
Domestic Activity Clustering from Audio via
Depthwise Separable Convolutional Autoencoder

Network

Yanxiong Li
School of Electronic and

Information Engineering, South
China University of Technology,

Guangzhou, China
eeyxli@scut.edu.cn

Wenchang Cao
School of Electronic and

Information Engineering, South
China University of Technology,

Guangzhou, China
wenchangcao98@163.com

Konstantinos Drossos
Audio Research Group,

Tampere University,
Tampere,Finland

konstantinos.drossos@tuni.fi

Tuomas Virtanen
Audio Research Group,

Tampere University,
Tampere, Finland

tuomas.virtanen@tuni.fi

Abstract—Automatic estimation of domestic activities from
audio can be used to solve many problems, such as reducing the
labor cost for nursing the elderly people. This study focuses on
solving the problem of domestic activity clustering from audio.
The target of domestic activity clustering is to cluster audio clips
which belong to the same category of domestic activity into one
cluster in an unsupervised way. In this paper, we propose a
method of domestic activity clustering using a depthwise
separable convolutional autoencoder network. In the proposed
method, initial embeddings are learned by the depthwise
separable convolutional autoencoder, and a clustering-oriented
loss is designed to jointly optimize embedding refinement and
cluster assignment. Different methods are evaluated on a public
dataset (a derivative of the SINS dataset) used in the challenge
on Detection and Classification of Acoustic Scenes and Events
(DCASE) in 2018. Our method obtains the normalized mutual
information (NMI) score of 54.46%, and the clustering accuracy
(CA) score of 63.64%, and outperforms state-of-the-art methods
in terms of NMI and CA. In addition, both computational
complexity and memory requirement of our method is lower
than that of previous deep-model-based methods.
Codes: https://github.com/vinceasvp/domestic-activity-clustering-from-audio

Keywords—depthwise separable convolutional autoencoder,
human activity estimation, domestic activity clustering

I. INTRODUCTION

Automatic estimation of human activities is a key technique
for safety monitoring of public space and smart home. Current
works mainly include two classes: vision-based and wearable-
sensor-based [1]. When adopted to estimate the domestic
activities, these two classes of methods are deficient and even
unsuitable due to practical reasons. For example, images and
videos that are recorded at home are sensitive information, and
cameras have blind areas and are impacted by illumination. In
addition, people often forget or do not like to wear sensors.

To overcome the deficiencies of these two classes of
methods above, this work focuses on the audio-based method.
Microphones for acquiring audio clips can be easily deployed
in various rooms instead of being mounted on human body,
and are not affected by light and direction. A domestic activity
from audio is considered as an acoustic scene [2], and contains
one or some related sound events that appear in a location of
the room, such as Cooking. Hence, the audio-based domestic
activity estimation is related to the problem of acoustic scene

classification (ASC).
ASC has been one of main tasks in some evaluation

campaigns, such as the classification of events activities and
relationships (CLEAR) [3], and the DCASE challenge [4]-[6].
In addition, many researchers independently carry out works
on ASC [7]-[17]. The assumption of these works is that the
labels of audio clips (including training data) are known
beforehand. Hence, the main target of these works is to
estimate pregiven class of acoustic scenes for testing audio
clips. But, most audio clips are unlabeled due to the high
labeling cost [18]. If the labels are unavailable, it is difficult
even impossible to do ASC since labels are required for ASC.
Conversely, clustering audio clips can be still done without
labels. When labels are unknown, the problem we solve in this
work is domestic activity clustering from audio clips.

The applications of domestic activity clustering mainly
include discovering abnormal domestic activity, obtaining
internal structure of unlabeled audio clips, and working as a
pre-processing step of other tasks (e.g., audio clips after
domestic activity clustering can be used to initialize deep
models for ASC). Here, we take the discovery of abnormal
domestic activity (e.g., falling) as an example for explaining
the application of domestic activity clustering. The clusters of
normal domestic activity (appearing frequently) contain a lot
of audio clips, whereas the clusters of abnormal domestic
activity (occurring rarely) have very few audio clips. In
clustering process, the similarity between each new audio clip
and each cluster center is used to determine whether this new
audio clip belongs to one of the existing clusters or a new
cluster. If a new cluster with very few audio clips occurs, the
audio-based monitoring system will tell the management to
check the elderly people’s status.

Very few studies are conducted on acoustic scene clustering.
The latest and most relevant work is done by Lin et al. [19]
who propose a method of acoustic scene clustering by a
convolutional capsule autoencoder network (CCAN). Their
method is effective for domestic activity clustering, but the
CCAN is a heavyweight network which mainly consists of
standard convolution modules and complex capsule modules.
Li et al. [20] propose a method of acoustic scene clustering
method based on a randomly sketched sparse subspace, which
is a shallow-model-based method by using mel-frequency
cepstral coefficient as the input feature of a spectral clustering
algorithm. Li et al. [18] present a method of acoustic scene
clustering, where the input feature is the embedding learned

Corresponding author: Yanxiong Li.
This work was supported by international scientific research collaboration

project of Guangdong Province, China (2021A0505030003), national
natural science foundation of China (62111530145, 61771200), Guangdong
basic and applied basic research foundation, China (2021A1515011454).

by a deep convolutional network and the clustering algorithm
is the agglomerative hierarchical clustering. In addition, other
deep models are adopted for clustering, such as stacked
autoencoder (SA) [21], capsule autoencoder network (CaAN)
[22], convolutional autoencoder network (CoAN) [23], long
short-term memory network (LSTMN) [24]. In summary,
previous works are either shallow-model-based method with
hand-crafted features, or deep-model-based methods with
heavyweight networks.

To further reduce the computational load and the size of
deep model for lightweight applications, we propose a method
of domestic activity clustering by a depthwise separable
convolutional autoencoder network (DSCAN). The depthwise
separable convolution (DSC) and the fully-connected layer
are adopted in the DSCAN, and thus the computational
complexity and memory requirement of our method can be
reduced. In addition, the DSCAN is guided by a joint loss to
co-optimize both embedding learning and cluster assignment
and can obtain better clustering performance. Some methods
are assessed on one public dataset. The results show that our
method exceeds previous methods in terms of normalized
mutual information (NMI) and clustering accuracy (CA), with
lower computational complexity and memory requirement.

In summary, main contributions of this work are as follows.
First, we propose a method of domestic activity clustering by
the DSCAN. Second, we compare our method with state-of-
the-art methods on a public dataset using multiple metrics.

II. METHOD

In this work, we try to solve the problem of domestic
activity clustering by clustering audio clips without using
labels. The goal of this work is to correctly cluster audio clips
that belong to the same class of domestic activity into one
cluster. The proposed method of domestic activity clustering
is a deep clustering method by the DSCAN. The framework
of the DSCAN is shown in Fig. 1, which consists of an
encoder, a decoder, and a clustering layer. Both the encoder
and the decoder form the autoencoder which is used to learn
embedding. The clustering layer is adopted for cluster
assignment. A joint loss is designed to guide both embedding
learning in the autoencoder and cluster assignment in the
clustering layer. The encoder converts the input feature log-
mel spectrum (log-mel) into an embedding, while the decoder
reconstructs output feature log-mel' from the embedding.

Encoder

Decoder

Clustering
layer

Audio
clips

log-mel

log-mel'

Convolutions

Transposed convolutions

Embedding

Fully-connected
layer

Fully-connected
layer

Fig. 1. The framework of the proposed DSCAN.

Compared to the deep models that are adopted in previous
works [18], [19], [21]-[24], the proposed DSCAN has the
following merits. First, inspired by the success of DSC [25],
[26] for lightweight applications, the DSC instead of standard
convolution is used in the encoder. The DSC can effectively
reduce computational load and size of convolutional modules

of the network [25]. Second, DSC-blocks and transposed
Conv-blocks (Convolutional blocks) with residual structure
(skip connection) are used in the DSCAN. The residual
structure of the autoencoder can preserve information about
the input feature maps and extract discriminative information
from transformed feature maps in DSC-blocks. Third, a
simple but effective fully-connected layer is proposed to
replace the complex capsule module in the CaAN’s and
CCAN’s encoder. The fully-connected layer can also reduce
computational load and size of the DSCAN. In addition, the
DSCAN is a deep model to jointly optimize both embedding
learning and cluster assignment. Hence, the DSCAN is
expected to be lightweight and can obtain better results
compared to the deep models that are used in previous works.

It should be noted that both the DSC and the clustering
layer are components of the proposed DSCAN. Although the
DSC is introduced in [25], [26] and the clustering layer is
added to an autoencoder in [23] for other tasks, the
framework of the proposed DSCAN for domestic activity
clustering is novel and is not adopted in previous works.

A. Depthwise Separable Convolutional Autoencoder

The encoder and decoder of the autoencoder are denoted
as f() and g(), respectively. The autoencoder’s goal is to
minimize the mean squared error between its input and output
over all input feature vectors, and is defined by

 2

2
1

1
min

N

i i
i

g f
N

 x x , (1)

where N is the number of audio clips, and xi is the log-mel of
the ith audio clip.

Encoder

DSC is the main module of the encoder, including two
steps: depthwise convolution and 11 pointwise convolution
[25]. The depthwise convolution is the key part for reducing
the autoencoder’s size. It applies one convolution filter to
each input channel. The 11 pointwise convolution is used
to combine the outputs of various depthwise convolutions,
and determines the number of output channels.

The input feature maps, the output feature maps after
convolution, and the convolutional kernel are denoted as Fi

∈ i i iw h c , Fo∈ i i ow h c , and K∈ i ok k c c , respectively. K

∈ i ok k c c , Kd∈
1ik k c , and Kp∈

1 1 i oc c denote the
kernels of standard convolution, depthwise convolution, and
pointwise convolution, respectively. Here, wi, hi, and ci (or co)
are the feature-map’s width, height, and the number of
channels, respectively. kk denotes the kernel size. The
computational load and size of the network with standard
convolution are wihicicokk, and cikkco,
respectively [25]. The computational load and size of the
network with DSC are wihici(k2+co), and ci(k2+co),
respectively [25]. If the kk is set to 33, computational
load of the network with DSC is theoretically 8 to 9 times less
than that of the network with standard convolution.

As depicted in Fig. 2 (a), the encoder mainly consists of
DSC-blocks. The elements of one DSC-block are depicted in
Fig. 2 (b). As shown in Fig. 2 (a), the input feature log-mel is
first processed by the operations of 55 standard
convolution, batch normalization (BN), and ReLU. Then, the
transformed feature maps are sequentially fed to five DSC-
blocks. Finally, the output feature maps from DSC-block5 are

processed by the operations of 11 standard convolution,
BN, ReLU, and the fully-connected layer to output the
embedding with 10 dimensions. The three digits in each
bracket “{}” (e.g., {64, 78, 32}) from left to right denote the
width of a feature-map (64), the height of a feature-map (78),
and the number of channels (32), respectively.

As shown in Fig. 2 (b), the input feature maps are fed to a
11 convolution followed by the operations of BN and
ReLU. Afterwards, the feature maps are transformed by the
33 depthwise convolution followed by the operations of
BN and ReLU. Finally, a 11 pointwise convolution and the
operations of BN and ReLU are conducted.

1×1 Conv

DSC-block2 {16, 20, 32}

DSC-block3 {16, 20, 32}

DSC-block4 {8, 10, 64}

DSC-block5 {8, 10, 64}

1×1 Conv, BN, ReLU {4, 5, 128}

Fully connected layer {10}

Embedding {10}

log-mel {128, 156, 1}

DSC-block1 {32, 39, 16}

5×5 Conv, BN, ReLU {64, 78, 32}

BN

ReLU

3×3 Depthwise Conv

BN

ReLU

1×1 Pointwise Conv

BN
ReLU

(a)

(b)

Fig. 2. (a) The encoder’s structure; (b) One DSC-block’s structure. Here, ⊕
denotes element-wise summation.

Decoder

Fig. 3 shows the decoder’s structure which mainly consists
of transposed Conv-blocks. Main module of the decoder is
transposed Conv-block. The embedding is converted to a
feature vector with dimension of 25601 by a fully-
connected layer. Then, the feature vector is split into 20
vectors with dimension of 1281, and five vectors with
dimension of 1281 are taken as a group to obtain four
groups of such vectors, namely the reshaped feature map with
dimension of 45128. Next, the reshaped feature map is fed
to the following transposed Conv-blocks in turn. Finally, the
output feature log-mel' with the same shape of the log-mel is
obtained after the 55 transposed convolution. Inspired by
the success of residual structure in the ResNet [27], a skip
connection is designed in each transposed Conv-block.
Therefore, the information about the input embedding can be
effectively transmitted to next transposed Conv-block.

Fully connected layer {2560}

Reshape {4, 5, 128}

Transposed Conv-block {8, 10, 64}

Transposed Conv-block {16, 20, 64}

Transposed Conv-block {32, 39, 32}

Transposed Conv-block {64, 78, 16}

5×5 Transposed Conv {128, 156, 1}

Embedding {10}

log-mel'

3×3 Transposed Conv

3×3 Transposed Conv

3×3 Transposed Conv

Fig. 3. The decoder’s structure.

B. Clustering Layer

The design of the clustering layer is inspired by [28], which
takes the cluster center as trainable weight of the clustering
layer. The training strategy in this work is like a form of self-
training [29]. As in the self-training, an initial classifier and
an unlabeled dataset are taken. Then, the dataset is labeled
with the classifier for training the classifier on its own high-
confidence predictions.

The student’s t-distribution [30] for measuring the similarity
between embedding zi and cluster center uj is defined by

1
2 21

1
2 21

'
'

1

1

i j

ij

i j
j

q

z u

z u

, (2)

where zi=f(xi), α is the degree of freedom of student’s t-
distribution and is set to 1 here, and uj is the mean vector of
embeddings in cluster j which is obtained by conducting the
K-means clustering algorithm on embeddings. When the
current mean vectors are not updated, the K-means clustering
is terminated and thus the mean vectors of embeddings are
obtained. qij can be considered as the probability that
embedding zi belongs to cluster j. As done in [28], the
predefined target probability pij that embedding zi belongs to
cluster j, is defined by

2

2
'

'
'

ij

iji
ij

ij
j

iji

q
q

p
q

q

. (3)

With the help of the predefined target probability in Eq. (3),
the clusters can be iteratively refined by learning from their
high-confidence assignments.

C. Joint Loss

A joint loss is defined to jointly optimize both embedding
learning (realized by the autoencoder) and cluster assignment
(realized by the clustering layer). The reconstruction loss for
embedding learning is defined by

 2

2
1

1 N

r i i
i

L g f
N

 x x , (4)

where N is the number of audio clips, and xi is the log-mel of
the ith audio clip. The clustering loss Lc is defined as a
Kullback-Leibler (KL) divergence [28], [31] between the
distribution of soft labels Q = {qi} and the predefined target
distribution P={pi}. Lc is computed by

 || log ij
c ij

i j ij

p
L KL p

q
 P Q , (5)

where qij is first computed by Eq. (2), and then pij is computed
by Eq (3) in order to obtain Lc.

The joint loss LJ is defined by

J r cL L L , (6)

where β > 0, is a coefficient for balancing the contribution of
Lr and Lc to the value of LJ. It should be noted that adding Lc
to Lr will affect the feature reconstruction of autoencoder.
The greater the proportion of Lc in the joint loss LJ, the greater
the influence of Lc on feature reconstruction and thus the
more the embedding space is distorted. When the value of β
is set properly, the distortion of the embedding space caused

by the addition of Lc will be within an acceptable range, and
meanwhile the clustering loss can be optimized for obtaining
more satisfactory clustering results.

The DSCAN’s optimization guided by LJ is summarized in
Table I. After updating the DSCAN under the guidance of LJ,
the optimized clustering results are obtained.

TABLE I. THE OPTIMIZATION OF THE DSCAN GUIDED BY LJ
Initialization:
① Pretrain autoencoder with β=0 (i.e., LJ = Lr) to get target distribution;

② Initialize cluster centers by K-means algorithm on embeddings;

③ Set β to be a fixed non-zero value.

Repeat:
① Update autoencoder’s weights and cluster centers by backpropagation

and Adam algorithms [32];
② Update predicted probability qij by (2) and target probability pij by (3).

Until the change of cluster label assignments between two adjacent
iterations is less than a threshold ε or reaching the maximum iteration.
Output: Optimized results of domestic activity clustering.

III. EXPERIMENTS

This section first describes experimental data and setup,
and then presents results and discussions.

A. Experimental Data

To our best knowledge, there is only one public audio
dataset of domestic activities, namely the dataset of Task 5 of
DCASE-2018 challenge, which is a derivative of the SINS
dataset [33] and consists of audio clips of 10 seconds. Each
audio clip contains one domestic activity. Table II lists
detailed information about experimental data that include 9
daily domestic activities. All audio clips in Table II are used
as testing data for clustering. During the clustering process,
the labels of these audio clips are not used.

TABLE II. DETAILED INFORMATION ABOUT EXPERIMENTAL DATA
Activities No. of clips Activities No. of clips
Dishwashing 1424 Vacuum cleaning 972
Cooking 5124 Social activity 4944
Absence 18860 Watching TV 18648
Eating 2308 Working 18644
Other 2060 Total 72984

To experimentally set the proper value of β in our method,
we generate a development dataset by selecting audio clips
from the development dataset of Task 1A of DCASE 2019
[34]. The development dataset contains 9 classes of acoustic
scenes, including Airport, Shopping mall, Metro station,
Pedestrian street, Public square, Street traffic, Bus, Metro,
and Urban park. Each class of acoustic scene includes 1440
audio clips, and thus the total number of audio clips in the
development dataset is 12960. The duration of each audio clip
is approximately 10 seconds.

B. Experimental Setup

All experiments are implemented on a machine: one Intel
CPU I7-6850K with 3.6 GHz, one RAM of 128 GB, and four
NVIDIA 1080TI GPUs. All methods are implemented by the
toolkits of Keras, TensorFlow and scikit-learn.

CA and NMI are two common metrics used for clustering
[35], whose definitions are presented below. It is assumed
that nij represents total number of audio clips in cluster i that
belong to domestic activity j. Ng and Nc are total number of
classes of domestic activities (the real number of clusters) and

total number of clusters (the predicted number of clusters),
respectively. Ns denotes total number of audio clips. n•j and
ni• stand for total number of audio clips of domestic activity j
and total number of audio clips in cluster i, respectively. The
three formulas in Eq. (7) establish relationships among the
variables above:

1

gN

i ij
j

n n

 ,
1

cN

j ij
i

n n

 ,
1 1

gc
NN

s ij
i j

N n

 . (7)

NMI and CA are adopted for measuring the agreement
between the predicted clusters and the ground-truth classes.
NMI is defined by

1 1

log

log log

gc
NN

s ij
ij

i j i j

ji
i ji j

s s

N n
n

n n
NMI

nn
n n

N N

. (8)

NMI is equal to 1 if the predicted clusters perfectly match the
ground-truth classes. On the contrary, NMI is close to 0 if the
audio clips are partitioned randomly. CA is defined by

1

1
,map

sN

k k
ks

CA y c
N

 , (9)

where ck and yk represent the predicted and true cluster labels,
respectively, of the kth audio clip. If y = c, δ(y, c) is equal to
1, otherwise δ(y, c) is equal to 0. map(•) is a permutation
function which maps each cluster label to a ground-truth label.
Based on their definitions above, it can be known that NMI
is an information-theoretic measure of the clustering quality
and CA is a permutation-mapping measure of the clustering
quality. The higher their values are, the higher the clustering
quality is.

 The values of main parameters of our method are given in
Table III. They are either often used in previous works or
common empirical values. In addition, the value of β has
direct impact on the performance of our method, whose
settings will be discussed in next subsection.

TABLE III. THE SETTINGS OF MAIN PARAMETERS OF OUR METHOD
Type Parameter’s settings

log-mel

Frame length/overlap: 128ms/64ms
Dimension of log-mel: 128

DSCAN

Number of pretraining iterations: 200
Number of maximum iterations: 4000
Batch size: 32
Learning rate: 0.001
Dimension of embeddings: 10
Threshold ε: 0.05
Neuron number of fully-connected layer: 2560
Number of cluster centers: 9

C. Results and Discussions

First, we carry out one experiment on the development
dataset for setting the proper value of β in our method. The
values of β are tuned from 0.1 to 0.9. As shown in Fig. 4,
when the value of β is equal to 0.3, our method obtains the
highest scores of both CA and NMI on the development
dataset. However, when the values of β deviate from 0.3, the
scores of both CA and NMI steadily decrease. Therefore, the
proper value of β is set to 0.3 when our method is evaluated
on the testing dataset.

Fig. 4 The impact of β on the performance of our method on the development
dataset.

Then, we compare our method to five deep-model-based
methods, including: the SA-based [21], CaAN-based [22],
CoAN-based [23], LSTMN-based [24], and CCAN-based
[19]. Main parameters of the previous methods are set
according to the suggestions in corresponding references.
Experimental results of the previous methods are obtained by
implementing the previous methods by ourselves. The labels
of audio clips are not adopted in all methods during clustering
procedure, but they are used for performance evaluation. All
experimental data listed in Table II are adopted as testing data
for clustering. Experimental results obtained by different
methods are given in Table IV.

TABLE IV. PERFORMANCE COMPARISON OF DIFFERENT METHODS
Methods CA (%) NMI (%) MACs (K) MS (K)

SA-based [21] 45.47 38.48 2576.5 1842.9
CaAN-based [22] 54.81 46.03 3054.3 632.6
CoAN-based [23] 49.62 42.60 2099.4 118.6
LSTMN-based [24] 50.36 43.08 1158.5 1004.4
CCAN-based [19] 61.91 53.84 1451.9 725.3

DSCAN-based 63.64 54.46 1048.8 72.4

As shown in Table IV, our method obtains CA score of
63.64% and achieves absolute gains by 18.17%, 8.83%,
14.02%, 13.28%, and 1.73% over the methods of SA-based,
CaAN-based, CoAN-based, LSTMN-based, and CCAN-
based, respectively. As for the score of NMI, our method
produces 54.46%, and achieves absolute gains by 15.98%,
8.43%, 11.86%, 11.38%, and 0.62% over the methods of SA-
based, CaAN-based, CoAN-based, LSTMN-based, and
CCAN-based, respectively. In summary, our method obtains
higher scores of CA and NMI than previous methods.

In addition, our method is compared to previous methods
in terms of computational complexity using the metric of
Multiply-Accumulate operations (MACs) and in terms of
memory requirement using the metric of Model Size (MS).
MACs denotes the number of multiplication and addition
operations of a network. MS represents the number of
parameters of a network. The lower the values of MACs and
MS are, the lower computational complexity and memory
requirement of the method are. The values of MACs and MS
of different methods are listed in Table IV. In terms of
computational complexity, the MACs of our method is
1048.8 K which is lower than that of other deep-model-based
methods. In terms of memory requirement, the MS of our
method is 72.4 K which is significantly less than that of the

previous methods.
Based on the results above, we can conclude that our

method exceeds previous methods in terms of both NMI and
CA, and has advantage over previous methods in terms of
both computational complexity and memory requirement.
The possible reasons are as follows. First, the residual
structures adopted in the DSC-blocks and transposed Conv-
blocks can preserve information about input feature maps,
and meanwhile can extract discriminative information from
the transformed feature maps. Hence, the embedding learned
by the DSCAN can effectively represent differences of time-
frequency properties among different domestic activities and
obtains better results for domestic activity clustering. Second,
both the fully-connected layer (instead of a complex capsule
module) and the DSC (instead of standard convolution)
modules are used in the DSCAN. Hence, the DSCAN-based
method is with lower computational complexity and lower
memory requirement compared to the previous methods.

To visually show the results of our method, we use the t-
SNE [30] to map embeddings into two-dimensional space and
thus obtain spatial distribution of various clusters as depicted
in Fig. 5. The Python libraries of scikit-learn and matplotlib
are used to reduce the dimensionality of embeddings and plot
Fig. 5, respectively. Though most audio clips of the same
class are merged to their respective cluster centers, there are
confusions among different clusters. For example, audio clips
of Other are scattered to other clusters (e.g., Absence, Eating).
The reasons for the confusions are probably as follows.
Differences of time-frequency properties of these domestic
activities are not effectively represented, and there are
overlapping regions in the distributions of their embeddings.

Fig. 5. Visualization of clustering results obtained by our method.

IV. CONCLUSIONS

In this paper, we tackled the problem of domestic activity
clustering from audio clips using the proposed DSCAN. Our
method outperforms previous methods in terms of CA and
NMI. In addition, its computational complexity and memory
requirement are lower than that of the previous methods.
However, the problem of domestic activity clustering is still
challenging due to the following causes. First, the methods of
domestic activity clustering work in an unsupervised way
without using labels. Second, there are unbalances of data
amount of audio clips for different classes. Third, there are
overlapping regions in the feature distributions of audio clips
for various domestic activities.

In the future work, we plan to deploy our method in the

terminals with low-computing resources. In addition, we will
estimate activities from audio clips in other situations, such as
roads, train/metro stations.

REFERENCES
[1] S. Aarthi, and S. Juliet, “A comprehensive study on human activity

recognition,” in Proc. of ICPSC, 2021, pp. 59-63.
[2] Task 5 of DCASE 2018, https://dcase.community/challenge2018/task-

monitoring-domestic-activities
[3] R. Stiefelhagen, K. Bernardin, R. Bowers, R.T. Rose, M. Michel, and J.

Garofolo, “The CLEAR 2007 Evaluation,” Lecture Notes in Computer
Science, vol. 4625, pp. 3-34, 2008.

[4] T. Heittola, A. Mesaros, and T. Virtanen, “Acoustic scene classification
in DCASE 2020 challenge: generalization across devices and low
complexity solutions,” in Proc. of DCASE Workshop, 2020, pp. 1-5.

[5] A. Politis, A. Mesaros, S. Adavanne, T. Heittola and T. Virtanen,
“Overview and evaluation of sound event localization and detection in
DCASE 2019,” IEEE/ACM TALSP, vol. 29, pp. 684-698, 2021.

[6] J. Schröder, N. Moritz, J. Anemüller, et al., “Classifier architectures for
acoustic scenes and events: implications for DNNs, TDNNs, and
perceptual features from DCASE 2016,” IEEE/ACM TASLP, vol. 25, no.
6, pp. 1304-1314, 2017.

[7] W. Xie, Q. He, Z. Yu, and Y. Li, “Deep mutual attention network for
acoustic scene classification,” Digital Signal Processing, vol. 123, 2022,
103450.

[8] Y. Zeng, Y. Li, Z. Zhou, R. Wang, and D. Lu, “Domestic activities
classification from audio recordings using multi-scale dilated depthwise
separable convolutional network,” in Proc. of IEEE MMSP, 2021, pp. 1-5.

[9] H.K. Chon, Y. Li, W. Cao, Q. Huang, W. Xie, W. Pang, and J. Wang,
“Acoustic scene classification using aggregation of two-scale deep
embeddings,” in Proc. of IEEE ICCT, 2021, vol. 4, pp. 1341-1345.

[10] A. Mesaros, T. Heittola, E. Benetos, et al., “Detection and classification
of acoustic scenes and events: outcome of the DCASE 2016 challenge,”
IEEE/ACM TASLP, vol. 26, no. 2, pp. 379-393, 2018.

[11] Y. Li, X. Li, Y. Zhang, et al., “Acoustic scene classification using deep
audio feature and BLSTM network,” in Proc. of ICALIP, 2018, pp.371-374.

[12] T. Nguyen, F. Pernkopf, and M. Kosmider, “Acoustic scene
classification for mismatched recording devices using heatedup softmax
and spectrum correction,” in Proc. of IEEE ICASSP, 2020, pp. 126-130.

[13] M.D. McDonnell, and W. Gao, “Acoustic scene classification using
deep residual networks with late fusion of separated high and low
frequency paths,” in Proc. of IEEE ICASSP, 2020, pp. 141-145.

[14] V. Abrol, and P. Sharma, “Learning hierarchy aware embedding from
raw audio for acoustic scene classification,” IEEE-ACM TASLP, vol. 28,
pp. 1964-1973, 2020.

[15] X. Bai, J. Du, J. Pan, et al., “High-resolution attention network with
acoustic segment model for acoustic scene classification,” in Proc. of IEEE
ICASSP, 2020, pp. 656-660.

[16] Z. Ren, Q. Kong, J. Han, M.D. Plumbley, and B.W. Schuller, “CAA-
Net: conditional atrous CNNs with attention for explainable device-robust
acoustic scene classification,” IEEE TMM, vol. 23, pp. 4131-4142, 2021.

[17] A. Jiménez, B. Elizalde, and B. Raj, “Acoustic scene classification using

discrete random hashing for Laplacian kernel machines,” in Proc. of IEEE
ICASSP, 2018, pp. 146-150.

[18] Y. Li, M. Liu, W. Wang, et al., “Acoustic scene clustering using joint
optimization of deep embedding learning and clustering iteration,” IEEE
TMM, vol. 22, no. 6, pp. 1385-1394, 2020.

[19] Z. Lin, Y. Li, Z. Huang, et al., “Domestic activities clustering from
audio clips using convolutional capsule autoencoder network,” in Proc. of
IEEE ICASSP, 2021, pp. 835-839.

[20] S. Li, and W. Wang, “Randomly sketched sparse subspace clustering
for acoustic scene clustering,” in Proc. of EUSIPCO, 2018, pp. 2489-2493.

[21] J. Gehring, Y. Miao, F. Metze, et al., “Extracting deep bottleneck
features using stacked auto-encoders,” in Proc. of IEEE ICASSP, 2013, pp.
3377-3381.

[22] A.R. Kosiorek, S. Sabour, Y.W. Teh, et al., “Stacked capsule
autoencoders,” in Proc. of NeurIPS, 2019, pp. 15512-15522.

[23] X. Guo, X. Liu, E. Zhu, et al., “Deep clustering with convolutional
autoencoders,” in Proc. of ICONIP, 2017, pp. 373-382.

[24] E. Marchi, F. Vesperini, F. Eyben, et al., “A novel approach for
automatic acoustic novelty detection using a denoising autoencoder with
bidirectional LSTM neural networks,” in Proc. of IEEE ICASSP, 2005, pp.
1996-2000.

[25] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: inverted residuals and linear bottlenecks,” in Proc. of
IEEE CVPR, 2018, pp. 4510-4520.

[26] K. Drossos, S.I. Mimilakis, S. Gharib, Y. Li, and T. Virtanen, “Sound
event detection with depthwise separable and dilated convolutions,” in
Proc. of IJCNN, 2020, pp. 1-7.

[27] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image
recognition,” in Proc. of IEEE CVPR, 2016, pp. 770-778.

[28] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for
clustering analysis,” in Proc. of ICML, 2016, vol. 48, pp. 478-487.

[29] K. Nigam, and R. Ghani, “Analyzing the effectiveness and applicability
of co-training,” in Proc. of ICIKM, 2000, pp. 86-93.

[30] L.v.d. Maaten, and G. Hinton, “Visualizing data using t-SNE,” Journal
of Machine Learning Research, vol. 9, no. 96, pp. 2579-2605, 2008

[31] Y. Li, Q. Wang, X. Li, et al., “Unsupervised detection of acoustic events
using information bottleneck principle,” Digital Signal Processing, vol. 63,
pp. 123-134, 2017.

[32] D.P. Kingma, and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. of ICLR, 2015.

[33] G. Dekkers, S. Lauwereins, B. Thoen, et al., “The SINS database for
detection of daily activities in a home environment using an acoustic
sensor network,” in Proc. of DCASE Workshop, 2017, pp. 32-36.

[34] https://dcase.community/challenge2019/task-acoustic-scene-
classification#subtask-a

[35] Y. Li, X. Zhang, X. Li, et al., “Mobile phone clustering from speech
recordings using deep embedding and spectral clustering,” IEEE TIFS, vol.
13, no. 4, pp. 965-977, 2018.

