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Abstract: Digital twin technology is the talking point of academia and industry. When defining a
digital twin, new modeling paradigms and computational methods are needed. Developments in the
Internet of Things and advanced simulation and modeling techniques have provided new strategies
for building complex digital twins. The digital twin is a virtual entity representation of the physical
entity, such as a product or a process. This virtual entity is a collection of computationally complex
knowledge models that embeds all the information of the physical world. To that end, this article
proposes a graph-based representation of the virtual entity. This graph-based representation provides
a method to visualize the parameter and their interactions across different modeling domains.
However, the virtual entity graph becomes inherently complex with multiple parameters for a
complex multidimensional physical system. This research contributes to the body of knowledge with
a novel graph-based model reduction method that simplifies the virtual entity analysis. The graph-
based model reduction method uses graph structure preserving algorithms and Dempster–Shaffer
Theory to provide the importance of the parameters in the virtual entity. The graph-based model
reduction method is validated by benchmarking it against the random forest regressor method. The
method is tested on a turbo compressor case study. In the future, a method such as graph-based
model reduction needs to be integrated with digital twin frameworks to provide digital services by
the twin efficiently.

Keywords: digital twin; graph-based knowledge representation; model fusion; model reduction;
importance measurement

1. Introduction

Digital twins (DTs) have been perceived in multiple ways. Several descriptions of DTs
exist in the scientific literature, many of which have gone beyond the three-dimensional
DT proposed by Michael Grieves [1]. Digital twins are described as virtual substitutes of
real-world objects consisting of virtual representations and communication capabilities
making up smart objects and acting as intelligent nodes inside the Internet of Things context.
Digital twins have reached beyond the field of product lifecycle management, where it
was first conceived, into manufacturing processes [2], communication and networking [3],
construction [4] and smart grids [5]. However, the underlying research questions remain;
how to best represent a complex multidimensional DT system and how to simplify that
representation to reduce twin’s computational complexity and interpretability?

The DT is a multidimensional entity. In [6], the DT is realized as a five-dimensional
living model. It is a collection of simulation models, information models, and IoT data
acquisition and processing. Plenty of research is available on the development of these
models and data-driven methods [7]. However, the important area that has been overlooked
by the digital twin research community is model reduction. In this study, graph-based
methods are proposed for conceptualizing the complex DT representation. To address the
computational complexity of the DT, a graph-based model reduction (GBMR) method is
proposed. The GBMR method was first conceived as a dimensionality reduction method [8]
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but evolved into the virtual entity representation and optimization tool for the DT [9].
The GBMR method addresses the computational complexity of the DT with a two-step
approach: (1) providing a graph-based conceptual model representation of the DT by
utilizing a casual graph extraction method known as dimensional analysis and conceptual
modeling, and (2) reducing the DT graph model by spectral decomposition and identifying
the important parameters in it. The novelty of GBMR lies in representing the physical
system as a graph-based model and reducing that graph by finding important parameters
dynamically by the DT. The model reduction process helps to optimize the virtual entity
performance of the DT as the reduced model uses a subset of important parameters to
predict the target parameter of the physical entity.

To that end, the primary contributions of this research work are: (1) provide the
development of the GBMR method for fast identification of the important parameters for
reducing the computational complexity of the DT, and (2) test the GBMR method with the
help of a turbo compressor case study and analyze the results. This paper is structured
as follows: Section 2 provides the state of the art in DT development with a focus on
conceptual graph-based methods. Section 3 introduces the GBMR method. In Section 4, a
case study of the GBMR method is presented for a turbo compressor system including the
results and future research directions of the method, and Section 5 concludes the article.

2. State of the Art
2.1. The Complexity of DT Development

In [10], the authors propose the technologies enabling DT development, which is the
combination of the digital world such as simulation and modeling (S&M) and the physical
world such as the IoT. The S&M approach for DTs creates the possibility of modularizing
the development of DTs and focusing on the essentials. However, it also introduces large
amount of complexity in building and operating such DTs. These models can arise from
different domains of the physical object. They are complex, real-time, “living” entities.
These models can be organizational information models, engineering models (thermal,
fluid, dynamic, electrical or systems-level), rule-based models (associative, deductive or
degradation) or purely data-driven models (ANN or deep-learning-based models). The
Internet of Things (IoT) or Industrial Internet of Things (IIoT) facilitate building real-
time models based on the data. Figure 1 demonstrates the system-level architecture that
combines the IoT/IIoT and S&M to provide the foundation for such DT development. A
similar approach was also adopted in [11] for a DT development.

The right side of Figure 1 focuses on the IoT part. The IoT provides the following
components as building blocks of a digital twin:

Data-driven Models: Data-driven predictive models form the basis of many digital
twins. Many such data-driven digital twins can be found in the literature [12,13]. These
predictive models are built for state estimation, behavior prediction or causal analysis.
Machine learning methods such as Bayesian networks and evidential reasoning are used
for building these models [14]. The future state estimation by these methods could serve
as the input to many simulation models. Environmental data and other web-based data
such as metrological data are also used in building such estimation models, which form an
essential part of the virtual entity.

Model Fusion and Model Reduction: The curse of dimensionality is often experienced
in building data-driven models. State prediction models or behavior estimation models
typically contain several parameters that should be monitored, and data should be collected
with sensors and a proper connectivity mechanism. Building high-dimensional and high-
fidelity models that replicate the reality with a high degree of accuracy are extremely
challenging. These models are computationally extensive. It is also resource consuming to
train these models with data from the physical device and develop methods for validating
the results. Model fusion provides a mean to generate a hybrid model by combining
physics-based and data-driven models and model reduction provides a means to reduce or
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combine the number of parameters in that hybrid model. In doing so, the hybrid model
becomes computationally simplified and takes less time to provide prediction result.
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Figure 1. A system-level architecture for DTs.

The left side of Figure 1 focuses on S&M. This part of the figure highlights the ad-
vanced simulation models that need to be built to capture the physics of the system. S&M
creates the virtual entity of the five-dimensional representation of the digital twin [15].
The simulation models could be from one or several domains such as analytical models,
geometrical models or system-level models. Analytical models such as finite element or
computational fluid flow models are necessary to predict the state of the physical entity
through software-defined methods such as thermal analysis or stress analysis. Geometrical
models purely represent the physical phenomena of the physical entity such as deforma-
tion and buckling. The system-level model combines other types of models to provide
system-level information such as efficiency and performance. By combining these advanced
simulation models, it is possible to represent the complete state of the physical entity. The
DT will demand that these advanced simulation models work in unison and possess the
capability to provide the updated state of the system based on IoT data. This makes the DT
computationally extensive and requires the development of methods, tools and techniques
for understanding and reducing the DT’s computational complexity.

Compressing information from these bulky analytical models and making them predict
the system state based on real-time data need further advancement of technology. These
simulation models are designed to provide a high-fidelity representation of the system
without the consideration of a faster prediction of model output. Model reduction is needed
for building compressed digital representations from these simulation models [16]. Model
reduction methods are already applied in these advanced simulation environments at an
individual component level. This could be traditional methods such as reduced order
modeling by proper orthogonal decomposition [17] or by applying newer deep learning
methods [18,19]. Metamodeling has been used to reduce the dimensionality of complex
systems and is propagated as a class of model reduction as well [20]. However, there is a
lack of a unified method that combines the reduced model from the component to system
level.
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2.2. DT Reference Model

To realize the complexity of the DT development process, a reference model is crucial.
The five-dimensional representation of the DT provides such a reference model [21,22].
In this section, the five-dimensional representation from the literature is utilized to build
a reference model for DTs. Figure 2 presents the reference model based on a grinding
machine case study [9].
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The DT reference model consists of five dimensions:
(1) Physical Entity (PE): This consists of the sub-systems and sensory devices. This

could range from sensors, actuators and control systems to the whole sub-system such
as the motor drives, spindles or transmission of the machine. PE guides the process of
DT development by providing IoT data from these sub-systems. So, the PE also provides
communication interfaces, RFID tags or distributed sensor networks.

(2) Virtual Entity (VE): This is the complex virtual representation of the PE. The VE
consists of geometric models, analytical- or physics-based models, behavioral models and
rule-based models [23,24]. The VE may contain detailed geometric models such as 3D CAD
models or physics-based models such as finite element models. It may contain various
behavior modeling methods such as Markov-chains or ontology-based models. Historical
data from the PE are used to create rule-based models. The rule-based models provide the
VE with the capacity for judgement, optimization and prediction.

(3) Service: This provides the reason for building a DT that is the digital services. In
Figure 2, it could be services such as grinding wheel wear monitoring or early warning
for a wheel change based on the remaining useful life of the wheel. These services fall
under the category of prognostics and health management (PHM) services for the grinding
machine.

(4) Data model: The data model creates the schema for data exchange between the
PE and the VE. In Figure 2, an example is provided. The grinding machine digital twin
requires sensor data to exchange between PE and VE, such as motor torque, motor power,
acoustic emission and wheel wear.

(5) Connections: The connections bind the PE to the VE with the help of the data
dimension. PE to VE binding defines acquiring data from the sensors on the grinding
wheel with API endpoints. Similarly, VE to PE binding provides the output of analytical
results to the physical device to perform an action such as grinding wheel speed control.

The VE embeds information from multi-domain models. A model fusion approach is
taken to build the VE graph to model the interaction of the parameters with the help of
methods such as DACM (Section 2.3.1) and heuristic search (Section 2.3.2). The VE graph is
denoted as VEg = {Gv, Pv, Bv, Rv}, where Gv, Pv, Bv and Rv are the graph representation of
parameters in geometric, analytical, behavioral and rule-based domains, respectively. The
fused model or VEg then represents the complete knowledge model of the DT. The VEg is
reduced with graph-based methods such as node importance (Section 2.4) and evidential
reasoning (Section 2.5).

2.3. Graph-Based Modeling of Complex Systems
2.3.1. Dimensional Analysis and Conceptual Modeling

Dimensional analysis and conceptual modeling (DACM) is a conceptual modeling
mechanism used to extract the causal relationship between variables in a physics-based
simulation environment [25]. This method uses the dimensional homogeneity principle
to extract the causal relationship between the parameters. DACM is a matured frame-
work and is already applied to use cases in the field of additive manufacturing [26] and
multi-disciplinary design optimization [27]. The DACM framework starts with functional
modeling of the system and the assigning of fundamental variables to the different func-
tions of the model. The functions, associated variables and representative equations are
characterized in the causal graph in the form of the cause–effect relationship between the
fundamental variables of the functional model. The mathematical machinery to check the
propagation of an objective in a causal graph is based on the Vashy–Buckingham pi (π)
theorem and the dimensional analysis (DA) theory. DACM encodes the domain knowledge
of the system in the form of the directed causal graph. Specific checks are run to identify
and remove any loops or contradictions in the graph. This ensures a target-driven directed
model. This source of the domain knowledge could be from the literature, empirical rela-
tionship or analytical models. DACM is combined with machine learning methods such as
the Bayesian network for causal inference. The objective of the causal graph provided by
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DACM is to arrive at the target variable in the directed acyclical graph or DAG with the
help of a set of intermediate dependent and independent variables. Apart from extracting
the causal graph, DACM also provides the following checks: (1) it generates sets of behav-
ioral equations associated with the causal graphs, (2) it simulates qualitatively behaviors,
(3) it detects contradictions in systems, and (4) it provides a set of analytical concepts for
analyzing complex systems.

2.3.2. Greedy Equivalence Search

Chickering, in [28], provided a method for graph structure learning with a two-phase
greedy equivalence search (GES) algorithm from data. Graph structure learning is a
sequential process that learns the relations between the random variables (nodes of a graph)
that are embedded in the edges simulating a causal influence. The GES algorithm provides
a mechanism to obtain such a distribution and represent it in the form of a DAG. The GES
approach has an important influence in machine learning methods such as the Bayesian
network for graph structure learning. Another experimental GES was proposed by [29], it
was called the greedy interventional equivalence search (GIES) and generalizes the GES
algorithm. Interventions distort the value of random variables to throw the graph out of its
original causal dependencies and make it find the original DAG. In this article, the GES
algorithm is used to discover the accurate causal reasoning of the DT graph.

It was proved that, for two DAGs δ and λ, where δ is an I-map of λ, there are a finite
sequence of edge additions and reversals in λ, such that: (1) after each edge modification, δ
remains I-Map of λ, and (2) after all modification, λ is a perfect map of δ. The two-phase
algorithm starts with a graph assuming that there are no dependencies. This is indicated as
the zero-edge model. Then, all possible single edges are added till the algorithm reaches
a local maximum. The phase of progressively adding single edges in the DAG is known
as the forward equivalence search (FES); the corresponding local maxima is known as the
FES local maxima. Once the FES algorithm stops at a local maximum, a second-phase
greedy algorithm is applied that considers at each step all possible single-edge deletions
that can be made to the DAG. This phase is known as the backward equivalence search
(BES). The algorithm terminates when the BES local maxima is identified. The concept is
demonstrated in Figure 3.
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2.4. Node Importance Measurement

Identifying the node importance in a complex graph is an active field of research in
artificial intelligence. Several studies and algorithms have been published to estimate the
importance of nodes in a graph [30,31]. Graph centrality is a diverse topic in network



Machines 2023, 11, 733 7 of 25

theory, with several algorithms available to study different network phenomena in complex
graphical systems such as finding the shortest path from given node to the target node,
predicting the links between the nodes, understanding the relative importance of the nodes
in a graph and finding the bridge nodes to detect communities or clusters. Experimental
studies have proven the validity of such systems applied to complex networks [32]. The
PageRank algorithm is a popular algorithm in graph centrality measurement in directed
graphs. It is a network ranking method developed to compute the ranks of webpages in
Google’s search engine results. The PageRank algorithm iteratively converges to a point for
the most influential nodes. Hence, it creates a hierarchical node importance ranking system
in a DAG. An improved version of this algorithm is used in applications that go beyond
search engine ranking, which include impact analysis of graph-based system requirements
and graph-based feature selection [33]. The PageRank P(i) of a node i can be calculated as
follows:

P(i)n =
q

∑
j=1

aij
P(j)n−1

k j
(1)

The influence of node i in n steps is denoted as P(i)n. The higher the value of P(i), the
higher are the chances that it is an important node. The P(j)n−1 indicates that the node also
depends on the importance of the n− 1th node. So, if a high importance node is pointing
towards the node, it is considered important. Weighted PageRank (WPR) is a modified
form of the PageRank algorithm that is used to rank real system parameters. In WPR, the
influence of other nodes can be controlled by selecting appropriate weights [34].

Eigenvector centrality [35] is another graph centrality measuring algorithm that is
used by social scientists to measure prestige in large connected graphs. EVC identifies
nodes by the number of their neighbors and their importance. EVC is calculated with the
following formula:

EVC =
1
λ

n

∑
j=1

(aijxj) (2)

where the largest EVC value is represented by λ.

2.5. Evidential Reasoning

The graph centrality and node importance approaches, though mathematically ac-
curate, are often general and yield contradicting results. This results in disparity in the
ranking system, introducing uncertainty and incompleteness in the ranking system. The
Dempster–Shafer theory (DST) deals with this uncertainty and the incomplete behavior of
any ranking system. Having its roots in probability theory, the DST uses data fusion and
combinatorial rules to provide a belief function to a set of elements in the domain. The
DST is used to combine the information available regarding the nodes in the DT graph
and their relative importance obtained from the node importance scores. There are two
possible outcomes for each node. The nodes can be high importance (h) or low importance
(l). Hence, the frame of discernment (which is a non-empty set containing all mutually
exclusive and exhaustive elements) is defined as: Ω = {h, l} and the power set (which is
a set of all possible combinations of the problem in the frame of discernment) is defined
as: {h, l,∅}. Next, the mass functions are determined by adopting a technique similar to
the one described in [36] for directed networks. The frame of discernment contains all the
possible combinations where the combination lies. If there are three hypotheses possible
(∅ = {θ1, θ2, θ3}), the set of all combinations where the solution lies are:

2∅ = {φ{θ1}, {θ2}, {θ3}, {θ1θ2}, {θ2θ3}, {θ1θ3}, {θ1θ2θ3}} (3)
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The maximum and minimum values of the corresponding ranking is used to compute
the mass functions with the following formulae:

mC(i)(h) =
Ci − Cm

CM − Cm + ω
(4)

mC(i)(l) =
Ci − CM

CM − Cm + ω
(5)

mC(i)(∅) = 1−mC(i)(h)−mC(i)(l) (6)

where ω is a tunable parameter that is chosen to avoid the denominator becoming zero.
Repeating the steps in Equations (1)–(3) creates a basic probability assignment (BPA) for
each node in the form:

MC(i) =
{

mC(i)(h), mC(i)(l), mC(i)(∅)
}

(7)

There will be the same number of BPAs created as there are nodes in the sets. Now,
all the node importance scores obtained from different centrality metrics can be combined
with the help of Dempster’s combination rule to generate a new combined ranking for the
nodes. Dempster’s combination rule, used in the field of IoT sensor fusion [37], is modified
to obtain the new metric for nodes based on the evidence of whether the node is high
importance or low importance:

mi(h) =
1

1− k

n

∑
C(i)=h

mC(i)(h) (8)

mi(l) =
1

1− k

n

∑
C(i)=l

mC(i)(l) (9)

where

k =
n

∑
C(i)=∅

mC(i)(∅) (10)

The factor k is a normalization constant known as the conflict coefficient of two
BPAs. The higher the value of k, the more conflicting the sources of evidence are and the
less information they will combine. Finally, the combined scores of each node based on
evidential reasoning is obtained as:

Mevidential(i) = mi(h)−mi(l) (11)

In Section 2, the complexity involved in building the DT is presented. A reference
model from the literature is presented to provide the context to the VE of the DT. To
understand the full potential of this VE, a conceptual modeling approach is presented. A
correct balance should be struck between the graph–model complexity, speed and accuracy.
New methods are needed that quickly capture the underlying structure of the graph–model
and generate a reduced representation of that model for faster and less resource intensive
computation of the target quantity. This is achieved with the GBMR method.

3. Graph-Based Model Reduction Method

The DT is a living hybrid cross-disciplinary model of a real entity. For this, many
cross-platform parameters need to be coupled together. Model fusion facilitates this cou-
pling process by bringing several high-fidelity models from domains described in the DT
reference model in Figure 2 to create a unified model that provides specific digital services.
Model fusion is a two-stage process where the first stage is building the multi-disciplinary
model by coupling model parameters. The second stage is simplifying that model for faster
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interpretability and the prediction capacity of target parameters with model reduction. The
GBMR method was first presented in [38]. This section describes the GBMR method as a
model fusion strategy for building faster and more accurate DTs. The GBMR method is
shown in Figure 4.
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3.1. Initial Graph

The initial graph is the causal graph extracted from the physics defined by the ana-
lytical models of the PE. The parameters from FEM models or system-level models are
used as inputs to the DACM method. The output of the DACM method is the causal graph
containing all nodes and edges from physics-based equations. An alternative to DACM
for building the initial network are graph structure learning algorithms from data such as
Bayesian networks [39]. The GBMR was combined with a Bayesian network to obtain the
variable importance in the causal graph [32]. In the Bayesian approach, the conditional
probability of each node on the causal graph is calculated based on the available data.
Sensitivity analyses were performed to find out the most responsive parameters using a
Bayesian inference engine. The initial graph contains information about the relationship
between the node and the weighted edges. It also contains information about the target
variables that the DT needs to optimize.

3.2. Hybrid Graph

The GBMR process starts with building the initial graph. However, this initial graph is
a physics-based representation. The DT is a hybrid representation. There is a need to inject
process data into the initial graph generated in the previous step to build such a hybrid
graph. Hence, process parameter data is collected with IoT platforms. When the parameter
graph and data are available, an analogy modeling technique is followed to generate the
relationship between the parameters. For example, the relationship between the power
consumption (P), voltage (V) and current (I) of a machine could be established based on the
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popular relationship P = V × I with the initial graph, as shown in Figure 5A. If the data
obtained from the machine contains datasets such as active power (A(P)), active voltage
(A(V)) and active current (A(I)), the datapoints could be appended to the initial graph and
a hybrid graph could be established, as shown in 5b.
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3.3. Heuristic Method for Hybrid Graph

The hybrid graph consists of several parameters. Though the relationship is defined
by the underlying physics, it is not necessary that a relationship exists between the two
entities. Hence, a heuristic approach is taken in this article. A greedy search algorithm,
such as the GES, is applied to construct the final graph. As mentioned in the Section 2.3.2,
the GES progressively generates and removes edges in the graph with FES. It finally stops
at the point where the BES hits the local maxima. This process is computationally extensive.
For graphs with a high number of nodes, this process is performed in stages. The GES
algorithm is suited for high-dimensional datasets. GES was applied in for causal model
discovery in directed graphs such as the hybrid network in [40]. The GES provides the final
graph, which serves as an input to the model reduction method.

3.4. Graph Spectral Cluster

The evolution of the GBMR method continued when more fundamental questions
were raised about the causal graph structure. The hybrid graph input to the GBMR method
assumes that the causal graph structure is complete when the node-importance measuring
algorithms are run on it. This is indicated by a * sign in Figure 4 when importing the graph
from the graph library. That means that the graph structure does not change at runtime (no
nodes or edges are added or removed). Hence, it becomes possible to segment the bigger
graph into structurally similar chunks. A spectral clustering-based graph-cut method for
DAGs was used for this purpose [41]. The spectral clustering method learns the graph
structure and provides the hierarchical clusters based on the graph Laplacian [42]. The
spectral clustering algorithm classifies the parameters into cluster membership based on
the adjacency matrix. The spectral clustering algorithm computes the normalized graph
Laplacian such that:

Ln = D−1L (12)

where L is the un-normalized graph Laplacian and D is the degree matrix. The algorithm
defines three parameters: the number of clusters in which the graph should be split, the
affinity or adjacency matrix of the graph and the random state used to initialize the graph
decomposition method. Because of this graph decomposition, the nodes that belong to
similar clusters can be identified that might have similar behavior in the graph.
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3.5. Importance Measurement

In GBMR, graph centrality methods such as WPR and EVC are used for the hybrid
graph to identify the important nodes. If the smallest eigenvalue is 0, the node importance
can be measured. When these nodes are identified according to the WPR score, they are
compared with the spectral clustering algorithm result. When both the node centrality
algorithms and spectral clustering rank the node as high, the node is declared as an
important node. If the eigenvalues are not zero, the hierarchical node rankings could be
applied. This check is made in the GBMR method soon after the hybrid graph is obtained.
If the hybrid graph provides zero or negative eigenvalues, that means the graph is not
complete. There are some edges that are connected in the wrong locations or some nodes
that are not connected at all. In either case, the input graph is invalid. If there are nodes
that cannot be connected in a legitimate graph with all other nodes and edges in place, a
pseudo-node is generated to the nearest neighbor to make the graph valid.

The WPR algorithm uses three important parameters to reach the final score. The
maximum iterations allow users to define how many iterations of the PageRank should be
performed. In most cases, the WPR score stabilizes after 100 iterations. The damping factor
α is defined as 0.85, which indicates a gradual convergence towards the final score. Finally,
the weights on the directed graph are added as per the power law defined by DACM. A
threshold is selected by combining the domain-specific expert knowledge and piecewise
linear regression of the centrality score. The development of a generic method of threshold
measurement is currently being researched and should be treated as a future direction of
this article. Hence, the variables can be moved into a high importance matrix [XH] and a
low importance matrix [XL].

3.6. Consolidation of Importance

The GBMR method further evolved when the eigenvector centrality algorithms such
as EVC and Katz were compared with the output obtained from the modified PageRank
algorithm; the match of important parameters was less than 60%. It was discovered that
the accuracy of the node importance depends on the ranking method selected. To address
this issue, evidential reasoning techniques such as the Dempster–Shaffer theory were used
for consolidating the node importance scores. The DST complements the GBMR method
by providing a belief structure to decide when a node is considered of high importance.
The mass functions are calculated and Mevidential(i) was computed. Even though the node
is differentially ranked by the node ranking algorithm, the DST helps to take a decision
by fusing the available information of the nodes that are contradictory in their ranking.
An aggregated node ranking is achieved with the application of the DST, which is used to
select the parameters for DT the optimization problem [38].

3.7. Validation

The GBMR method is validated by benchmarking it against a machine learning method
known as the random forest regressor (RFR) with its associated Gini importance. RFR
with Gini importance is a fast and accurate way of analyzing the feature importance in
high dimensional data. The benchmarking process provides an estimate of the relevance
of the important parameters. Gini provides a superior method of feature importance
measurement than other methods such as PCA. The RFR and Gini optimizer provide a
parameter ranking stored in XH(RFR). XH(RFR) is compared with XH to check the number
of parameters declared important by both methods. It may not be a one hundred percent
match. A threshold [t] is defined at this stage. If the match percentage is below [t], the mass
functions and BPA from Equation (6) is reevaluated and the process is run again.

An alternative approach to the RFR method was to analyze the GBMR method by the
formulation of an optimization problem. This is shown in Figure 4 by the dotted boxes.
The problem was formulated as a multi-objective optimization case. The objective function
is setup with the target variables of the DAG and the parameters from XH used to attain
the target variables. An empirical approach was taken to determine a Pareto efficient
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solution. However, formulating such a multi-objective optimization problem is challenging
in situations containing a high number of parameters. Multi-objective problem formulation
cannot be meaningfully developed when the number of parameters is high.

At this stage, the major component of the GBMR method is explained. Now, the
validity of this method is demonstrated with the help of a turbo compressor case study in
the next section.

4. GBMR Case Study with a Turbo Compressor System

This case study demonstrates the GBMR method for building the DT of a turbo
compressor system. The purpose of this case study is to showcase the following:

1. DT as a graphical representation of a system, built to provide specific outcomes;
2. Utilize the GBMR framework to demonstrate how this conceptual DT is useable in

a real scenario providing a digital service;
3. Validation by benchmarking the GBMR method against machine-learning-based

methods.

4.1. The Graph-Based Model of the Turbo Compressor System

The GBMR method is applied on the graph-based representation of the system. The
initial graph is constructed with DACM, as described in Figure 4. Conditional restrictions
are applied on the hybrid graph by the turbo compressor system such as (1) the graph has
to be completed. All nodes should have at least 1 edge connecting it to the whole graph,
and (2) the target parameters are identified by propagation of strategic objectives in the
causal graph. The causal graph is at least checked for loops and contradictions and they are
removed. The parameters from the initial graph are appended to the system level model
and the hybrid graph is established. The hybrid graph is treated as the input to a GES
algorithm. GES algorithms use a sequence of forward and backward searches to create the
final hybrid graph. The final graph is the knowledge model that consists of the details from
both physics-based and data domains. The final graph is used as an input to the model
reduction process. The need of a DT is to understand and mitigate the effects of dynamic
instabilities in the turbo compressor system.

There are two types of dynamic instabilities known as stall and surge [43]. Stalling is a
complex flow instability originating from regions of flow stagnation that are created near
the impeller blade confinements of the centrifugal compressor known as stall cells. Turbo
compressors are at risk of developing stall cells that result in eventual impeller failure.
Stalling can be progressive or abrupt in nature. A progressive stall is the more common
and riskier form of stall. Stalling is a precursor to surge, which is the principal destabilizing
phenomenon in turbo compressors. Due to stalling, the compressor cannot generate enough
pressure at the outlet to match the pressure built up inside it. This forces the compressed air
to flow back towards the inlet, resulting in a rapid asymmetrical oscillation known as surge
oscillation. Hence, surge mitigation requires precise and accurate modeling and control
methods. For that, the Greitzer compression system model is adopted as a foundation for
building the graph-based VE [44].

4.1.1. The Initial Graph Development

Surge is a gradual build-up phenomenon whose occurrence can be understood by mon-
itoring the pressure rise in the compressor (ψC), the plenum pressure rise (ψP), mass flow
rate of compressed air (φP) and mass flow rate at the throttle (φth). These variables and their
interrelationship are defined by the Greitzer compression system model, which provides a
lumped parameter model of the compression system. The mathematical equation needed
to build the Greitzer compression system model is described in equations A.1 through A.9
in Appendix A. This model provides the basic physics-based causal formulation of turbo
compressor system.

The causal model is used to extract and represent the causal relationship between the
variables in the Greitzer compression system model. The result graph obtained is shown
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in Figure 6. This network is built to optimize the stability of the compression system. The
stability is quantified with ψC, ψP and φP from the Greitzer compression system model.
This is indicated with red color variables. These are called performance variables in the
conceptual modeling nomenclature. The variables in red color are the target variables
defined by the system. The blue variables are the dependent variables that are dependent
on the green variables known as independent variables. The black variables are exogenous
variables that are not affected by external or internal change. The weights on the edge of
the network are assigned as per the power law and utilized in the GBMR approach.
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4.1.2. The Hybrid Graph Development

The initial graph captures the physics-based representation of the system; however,
it is bound to the steady state of the system and its implication is theoretical. In earlier
studies, efforts were made to define the practical usage of this causal graph entity using
theories from artificial intelligence. In this article, the utility of the physics-based initial
graph is set to guide the development of a graph-based representation of the system-level
model. System-level models, such as those in the Figure 7C, represent the dynamic state of
the system that is related to the physical phenomena guiding it. In the VSD unit of turbo
fans and motor systems shown in Figure 5B, the variables from the dynamic system model
could be organized and the causality between these variables can be extracted guided
by the initial graph (i.e., the Greitzer compression system model). Therefore, embedding
the parameters or the network from Figure 4 into the relevant sections of Figure 7C, a
hybrid of the physics-based and the systems-level models is created. This combination of
the physics-based and systems-level models is known as the hybrid graph. The resulting
hybrid graph is the dynamic system-level model in DAG form.
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The methodology described in Section 3.2 is used to build the hybrid graph. The
factors affecting the pressure differential parameters in the three turbo motors and com-
pressor system in the systems-level model: pressure differential, maximum free air delivery,
motor speed and motor stator temperature, could be associated with a non-dimensional
pressure rise, dimensional mass flow rate, impeller tip speed and stagnation temperature,
respectively, from the initial graph. Similarly, the surge limit could be connected to the set
pressure and the motor rpm could be connected to the active power based on the physics
of the system. The same methodology is repeated to create the causal model of the whole
system. Additional parameters where this methodology cannot be applied such as state
variables or ON/OFF signals are considered independent if they could be connected to a
dependent variable. If the variable has no association with the physics of the system, the
assumption is made to consider it as exogenous.

4.1.3. GES Algorithm

The hybrid graph serves as the input to the GES algorithm as described in Section 2.3.2.
The graph is transformed into an adjacency matrix embedding the relationship on the
edges with ±n weight signifying the presence of a relationship. Here, n is the weight on
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the edges of the initial graph. FES and BES maxima are computed with Gaussian likelihood
score with the python library known as sempler [45]. The result of the GES algorithm is the
hybrid graph that serves as an input to the GBMR method.

5. Results and Discussion
5.1. Node Importance

The hybrid network is a complete knowledge model in line with the VE representation
of the DT, embedding the relationship obtained from the underlying physical phenomena,
the system-level information model and the data collected from the turbo compressor
system. The final network contains 183 nodes. This provides a good use case for demon-
strating the GBMR method. The result of the ranking algorithms is presented in Figure 8A,
and a spectral decomposition of the hybrid graph is shown in Figure 8B.
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The spectral method and the node ranking methods are conducted parallelly. The
spectral clustering algorithm is applied to obtain the structure preserving graph cuts. The
spectral clustering algorithm is developed with python API that uses the clustering of
normalized Laplacian. The eigenvector plot clearly indicates that there are five peaks with
zero eigenvalues, indicating the presence of five ways that the graph could be partitioned.
The cluster membership result of the parameters is indicated in Figure 8B. Cluster0 contains
112 parameters; the second biggest cluster, cluster3, contains 33 parameters; the third
biggest cluster, cluster2, contains 28 parameters. The two remaining small clusters contain
five parameters each. If the clusters are reconstructed with the number of clusters as six, no
change was observed in cluster0, cluster2 or cluster3. The smaller clusters start fragmenting
as number of clusters increases. It is interesting to note that the small clusters contain nodes
that are farther from the center of the graph, where the target variables are located. The
target variables such as FAD, motor voltage and active power consumption all belong to
the cluster0.
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The WPR and EVC scores are shown in Figure 8A. The WPR scores of nodes in cluster0
are consistent. The intersection of the high WPR scores with cluster0 are agreeable, except
the environmental parameters that were added to the dataset externally. The highest
WPR score was given to maximum FAD. This is consistent with the hybrid graph, as FAD
was considered as a target variable. The WPR also nominated motor speed as important,
which was associated with FAD in the hybrid graph. EVC agrees with the WPR in many
cases; however, EVC differs in the ranking scheme given by WPR. State variables such
as the motor state and turbo state differ considerably between EVC and WPR. Hence,
the consolidated ranking results are obtained from the node importance algorithms with
DST. This is indicated by the difference between the blue and green lines in Figure 8A.
DST was applied to this hierarchical ranking system to find a combined ranking. This
is indicated by the yellow line and marked as the final evidential mass or Mevidential(i).
DST is able to consider all the available pieces of evidence in deciding whether a node is
important or not and can give a trusted final decision. After application of DST, the nodes
were rearranged, and the nodes lying in the intersection of cluster0, cluster2 and cluster3
with Mevidential(i) were considered as important nodes. These nodes were stored in a high
importance parameter matrix [XH] and the other variables were kept in a low importance
parameter matrix [XL]. The GBMR process is documented in [46].

Because so many variables were declared as important (173 params), a cutoff was
set to the Mevidential(i) score. When a threshold of lower limit of 25% of the Mevidential(i)
score was selected, the number of important parameters obtained was 145. So, a 22.4%
reduction in parameters was obtained. That is, with 22.4% fewer parameters, the hybrid
graph will be able to compute the target variables. The values of the target variables were
measured from the reduced model and computed and compared with the values from the
literature presented in [43]. These values are free air delivery and pressure differential
for all turbo compressors ([Turbox_OUT_P]-Turbox_IN_P), where x is 1, . . . ,3. The error
in the free air delivery is (e = FAD −

.
φC) and is less than 4%. The error in pressure

differential is e = (Turbox_OUT_P-Turbox_IN_P)-
.

ψC and is less than 6%. The maximum
value from the DST scores is 0.0037. Considering a lower threshold than 25% results in the
selection of 178 parameters (or a 2.73% reduction). This makes the GBMR very inefficient.
On the other hand, a higher threshold eliminates important parameters ranked highly
by both EVC and WPR. This result is valid for the selected threshold, which is obtained
by a numerical analysis. For a different threshold, the percentage reduction will vary. It
should be mentioned here that an accurate method for obtaining the threshold is under
consideration and should be realized as a future direction of this research. These parameters
are used to construct a benchmarking procedure for the turbo compressor case study.

5.2. Validation of GBMR Method through Benchmarking

A validation by benchmarking approach was designed for the GBMR method when
applied to the VE representation of the DT. The benchmarking method compares the GBMR
method with machine-learning-based approaches applied to the hybrid model of turbo
compressors. The validity of the method can be proven in case more complex models
are used. This is because GBMR uses graph-based methods and algorithms to build and
reduce the complex model. A complex model will generate a complex graph. The spectral
decomposition and node importance algorithms used in GBMR can be applied to any type
of complex graph. Classical methods such as the RFR [47] or a mixture of the RFR and
a deep learning method such as CRNN [48] are used to find the statistically significant
parameters that contribute most to explaining the target outcomes when a large number
of feature sets are present in the data. Such approaches become necessary because, unlike
other domains, large training datasets are not readily available for identifying important
variables for compressor surge prediction.

The RFR is a type of ensemble method machine learning algorithm. It consists of
several decision trees, each constructed based on a randomly selected subset of the training
data set. CART, a popular training algorithm, is used for this. The training indicated that
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the individual trees learn some features in the training data and the ensemble of all trees
learn the features present in the turbo compressor dataset. The estimation happens by
voting or sampling some statistical value for the estimations of the individual trees [49]. A
by-product of the training of the RFR is combined feature importance. Feature importance
is a method of ranking features based on how much each feature reduces the impurity of
the estimation through the nodes of the decision trees. The importance of each feature
is calculated by normalizing the total reduction in impurity that the feature causes. The
feature importance identification can be performed by two methods: Gini importance [50]
and permutation importance [51]. It was experimentally observed that the importance
distribution in Gini could be skewed by ranking some features much higher than others.
Hence, the permutation importance was used to estimate the importance of the features.
The permutation importance is calculated by using a trained estimator and dataset, such
as the RFR. The algorithm first uses the estimator to calculate a baseline output using
some metric on the dataset, then permutes a feature of the dataset and re-calculates the
output metric. This is repeated with the other features. The difference of these metrics then
indicates the importance of each feature in the dataset with respect to the estimator output.

The dataset used to build GBMR is used for validation with the RFR method. The
dataset consists of all parameters from the turbo compressor system shown in Figure 7C.
The data is split into three zones for three turbo compressor fans. It contains physical
parameters such as the inlet and outlet pressure, inlet and outlet temperature of rotor and
stator, pressure ratios, maximum free air delivery (MAX. FAD), RPM of fans, active power
consumption of motors, peak currents, voltages and positions of the motors, internal liquid
flow temperature and levels and cooling valve temperatures. It also contains state parame-
ters such as rotor stop state, fluid rise state, speed control state, error states and compressor
states. Finally, it consists of operational data such as surge limit and environmental data
such as atmospheric temperature, pressure, humidity, and dew points.

Experiment Design for Validation

The RFR method is chosen in this study to benchmark the results obtained from the
GBMR method. The RFR algorithm was built with a python-based machine learning library
scikit-learn. An experiment was designed to achieved that. These data were obtained from
an industrial turbo compressor system. The RFR was trained with 517,902 samples using
the dataset described above with 183 variables as inputs. The target of the training was the
power variable calculated as a sum of power variables from the two-motor assembly in the
VSD compressor line. A hold-out test data set of 129,475 was left out of the training data.
The hyperparameters of the regressor training were as follows:

Number of trees = 200;
Maximum depth of a tree = 10;
The minimum samples required for a split = 2;
The accuracy of the trained model on the training data = 0.9998;
Holdout test dataset accuracy = 0.9997.
The top 20 important variables from permutation importance and GBMR are listed

in Table 1. The parameters are presented in order from high to low. Figure 9 presents the
top 20 parameters obtained from the two methods. The common parameters selected by
the two methods are more important than the order of the parameters. The parameters
with higher importance score are the most important parameters obtained from both of the
methods. In the benchmarking process, the parameter set obtained from the permutation
importance serves as a control.
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Table 1. Parameter benchmarking between the GBMR and RFR methods.

Node Importance
Rank GBMR

Gini Permutation
Importance Rank of

Nodes
RFR

1 Max. Free Air
Delivery (cal.) 1 M2 RPM

2 Actual DC Voltage 2 M1 Active Power
3 M2 RPM 3 M2 Active Power
4 M1 Active Power 4 M1 Apparent Current
5 M2 Active Power 5 M1 RPM
6 Turbo1_IN_P 6 M3 RPM
7 M2 Press Ratio 7 Turbo1_IN_P
8 Motor1 RPM 8 M2 Apparent Current
9 Active Current 9 Surge Limit P (bar)
10 M1 Apparent Current 10 Turbo1_IN_F

11 Turbo1 Pressure Ratio 11 Max. Free Air
Delivery (cal.)

12 Turbo2 Pressure Ratio 12 Turbo1_IN_P
13 Surge Limit P (bar) 13 Active Current
14 MBC 1 PeakCur W1 14 Filter dP
15 Turbo2_OUT_P 15 Turbo1_IN_P_DIFF_H
16 Liq_Internal_IN_P 16 Turbo2 Pressure Ratio
17 MBC 2 Rotation 17 Liq_Internal_IN_P
18 M1 Active Current 18 Turbo3_IN_P
19 M2 Active Current 19 MBC 1 PeakCur W1
20 Turbo1_IN_P_DIFF_H 20 Turbo2_OUT_P
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5.3. Discussion

A sample of the top twenty parameters is taken to demonstrate the accuracy of the
GBMR method compared with the RFR method. Both methods capture the significant
parameters from the three motors and main compression parameters. Both methods return
active current and active power as important parameters. This is in line with the hybrid
graph, where the current and voltage were considered as inputs to several parameters
including the turbo motor pressure and temperature. Both methods indicate the motor RPM
as an important parameter; however, the RFR indicates it is the most significant variable by
a large margin, with a mix of power and current variables also indicated. This is because of
the permutation importance; the peak is distinctly noticeable in Figure 9. The significance
of Motor2 RPM is likely because it explains the operational condition of the motor that runs
the last compressor stage and therefore works with the highest pressures. This is clearly
linked to the highest energy consumption rate, making the apparent current, active current,
output voltage and active power crucial parameters in surge control. The compressor state
is correlated with the maximum free air delivery, which in turn is related to the active
power of the system. The air pressure value at the intake and compressor-control-related



Machines 2023, 11, 733 19 of 25

variables are also seen as important parameters. A calculated parameter, surge limit, is
marked as an important parameter by both RFR and MR. The surge limit is computed from
the pressure rise in the compressor and the maximum free air delivery. This is because of
using node importance methods to rank order the parameters. The parameter pointing to
important parameters is also considered important.

In the sample of the top 20 parameters, 15 parameters match from both methods. This
amounts to a 75% match between the two methods. The RFR is a data-driven method and
does not contain any knowledge of the physics of the parameters involved. The GBMR,
on the other hand, works on the hybrid representation. The 75% match indicates that
both methods attempt to identify the common important features in the parameters. The
percentage match between the parameters obtained from the two methods increases up
to 78% when top 100 parameters are considered. The motor currents and voltages are
identified as important parameters in the [XH] set, as they point to the high importance
parameter active power. The parameters in [XL] are ignored for benchmarking purposes.
When the values of [XL] are considered, the benchmark percentage will vary. GBMR still
provides a fast method to quickly capture the influential system parameters. The model for
the RFR is retrained, but the basic result of M2 RPM importance remains the same with
the existing data from the turbo compressor. The GBMR results seem similar because of
the application of evidence theory. Evidence theory tends to remove any disagreement
between different ranking score and provides the relative importance for the parameter.
This is indicated by the yellow curve in Figure 8A.

To understand the simplification of the computational complexity obtained by GBMR,
it is possible to compare the training time of the RFR method with the total execution
time of the GBMR method. The training time of the RFR method is 81.3471 min. The total
execution time of the GBMR method, which is a summation of graph structure learning,
spectral decomposition and importance measurement, is 72.2318 min. Hence, GBMR is
9.1153 min faster in identifying the reduced model.

6. Conclusions

This work presents the research activities on the VE optimization of the DT with the
help of a model fusion technology. The VE is a computationally complex entity, comprising
of models from different domains, that tries to faithfully replicate the state of the PE. The
VE combines advanced simulation models such as system-level models with data-driven
prediction models to predict the state of the PE. This article describes the GBMR method
for optimizing the performance of the VE with a two-step approach: (1) providing a graph-
based conceptual model representation of the VE, and (2) reducing the VE graph model
by identifying the important parameters in it. The GBMR embeds all the parameters and
their relationships in a graph model and facilitates application of graph algorithms for
measuring node importance. Therefore, GBMR facilitates modeling of physical systems
in the form of graphs and the reduction of such models based on graph algorithms. The
GBMR makes the VE more efficient, as the reduced model uses a subset of parameters to
predict the target parameters in the PE.

The GBMR method is tested with the help of a turbo compressor case study. The
GBMR method is benchmarked against a machine-learning-based approach known as the
random forest regressor, which also estimates the important parameters in a given dataset
with the help of permutation importance. Both the GBMR and RFR methods were applied
on the turbo compressor dataset, and it was found that both methods find 75% common
parameters in no fixed order. These important parameters bear maximum contribution
towards the performance of the VE.

Methods such as GBMR become important in the context of DTs because they help
to simplify the VE development but still capture both the physics-based and data-driven
aspects of the twin. With the help of the GBMR, the DT becomes more context aware by
knowing the important parameter that it needs to monitor and optimize to obtain the fastest
result. The GBMR method aids in the fast computation of the target parameters that the
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DT is trying to replicate by capturing the intricacies of a multi-domain system. It will also
become imperative to integrate methods such GBMR with the DT frameworks and perform
computational tests on entire complex DT systems such as the turbo compressor system
described in this article. It is possible to convince PE owners about what is essential in
their system with GBMR and how resource allocation and optimization can be performed
effectively with DTs. The GBMR method is a python-based software package that can be
used as a virtual sensor or a prototyping tool where quick estimation regarding the system
and the effort needed to build a VE representation can be analyzed effectively.
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Appendix A

List of equations for surge modeling

Appendix A.1. Greitzer Compression System Model

ψ =
∆p

1
2 ρo1U2

,

φ =
m

ρo1UAc

ψ: non-dimensional pressure rise

φ: non-dimensional mass flow rate

∆p: dimensional pressure rise

m: dimensional mass flow rate

ρo1: density @ inlet condition (ambient)

U: impeller tip speed

Ac: Area of the compressor duct

Appendix A.2. Helmholtz Frequency (ωH)

ωH = ao1

√
Ac

VpLc

Lc: length of compressor duct

Vp: volume of plenum

ao1: speed of sound in @ inlet (ambient) condition

Appendix A.3. Original Greitzer Compression System Model with Non-Dimensional Variables

dφc
dt = BωH(ψC − ψP)

dφth
dt = BωH

G (ψC − ψth)

}
conservation of momentum of fluid in compressor and throttle duct

dψp
dt = ωH

B (φC − φth)
}

conservation of mass in plenum volume
dψc
dt = ωH

∼
τ
(ψc,SS − ψc)

}
behavior of dynamic compressor settling

φc: non-dimensional mass flow rate

φth: throttle mass flow rate

ψp: plenum pressure rise
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ψc: compressor pressure rise

∼
τ: time constant of the compressor

Appendix A.4. Greitzer Stability Parameter (B) Governs the Intensity of Surge Instability in the
Greitzer Model

B = U
2ωH LC

G = Lth Ac
Lc Ath

Lth: length of throttle duct

Ath: cross-sectional area of throttle duct

Appendix A.5. For Subsonic Flows

φth = cthuth
√

ψp

uth: throttle percentage opening

cth:Constant¯determined experimentally and depends on valve geometry and properties of the fluid

Appendix A.6. Curve Fitting to Determine the Steady-State Pressure and Flow Rate Measurements

ψc(φ) = ψc0 + H(1 +
3
2
(

φ

W
− 1)− 1

2
(

φ

W
− 1)

3
)

ψc0: pressure @ 0 flow

H, W: constant computed from pressure rise and flow rate corresponding to surge
point (predicted params from curve fitting in the stable region and used to correct ψc0).

Appendix A.7. Variation of Impeller Tip Clearance with AMB. Isentropic Efficiency of Compressor

ηth =
To1Cp

(
pc,SS
po1

) γ−1
γ − 1

∆hoc,ideal

To1: stagnation temperature

po1: stagnation pressure

Cp: specific heat at constant pressure

∆hoc,ideal : total specific enthalpy delivered to the fluid

γ: specific heat ratio
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pc,SS: compressor output pressure at nominal tip clearance δcl = 0

Appendix A.8. ψc (Non-Dimensional Compressor Pressure Rise) as a Function of ψc,SS and δcl

ψc =
po1

1
2 ρo1U2


1 +

(
0.5ρo1U2

po1
ψc,SS + 1

)
− 1

1− k0
δcl
b2


γ−1

γ

− 1


Appendix A.9. Level I Stability Analysis (Initial Screening to Identify Safe Compressor Operations)

qA = HP
BCCρd

DC HC Nρs

qA: predicted cross-coupling stiffness

HP: rated horsepower

BC: constant for centrifugal compressors determined experimentally

C: constant for centrifugal compressors experimentally

ρd: discharge gas density per impeller/stage

ρs: suction gas density per impeller/stage

DC: impeller diameter

HC: minimum of diffuser or impeller discharge width

N: operating speed

References
1. Grieves, M.; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In

Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches; Kahlen, F.-J., Flumerfelt, S., Alves, A., Eds.; Springer
International Publishing: Cham, Switzerland, 2017; pp. 85–113. [CrossRef]

2. Kannan, K.; Arunachalam, N. A Digital Twin for Grinding Wheel: An Information Sharing Platform for Sustainable Grinding
Process. J. Manuf. Sci. Eng. 2019, 141, 021015. [CrossRef]

3. Khan, L.U.; Saad, W.; Niyato, D.; Han, Z.; Hong, C.S. Digital-Twin-Enabled 6G: Vision, Architectural Trends, and Future Directions.
IEEE Commun. Mag. 2022, 60, 74–80. [CrossRef]

4. Gürdür Broo, D.; Bravo-Haro, M.; Schooling, J. Design and implementation of a smart infrastructure digital twin. Autom. Constr.
2022, 136, 104171. [CrossRef]

5. Jiang, Z.; Lv, H.; Li, Y.; Guo, Y. A novel application architecture of digital twin in smart grid. J. Ambient Intell. Hum. Comput. 2022,
13, 3819–3835. [CrossRef]

6. Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing and service with big
data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [CrossRef]

7. Yang, X.; Ran, Y.; Zhang, G.; Wang, H.; Mu, Z.; Zhi, S. A digital twin-driven hybrid approach for the prediction of performance
degradation in transmission unit of CNC machine tool. Robot. Comput.-Integr. Manuf. 2022, 73, 102230. [CrossRef]

https://doi.org/10.1007/978-3-319-38756-7_4
https://doi.org/10.1115/1.4042076
https://doi.org/10.1109/MCOM.001.21143
https://doi.org/10.1016/j.autcon.2022.104171
https://doi.org/10.1007/s12652-021-03329-z
https://doi.org/10.1007/s00170-017-0233-1
https://doi.org/10.1016/j.rcim.2021.102230


Machines 2023, 11, 733 24 of 25

8. Chakraborti, A.; Nagarajan, H.P.N.; Panicker, S.; Mokhtarian, H.; Coatanéa, E.; Koskinen, K.T. A Dimension Reduction Method
for Efficient Optimization of Manufacturing Performance. Procedia Manuf. 2019, 38, 556–563. [CrossRef]

9. Chakraborti, A.; Heininen, A.; Koskinen, K.T.; Lämsä, V. Digital Twin: Multi-dimensional Model Reduction Method for
Performance Optimization of the Virtual Entity. Procedia CIRP 2020, 93, 240–245. [CrossRef]

10. Qi, Q.; Tao, F.; Hu, T.; Anwer, N.; Liu, A.; Wei, Y.; Wang, L.; Nee, A.Y.C. Enabling technologies and tools for digital twin. J. Manuf.
Syst. 2021, 58, 3–21. [CrossRef]

11. Liu, Z.; Meyendorf, N.; Mrad, N. The role of data fusion in predictive maintenance using digital twin. AIP Conf. Proc. 2018, 1949,
020023. [CrossRef]

12. Darvishi, H.; Ciuonzo, D.; Eide, E.R.; Rossi, P.S. Sensor-Fault Detection, Isolation and Accommodation for Digital Twins via
Modular Data-Driven Architecture. IEEE Sens. J. 2021, 21, 4827–4838. [CrossRef]

13. Selvaraj, P.; Radhakrishnan, P.; Adithan, M. An integrated approach to design for manufacturing and assembly based on reduction
of product development time and cost. Int. J. Adv. Manuf. Technol. 2009, 42, 13–29. [CrossRef]

14. Verbert, K.; Babuška, R.; De Schutter, B. Bayesian and Dempster–Shafer reasoning for knowledge-based fault diagnosis–A
comparative study. Eng. Appl. Artif. Intell. 2017, 60, 136–150. [CrossRef]

15. Tao, F.; Zhang, M.; Nee, A.Y.C. Chapter 6—Cyber–Physical Fusion in Digital Twin Shop-Floor. In Digital Twin Driven Smart
Manufacturing; Tao, F., Zhang, M., Nee, A.Y.C., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 125–139. [CrossRef]

16. Kapteyn, M.G.; Knezevic, D.J.; Huynh, D.B.P.; Tran, M.; Willcox, K.E. Data-driven physics-based digital twins via a library of
component-based reduced-order models. Int. J. Numer. Methods Eng. 2022, 123, 2986–3003. [CrossRef]

17. Fresca, S.; Manzoni, A. POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs
by proper orthogonal decomposition. Comput. Methods Appl. Mech. Eng. 2022, 388, 114181. [CrossRef]

18. Wang, M.; Li, H.-X.; Chen, X.; Chen, Y. Deep Learning-Based Model Reduction for Distributed Parameter Systems. IEEE Trans.
Syst. Man Cybern.: Syst. 2016, 46, 1664–1674. [CrossRef]

19. Morimoto, M.; Fukami, K.; Zhang, K.; Nair, A.G.; Fukagata, K. Convolutional neural networks for fluid flow analysis: Toward
effective metamodeling and low dimensionalization. Theor. Comput. Fluid Dyn. 2021, 35, 633–658. [CrossRef]

20. Cui, C.; Hu, M.; Weir, J.D.; Wu, T. A recommendation system for meta-modeling: A meta-learning based approach. Expert Syst.
Appl. 2016, 46, 33–44. [CrossRef]

21. Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Inform. 2019, 15, 2405–2415.
[CrossRef]

22. Tao, F.; Xiao, B.; Qi, Q.; Cheng, J.; Ji, P. Digital twin modeling. J. Manuf. Syst. 2022, 64, 372–389. [CrossRef]
23. Tao, F.; Zhang, M.; Liu, Y.; Nee, A.Y.C. Digital twin driven prognostics and health management for complex equipment. CIRP

Ann. 2018, 67, 169–172. [CrossRef]
24. Tao, F.; Zhang, M. Digital Twin Shop-Floor: A New Shop-Floor Paradigm Towards Smart Manufacturing. IEEE Access 2017, 5,

20418–20427. [CrossRef]
25. Coatanea, E.; Roca, R.; Mokhtarian, H.; Mokammel, F.; Ikkala, K. A Conceptual Modeling and Simulation Framework for System

Design. Comput. Sci. Eng. 2016, 18, 42–52. [CrossRef]
26. Mokhtarian, H.; Coatanéa, E.; Paris, H.; Mbow, M.M.; Pourroy, F.; Marin, P.R.; Vihinen, J.; Ellman, A. A Conceptual Design and

Modeling Framework for Integrated Additive Manufacturing. J. Mech. Des. 2018, 140, 081101. [CrossRef]
27. Wu, D.; Coatanéa, E.; Wang, G. Employing knowledge on causal relationship to assist multidisciplinary design optimization. J.

Mech. Des. 2019, 141, 041402. [CrossRef]
28. Chickering, D.M. Optimal Structure Identification With Greedy Search. J. Mach. Learn. Res. 2002, 3, 507–554.
29. Hauser, A. Characterization and Greedy Learning of Interventional Markov Equivalence Classes of Directed Acyclic Graphs. J.

Mach. Learn. Res. 2012, 13, 2409–2464.
30. Zhang, W.Y.; Zhang, S.; Guo, S.S. A PageRank-based reputation model for personalised manufacturing service recommendation.

Enterp. Inf. Syst. 2017, 11, 672–693. [CrossRef]
31. Chen, D.; Lü, L.; Shang, M.-S.; Zhang, Y.-C.; Zhou, T. Identifying influential nodes in complex networks. Phys. A: Stat. Mech. Its

Appl. 2012, 391, 1777–1787. [CrossRef]
32. Hu, P.; Fan, W.; Mei, S. Identifying node importance in complex networks. Phys. A: Stat. Mech. Its Appl. 2015, 429, 169–176.

[CrossRef]
33. Henni, K.; Mezghani, N.; Gouin-Vallerand, C. Unsupervised graph-based feature selection via subspace and pagerank centrality.

Expert Syst. Appl. 2018, 114, 46–53. [CrossRef]
34. Shang, Q.; Deng, Y.; Cheong, K.H. Identifying influential nodes in complex networks: Effective distance gravity model. Inf. Sci.

2021, 577, 162–179. [CrossRef]
35. Bonacich, P.; Lloyd, P. Eigenvector-like measures of centrality for asymmetric relations. Soc. Netw. 2001, 23, 191–201. [CrossRef]
36. Mo, H.; Deng, Y. Identifying node importance based on evidence theory in complex networks. Phys. A: Stat. Mech. Its Appl. 2019,

529, 121538. [CrossRef]
37. Ghosh, N.; Paul, R.; Maity, S.; Maity, K.; Saha, S. Fault Matters: Sensor data fusion for detection of faults using Dempster–Shafer

theory of evidence in IoT-based applications. Expert Syst. Appl. 2020, 162, 113887. [CrossRef]
38. Chakraborti, A.; Heininen, A.; Väänänen, S.; Koskinen, K.T.; Vainio, H. Evidential Reasoning based Digital Twins for Performance

Optimization of Complex Systems. Procedia CIRP 2021, 104, 618–623. [CrossRef]

https://doi.org/10.1016/j.promfg.2020.01.070
https://doi.org/10.1016/j.procir.2020.04.050
https://doi.org/10.1016/j.jmsy.2019.10.001
https://doi.org/10.1063/1.5031520
https://doi.org/10.1109/JSEN.2020.3029459
https://doi.org/10.1007/s00170-008-1580-8
https://doi.org/10.1016/j.engappai.2017.01.011
https://doi.org/10.1016/B978-0-12-817630-6.00006-0
https://doi.org/10.1002/nme.6423
https://doi.org/10.1016/j.cma.2021.114181
https://doi.org/10.1109/TSMC.2016.2605159
https://doi.org/10.1007/s00162-021-00580-0
https://doi.org/10.1016/j.eswa.2015.10.021
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1016/j.jmsy.2022.06.015
https://doi.org/10.1016/j.cirp.2018.04.055
https://doi.org/10.1109/ACCESS.2017.2756069
https://doi.org/10.1109/MCSE.2016.75
https://doi.org/10.1115/1.4040163
https://doi.org/10.1115/1.4042342
https://doi.org/10.1080/17517575.2015.1077998
https://doi.org/10.1016/j.physa.2011.09.017
https://doi.org/10.1016/j.physa.2015.02.002
https://doi.org/10.1016/j.eswa.2018.07.029
https://doi.org/10.1016/j.ins.2021.01.053
https://doi.org/10.1016/S0378-8733(01)00038-7
https://doi.org/10.1016/j.physa.2019.121538
https://doi.org/10.1016/j.eswa.2020.113887
https://doi.org/10.1016/j.procir.2021.11.104


Machines 2023, 11, 733 25 of 25

39. Scanagatta, M.; Salmerón, A.; Stella, F. A survey on Bayesian network structure learning from data. Prog. Artif. Intell. 2019, 8,
425–439. [CrossRef]

40. Ramsey, J.; Glymour, M.; Sanchez-Romero, R.; Glymour, C. A million variables and more: The Fast Greedy Equivalence Search
algorithm for learning high-dimensional graphical causal models, with an application to functional magnetic resonance images.
Int. J. Data Sci. Anal. 2017, 3, 121–129. [CrossRef]

41. von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 2007, 17, 395–416. [CrossRef]
42. Kang, Z.; Shi, G.; Huang, S.; Chen, W.; Pu, X.; Zhou, J.T.; Xu, Z. Multi-graph fusion for multi-view spectral clustering. Knowl.-Based

Syst. 2020, 189, 105102. [CrossRef]
43. Yoon, S.Y.; Lin, Z.; Allaire, P.E. Control of Surge in Centrifugal Compressors by Active Magnetic Bearings; Springer: London, UK, 2013.

[CrossRef]
44. Giarré, L.; Bauso, D.; Falugi, P.; Bamieh, B. LPV model identification for gain scheduling control: An application to rotating stall

and surge control problem. Control Eng. Pract. 2006, 14, 351–361. [CrossRef]
45. Sempler Library. Available online: https://sempler.readthedocs.io/en/latest/ (accessed on 5 September 2022).
46. GBMR. 2022. Available online: https://github.com/anandashankar/gbmr (accessed on 15 April 2023).
47. Grömping, U. Variable Importance Assessment in Regression: Linear Regression versus Random Forest. Am. Stat. 2009, 63,

308–319. [CrossRef]
48. Choi, K.; Fazekas, G.; Sandler, M.; Cho, K. Convolutional recurrent neural networks for music classification. In Proceedings

of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9
March 2017. [CrossRef]

49. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
50. Menze, B.H.; Kelm, B.M.; Masuch, R.; Himmelreich, U.; Bachert, P.; Petrich, W.; Hamprecht, F.A. A comparison of random forest

and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC
Bioinform. 2009, 10, 213. [CrossRef] [PubMed]
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