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Abstract. In this paper, we discuss value relations and questions of 

incommensurability and incomparability in the context of machine learning and 

fairness therein. We examine three stances and consider their implications for 

machine learning supported decision-making and the pursuit of fair algorithms 

using a hypothetical example from recruitment.  
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Introduction 

The value of machine learning (ML) systems lies in part in their capacity to discover 

patterns in data, to detect subtle (dis)similarities between data items, and to provide 

decision-makers information to help them make good decisions. Consider ML-based 

recruitment systems, for example, which allow for precise comparison and ranking of 

candidates in terms of their merits and overall “hiring-worthiness”. However, to enable 

human decision-makers to make justified decisions, such systems should arguably track 

evaluative differences amongst candidates with respect to their “hiring-worthiness”, 

which raises questions of comparability and commensurability. Recruitment can also 

have ethical objectives aside choosing the candidate with the most merits, for example, 

fairness. Similar questions arise here, as one should be able to compare competing ways 

to improve algorithms’ fairness and to evaluate individuals’ claims to fair treatment. 

For example, in Finnish Law, an individual belonging to an underrepresented group can 

be selected from among applicants that have “roughly the same qualifications”, which 

raises the question of how “rough similarity” should be understood. 

The present work is motivated by philosophical questions related to 

(in)comparability. The nature of value relations is significant in both cases described 

above – namely, in cases where we compare options with the help of ML systems and 

where we compare different ML systems in terms of ethical value. These topics are 

discussed in philosophical debates on (in)comparability and value 

(in)commensurability (see Chang, 1997; Elson, 2017; Hsieh, 2005) and recently also in 

the context of AI (see Dobbe et al., 2021; Fleisher, 2021; Goodman, 2021). We consider 
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the implications of three philosophical accounts of (in)commensurability and 

(in)comparability for the abovementioned cases.  

The structure of the paper is as follows. In section 1, we review three philosophical 

accounts of (in)comparability and (in)commensurability and consider their implications 

for ML-supported decision-making. In Section 2, we consider further implications for 

building fairness-sensitive algorithms, a topic discussed under the umbrella of “fair 

ML”. We distinguish three cases where incommensurability and incomparability pose 

both theoretical and practical challenges: conducting positive discrimination (or 

“affirmative action”) with algorithms (section 2.1.), implementing individual fairness 

measures (section 2.2), and addressing trade-offs between statistical operationalizations 

of fairness (section 2.3). Throughout the paper, we use the context of ML-supported 

recruitment to illustrate the relevant questions and challenges.  

1 Machine-Supported Decisions, Incomparability, and 

Incommensurability 

The Trichotomy Thesis of value relations states that one of three relations – worseness, 

betterness, or equality – holds between any two items (e.g., options, value-bearers, and 

preferences) that are comparable. Debates on (in)commensurability and 

(in)comparability revolve around paradigmatic cases where we find ourselves amiss 

when determining which relation obtains, if any. For example, can Mozart and 

Michelangelo be compared in terms of creativity? If so, is the value relation in question 

captured by the trichotomy, or is there another relation?  

The terms “incommensurability” and “incomparability” are used with slightly 

different meanings in the general debate (see Hsieh & Andresson, 2021). The seeming 

failure of comparison to yield any positive result in terms of betterness, worseness, or 

equality is called “incommensurability” by some and “incomparability” by others (and 

some use these terms interchangeably); we will not follow either of these usages. We 

will use the term “incommensurability” to refer to two things lacking a common 

measure (i.e., cardinal measuring is not possible) and “formal incomparability” to refer 

to two items lacking a covering value with respect to which they can be compared (e.g., 

the number 54 cannot be compared to the color green in terms of tastiness). We call the 

cases where two items are formally comparable, but neither is better, and yet they are 

not exactly equal, “puzzle cases”.  

We maintain that cases of formal incomparability are rather rare. In standard cases 

discussed in the literature, there is often a covering value (perhaps non-cardinal) that 

allows for formal comparability even in the puzzle cases (e.g., creativity in the case of 

Mozart and Michelangelo). Even though one can admit the covering value applies to 

both (Mozart and Michelangelo are arguably creative, while perhaps not exactly equally 

creative), the outcome of comparison remains puzzling.  

We illustrate these questions with the following example: 

A technology company wants to hire an ethicist. The chosen 

recruit should be “hiring-worthy” (i.e., possess a set of attributes, 
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merits, and skills that make them a good technology ethicist and 

employee). “Hiring-worthiness” is the “covering value” here 

with respect to which the candidates are compared in multiple 

“component respects” (e.g., different skills and attributes). An 

initial screening shows that three roughly similarly merited 

candidates – Alex, Bill, and Connie – stand out from the crowd. 

Alex and Bill are academic philosophers with well-cited 

publications in technology ethics. Connie is a computer scientist 

with experience from ethical development in top companies in the 

industry. The recruiters decide to use a ML system to precisely 

rank the candidates. The system suggests that Alex is slightly 

better than Bill – perhaps, because Alex has published one paper 

more than Bill. Before the recruiters proceed to compare Alex and 

Connie, they ponder: is it even possible to rank the two? They 

have different degrees and backgrounds. Academia differs 

drastically from industry. Would they be comparing “apples and 

oranges”? Could the system, even in principle, help settle the 

choice between Alex and Connie? 

The previous hypothetical is analogous to Derek Parfit’s (1987) famous example of 

comparing two poets and a novelist in terms of their literary merits which Parfit used 

to challenge the Trichotomy Thesis. In our case, if the Trichotomy Thesis is true, Alex’s 

being equal to Connie and Bill’s being worse than Alex would imply that Bill is worse 

than Connie (due to transitivity). But should one publication make the difference? The 

Thesis also implies that Alex and Connie are either equal or one is better. But how 

would we determine this in puzzling cases which involve apples and oranges, poets and 

novelists, or philosophers and computer scientists?  

In the next three subsections we discuss three different responses to the puzzle cases. 

Some accounts deny the existence of such cases, some suggest they can be explained 

without rejecting the Trichotomy Thesis (Regan, 1977; Elson, 2017), and some grant 

the existence of a fourth relation, such as “parity” (Chang, 2002), “rough quality” 

(Parfit, 1987), or some type of “indeterminacy” or “imprecision”. These are all loaded 

terms with their own connotations, and we will try to do justice to each while 

maintaining some terminological clarity. We will discuss the implications of each 

stance for ML-supported decision-making. 

 

1.1 Eliminativism 

 

It might seem that neither Alex or Connie is better than the other, or that nor are they 

equally “hiring-worthy”. So-called eliminativists would maintain that this is a mere 

illusion. They argue that no two options objects are ever “apples and oranges” in a 

fundamental sense, and that the Trichotomy Thesis is true of any two items (Regan, 

1997). Our epistemic limitations are the source of any apparent indeterminacy in 
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comparison and ranking. The eliminativist would thus claim that the relations between 

Alex, Bill, and Connie in our example can all be accounted for with the three standard 

relations: each candidate is either better than, worse than, or exactly equal to another. 

For the eliminativist, the ML system can help determine which relations hold between 

the candidates provided that the relevant concepts (“hiring-worthiness”) are clearly 

operationalized in the language of mathematics and that the model is good at tracking 

relevant the recruiters’ preferences (e.g., the value contributed by publications). The 

eliminativist has no principled objection against ML systems’ capacity to rank Alex 

and Connie correctly with respect to “hiring-worthiness” (even though existing systems 

might be limited in many contingent ways).  

The eliminativist view has been criticized for many reasons, however. For one, 

epistemic limitations (e.g., ignorance) might not exhaust the problems with “puzzling 

cases”. The parameters for choosing between two options are for the decision-maker to 

decide, the choice can yet be a “hard choice” (Chang, 2017). For example, one has first-

person authority in making the hard choice between a career in academic philosophy or 

in software development. Both are desirable in their own ways, yet they would still 

seem comparable in light of their contributions to a good life. Furthermore, while ML-

supported decision-making is premised on the notion that value-bearers and preferences 

can in principle be mathematically represented and that human goals and tasks can be 

translated into computational problems with reward and loss functions, it might be that 

all “goals and purposes simply cannot be represented as the maximization of the 

expected value of a scalar reward” (Goodman, 2021, 5). Perhaps, “hiring-worthiness” 

does not lend itself to simple and exact quantification. ML systems would seem to 

provide a sense “quasi-precision” when dealing with such concepts and translating 

human goals into system specifications, respectively (see Dobbe et al., 2021). 

1.2 “Parity” 

 

Alternative accounts draw on the idea of there being “neighborhoods” of value and 

suggest that the Trichotomy Thesis does not capture the entire scope of value relations. 

Perhaps most influentially, Ruth Chang claims that “between two evaluatively very 

different items” (e.g., Alex and Connie, a poet and a novelist), “a small unidimensional 

difference cannot trigger incomparability where before there was comparability” (2002, 

673). This claim is motivated with the so-called “Chaining Argument”: Suppose there 

is another candidate Don, a philosopher similar to Alex and Bill but clearly worse than 

both in all component respects (e.g., publication, work experience, and so on). If Alex 

and Bill are in the same neighborhood of value as Connie, Don should plausibly be 

worse than Connie. If this is the case, however, Connie is comparable to Don and 

thereby also comparable to Alex and Bill because the philosopher candidates form a 

“chain”, a sequence from worse to better philosophers. Hence Alex, Bill, and Connie 

are formally comparable. However, the kicker comes in Chang’s suggestion that our 

best philosopher, Alex, is not exactly equal to Connie. They are rather “on a par”: 
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formally comparable, not exactly equal, but neither is better than the other1. If they were 

exactly equal, “sweetening” Alex by making any small improvement (e.g., one more 

publication) would make sweetened “Alex+” better than Connie. When we compare 

Alex and Alex+, the latter is better. Nonetheless, Chang suggests that sweetening would 

not make a difference when it comes to Alex+ and Connie – they are not equal but 

Alex+ is not better. Both Alex and Alex+ are “on a par” with Connie.  

Chang suggests “parity” deviates from the standard trichotomy of comparative 

relations. Whether it actually does is debated (see Hsieh & Anderson, 2021), but for 

present purposes we will we stay truthful to Chang’s suggestion that it does. Now, if 

“parity” is a true comparative relation, ML systems should arguably be able to track 

such relations were they to estimate value relations, support human judgment, and 

provide justification for decisions. A challenge looms for existing ML methods, 

however, because parity is an intransitive relation: Alex is on a par with Connie, who 

is on a par with Alex+, but Alex is not on a par with Alex+ but is worse. The traditional 

trichotomy (betterness, worseness, and equality) is still there, however, because the 

fourth alternative is only added for puzzling cases (with apples and oranges). 

Regardless, allowing for “parity” in ML would require a way to implement this fourth 

value relation. For example, the output ranking would exhibit some type of a partial or 

perhaps incomplete ordering where a given rank (e.g., the top-k candidates) can contain 

items that are in a relation of “relaxed” or “imprecise” equality (because they are “on a 

par”) as well as items that are exactly equal (because they are evaluatively identical).  

1.3 “Clumpiness” 

The idea of “parity” does not please all theorists as it requires accepting the intransivity 

of some value relations. In the ML setting, this can also prove challenging for precise 

ranking, for example. Is there a way, then, to accept the Trichotomy Thesis and thus 

avoid this possible issue without simultaneously falling into the eliminativist trap of 

“quasi-precision”? Hsieh (2005) suggests so, claiming that some values can be 

“clumpy”. For example, the property of “hiring-worthiness” could be understood as a 

range property2 within which we find “clumps” of “hiring-worthiness” similar to the 

clumps of “excellence” that different grades seek to track as evaluative categories for 

student coursework. For Hsieh, the number of clumps depends on the “resolution” of 

comparison which “specifies the degree to which possession of each of the relevant 

respects of the covering consideration sorts an item into one clump or another” (2005, 

184). Now, whereas Chang would suggest that items in a “clump” are perhaps rather 

 
1 Derek Parfit (1987) has suggested similar view according to which the items can be “roughly equal”. The 
difference between “rough equality” and “parity” is debated: according to one understanding, the former is 

“invoked to allow for comparability among alternatives that display the same respects” and the latter “to 

allow for comparability between alternatives that are different in the respects that they display” (Hsieh & 
Anderson, 2021, S2.2). 
2 A range property is a property which comes in degrees (e.g., a continuous scale along which to measure it) 

yet with respect to which we can specify a range and an object can either fall into that range (or not) in a 
binary sense. For example, an essay that is perfect in all evaluated respects falls perfectly within the range of 

essays worthy of the best grade. However, another essay that lacks slightly in certain respects can yet be 

equally worthy of the best grade.   
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“on a par”, Hsieh suggests they are in fact exactly equal. This has the happy 

consequence that the Trichotomy Thesis can be preserved without having to accept the 

eliminativist view that equal candidates must have the same real-valued “hiring-

worthiness”. Due to the fixed resolution of comparison, the “top-notch” candidates, for 

example, are exactly equal in terms of hiring-worthiness. Yet this does not prevent one 

from scoring items (including candidates) on continuous scales nor “binning” them into 

clumps different ways. Different resolutions can serve practical aims: one can start with 

a coarser resolution of two clumps (e.g., “top-notch” and “unsuitable” candidates), and 

by increasing the resolution one can create new clumps (e.g., “moderately suitable”).  

Note that all comparisons need not be clumpy – there is room for totally ordered 

rankings and ML models which seek to track precise comparative value relations and 

generate corresponding rankings, respectively. Furthermore, even in cases where a 

target variable is supposed to track a clumpy value (“hiring-worthiness”), a continuous 

target variable provides one resolution of comparison, albeit a very fine-grained one. 

With clumpy values (e.g., hiring-worthiness), human decision-makers can build 

clusters, partial orderings, or output classes based on the real-valued total ranking of 

candidates, similar to how a teacher can determine which individuals should receive 

the best or worst grade after first observing and ranking a set of student essays. The 

important implication for ML models is that, when the target variable ought to track a 

clumpy value, the number and boundaries of the clusters, output classes, “bins”, or 

ranks employed to evaluative items should reflect the appropriate resolution and 

outcome of (correct) evaluative judgment. The set of top-k candidates recommended to 

the recruiter, for example, should track the clump of “top-notch” candidates.  

The key differences between eliminativism, and the “parity” and “clumpiness” views 

can thus be stated as follows: An eliminativist using the recruitment system would 

consider two candidates with different predicted values (e.g., Alex is 0.9 hiring-worthy, 

Bill is 0.89 hiring-worthy) as either better or worse than each other (as the ranked output 

would suggest). Were the eliminativist to have an ideal classifier, they could trust that 

the output ranking tracks the comparative value relations between the ranked items. A 

proponent of “parity” relations could consider Alex and Bill as unequal, whereas Alex 

would be on a par with Connie. Proponents of this view would thereby have to rely on 

partial order rankings. A proponent of clumpiness would require a similar approach. 

However, they would suggest that all candidates belonging to the same neighborhood 

of overall “hiring-worthiness” (e.g., the top-k candidates) should be viewed as exactly 

equal in the evaluative sense (despite the 0.1 difference between Alex and Bill). This is 

because two candidates having the same features (e.g., identical merits) is necessary 

and sufficient for exact equality in a descriptive sense, yet not necessary for exact 

equality in the evaluative sense (albeit sufficient). A ranking of candidates qua feature 

vectors can be totally ordered, respectively, but an evaluative ranking of those 

candidates depends on the resolution which in turn specifies the clumps wherein 

candidates are evaluated as exactly equal. In other words, whereas “parity” would 

require a partially ordered ranking which allows for both equality and “parity” within 

a given rank, rankings with respect to clumpy values should have to allow for exact 

equality within a given rank in a way that does not imply numeric identity in real-valued 

outputs.   
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2 Fair Algorithms: Positive Discrimination, Similarity, and 

“Hard Choices” Concerning Fairness 

The previous cases concerned comparability within the context of a single ML model 

seeking to track “hiring-worthiness”. Often, however, ML-supported decision-making 

is guided also by ethical considerations related to fairness, for example. In this section, 

we consider three cases where questions of incommensurability and incomparability 

pose not only theoretical but practical challenges for designing algorithms in a fairness-

sensitive manner. The first case concerns positive discrimination and its permissibility 

in (non-)automated recruitment. The second case concerns the measurement and 

implementation of individual fairness in ML systems.  The third case concerns choices 

regarding trade-offs between multiple fairness targets in ML. 

2.1 Imprecise Equality and Positive Discrimination with Algorithms 

Recruitment policies can purposefully seek to promote disadvantaged groups’ access 

to employment. One instrument for doing so is positive discrimination (or “positive 

action” or “affirmative action”) where candidates from underrepresented protected 

groups (e.g., women) are favored over candidates from overrepresented groups (e.g., 

men). If applied with care, so-called “bias mitigation methods” developed for 

correcting discriminatory biases in ML systems (Mehrabi et al., 2021) could prove 

useful for such purposes in ML-supported recruitment as well. Importantly, however, 

justification of positive action often requires, among other things, that the selection 

process does not give a merely arbitrary or “disproportional advantage to members of 

the relevant group. In Finland, for example, the Non-Discrimination Act requires that 

all candidates are initially treated on an equal basis, and states that “an individual 

belonging to an underrepresented group can be selected from among applicants that 

have roughly the same qualifications” (Non-Discrimination Ombudsman of Finland, 

N.D.). As noted above, there is notable disagreement regarding how “rough sameness” 

should be interpreted. We will first consider what the formal setting of positive action 

implies for the use of bias mitigation methods after which we consider the notion of 

“rough sameness” through the theoretical lenses described in the previous section. 

 

2.1.1. Positive Action with Algorithms 

 

What kinds of bias mitigation methods would capture the “spirit of positive action” as 

described above? We suggest that at least three formal conditions need to be satisfied 

for a hiring decision to be considered “positive action” (in a “neutral” sense in which 

we can still ask whether it is justified):  

 

• (Formally Equal Assessment): The selection process involves a formally equal 

assessment of a candidate from an underrepresented group (CUNDER) and a 
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candidate from an overrepresented group (COVER); their “hiring-worthiness” is 

assessed based on identical criteria. This implies the use of a single model with 

features representing component factors of “hiring-worthiness” and a single “cut-

off” point (i.e., a decision-threshold).  

• (Absolute Sufficiency): The chosen candidate is considered sufficiently hiring-

worthy in an independent, non-comparative sense. Depending on the case, the level 

of absolute sufficiency (i.e., the decision-threshold) can be decided either prior to 

or after ranking the relevant candidates. 

• (Imprecise Equality): The favored candidate CUNDER should be “roughly equal” in 

terms of their qualifications when compared to non-favored candidate COVER.  

 

In other words, regardless of its justification, for recruitment to instantiate positive 

action at all, candidates CUNDER and COVER should be “roughly equal” and “in the 

neighborhood” of what is required from each candidate in a non-comparative sense. 

Absolute Sufficiency is to be assessed with respect to a single covering value and by 

employing identical criteria that (hopefully) track the component factors of that value. 

For example, CUNDER “making the cut” with lesser-than-sufficient qualifications would 

not qualify for positive action because it would not satisfy Absolute Sufficiency nor 

Imprecise Equality. Note that, in cases where Absolute Sufficiency has necessary 

conditions (call these Criteria-First Cases), a candidate that satisfies those conditions 

is plausibly “clearly better” than one that does not. In other cases, such as when the 

level of absolute sufficiency can be set only after ranking the candidates, the best 

candidate takes the spot (call these Ranking-First Cases). In Aggregation Cases, CUNDER 

and COVER need not be on the same side of the decision-threshold, however, even though 

the recruiter cannot choose CUNDER if COVER is somehow “clearly better”. 

Positive action involves taking protected attributes into account in selection after the 

initial assessment has taken place. Consider now, that there are at least three general 

different ways to incorporate information about protected group-membership into ML-

supported decision-making (see Hellman, 2019; Mehrabi et al., 2021). First, one might 

use different decision-thresholds for members of different protected groups within the 

model. Second, one might use different models for those groups entirely. Third, one 

could change the output labels of members of the underrepresented group from negative 

to positive when they are close to the decision-threshold (Kamiran et al., 2012).  
We suggest that none of these methods satisfy all three conditions described above. 

Consider the first approach. Here, recruiters would employ similar component factors 

for comparison but with different “cut-off points” for CUNDER and COVER. The level of 

Absolute Sufficiency would thereby differ across groups, implying that different 

weights are given to component factors. If so, the condition of Formally Equal 

Assessment is violated. In the second approach, “hiring-worthiness” would be 

evaluated with different models for CUNDER and COVER. This means the covering values 

used for evaluation are non-identical and the Formally Equal Assessment condition is 

again violated3. The third approach comes closest the formal setting assumed in cases 

of positive action: candidates are evaluated based on the same model and there is a 

 
3 An open question is, however, whether the non-identical models can be commensurate as models of overall 

“hiring-worthiness”. 
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single decision-threshold. However, it lacks a way to resolve cases where there are two 

candidates – CUNDER and COVER – and a single available position. Positive action will 

be at best an artefact of choosing CUNDER as opposed to an explicit aim implemented in 

the method’s processing logic in a strict sense. That is, the comparative dimension of 

positive action – “if two candidates are within a range R, choose CUNDER over COVER” – 

remains uncaptured by the method.  

 

2.1.2. Positive Discrimination and “Rough Sameness” 

 

Let us now consider Ranking-First Cases to examine how theoretical stances 

concerning comparative relations bear on (the possibility of) positive action. First note 

that eliminativists and other proponents of the Trichotomy Thesis often consider a 

choice permissible only if there are normative reasons to choose A over B (e.g., A is 

better) or if A and B are exactly equal. For them, the boundaries of “rough sameness” 

with respect to qualifications will remain rather arbitrary and thus they would consider 

it irrational to choose CUNDER over COVER in case the former is ranked below the latter. 

The eliminativist can, of course, concede the plausible claim that there are other 

normative reasons (e.g., the value of equity) that override rational choice based on 

qualifications alone.  

A proponent of clumpy values could contend, however, that “roughly the same 

qualifications” merely means that CUNDER and COVER have to belong to the same clump 

of “hiring-worthiness”. As CUNDER and COVER would hence be exactly equal, choosing 

either one of them is permissible in light of rational choice based on qualifications alone 

(contra the eliminativist) and the instantiation of positive action is merely an artefact of 

choosing CUNDER. However, one could question whether “rough sameness” should 

actually be understood as an even softer requirement: could it not suffice that CUNDER 

belongs merely to the clump below the one including COVER?  

Alternatively, if “rough sameness” is what Chang means by “parity”, positive action 

is possible when CUNDER and COVER are “on a par” – neither candidate is actually better 

than the other, nor are they exactly equal. Both “parity” and “clumpiness” can thereby 

lead to the conclusion that one never hires a de facto worse candidate when 

implementing positive action.4 While we do not discuss these issues further, we note 

that each stance has implications for how positive action ought to be understood as a 

non-moralized category of acts, and how it should be implemented in ML-supported 

decision-making. 

 
4 If parity obtains between two options, one will lack so-called “given reasons” (i.e., reasons grounded in 

normative facts) for choosing between them. One has no prima facie reason to favor either, making the 

decision a “hard choice” (Chang, 2017). Chang argues that normative commitments can create “will-based 
reasons” that function as tie-breakers. Positive action could thus be understood as a normative commitment 

to equality that creates a reason for choosing between candidates that are “on a par”. Mutatis mutandis, the 

same holds for the clumpiness view. 
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2.2 Tracking Evaluative Features: The Case of Individual Fairness 

Individual fairness (IF) as an approach to algorithmic fairness draws on the principle of 

formal equality: fairness requires treating similar individuals similarly (Dwork et al. 

2012). Individual fairness is measured with similarity-metrics that estimate the 

similarity (or distance) between individuals in terms of some set of attributes which 

typically exclude an individual’s protected status, for example. If individuals who are 

similar according to the metric receive different outputs, the algorithm is considered 

unfair.   

Similarity metrics ought to track moral values and (dis)similarities which are 

relevant from the perspective of fairness. Will Fleisher (2021) considers 

incommensurability to pose a challenge because “a similarity metric requires that it be 

possible to aggregate the moral values, or evaluate them together, in a straightforward 

way” (2021, 17). Fleisher notes that some “moral values are incommensurable” and 

“cannot be evaluated on a common measure, i.e., they cannot be straightforwardly 

aggregated or exchanged” (Ibid., 3). Indeed, “similarity” in IF approaches is ambiguous 

between exact, “descriptive” similarity (being qualitatively identical) and similarity 

that is relevant from the perspective of fairness and ethics. However, the relationship 

between these two types of similarities can be complex – a (dis)similarity of the former 

kind may or may not equate to (dis)similarity of the latter kind. As we considered above, 

it might be that “sweetening” one candidate would not render them better than another 

candidate, even though the descriptive distance between them would increase as a result 

(see Fleisher, 2021). Likewise, if values are clumpy, for example, a small difference 

between two “top-notch” candidates will not make a relevant difference in terms of 

fairness. 

Estimating “fairness-relevant” distance and possible puzzles in how evaluative 

features behave (e.g., “parity” and “clumpiness”) requires human value judgements. 

Fleisher notes, however, that appealing to human arbiters in evaluating similarities 

between individuals, while promising, can be problematic due to “implicit biases in 

[human] judgment” (2021, 2). Fleisher is correct, but the cure may nonetheless be 

adding more human arbiters, and the hope that different humans have different biases. 

In most cases, cognitive and socio-cultural diversity among those arbiters can be 

beneficial to ensure “diversity of biases” and that the arbiters arrive at correct judgments 

regarding how similarity ought to be measured. Even if we accept that measurements 

of similarity will always reflect prior moral judgments and biases (Fleisher, 2021, 2), it 

is fine (and inevitable) that judgements about fairness rely on evaluative or moral 

judgements insofar as such an equilibrium is achieved.5  

2.3 “The Impossibility of Fairness” and “Hard Choices” 

A final challenge relates to trade-offs in implementing multiple operationalizations of 

algorithmic fairness. As Dobbe and colleagues note, “normative concerns of 

comparable significance and scope must be rendered commensurable in order for a 

 
5 Fleisher also considers a possibility we already discussed above: using partial order rankings instead of (or 

in addition to) similarity-metrics.  
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responsible tradeoff to be struck and translated to a system’s specification” (2021, 4). 

However, trade-offs between different fairness criteria are a prime example of cases 

where we seem to be lacking such commensurate options. Various fairness definitions 

prescribe equalizing some statistical metric (e.g., positive predictions, error rates) 

across individuals or groups in the model (Verma & Rubin, 2018). But many of these 

metrics cannot be equalized simultaneously except in highly contrived cases (Kleinberg 

et al., 2017). Trade-offs are taken to suggest “the impossibility of fairness” due to 

fairness definitions’ representing irreconcilable moral views. 

To make justifiable decisions concerning trade-offs, we should be sensitive to 

reasons for choosing one fairness metric over another. However, some consider the 

decision regarding proper measurement and implementation of fairness “a hard choice” 

in virtue of the options being incommensurate: “certain alternatives are neither better, 

worse nor equal to one another with respect to fairness” (Goodman, 2021, 7). Rival 

options are rather “on a par”. Value incommensurability thus poses a challenge for 

justifiably deciding which fairness criteria to implement in algorithms. But if such a 

decision requires choosing between incommensurate options, what do we do? 

Goodman’s proposal draws on Chang’s (2017) view according to which “will-based 

reasons” created through normative commitment can function as tie-breakers: 

“[n]othing in the world will tell us the correct answer” regarding proper measures of 

algorithmic fairness; “[i]nstead, we must commit” (Goodman, 2021, 7). Dobbe and 

colleagues (2021) propose another solution. Recognizing that ML systems typically 

affect numerous stakeholders with different interests, they suggest that 

incommensurability and hard choices become political issues as AI systems’ normative 

capacities cannot be evaluated and measured by the same standards by different 

stakeholders. We note that these solutions are not mutually exclusive – whether it is 

individual persons or collectives making significant decisions, the cold reality of 

compromises is equally faced by both. Extending Chang’s solution to “hard choices” 

between incommensurable options, one could argue that collective wills can create tie-

breaking “will-based reasons” through normative commitment in a manner analogous 

to the individual case.    

If trade-offs are exclusively “hard choices”, there are no normative facts or second-

order principles concerning distributive fairness that provide reasons to resolve trade-

offs in a manner R purely because R-ing is the right thing to do. We should resort to 

proceduralism (e.g., fair democratic decision-making procedures) or will-based reasons 

(e.g., resolution through normative commitment), for example. While these might be 

independently justifiable and desirable approaches, we note that equating trade-offs 

with Changian “hard choices” denies the possibility of there being “given” normative 

reasons that speak in favor of resolving trade-offs in one way over another. For instance, 

while a fair democratic process might lead to the decision to choose the option that 

creates the largest benefit to those who are worst off, one could also argue that 

prioritarian regard should guide choices concerning trade-offs because it is what 

fairness requires.  

Furthermore, it is noted in some works that certain fairness definitions are in 

principle compatible albeit practically in conflict due to contingent states-of-affairs 

(e.g., differences in the distribution of attributes across subpopulations) (Binns, 2020). 
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Some trade-offs can thus arise “merely” in virtue of our present, contingent 

circumstances. This suggests, however, that they can be resolved in the long-term, at 

least in principle. We would need a “transitional approach” and incremental 

improvements to get to a place where multiple fairness definitions can be 

simultaneously satisfied. If this is true, it leaves open the possibility that different 

fairness metrics for algorithms may in theory be commensurate with respect to a 

covering value: Fairness or Justice qua an ethico-political value. Different 

operationalizations of fairness in ML could be understood as comparable qua factors 

that contribute to a multidimensional covering value understood as overall fairness (or 

not). Competing fairness measures are applicants for the job of the best conception of 

Fairness (or at least one component of it), as it were. As we are not ideal judges with 

direct access to ideals of Justice and Fairness, we do not merely choose or commit to 

any of the candidates. We test them, build new ones, compare their pros and cons, and 

hopefully end up with the best conception of algorithmic fairness so far. Ultimately, the 

right approach to resolving trade-offs will be one that best reflects the constitutive aim 

of conceptions of algorithmic fairness; what “Fairness with a capital F” or “Justice with 

a capital J” in fact requires. Insofar as feasibility constraints and long-term effects might 

prevent us from achieving the best solution straight away, for the time being, one might 

have to settle for the second-best.    

 

3 Conclusions 

 In this paper, we sought to motivate questions related to incommensurability, 

incomparability, and “hard choices” in the context of ML-supported decision-making. 

We reviewed three stances on comparability and value relations, discussing their 

implication for ranking and ordering items with ML. Each stance, we suggested, has 

implications concerning whether and how ML-generated rankings can track value 

relations. We also discussed fairness in ML, noting how similar puzzles arise in the 

context of building fair algorithms. Here, we located challenges relating to positive 

discrimination and how it might be pursued with algorithms and for determining 

whether and how to implement one or several fairness measures in ML systems. While 

the fundamental questions concerning the nature of value relations remain unsolved, 

we hope to have shed light on their practical significance for designing and using ML 

systems, suggesting also possible ways forward.    
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