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Abstract—Automatic estimation of domestic activities from 
audio can be used to solve many problems, such as reducing the 
labor cost for nursing the elderly people. This study focuses on 
solving the problem of domestic activity clustering from audio. 
The target of domestic activity clustering is to cluster audio clips 
which belong to the same category of domestic activity into one 
cluster in an unsupervised way. In this paper, we propose a 
method of domestic activity clustering using a depthwise 
separable convolutional autoencoder network. In the proposed 
method, initial embeddings are learned by the depthwise 
separable convolutional autoencoder, and a clustering-oriented 
loss is designed to jointly optimize embedding refinement and 
cluster assignment. Different methods are evaluated on a public 
dataset (a derivative of the SINS dataset) used in the challenge 
on Detection and Classification of Acoustic Scenes and Events 
(DCASE) in 2018. Our method obtains the normalized mutual 
information (NMI) score of 54.46%, and the clustering accuracy 
(CA) score of 63.64%, and outperforms state-of-the-art methods 
in terms of NMI and CA. In addition, both computational 
complexity and memory requirement of our method is lower 
than that of previous deep-model-based methods. 
Codes: https://github.com/vinceasvp/domestic-activity-clustering-from-audio 
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I. INTRODUCTION 

Automatic estimation of human activities is a key technique 
for safety monitoring of public space and smart home. Current 
works mainly include two classes: vision-based and wearable-
sensor-based [1]. When adopted to estimate the domestic 
activities, these two classes of methods are deficient and even 
unsuitable due to practical reasons. For example, images and 
videos that are recorded at home are sensitive information, and 
cameras have blind areas and are impacted by illumination. In 
addition, people often forget or do not like to wear sensors.  

To overcome the deficiencies of these two classes of 
methods above, this work focuses on the audio-based method. 
Microphones for acquiring audio clips can be easily deployed 
in various rooms instead of being mounted on human body, 
and are not affected by light and direction. A domestic activity 
from audio is considered as an acoustic scene [2], and contains 
one or some related sound events that appear in a location of 
the room, such as Cooking. Hence, the audio-based domestic 
activity estimation is related to the problem of acoustic scene 

classification (ASC).  
ASC has been one of main tasks in some evaluation 

campaigns, such as the classification of events activities and 
relationships (CLEAR) [3], and the DCASE challenge [4]-[6]. 
In addition, many researchers independently carry out works 
on ASC [7]-[17]. The assumption of these works is that the 
labels of audio clips (including training data) are known 
beforehand. Hence, the main target of these works is to 
estimate pregiven class of acoustic scenes for testing audio 
clips. But, most audio clips are unlabeled due to the high 
labeling cost [18]. If the labels are unavailable, it is difficult 
even impossible to do ASC since labels are required for ASC. 
Conversely, clustering audio clips can be still done without 
labels. When labels are unknown, the problem we solve in this 
work is domestic activity clustering from audio clips.  

The applications of domestic activity clustering mainly 
include discovering abnormal domestic activity, obtaining 
internal structure of unlabeled audio clips, and working as a 
pre-processing step of other tasks (e.g., audio clips after 
domestic activity clustering can be used to initialize deep 
models for ASC). Here, we take the discovery of abnormal 
domestic activity (e.g., falling) as an example for explaining 
the application of domestic activity clustering. The clusters of 
normal domestic activity (appearing frequently) contain a lot 
of audio clips, whereas the clusters of abnormal domestic 
activity (occurring rarely) have very few audio clips. In 
clustering process, the similarity between each new audio clip 
and each cluster center is used to determine whether this new 
audio clip belongs to one of the existing clusters or a new 
cluster. If a new cluster with very few audio clips occurs, the 
audio-based monitoring system will tell the management to 
check the elderly people’s status. 

Very few studies are conducted on acoustic scene clustering. 
The latest and most relevant work is done by Lin et al.  [19] 
who propose a method of acoustic scene clustering by a 
convolutional capsule autoencoder network (CCAN). Their 
method is effective for domestic activity clustering, but the 
CCAN is a heavyweight network which mainly consists of 
standard convolution modules and complex capsule modules. 
Li et al. [20] propose a method of acoustic scene clustering 
method based on a randomly sketched sparse subspace, which 
is a shallow-model-based method by using mel-frequency 
cepstral coefficient as the input feature of a spectral clustering 
algorithm. Li et al.  [18] present a method of acoustic scene 
clustering, where the input feature is the embedding learned 
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by a deep convolutional network and the clustering algorithm 
is the agglomerative hierarchical clustering. In addition, other 
deep models are adopted for clustering, such as stacked 
autoencoder (SA) [21], capsule autoencoder network (CaAN) 
[22], convolutional autoencoder network (CoAN) [23], long 
short-term memory network (LSTMN) [24]. In summary, 
previous works are either shallow-model-based method with 
hand-crafted features, or deep-model-based methods with 
heavyweight networks. 

To further reduce the computational load and the size of 
deep model for lightweight applications, we propose a method 
of domestic activity clustering by a depthwise separable 
convolutional autoencoder network (DSCAN). The depthwise 
separable convolution (DSC) and the fully-connected layer 
are adopted in the DSCAN, and thus the computational 
complexity and memory requirement of our method can be 
reduced. In addition, the DSCAN is guided by a joint loss to 
co-optimize both embedding learning and cluster assignment 
and can obtain better clustering performance. Some methods 
are assessed on one public dataset. The results show that our 
method exceeds previous methods in terms of normalized 
mutual information (NMI) and clustering accuracy (CA), with 
lower computational complexity and memory requirement.  

In summary, main contributions of this work are as follows. 
First, we propose a method of domestic activity clustering by 
the DSCAN. Second, we compare our method with state-of-
the-art methods on a public dataset using multiple metrics.  

II. METHOD 

In this work, we try to solve the problem of domestic 
activity clustering by clustering audio clips without using 
labels. The goal of this work is to correctly cluster audio clips 
that belong to the same class of domestic activity into one 
cluster. The proposed method of domestic activity clustering 
is a deep clustering method by the DSCAN. The framework 
of the DSCAN is shown in Fig. 1, which consists of an 
encoder, a decoder, and a clustering layer. Both the encoder 
and the decoder form the autoencoder which is used to learn 
embedding. The clustering layer is adopted for cluster 
assignment. A joint loss is designed to guide both embedding 
learning in the autoencoder and cluster assignment in the 
clustering layer. The encoder converts the input feature log-
mel spectrum (log-mel) into an embedding, while the decoder 
reconstructs output feature log-mel' from the embedding.  

Encoder

Decoder

Clustering 
layer

Audio 
clips

log-mel

log-mel'

Convolutions

Transposed convolutions

Embedding

Fully-connected 
layer

Fully-connected 
layer  

Fig. 1. The framework of the proposed DSCAN. 

Compared to the deep models that are adopted in previous 
works [18], [19], [21]-[24], the proposed DSCAN has the 
following merits. First, inspired by the success of DSC [25], 
[26] for lightweight applications, the DSC instead of standard 
convolution is used in the encoder. The DSC can effectively 
reduce computational load and size of convolutional modules 

of the network [25]. Second, DSC-blocks and transposed 
Conv-blocks (Convolutional blocks) with residual structure 
(skip connection) are used in the DSCAN. The residual 
structure of the autoencoder can preserve information about 
the input feature maps and extract discriminative information 
from transformed feature maps in DSC-blocks. Third, a 
simple but effective fully-connected layer is proposed to 
replace the complex capsule module in the CaAN’s and 
CCAN’s encoder. The fully-connected layer can also reduce 
computational load and size of the DSCAN. In addition, the 
DSCAN is a deep model to jointly optimize both embedding 
learning and cluster assignment. Hence, the DSCAN is 
expected to be lightweight and can obtain better results 
compared to the deep models that are used in previous works.  

It should be noted that both the DSC and the clustering 
layer are components of the proposed DSCAN. Although the 
DSC is introduced in [25], [26] and the clustering layer is 
added to an autoencoder in [23] for other tasks, the 
framework of the proposed DSCAN for domestic activity 
clustering is novel and is not adopted in previous works. 

A. Depthwise Separable Convolutional Autoencoder 

The encoder and decoder of the autoencoder are denoted 
as f() and g(), respectively. The autoencoder’s goal is to 
minimize the mean squared error between its input and output 
over all input feature vectors, and is defined by 
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 x x ,                  (1)  

where N is the number of audio clips, and xi is the log-mel of 
the ith audio clip.  

Encoder 

DSC is the main module of the encoder, including two 
steps: depthwise convolution and 11 pointwise convolution 
[25]. The depthwise convolution is the key part for reducing 
the autoencoder’s size. It applies one convolution filter to 
each input channel. The 11 pointwise convolution is used 
to combine the outputs of various depthwise convolutions, 
and determines the number of output channels.  

The input feature maps, the output feature maps after 
convolution, and the convolutional kernel are denoted as Fi

∈ i i iw h c  , Fo∈ i i ow h c  , and K∈ i ok k c c   , respectively. K

∈ i ok k c c   , Kd∈
1ik k c   , and Kp∈

1 1 i oc c    denote the 
kernels of standard convolution, depthwise convolution, and 
pointwise convolution, respectively. Here, wi, hi, and ci (or co) 
are the feature-map’s width, height, and the number of 
channels, respectively. kk denotes the kernel size. The 
computational load and size of the network with standard 
convolution are wihicicokk, and cikkco, 
respectively [25]. The computational load and size of the 
network with DSC are wihici(k2+co), and ci(k2+co), 
respectively [25]. If the kk is set to 33, computational 
load of the network with DSC is theoretically 8 to 9 times less 
than that of the network with standard convolution.  

As depicted in Fig. 2 (a), the encoder mainly consists of 
DSC-blocks. The elements of one DSC-block are depicted in 
Fig. 2 (b). As shown in Fig. 2 (a), the input feature log-mel is 
first processed by the operations of 55 standard 
convolution, batch normalization (BN), and ReLU. Then, the 
transformed feature maps are sequentially fed to five DSC-
blocks. Finally, the output feature maps from DSC-block5 are 



processed by the operations of 11 standard convolution, 
BN, ReLU, and the fully-connected layer to output the 
embedding with 10 dimensions. The three digits in each 
bracket “{}” (e.g., {64, 78, 32}) from left to right denote the 
width of a feature-map (64), the height of a feature-map (78), 
and the number of channels (32), respectively.  

As shown in Fig. 2 (b), the input feature maps are fed to a 
11 convolution followed by the operations of BN and 
ReLU. Afterwards, the feature maps are transformed by the 
33 depthwise convolution followed by the operations of 
BN and ReLU. Finally, a 11 pointwise convolution and the 
operations of BN and ReLU are conducted. 

1×1 Conv

DSC-block2 {16, 20, 32}

DSC-block3 {16, 20, 32}

DSC-block4 {8, 10, 64}

DSC-block5 {8, 10, 64}

1×1 Conv, BN, ReLU {4, 5, 128}

Fully connected layer {10}

Embedding {10}

log-mel {128, 156, 1}

DSC-block1 {32, 39, 16}

5×5 Conv, BN, ReLU {64, 78, 32}

BN

ReLU

3×3 Depthwise Conv

BN

ReLU

1×1 Pointwise Conv

BN
ReLU

(a)

(b)

 
Fig. 2. (a) The encoder’s structure; (b) One DSC-block’s structure. Here, ⊕ 
denotes element-wise summation. 

Decoder 

Fig. 3 shows the decoder’s structure which mainly consists 
of transposed Conv-blocks. Main module of the decoder is 
transposed Conv-block. The embedding is converted to a 
feature vector with dimension of 25601 by a fully-
connected layer. Then, the feature vector is split into 20 
vectors with dimension of 1281, and five vectors with 
dimension of 1281 are taken as a group to obtain four 
groups of such vectors, namely the reshaped feature map with 
dimension of 45128. Next, the reshaped feature map is fed 
to the following transposed Conv-blocks in turn. Finally, the 
output feature log-mel' with the same shape of the log-mel is 
obtained after the 55 transposed convolution. Inspired by 
the success of residual structure in the ResNet [27], a skip 
connection is designed in each transposed Conv-block. 
Therefore, the information about the input embedding can be 
effectively transmitted to next transposed Conv-block. 

Fully connected layer {2560}

Reshape {4, 5, 128}

Transposed Conv-block {8, 10, 64}

Transposed Conv-block {16, 20, 64}

Transposed Conv-block {32, 39, 32}

Transposed Conv-block {64, 78, 16}

5×5 Transposed Conv {128, 156, 1}

Embedding {10}

log-mel'

3×3 Transposed Conv

3×3 Transposed Conv

3×3 Transposed Conv

 
Fig. 3. The decoder’s structure. 

B. Clustering Layer 

The design of the clustering layer is inspired by [28], which 
takes the cluster center as trainable weight of the clustering 
layer. The training strategy in this work is like a form of self-
training [29]. As in the self-training, an initial classifier and 
an unlabeled dataset are taken. Then, the dataset is labeled 
with the classifier for training the classifier on its own high-
confidence predictions. 

The student’s t-distribution [30] for measuring the similarity 
between embedding zi and cluster center uj is defined by 
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where zi=f(xi), α is the degree of freedom of student’s t-
distribution and is set to 1 here, and uj is the mean vector of 
embeddings in cluster j which is obtained by conducting the 
K-means clustering algorithm on embeddings. When the 
current mean vectors are not updated, the K-means clustering 
is terminated and thus the mean vectors of embeddings are 
obtained. qij can be considered as the probability that 
embedding zi belongs to cluster j. As done in [28], the 
predefined target probability pij that embedding zi belongs to 
cluster j, is defined by 
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With the help of the predefined target probability in Eq. (3), 
the clusters can be iteratively refined by learning from their 
high-confidence assignments.  

C. Joint Loss 

A joint loss is defined to jointly optimize both embedding 
learning (realized by the autoencoder) and cluster assignment 
(realized by the clustering layer). The reconstruction loss for 
embedding learning is defined by  

         2
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  x x ,                        (4) 

where N is the number of audio clips, and xi is the log-mel of 
the ith audio clip. The clustering loss Lc is defined as a 
Kullback-Leibler (KL) divergence [28], [31] between the 
distribution of soft labels Q = {qi} and the predefined target 
distribution P={pi}. Lc is computed by 

   || log ij
c ij

i j ij

p
L KL p

q
 P Q ,                  (5) 

where qij is first computed by Eq. (2), and then pij is computed 
by Eq (3) in order to obtain Lc.  

The joint loss LJ is defined by  

J r cL L L  ,                                              (6) 

where β > 0, is a coefficient for balancing the contribution of 
Lr and Lc to the value of LJ. It should be noted that adding Lc 
to Lr will affect the feature reconstruction of autoencoder. 
The greater the proportion of Lc in the joint loss LJ, the greater 
the influence of Lc on feature reconstruction and thus the 
more the embedding space is distorted. When the value of β 
is set properly, the distortion of the embedding space caused 



by the addition of Lc will be within an acceptable range, and 
meanwhile the clustering loss can be optimized for obtaining 
more satisfactory clustering results.  

The DSCAN’s optimization guided by LJ is summarized in 
Table I. After updating the DSCAN under the guidance of LJ, 
the optimized clustering results are obtained.  

TABLE I. THE OPTIMIZATION OF THE DSCAN GUIDED BY LJ 
Initialization:  
① Pretrain autoencoder with β=0 (i.e., LJ = Lr) to get target distribution;  

② Initialize cluster centers by K-means algorithm on embeddings; 

③ Set β to be a fixed non-zero value. 

Repeat: 
① Update autoencoder’s weights and cluster centers by backpropagation 

and Adam algorithms [32]; 
② Update predicted probability qij by (2) and target probability pij by (3). 

Until the change of cluster label assignments between two adjacent 
iterations is less than a threshold ε or reaching the maximum iteration.  
Output: Optimized results of domestic activity clustering. 

III. EXPERIMENTS 

This section first describes experimental data and setup, 
and then presents results and discussions. 

A. Experimental Data 

To our best knowledge, there is only one public audio 
dataset of domestic activities, namely the dataset of Task 5 of 
DCASE-2018 challenge, which is a derivative of the SINS 
dataset [33] and consists of audio clips of 10 seconds. Each 
audio clip contains one domestic activity. Table II lists 
detailed information about experimental data that include 9 
daily domestic activities. All audio clips in Table II are used 
as testing data for clustering. During the clustering process, 
the labels of these audio clips are not used. 

TABLE II. DETAILED INFORMATION ABOUT EXPERIMENTAL DATA 
Activities No. of clips Activities No. of clips 
Dishwashing  1424 Vacuum cleaning 972 
Cooking 5124 Social activity 4944 
Absence 18860 Watching TV 18648 
Eating 2308 Working 18644 
Other 2060 Total 72984 

To experimentally set the proper value of β in our method, 
we generate a development dataset by selecting audio clips 
from the development dataset of Task 1A of DCASE 2019 
[34]. The development dataset contains 9 classes of acoustic 
scenes, including Airport, Shopping mall, Metro station, 
Pedestrian street, Public square, Street traffic, Bus, Metro, 
and Urban park.  Each class of acoustic scene includes 1440 
audio clips, and thus the total number of audio clips in the 
development dataset is 12960. The duration of each audio clip 
is approximately 10 seconds.  

B. Experimental Setup 

All experiments are implemented on a machine: one Intel 
CPU I7-6850K with 3.6 GHz, one RAM of 128 GB, and four 
NVIDIA 1080TI GPUs. All methods are implemented by the 
toolkits of Keras, TensorFlow and scikit-learn.  

CA and NMI are two common metrics used for clustering 
[35], whose definitions are presented below. It is assumed 
that nij represents total number of audio clips in cluster i that 
belong to domestic activity j. Ng and Nc are total number of 
classes of domestic activities (the real number of clusters) and 

total number of clusters (the predicted number of clusters), 
respectively. Ns denotes total number of audio clips. n•j and 
ni• stand for total number of audio clips of domestic activity j 
and total number of audio clips in cluster i, respectively. The 
three formulas in Eq. (7) establish relationships among the 
variables above: 
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NMI and CA are adopted for measuring the agreement 
between the predicted clusters and the ground-truth classes. 
NMI is defined by 
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NMI is equal to 1 if the predicted clusters perfectly match the 
ground-truth classes. On the contrary, NMI is close to 0 if the 
audio clips are partitioned randomly. CA is defined by 
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where ck and yk represent the predicted and true cluster labels, 
respectively, of the kth audio clip. If y = c, δ(y, c) is equal to 
1, otherwise δ(y, c) is equal to 0. map(•) is a permutation 
function which maps each cluster label to a ground-truth label. 
Based on their definitions above, it can be known that NMI 
is an information-theoretic measure of the clustering quality 
and CA is a permutation-mapping measure of the clustering 
quality. The higher their values are, the higher the clustering 
quality is. 

 The values of main parameters of our method are given in 
Table III. They are either often used in previous works or 
common empirical values. In addition, the value of β has 
direct impact on the performance of our method, whose 
settings will be discussed in next subsection. 

TABLE III. THE SETTINGS OF MAIN PARAMETERS OF OUR METHOD 
Type Parameter’s settings  

log-mel 
 

Frame length/overlap: 128ms/64ms 
Dimension of log-mel: 128 
 

DSCAN 

Number of pretraining iterations: 200 
Number of maximum iterations: 4000 
Batch size: 32 
Learning rate: 0.001  
Dimension of embeddings: 10 
Threshold ε: 0.05 
Neuron number of fully-connected layer: 2560 
Number of cluster centers: 9 

C. Results and Discussions 

First, we carry out one experiment on the development 
dataset for setting the proper value of β in our method. The 
values of β are tuned from 0.1 to 0.9. As shown in Fig. 4, 
when the value of β is equal to 0.3, our method obtains the 
highest scores of both CA and NMI on the development 
dataset. However, when the values of β deviate from 0.3, the 
scores of both CA and NMI steadily decrease. Therefore, the 
proper value of β is set to 0.3 when our method is evaluated 
on the testing dataset. 



 
Fig. 4 The impact of β on the performance of our method on the development 
dataset. 

Then, we compare our method to five deep-model-based 
methods, including: the SA-based [21], CaAN-based [22], 
CoAN-based [23], LSTMN-based [24], and CCAN-based 
[19]. Main parameters of the previous methods are set 
according to the suggestions in corresponding references. 
Experimental results of the previous methods are obtained by 
implementing the previous methods by ourselves. The labels 
of audio clips are not adopted in all methods during clustering 
procedure, but they are used for performance evaluation. All 
experimental data listed in Table II are adopted as testing data 
for clustering. Experimental results obtained by different 
methods are given in Table IV. 

TABLE IV. PERFORMANCE COMPARISON OF DIFFERENT METHODS 
Methods CA (%) NMI (%) MACs (K) MS (K) 

SA-based [21] 45.47 38.48 2576.5 1842.9 
CaAN-based [22] 54.81 46.03 3054.3 632.6 
CoAN-based [23] 49.62 42.60 2099.4 118.6 
LSTMN-based [24] 50.36 43.08 1158.5 1004.4 
CCAN-based [19] 61.91 53.84 1451.9 725.3 

DSCAN-based 63.64 54.46 1048.8 72.4 

As shown in Table IV, our method obtains CA score of 
63.64% and achieves absolute gains by 18.17%, 8.83%, 
14.02%, 13.28%, and 1.73% over the methods of SA-based, 
CaAN-based, CoAN-based, LSTMN-based, and CCAN-
based, respectively. As for the score of NMI, our method 
produces 54.46%, and achieves absolute gains by 15.98%, 
8.43%, 11.86%, 11.38%, and 0.62% over the methods of SA-
based, CaAN-based, CoAN-based, LSTMN-based, and 
CCAN-based, respectively. In summary, our method obtains 
higher scores of CA and NMI than previous methods.  

In addition, our method is compared to previous methods 
in terms of computational complexity using the metric of 
Multiply-Accumulate operations (MACs) and in terms of 
memory requirement using the metric of Model Size (MS). 
MACs denotes the number of multiplication and addition 
operations of a network. MS represents the number of 
parameters of a network. The lower the values of MACs and 
MS are, the lower computational complexity and memory 
requirement of the method are. The values of MACs and MS 
of different methods are listed in Table IV. In terms of 
computational complexity, the MACs of our method is 
1048.8 K which is lower than that of other deep-model-based 
methods. In terms of memory requirement, the MS of our 
method is 72.4 K which is significantly less than that of the 

previous methods.  
Based on the results above, we can conclude that our 

method exceeds previous methods in terms of both NMI and 
CA, and has advantage over previous methods in terms of 
both computational complexity and memory requirement. 
The possible reasons are as follows. First, the residual 
structures adopted in the DSC-blocks and transposed Conv-
blocks can preserve information about input feature maps, 
and meanwhile can extract discriminative information from 
the transformed feature maps. Hence, the embedding learned 
by the DSCAN can effectively represent differences of time-
frequency properties among different domestic activities and 
obtains better results for domestic activity clustering. Second, 
both the fully-connected layer (instead of a complex capsule 
module) and the DSC (instead of standard convolution) 
modules are used in the DSCAN. Hence, the DSCAN-based 
method is with lower computational complexity and lower 
memory requirement compared to the previous methods.  

To visually show the results of our method, we use the t-
SNE [30] to map embeddings into two-dimensional space and 
thus obtain spatial distribution of various clusters as depicted 
in Fig. 5. The Python libraries of scikit-learn and matplotlib 
are used to reduce the dimensionality of embeddings and plot 
Fig. 5, respectively. Though most audio clips of the same 
class are merged to their respective cluster centers, there are 
confusions among different clusters. For example, audio clips 
of Other are scattered to other clusters (e.g., Absence, Eating). 
The reasons for the confusions are probably as follows. 
Differences of time-frequency properties of these domestic 
activities are not effectively represented, and there are 
overlapping regions in the distributions of their embeddings.   

 
Fig. 5. Visualization of clustering results obtained by our method.  

IV. CONCLUSIONS 

In this paper, we tackled the problem of domestic activity 
clustering from audio clips using the proposed DSCAN. Our 
method outperforms previous methods in terms of CA and 
NMI. In addition, its computational complexity and memory 
requirement are lower than that of the previous methods. 
However, the problem of domestic activity clustering is still 
challenging due to the following causes. First, the methods of 
domestic activity clustering work in an unsupervised way 
without using labels. Second, there are unbalances of data 
amount of audio clips for different classes. Third, there are 
overlapping regions in the feature distributions of audio clips 
for various domestic activities. 

In the future work, we plan to deploy our method in the 

terminals with low-computing resources. In addition, we will 
estimate activities from audio clips in other situations, such as 
roads, train/metro stations. 
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