Earlier work has shown that if
a well-defined (i.e. admissible) heuristic Hij is used, then A*
will find the globally optimal path between the origin and
destination [24]. Hij is considered admissible as long as it never
overestimates the actual cost to get to the destination from a
given node (i, j). Because the Euclidean distance is always
shorter than the geodetic distance and because the ship can
never travel faster than ����, Hij is a conservative estimate of
the shortest crossing time between the node (i, j) and the

1376

destination. For this reason, Hij always underestimates the
actual minimum cost to travel from node (i, j) to the
destination, and is therefore admissible.

The question remains, however, does the cost function used
to generate the route accurately estimate the cost (in terms of
crossing time) of traveling along a given route? This question
is not easily answered, and it is where historical maritime
traffic data can play a key role. As many ships are equipped
with an Automatic Identification System (AIS) transponder,
which broadcasts the position, heading, and speed of the ship
among other information. AIS data is received not only by
other ships in the vicinity of a broadcasting ship but also
receivers designed to monitor all the maritime traffic in a given
area. This data is then made available by various commercial
providers, such as AIS Live, or by governmental authorities.

Fig. 4 below compares the generated optimal route with
historical AIS routes under the same ice conditions (i.e. same
day) as used to generate the route. The sea area shown is
primarily the Gulf of Finland with the Finnish coast on the top
half of the images and the Estonian coast on the bottom. The
AIS routes are shown in yellow, and the generated route in
blue. The icebreaker waypoints are shown with a blue star-
shaped marker. The calculated transit speeds (i.e. Eq. 11) are
indicated by the background color of the sea areas, where the
highest speeds are shown in magenta and the lowest speeds
shown in cyan. It is apparent that there is significant difference
between the historical routes and the generated routes. At this
phase in our research, it is not possible for us to say which one
of the two routes for each case is more optimal. We can only
make a few conjectures and identify aspects requiring further
development.

In both cases presented in Fig. 4 the ship represented by the
AIS data took a more direct route to the first icebreaker
waypoint but spent more time under heavy ice conditions. One
possibility is that the crew was not aware of area of open water
near the Estonian coast. Another possibility is that they simply
believed that the more direct route to the first waypoint would
be faster. It is also possibility is that the more direct route
actually was faster, compared to the generated route. If this
were the case, then it would follow that our cost function is
inaccurate. The only way we could determine whether this is
the case, however, would be if there was additional AIS data
for a similar ship over the same time period, where the ship
took this more southerly route. Unfortunately, we have not yet
identified a suitable set of AIS data to disambiguate these
various possibilities.

One deficiency of the currently implemented method is that
it places no constraints on the number and severity of course
changes in the calculated route. Ship crews generally would
prefer fewer course changes, especially if there is no significant
advantage to making such changes. In addition, ships have
physical constraints on the rate of course change. It has been
suggested that a penalty could be added to the cost function for
course changes, the value of which would be proportional to
the magnitude of the course change. This would result in
straighter routes to be generated, balancing the benefits of
changing course with the operational and physical constraints

they impose. This approach has not yet been implemented, but
it is planned in future work.

VII. CONCLUSIONS
This paper has demonstrated the feasibility of ice-aware

maritime route optimization. That is, it appears that existing
route optimization algorithms, namely the A* algorithm, can be
used to minimize the costs associated with sailing through ice-
covered waters. Furthermore, the effect of icebreaker assistance
can be taken into account by adjusting the cost associated with
sailing in the areas between a set of waypoints published by the
icebreaker service.

Further work is needed to validate that the results produced
using the presented method are indeed optimal. Validation
efforts should include further analysis of historical data, as well
as simulator-based studies and actual testing of routes at sea.
The goal of minimizing crossing time is just one aspect among
several that must be taken into account in maritime route
planning with others including operational efficiency, safety,
and reliability. If the ice information or the cost function used
to generate the route are faulty, then the algorithm is prone if
not likely to generate suboptimal routes. Thus, it is clear that
results can be improved through further work to improve the
quality of ice forecasts and further development of models of
ship performance in ice. For example, the HELMI sea-ice
model provides greater detail than is used in the current model
of ship transit speed. Future work should focus on
incorporating additional factors, such as ice compression, in
order to more accurately predict ship speed under compressive

Fig. 4. Comparison of generated routes with historical routes under the
same ice conditions. Historical routes, based on AIS data, are shown in
yellow with generated routes shown in blue. The cyan and magenta
coloring represent transit speed with magenta indicating speeds near those
of open water sailing.

1377

ice conditions. Lastly, future work should also compare the
results generated with the presented method to results produced
using other algorithms, such as Powell’s method.

VIII. APPENDIX
The following table shows the complete set of neighbors ��

and direction vectors��������������described in Section IIIB.
The coordinates reference the relative position from the central
node, e.g. (1,-1) is one node to the east and one node to the
south from the central node. See Fig. 2 for an illustration.

TABLE III. SET OF NEIGHBORS AND DIRECTION VECTORS EMPLOYED

Coordinates
(x,y)

Compass
Angle (deg)

Coordinates
(x,y)

Compass
Angle (deg)

1 (0,1) 0 29 (3,2) 56.310
2 (0,-1) 180 30 (3,-2) 123.690
3 (1,0) 90 31 (-3,2) 303.690
4 (-1,0) 270 32 (-3,-2) 236.310
5 (1,1) 45 33 (4,5) 38.6598
6 (1,-1) 135 34 (4,-5) 141.340
7 (-1,-1) 225 35 (-4,5) 321.340
8 (-1,1) 315 36 (-4,-5) 218.660
9 (1,2) 26.565 37 (5,4) 51.340
10 (1,-2) 153.435 38 (5,-4) 128.660
11 (-1,2) 333.435 39 (-5,4) 308.660
12 (-1-,2) 206.565 40 (-5,-4) 231.340
13 (2,1) 63.435 41 (5,1) 78.690
14 (2,-1) 116.565 42 (5,-1) 101.310
15 (-2,1) 296.565 43 (-5,1) 281.310
16 (-2,-1) 243.4349 44 (-5,-1) 258.690
17 (3,1) 71.565 45 (1,5) 11.310
18 (3,-1) 108.435 46 (1,-5) 168.690
19 (-3,1) 288.435 47 (-1,5) 348.690
20 (-3,-1) 251.565 48 (-1,-5) 191.310
21 (1,3) 18.435 49 (1,10) 5.711
22 (1,-3) 161.565 50 (1,-10) 174.289
23 (-1,3) 341.565 51 (-1,10) 354.289
24 (-1,-3) 198.435 52 (-1,-10) 185.711
25 (2,3) 33.690 53 (10,1) 84.289
26 (2,-3) 146.310 54 (10,-1) 95.711
27 (-2,3) 326.310 55 (-10,1) 275.711
28 (-2,-3) 213.690 56 (-10,-1) 264.289

REFERENCES
[1] Bowditch, N., The American Practical Navigator, National Imagery and

Mapping Agency, 2002.
[2] U. Nielsen and J. Jensen, “A novel approach for navigational guidance

of ships using onboard monitoring systems,” Ocean Engineering, Vol.
38, No. 2-3, 2011, pp. 444-455.

[3] Kotovirta, V., Jalonen, R., Axell, L., Riska, K., & Berglund, R., “A
system for route optimization in ice-covered waters,” Cold Regions
Science and Technology, Vol. 55(1), 2009 pp. 52–62.

[4] BBC News, “Dozens of ships freed from Baltic Sea ice”, 5 March 2010.
Available: http://bbc.in/1ejqwZJ

[5] Baltic Icebreaking Management, Baltic Sea Icebreaking Report 2009-
2010, Available: http://bit.ly/1cpegvx.

[6] G. Hanssen and R. James, “Optimum ship routing”, Journal of
Navigation, Vol. 13, No. 3, July 1960, pp. 253-272.

[7] M. Powell, “An efficient method for finding the minimum of a function
of several variables without calculating derivatives,” Computer Journal,
Vol. 7, No. 2, 1964, pp. 155–162.

[8] Haapala, J., Lönnroth, N., & Stössel, A., “A numerical study of open
water formation in sea ice,” Journal of Geophysical Research: Oceans,
Vol. 110, No. C9, 2005.

[9] Lehtiranta, J., Lensu, M., & Haapala, J., Ice model validation on local
scale. Helsinki, 2012.

[10] Neagle, J. N., “Ice resistance prediction and motion simulation for ships
operating in the continuous mode of icebreaking,” Doctor of Philosophy
Thesis, The University of Michigan, Ann Arbor, MI, 1980.

[11] Valanto, P., “The resistance of ship in level ice,” Transactions of the
Society of Naval Architects and Marine Engineers, Vol. 109, 2001, pp.
53–83.

[12] Liu, J., Lau, M., & Williams, M. F. “Numerical implementation and
benchmark of ice-hull interaction model for ship manoeuvring
simulations”, NRC Publications Archive, Vancouver, BC, Canada, 2008,
pp. 215–226.

[13] Sawamura, J., Tsuchiya, H., Tachibana, T., & Osawa, N., “Numerical
modeling for ship maneuvering in level ice,” Proceedings of 20th
International Symposium on Ice (IAHR) Lahti, Finland. 2010, pp. 1–12.

[14] Dick, R. A., Prior, A. D., & Peirce, T. H., “Resistance and propulsion in
ice using system identification techniques,” Transactions of the Society
of Naval Architects and Marine Engineers, Vol. 103, 1995, pp. 237–254.

[15] Montewka, J., Kujala, P., Goerlandt, F., Lensu, M., & Haapala, J.,
“Modelling a ship performance in dynamic ice. Part I - transforming
data into information,” Scientific Journal of Warsaw University of
Technology, Transport, Vol. 95, 2013, pp. 359–368.

[16] Lindqvist, G., “A straightforward method for calculation of ice
resistance of ships,” Luleå University of Technology, 1989, pp. 722–
735.

[17] La Prairie, D., Wilhelmson, M., & Riska, K., “A transit simulation
model for ships in Baltic Ice conditions,” Memo No. 200, Espoo,
Finland: Helsinki University of Technology, 1995.

[18] Riska, K., Wilhelmson, M., Englund, K., & Leiviskä, T., ”Performance
of merchant vessels in ice in the Baltic,” Espoo, Finland: Helsinki
University of Technology, 1997.

[19] Juva, M., & Riska, K., “On the power requirement in the Finnish-
Swedish ice class rules” Research Report No. 53 of the Winter
Navigation Research Board, Espoo, Finland: Helsinki University of
Technology, 2002.

[20] Krupina, N., “Results of time-domain stochastic simulation of ice loads
on ship hull from broken ice,” Increasing the safety of icebound
shipping - Vol. 2, Scientific Report No. 302 of the Helsinki University
of Technology Ship Laboratory, Espoo, Finland: Helsinki University of
Technology, 2007.

[21] Kaups, K., “Modeling of the ship resistance in compressive level ice,”
Master Thesis, Espoo, Finland: Aalto University, 2011.

[22] Hart, P. E., Nilsson, N. J., and Raphael, B. “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions on
Systems Science and Cybernetics, Vol. 4, No. 2, 1968, pp. 100–107.

[23] Montewka, J., Sinclair H. “Modelling a ship performance in dynamic
ice. Part II - transforming information into knowledge,” Scientific
Journal of Warsaw University of Technology, Transport, Vol. 95, 2013,
pp. 369–382.

[24] R. Dechter and J. Pearl. “The Optimality of A*,” In: L. Kanal and V.
Kumar, eds., Search in Artificial Intelligence. Springer-Verlag, 1988.

1378

Suomen Geodeettisen laitoksen julkaisut:
Veröffentlichungen des Finnischen Geodätischen Institutes:

Publications of the Finnish Geodetic Institute:

1. Y. VÄISÄLÄ: Tafeln für geodätische Berechnungen nach den Erddimensionen von Hayford. Helsinki 1923. 30 S.
2. Y. VÄISÄLÄ: Die Anwendung der Lichtinterferenz zu Längenmessungen auf grösseren Distanzen. Helsinki 1923. 22 S.
3. ILMARI BONSDORFF, Y. LEINBERG, W. HEISKANEN: Die Beobachtungsergebnisse der südfinnischen Triangulation in den

Jahren 1920-1923. Helsinki 1924. 235 S.
4. W. HEISKANEN: Untersuchungen über Schwerkraft und Isostasie. Helsinki 1924. 96 S. 1 Karte.
5. W. HEISKANEN: Schwerkraft und isostatische Kompensation in Norwegen. Helsinki 1926. 33 S. 1 Karte.
6. W. HEISKANEN: Die Erddimensionen nach den europäischen Gradmessungen. Helsinki 1926. 26 S.
7. ILMARI BONSDORFF, V.R. ÖLANDER, Y. LEINBERG: Die Beobachtungsergebnisse der südfinnischen Triangulation in den

Jahren 1924-1926. Helsinki 1927. 164 S. 1 Karte.
8. V.R. ÖLANDER: Ausgleichung einer Dreieckskette mit Laplaceschen Punkten. Helsinki 1927. 49 S. 1 Karte.
9. U. PESONEN: Relative Bestimmungen der Schwerkraft auf den Dreieckspunkten der südfinnischen Triangulation in den

Jahren 1924-1925. Helsinki 1927. 129 S.
10. ILMARI BONSDORFF: Das Theorem von Clairaut und die Massenverteilung im Erdinnern. Helsinki 1929. 10 S.
11. ILMARI BONSDORFF, V.R. ÖLANDER, W. HEISKANEN, U. PESONEN: Die Beobachtungsergebnisse der Triangulationen in den

Jahren 1926-1928. Helsinki 1929. 139 S. 1 Karte.
12. W. HEISKANEN: Über die Elliptizität des Erdäquators. Helsinki 1929. 18 S.
13. U. PESONEN: Relative Bestimmungen der Schwerkraft in Finnland in den Jahren 1926-1929. Helsinki 1930. 168 S. 1 Karte.
14. Y. VÄISÄLÄ: Anwendung der Lichtinterferenz bei Basismessungen. Helsinki 1930. 47 S.
15. M. FRANSSILA: Der Einfluss der den Pendel umgebenden Luft auf die Schwingungszeit beim v. Sterneckschen

Pendelapparat. Helsinki 1931. 23 S.
16. Y. LEINBERG: Ergebnisse der astronomischen Ortsbestimmungen auf den finnischen Dreieckspunkten. Helsinki 1931.

162 S.
17. V.R. ÖLANDER: Über die Beziehung zwischen Lotabweichungen und Schwereanomalien sowie über das

Lotabweichungssystem in Süd-Finnland. Helsinki 1931. 23 S.
18. PENTTI KALAJA, UUNO PESONEN, V.R. ÖLANDER, Y. LEINBERG: Beobachtungsergebnisse. Helsinki 1933. 240 S. 1 Karte.
19. R.A. HIRVONEN: The continental undulations of the geoid. Helsinki 1934. 89 pages. 1 map.
20. ILMARI BONSDORFF: Die Länge der Versuchsbasis von Helsinki und Längenveränderungen der Invardrähte 634-637.

Helsinki 1934. 41 S.
21. V.R. ÖLANDER: Zwei Ausgleichungen des grossen südfinnischen Dreieckskranzes. Helsinki 1935. 66 S. 1 Karte.
22. U. PESONEN, V.R. ÖLANDER: Beobachtungsergebnisse. Winkelmessungen in den Jahren 1932-1935. Helsinki 1936. 148 S.

1 Karte.
23. R.A. HIRVONEN: Relative Bestimmungen der Schwerkraft in Finnland in den Jahren 1931, 1933 und 1935. Helsinki 1937.

151 S.
24. R.A. HIRVONEN: Bestimmung des Schwereunterschiedes Helsinki-Potsdam im Jahre 1935 und Katalog der finnischen

Schwerestationen. Helsinki 1937. 36 S. 1 Karte.
25. T.J. KUKKAMÄKI: Über die nivellitische Refraktion. Helsinki 1938. 48 S.
26. Finnisches Geodätisches Institut 1918-1938. Helsinki 1939. 126 S. 2 Karten.
27. T.J. KUKKAMÄKI: Formeln und Tabellen zur Berechnung der nivellitischen Refraktion. Helsinki 1939. 18 S.
28. T.J. KUKKAMÄKI: Verbesserung der horizontalen Winkelmessungen wegen der Seitenrefraktion. Helsinki 1939. 18 S.
29. ILMARI BONSDORFF: Ergebnisse der astronomischen Ortsbestimmungen im Jahre 1933. Helsinki 1939. 47 S.
30. T. HONKASALO: Relative Bestimmungen der Schwerkraft in Finnland im Jahre 1937. Helsinki 1941. 78 S.
31. PENTTI KALAJA: Die Grundlinienmessungen des Geodätischen Institutes in den Jahren 1933-1939 nebst Untersuchungen

über die Verwendung der Invardrähte. Helsinki 1942. 149 S.
32. U. PESONEN, V.R. ÖLANDER: Beobachtungsergebnisse. Winkelmessungen in den Jahren 1936-1940. Helsinki 1942. 165 S.

1 Karte.
33. PENTTI KALAJA: Astronomische Ortsbestimmungen in den Jahren 1935-1938. Helsinki 1944. 142 S.
34. V.R. ÖLANDER: Astronomische Azimutbestimmungen auf den Dreieckspunkten in den Jahren 1932-1938;

Lotabweichungen und Geoidhöhen. Helsinki 1944. 107 S. 1 Karte.
35. U. PESONEN: Beobachtungsergebnisse. Winkelmessungen in den Jahren 1940-1947. Helsinki 1948. 165 S. 1 Karte.
36. Professori Ilmari Bonsdorffille hänen 70-vuotispäivänään omistettu juhlajulkaisu. Publication dedicated to Ilmari

Bonsdorff on the occasion of his 70th anniversary. Helsinki 1949. 262 pages. 13 maps.
37. TAUNO HONKASALO: Measuring of the 864 m-long Nummela standard base line with the Väisälä light interference

comparator and some investigations into invar wires. Helsinki 1950. 88 pages.
38. V.R. ÖLANDER: On the geoid in the Baltic area and the orientation of the Baltic Ring. Helsinki 1950. 26 pages.
39. W. HEISKANEN: On the world geodetic system. Helsinki 1951. 25 pages.
40. R.A. HIRVONEN: The motions of Moon and Sun at the solar eclipse of 1947 May 20th. Helsinki 1951. 36 pages.
41. PENTTI KALAJA: Catalogue of star pairs for northern latitudes from 55� to 70�for astronomic determination of latitudes by

the Horrebow-Talcott method. Helsinki 1952. 191 pages.
42. ERKKI KÄÄRIÄINEN: On the recent uplift of the Earth's crust in Finland. Helsinki 1953. 106 pages. 1 map.
43. PENTTI KALAJA: Astronomische Ortsbestimmungen in den Jahren 1946-1948. Helsinki 1953. 146 S.
44. T.J. KUKKAMÄKI, R.A. HIRVONEN: The Finnish solar eclipse expeditions to the Gold Coast and Brazil 1947. Helsinki 1954.

71 pages.
45. JORMA KORHONEN: Einige Untersuchungen über die Einwirkung der Abrundungsfehler bei Gross-Ausgleichungen. Neu-

Ausgleichung des südfinnischen Dreieckskranzes. Helsinki 1954. 138 S. 3 Karten.

46. Professori Weikko A. Heiskaselle hänen 60-vuotispäivänään omistettu juhlajulkaisu. Publication dedicated to Weikko A.
Heiskanen on the occasion of his 60th anniversary. Helsinki 1955. 214 pages.

47. Y. VÄISÄLÄ: Bemerkungen zur Methode der Basismessung mit Hilfe der Lichtinterferenz. Helsinki 1955. 12 S.
48. U. PESONEN, TAUNO HONKASALO: Beobachtungsergebnisse der finnischen Triangulationen in den Jahren 1947-1952.

Helsinki 1957. 91 S.
49. PENTTI KALAJA: Die Zeiten von Sonnenschein, Dämmerung und Dunkelheit in verschiedenen Breiten. Helsinki 1958. 63 S.
50. V.R. ÖLANDER: Astronomische Azimutbestimmungen auf den Dreieckspunkten in den Jahren 1938-1952. Helsinki 1958.

90 S. 1 Karte.
51. JORMA KORHONEN, V.R. ÖLANDER, ERKKI HYTÖNEN: The results of the base extension nets of the Finnish primary

triangulation. Helsinki 1959. 57 pages. 5 appendices. 1 map.
52. V.R. ÖLANDER: Vergleichende Azimutbeobachtungen mit vier Instrumenten. Helsinki 1960. 48 pages.
53. Y. VÄISÄLÄ, L. OTERMA: Anwendung der astronomischen Triangulationsmethode. Helsinki 1960. 18 S.
54. V.R. ÖLANDER: Astronomical azimuth determinations on trigonometrical stations in the years 1955-1959. Helsinki 1961.

15 pages.
55. TAUNO HONKASALO: Gravity survey of Finland in years 1945-1960. Helsinki 1962. 35 pages. 3 maps.
56. ERKKI HYTÖNEN: Beobachtungsergebnisse der finnischen Triangulationen in den Jahren 1953-1962. Helsinki 1963. 59 S.
57. ERKKI KÄÄRIÄINEN: Suomen toisen tarkkavaaituksen kiintopisteluettelo I. Bench mark list I of the Second Levelling of

Finland. Helsinki 1963. 164 pages. 2 maps.
58. ERKKI HYTÖNEN: Beobachtungsergebnisse der finnischen Triangulationen in den Jahren 1961-1962. Helsinki 1963. 32 S.
59. AIMO KIVINIEMI: The first order gravity net of Finland. Helsinki 1964. 45 pages.
60. V.R. ÖLANDER: General list of astronomical azimuths observed in 1920-1959 in the primary triangulation net. Helsinki

1965. 47 pages. 1 map.
61. ERKKI KÄÄRIÄINEN: The second levelling of Finland in 1935-1955. Helsinki 1966. 313 pages. 1 map.
62. JORMA KORHONEN: Horizontal angles in the first order triangulation of Finland in 1920-1962. Helsinki 1966. 112 pages.

1 map.
63. ERKKI HYTÖNEN: Measuring of the refraction in the Second Levelling of Finland. Helsinki 1967. 18 pages.
64. JORMA KORHONEN: Coordinates of the stations in the first order triangulation of Finland. Helsinki 1967. 42 pages. 1 map.
65. Geodeettinen laitos - The Finnish Geodetic Institute 1918-1968. Helsinki 1969. 147 pages. 4 maps.
66. JUHANI KAKKURI: Errors in the reduction of photographic plates for the stellar triangulation. Helsinki 1969. 14 pages.
67. PENTTI KALAJA, V.R. ÖLANDER: Astronomical determinations of latitude and longitude in 1949-1958. Helsinki 1970. 242

pages. 1 map.
68. ERKKI KÄÄRIÄINEN: Astronomical determinations of latitude and longitude in 1954-1960. Helsinki 1970. 95 pages. 1 map.
69. AIMO KIVINIEMI: Niinisalo calibration base line. Helsinki 1970. 36 pages. 1 sketch appendix.
70. TEUVO PARM: Zero-corrections for tellurometers of the Finnish Geodetic Institute. Helsinki 1970. 18 pages.
71. ERKKI KÄÄRIÄINEN: Astronomical determinations of latitude and longitude in 1961-1966. Helsinki 1971. 102 pages.

1 map.
72. JUHANI KAKKURI: Plate reduction for the stellar triangulation. Helsinki 1971. 38 pages.
73. V.R. ÖLANDER: Reduction of astronomical latitudes and longitudes 1922-1948 into FK4 and CIO systems. Helsinki 1972.

40 pages.
74. JUHANI KAKKURI AND KALEVI KALLIOMÄKI: Photoelectric time micrometer. Helsinki 1972. 53 pages.
75. ERKKI HYTÖNEN: Absolute gravity measurement with long wire pendulum. Helsinki 1972. 142 pages.
76. JUHANI KAKKURI: Stellar triangulation with balloon-borne beacons. Helsinki 1973. 48 pages.
77. JUSSI KÄÄRIÄINEN: Beobachtungsergebnisse der finnischen Winkelmessungen in den Jahren 1969-70. Helsinki 1974. 40 S.
78. AIMO KIVINIEMI: High precision measurements for studying the secular variation in gravity in Finland. Helsinki 1974. 64

pages.
79. TEUVO PARM: High precision traverse of Finland. Helsinki 1976. 64 pages.
80. R.A. HIRVONEN: Precise computation of the precession. Helsinki 1976. 25 pages.
81. MATTI OLLIKAINEN: Astronomical determinations of latitude and longitude in 1972-1975. Helsinki 1977. 90 pages. 1 map.
82. JUHANI KAKKURI AND JUSSI KÄÄRIÄINEN: The Second Levelling of Finland for the Aland archipelago. Helsinki 1977. 55

pages.
83. MIKKO TAKALO: Suomen Toisen tarkkavaaituksen kiintopisteluettelo II. Bench mark list II of the Second Levelling of

Finland. Helsinki 1977. 150 sivua.
84. MATTI OLLIKAINEN: Astronomical azimuth determinations on triangulation stations in 1962-1970. Helsinki 1977. 47 pages.

1 map.
85. MARKKU HEIKKINEN: On the tide-generating forces. Helsinki 1978. 150 pages.
86. PEKKA LEHMUSKOSKI AND JAAKKO MÄKINEN: Gravity measurements on the ice of Bothnian Bay. Helsinki 1978. 27 pages.
87. T.J. KUKKAMÄKI: Väisälä interference comparator. Helsinki 1978. 49 pages.
88. JUSSI KÄÄRIÄINEN: Observing the Earth Tides with a long water-tube tiltmeter. Helsinki 1979. 74 pages.
89. Publication dedicated to T.J. Kukkamäki on the occasion of his 70th anniversary. Helsinki 1979. 184 pages.
90. B. DUCARME AND J. KÄÄRIÄINEN: The Finnish Tidal Gravity Registrations in Fennoscandia. Helsinki 1980. 43 pages.
91. AIMO KIVINIEMI: Gravity measurements in 1961-1978 and the results of the gravity survey of Finland in 1945-1978.

Helsinki 1980. 18 pages. 3 maps.
92. LIISI OTERMA: Programme de latitude du tube zénithal visuel de l'observatoire Turku-Tuorla systéme amélioré de 1976.

Helsinki 1981. 18 pages.
93. JUHANI KAKKURI, AIMO KIVINIEMI AND RAIMO KONTTINEN: Contributions from the Finnish Geodetic Institute to the

Tectonic Plate Motion Studies in the Area between the Pamirs and Tien-Shan Mountains. Helsinki 1981. 34 pages.
94. JUSSI KÄÄRIÄINEN: Measurement of the Ekeberg baseline with invar wires. Helsinki 1981. 17 pages.
95. MATTI OLLIKAINEN: Astronomical determinations of latitude and longitude in 1976-1980. Helsinki 1982. 90 pages. 1 map.
96. RAIMO KONTTINEN: Observation results. Angle measurements in 1977-1978. Helsinki 1982. 29 pages.

97. G.P. ARNAUTOV, YE N. KALISH, A. KIVINIEMI, YU F. STUS, V.G. TARASIUK, S.N. SCHEGLOV: Determination of absolute
gravity values in Finland using laser ballistic gravimeter. Helsinki 1982. 18 pages.

98. LEENA MIKKOLA (EDITOR): Mean height map of Finland. Helsinki 1983. 3 pages. 1 map.
99. MIKKO TAKALO AND JAAKKO MÄKINEN: The Second Levelling of Finland for Lapland. Helsinki 1983. 144 pages.
100. JUSSI KÄÄRIÄINEN: Baseline Measurements with invar wires in Finland 1958-1970. Helsinki 1984. 78 pages.
101. RAIMO KONTTINEN: Plate motion studies in Central Asia. Helsinki 1985. 31 pages.
102. RAIMO KONTTINEN: Observation results. Angle measurements in 1979-1983. Helsinki 1985. 30 pages.
103. J. KAKKURI, T.J. KUKKAMÄKI, J.-J. LEVALLOIS ET H. MORITZ: Le 250e anniversaire de la mesure de l'arc du meridien en

Laponie. Helsinki 1986. 60 pages.
104. G. ASCH, T. JAHR, G. JENTZSCH, A. KIVINIEMI AND J. KÄÄRIÄINEN: Measurements of Gravity Tides along the ''Blue Road

Geotraverse'' in Fennoscandia. Helsinki 1987. 57 pages.
105. JUSSI KÄÄRIÄINEN, RAIMO KONTTINEN, LU QIANKUN AND DU ZONG YU: The Chang Yang Standard Baseline. Helsinki

1986. 36 pages.
106. E.W. GRAFAREND, H. KREMERS, J. KAKKURI AND M. VERMEER: Adjusting the SW Finland Triangular Network with the

TAGNET 3-D operational geodesy software. Helsinki 1987. 60 pages.
107. MATTI OLLIKAINEN: Astronomical determinations of latitude and longitude in 1981-1983. Helsinki 1988. 37 pages.
108. MARKKU POUTANEN: Observation results. Angle measurements in 1967-1973. Helsinki 1988. 35 pages.
109. JUSSI KÄÄRIÄINEN, RAIMO KONTTINEN AND ZSUZSANNA NÉMETH: The Gödöllö Standard Baseline. Helsinki 1988. 66

pages.
110. JUSSI KÄÄRIÄINEN AND HANNU RUOTSALAINEN: Tilt measurements in the underground laboratory Lohja 2, Finland, in

1977-1987. Helsinki 1989. 37 pages.
111. MIKKO TAKALO: Lisäyksiä ja korjauksia Suomen tarkkavaaitusten linjastoon 1977-1989. Helsinki 1991. 98 sivua.
112. RAIMO KONTTINEN: Observation results. Angle measurements in the Pudasjärvi loop in 1973-1976. Helsinki 1991. 42

pages.
113. RAIMO KONTTINEN, JORMA JOKELA AND LI QUAN: The remeasurement of the Chang Yang Standard Baseline. Helsinki

1991. 40 pages.
114. JUSSI KÄÄRIÄINEN, RAIMO KONTTINEN AND MARKKU POUTANEN: Interference measurements of the Nummela Standard

Baseline in 1977, 1983, 1984 and 1991. Helsinki 1992. 78 pages.
115. JUHANI KAKKURI (EDITOR): Geodesy and geophysics. Helsinki 1993. 200 pages.
116. JAAKKO MÄKINEN, HEIKKI VIRTANEN, QIU QI-XIAN AND GU LIANG-RONG: The Sino-Finnish absolute gravity campaign in

1990. Helsinki 1993. 49 pages.
117. RAIMO KONTTINEN: Observation results. Geodimeter observations in 1971-72, 1974-80 and 1984-85. Helsinki 1994. 58

pages.
118. RAIMO KONTTINEN: Observation results. Angle measurements in 1964-65, 1971, 1984 and 1986-87. Helsinki 1994. 67

pages.
119. JORMA JOKELA: The 1993 adjustment of the Finnish First-Order Terrestrial Triangulation. Helsinki 1994. 137 pages.
120. MARKKU POUTANEN (EDITOR): Interference measurements of the Taoyuan Standard Baseline. Helsinki 1995. 35 pages.
121. JORMA JOKELA: Interference measurements of the Chang Yang Standard Baseline in 1994. Kirkkonummi 1996. 32 pages.
122. OLLI JAAKKOLA: Quality and automatic generalization of land cover data. Kirkkonummi 1996. 39 pages.
123. MATTI OLLIKAINEN: Determination of orthometric heights using GPS levelling. Kirkkonummi 1997. 143 pages.
124. TIINA KILPELÄINEN: Multiple Representation and Generalization of Geo-Databases for Topographic Maps. Kirkkonummi

1997. 229 pages.
125. JUSSI KÄÄRIÄINEN AND JAAKKO MÄKINEN: The 1979-1996 gravity survey and the results of the gravity survey of Finland

1945-1996. Kirkkonummi 1997. 24 pages. 1 map.
126. ZHITONG WANG: Geoid and crustal structure in Fennoscandia. Kirkkonummi 1998. 118 pages.
127. JORMA JOKELA AND MARKKU POUTANEN: The Väisälä baselines in Finland. Kirkkonummi 1998. 61 pages.
128. MARKKU POUTANEN: Sea surface topography and vertical datums using space geodetic techniques. Kirkkonummi 2000.

158 pages
129. MATTI OLLIKAINEN, HANNU KOIVULA AND MARKKU POUTANEN: The Densification of the EUREF Network in Finland.

Kirkkonummi 2000. 61 pages.
130. JORMA JOKELA, MARKKU POUTANEN, ZHAO JINGZHAN, PEI WEILI, HU ZHENYUAN AND ZHANG SHENGSHU: The Chengdu

Standard Baseline. Kirkkonummi 2000. 46 pages.
131. JORMA JOKELA, MARKKU POUTANEN, ZSUZSANNA NÉMETH AND GÁBOR VIRÁG: Remeasurement of the Gödöllö Standard

Baseline. Kirkkonummi 2001. 37 pages.
132. ANDRES RÜDJA: Geodetic Datums, Reference Systems and Geodetic Networks in Estonia. Kirkkonummi 2004. 311 pages.
133. HEIKKI VIRTANEN: Studies of Earth Dynamics with the Superconducting Gravimeter. Kirkkonummi 2006. 130 pages.
134. JUHA OKSANEN: Digital elevation model error in terrain analysis. Kirkkonummi 2006. 142 pages. 2 maps.
135. MATTI OLLIKAINEN: The EUVN-DA GPS campaign in Finland. Kirkkonummi 2006. 42 pages.
136. ANNU-MAARIA NIVALA: Usability perspectives for the design of interactive maps. Kirkkonummi 2007. 157 pages.
137. XIAOWEI YU: Methods and techniques for forest change detection and growth estimation using airborne laser scanning

data. Kirkkonummi 2007. 132 pages.
138. LASSI LEHTO: Real-time content transformations in a WEB service-based delivery architecture for geographic

information. Kirkkonummi 2007. 150 pages.
139. PEKKA LEHMUSKOSKI, VEIKKO SAARANEN, MIKKO TAKALO AND PAAVO ROUHIAINEN: Suomen Kolmannen

tarkkavaaituksen kiintopisteluettelo. Bench Mark List of the Third Levelling of Finland. Kirkkonummi 2008. 220 pages.
140. EIJA HONKAVAARA: Calibrating digital photogrammetric airborne imaging systems using a test field. Kirkkonummi 2008.

139 pages.
141. MARKKU POUTANEN, EERO AHOKAS, YUWEI CHEN, JUHA OKSANEN, MARITA PORTIN, SARI RUUHELA, HELI SUURMÄKI

(EDITORS): Geodeettinen laitos – Geodetiska Institutet – Finnish Geodetic Institute 1918–2008. Kirkkonummi 2008. 173
pages.

142. MIKA KARJALAINEN: Multidimensional SAR Satellite Images – a Mapping Perspective. Kirkkonummi 2010. 132 pages.
143. MAARIA NORDMAN: Improving GPS time series for geodynamic studies. Kirkkonummi 2010. 116 pages.
144. JORMA JOKELA AND PASI HÄKLI: Interference measurements of the Nummela Standard Baseline in 2005 and 2007.

Kirkkonummi 2010. 85 pages.
145. EETU PUTTONEN: Tree Species Classification with Multiple Source Remote Sensing Data. Kirkkonummi 2012. 162 pages.
146. JUHA SUOMALAINEN: Empirical Studies on Multiangular, Hyperspectral, and Polarimetric Reflectance of Natural

Surfaces. Kirkkonummi 2012. 144 pages.
147. LEENA MATIKAINEN: Object-based interpretation methods for mapping built-up areas. Kirkkonummi 2012. 210 pages.
148. LAURI MARKELIN: Radiometric calibration, validation and correction of multispectral photogrammetric imagery.

Kirkkonummi 2013. 160 pages.
149. XINLIAN LIANG: Feasibility of Terrestrial Laser Scanning for Plotwise Forest Inventories. Kirkkonummi 2013. 150 pages.
150. EERO AHOKAS: Aspects of accuracy, scanning angle optimization, and intensity calibration related to nationwide laser

scanning. Kirkkonummi 2013. 124 pages.
151. LAURA RUOTSALAINEN: Vision-Aided Pedestrian Navigation for Challenging GNSS Environments. Kirkkonummi 2013.

180 pages.
152. HARRI KAARTINEN: Benchmarking of airborne laser scanning based feature extraction methods and mobile laser scanning

system performance based on high-quality test fields. Kirkkonummi 2013. 346 pages.
153. ANTERO KUKKO: Mobile Laser Scanning – System development, performance and applications. Kirkkonummi 2013. 247

pages.
154. JORMA JOKELA: Length in Geodesy – On Metrological Traceability of a Geospatial Measurand. Kirkkonummi 2014. 240

pages.
155. PYRY KETTUNEN: Analysing landmarks in nature and elements of geospatial images to support wayfinding. Kirkkonummi

2014. 281 pages.
156. MARI LAAKSO: Improving Accessibility for Pedestrians with Geographic Information. Kirkkonummi 2014. 129 pages.

The name of the series has changed the 1st of January in 2015.

FGI Publications:

157. LINGLI ZHU: A pipeline of 3D scene reconstruction from point clouds. Kirkkonummi 2015. 206 pages.
158. ROBERT E. GUINNESS: Context Awareness for Navigation Applications. Kirkkonummi 2015. 244 pages.

