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Abstract. In this article, I present some of my statistical research in the field of 

longitudinal data analysis along with applications of these methods to real data 

sets. The aim is not to cover the whole field; rather, the perspective is based on 

my own personal preferences. The presented methods are mainly based on 

growth curve and mixture regression models and their extensions, where the fo-

cus is on continuous longitudinal data. In addition, an example of the analysis 

of extensive register data for categorical longitudinal data is presented. Applica-

tions range from forestry and health sciences to social sciences. 

 

 

 

 

1 Introduction 

Longitudinal studies play an important role in many fields of science. The defining 

feature of these studies is that measurements of the same individual are taken repeat-

edly over time. The primary goal is to characterize the change in response over time 

as well as the factors that influence the change. Special statistical methods which 

address intra-individual correlation and inter-individual variation are needed. Fortu-

nately, many statistical analysis tools developed for clustered data (e.g. mixed, multi-

level, and mixture models) also apply to longitudinal data, since longitudinal data can 

be seen as a special case of clustered data. Here, these methods are divided into three 

main categories: 

1. Regression and multivariate techniques, 

2. Methods based on finite mixtures, and 

3. Clustering techniques for categorical longitudinal data. 

 

The main aim of this article is to briefly present some of these techniques with inter-

esting real data applications. The purpose is not to give an overview of the topics. 

Instead, the perspective is based on my own research in these areas.   

 
* Corresponding author: Tapio Nummi (Email: tapio.nummi@tuni.fi)  
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2 Regression and Multivariate Techniques 

2.1 The Growth Curve Model 

Perhaps the most important of the early models in this area is the generalized multi-

variate analysis of variance model (GMANOVA), which is often called the growth 

curve model (GCM). This model was first presented by Potthoff and Roy (1964). 

GCM is particularly useful in balanced experimental study designs where there are no 

missing data. This model can be presented as follows 

 

𝐘 = 𝐓𝐁𝐀ˊ + 𝐄 , 
 

where Y = (y1, y2, …, yn) is a matrix of n response vectors, T is the within individual 

design (model) matrix, B = (b1, …, bm) is a matrix of growth curve parameters, A is 

the between individual design matrix and E is a matrix of random errors, where col-

umns are independently normally distributed as ei ~ N(0, Σ), i = 1, …, n. 

Closed-form formulas for the estimation and testing of growth curve parameters B 

can be obtained using the Maximum Likelihood method (under unknown positive 

definite Σ). Some basic results and model extensions are nicely summarized in the 

review papers by von Rosen (1991) and Zezula and Klein (2011). 

 

3 Some Extensions of the Growth Curve Model 

Various aspects of analysis under GCM are presented in the series of articles by my-

self and my co-authors. Some practical computational aspects are considered in 

Nummi (1989), a method for prediction is presented in Liski and Nummi (1990), an 

analysis under missing data with the EM algorithm is investigated in Liski and Num-

mi (1991), model selection for mean and covariance structure is considered in Nummi 

(1992), prediction and inverse estimation is investigated in Liski and Nummi (1995a), 

and a method of covariable selection for model parameter estimation is presented in 

Wang et al. (1999). 

3.1 Random Effects Growth Curve Model 

Perhaps one of the most important extensions is the so-called Random effects growth 

curve model. This model can be written as 

 

𝐘 = 𝐓𝐁𝐀ˊ + 𝐓𝐜𝚲 + 𝐄, 
 

where Tc is given as 𝐓 = (𝐓𝑐 , 𝐓𝑐) and Λ = (λ1, …, λn) is a matrix of random effects. 

Here we take ei ~ N(0, σ2I) independent of λi ~ N(0, D),  ∀ i = 1, …, n, where D is a 

positive define covariance matrix. 
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In the article by Nummi (1997), several topics were considered: model parameter 

estimation and hypothesis testing, estimation under parsimonious covariance struc-

tures (e.g. AR(1)) for random errors, estimation under incomplete data using the EM 

algorithm, and an extension to multivariate growth curves. The multivariate extension 

was further studied by Nummi and Möttönen (2000), where they studied ML and 

REML estimation and testing in this context. For example, it was shown that under 

certain situations, estimated variances of growth curve parameters are greater for 

REML. The basic Random effects GCM was further extended and applied in small 

area estimation by Ngarue et al. (2017). 

3.2 Measurement Errors  

In some cases also in an experimental situation, a measurement error may occur. This 

is especially the case when the planned measurement time is fixed in advance, but the 

exact attained measurement time does not match the planned time. An appropriate 

frame for this kind of analysis is found under Berkson-type measurement errors (see 

Berkson, J. (1950)). The basic (Berkson) model for the observations (y, x*) is  

 

𝑦 = 𝑔(𝑥) +  𝜖 

𝑥 = 𝑥∗ + 𝑢 

 

where ϵ and u are independent random variables with E(ϵ) = E(u) = 0. Here, the exact 

value of the explanatory variable x is not directly observed, but instead another quan-

tity, the planned measurement time x* = x - u is utilized. Actually, this form of meas-

urement error is quite common in experimental situations where the values of the 

predictor variable is controlled by the experimenter (e.g. in agricultural or medical 

studies). For GCM, the Berkson type of measurement errors is studied in Nummi 

(2000) and later extended and applied to forest harvesting in Nummi and Möttönen 

(2004). 

 

3.2.1 Example: Forest Harvesting 

 

The forestry harvesting technique in the Nordic countries converts tree stems into 

smaller logs at the point of harvest. Modern harvesters are equipped with computer 

systems capable of continuously measuring the length and diameter of the stem and 

also predicting the profile of an unknown stem section. The harvester feeds the tree 

top-first through the measuring and delimbing device for a given length, then the 

computer predicts the rest of the stem profile and calculates the optimal cross-cutting 

points for the whole stem (see e.g. Uusitalo et al. (2006)). In forestry, stem curve 

models are often presented for relative heights (e.g. Laasasenaho, 1982; Kozak, 

1988). However, height is unknown for a harvester, and therefore these relative mean 

curve models are quite difficult to apply in practice. Low degree polynomial models 

were tested, e.g. in Liski and Nummi (1995b, 1996a, b). 
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Assume now that x is a sum of sub-intervals δi
* = δi + ξi  

𝑥 =  ∑ 𝛿𝑖
∗  

=  ∑ 𝛿𝑖 +  ∑ 𝜉𝑖 

=  𝑥∗ + 𝑢 

where random error u is a sum random terms 𝑢 = ∑ 𝜉𝑖, where ξi  are independent with 

E(ξi) = 0 and Var(ξi)= 𝜎𝜉𝑖

2 . Random errors u are now dependent and the variance 𝜎𝑢
2 

increases with x*. A special model for the covariance structure Var(y) is now needed. 

 

 The general least squares methods provide unbiased parameter estimates only in 

the most simple first-degree model g(x*)= β0 + β1x* For more complex models for 

g(x*), the least squares estimates of the model parameters are biased. However, as 

shown in Nummi and Möttönen (2004), predictions may still be unbiased for low-

degree polynomial models. Estimation and prediction for an extended Berkson model 

(with dependent measurement errors) are considered in Nummi and Möttönen (2004). 

 

3.3 Spline Growth Model 

 

A more general formulation of the basic GMANOVA can be written as 

 

𝐘 = 𝐆𝐀ˊ + 𝐄 

 

where G = (g1, …, gm) is a matrix of smooth mean curves (Spline Growth Model, 

SGM; Nummi and Koskela, 2008; Nummi and Mesue, 2013; Mesue and Nummi, 

2013; Nummi et al., 2017). Here we assume that 

𝚺 = 𝜎2𝐑(𝜽) 

 

where R takes a certain kind of parsimonious covariance structure with covariance 

parameters θ. A smooth solution for G can be obtained by minimizing the penalized 

least squares criterion (see Nummi and Koskela, 2008) 

Fig. 1. A forest harvester at work. In 

the figure, the harvester has cut down 

a tree and started pruning the branch-

es. At the same time, the stem diame-

ter and length are measured and the 

measurements are transferred to the 

harvester’s computer. The harvester 

is now at the first possible cutting 

point, at which the decision must be 

made as to whether to cut at that 

point or at another point along the 

stem. (Source: Ponsse company, 

Finland) 
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PLS = tr[(𝐘 − �̇�)𝐇(𝐘 − �̇�) + α�̇�ˊ𝐊�̇�], 

where α (> 0) is a fixed smoothing parameter, �̇� = 𝐆𝐀ˊ, 𝐇 = 𝐑−𝟏 and the roughness 

matrix K (from 𝑅𝑃 = ∫ 𝑔ˊˊ2) is defined as 𝐊 = 𝛁∆−𝟏𝛁ˊ where 𝛁 and ∆ are banded 

q × (q – 2) and (q – 2) × (q – 2) matrices defined as (non-zero elements) 

 

∇𝑙,𝑙=
1

ℎ𝑙

, ∇𝑙+1,𝑙= − ( 
1

ℎ𝑙

+
1

ℎ𝑙+1

) , ∇𝑙+2,𝑙=
1

ℎ𝑙+1

  

and 

∇𝑙,𝑙+1= ∇𝑙+1,𝑙=
𝑙𝑘+1

6
 , ∇𝑙,𝑙=

ℎ𝑙 + ℎ𝑙+1

3
,  

 

where hj = tj+1 – tj, j =1, 2, …, (q-1) and l = 1, 2, …, (q – 2) ( see e.g. Green and Sil-

verman (1994)). 

As shown in Nummi and Koskela (2008), the minimizer is easily seen by rewriting 

the PLS-function in a slightly different form. Then given α and H, the spline estimator 

becomes 

𝐆 = (𝐇 + 𝛼𝐊)−1𝐇𝐘𝐀(𝐀ˊ𝐀)−1, 
 

where the fitted growth curves 𝐆 are natural cubic smoothing splines. It is further 

easily seen that if K = KH (or KR = K), the spline estimator simplifies as 

 

𝐆 = 𝐒𝐘𝐀(𝐀ˊ𝐀)−1, 
 

where the so-called smoother matrix is denoted as 𝐒 = (𝐈 + 𝛼𝐊)−1. Note that this is 

an important simplification, since estimates 𝐆 are now simple linear functions of the 

observations (α fixed). In a sense, this can be compared to the results of linear models, 

where OLSE = BLUE. It is quite easy to see that certain important structures (e.g. 

uniform, random effects, etc.) used for the analysis of longitudinal data meet the sim-

plifying condition. The smoothing parameter α can then be chosen using the General-

ized Cross-Validation (GCV) criteria, for example.  

 

3.3.1 Testing with an Application for Behavioral Cardiology 

 

Note that the smoother matrix S is not a projection matrix and therefore certain results 

developed for linear models are not directly applicable for SGM. Our approach is to 

approximate S with the following decomposition (Nummi and Mesue, 2013; Mesue 

and Nummi, 2013; Nummi et al., 2017 and Nummi et al., 2018) 

 

𝐒 = 𝐌(𝐈 + α𝚲−1)𝐌ˊ , 
 

where M is the matrix of q orthogonal eigenvectors of K and Λ is a diagonal matrix 

of corresponding eigenvalues obtained from the Spectral decomposition. Here we 

assume that eigenvectors are ordered according to eigenvalues γ = 1/ (1 + αλ) of S, 

where λ is an eigenvalue of K. Note that the sequence of eigenvectors m1, m2, …, mq 
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increases in complexity. The first two eigenvectors m1, m2 span a straight line model 

and the corresponding eigenvalues are 1. 

Using the approximation 𝐒 ≈ 𝐌𝐜𝐌ˊ𝐜 the set of fitted curves with SGM are  

 

𝐘 = 𝐌𝐜𝐌ˊ𝐜𝐘𝐀(𝐀ˊ𝐀)−1𝐀ˊ = 𝐌𝐜�̂�𝐀ˊ, 
 

where Mc is a matrix of c first eigenvectors of S that can be chosen using GCV cri-

teria, and �̂� = 𝐌ˊ𝐜𝐘𝐀(𝐀ˊ𝐀)−1. All the relevant information for testing is now in �̂�, 

which can be seen to be unbiased estimates of the parameters of the growth curve 

model  

𝐸(𝐘) = 𝐌𝑐𝛀𝐀ˊ. 
 

Testing can be based on the linear hypothesis of the form H0: CΩD = O–  where C 

and D are appropriate given matrices. It is easy to construct an F-test for this H0. It is 

further easy to show that for some important special cases, the distribution of this F-

test does not depend on the estimated covariance structure. 

Example. Tampere Ambulatory Hypertension Study: In these data, 95 men (aged 

35-45 years with the same ethnic and cultural background) were selected and their 

body functions were accurately monitored for one day (see Nummi et al., 2017). In-

clusion criteria: healthy according to conventional health criteria and not on medica-

tion. For this study, we investigated the hourly means of systolic blood pressure 

(SBP), diastolic blood pressure (DBP) and heart rate (HR). The participants were 

classified before the experiment into two groups: 

 

Group 1:  Normotensive (NT), 33 participants, and 

Group 2:  Borderline hypertensive (BHT) and hypertensive (HT), 62 participants 

 

In our example, we were especially interested in testing whether blood pressure varia-

bles behaved the same during the day in these two groups. In particular, by definition, 

there is a level difference in these two groups. If we define the roughness matrix as Ks 

= W⊗K, where W = diag (α1, …, αs) the multivariate uniform structure 

 

𝐑 = (𝐈𝑠 ⊗ 𝟏𝑞)𝐃(𝐈𝑠 ⊗ 𝟏𝑞)ˊ + 𝐈𝑞𝑠 

 

where D is a covariance matrix, satisfies the multivariate version of the simplifying 

condition RKs = Ks and the unweighted spline estimator becomes (Mesue and Num-

mi, 2013) 

 

𝐆 = (𝑰𝑞𝑠 + 𝑾 ⊗ 𝑲)
−1

𝐘𝐀(𝐀ˊ𝐀)−1 

 

= (

𝐒(𝛼1)
0
⋮
0

0
𝐒(𝛼2)

⋮
0

0
0
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮

𝐒(𝛼𝑠)

) 𝐘𝐀(𝐀ˊ𝐀)−1         (1) 
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where 𝐒(𝛼𝑗)  = (𝐈𝑞 + 𝛼𝑗𝐊)−1,  where αj is a smoothing constant for j = 1, …, s. A 

straightforward generalization of the earlier considerations gives us an estimator 

 

�̂� = 𝐌ˊ•𝐘𝐀(𝐀ˊ𝐀)−1 , 
where 𝑴• = diag(𝐌1, 𝐌2, … , 𝐌𝑠) and the corresponding multivariate growth curve 

model is 

𝐘 = 𝐌•𝛀𝐀ˊ . 
Testing (see Nummi et al. 2017) can be based on the linear hypothesis H0: CΩD = 0, 

where C and D are known v × c and m × g matrices with ranks v and g, respectively, 

with 

 

𝐹 =
𝑄∗ 𝑣𝑔⁄

�̂�2
 ~𝐹 [𝑣𝑔, 𝑛(𝑠𝑞 − 𝑐tot)] , 

 

where 𝑐tot = 𝑐1 + ⋯ + 𝑐𝑠 and 

 

𝑄∗ = tr[𝐃ˊ(𝐀ˊ𝐀)−1𝐃]−1[𝐂�̂�𝐃]ˊ[𝐂𝐌ˊ•𝐑𝐌•𝐂ˊ]−1[𝐂�̂�𝐃] 

and 

 

�̂�2 = ∑
1

𝑛(𝑞 − 𝑐𝑙)

𝑠

𝑙=1

tr𝐘ˊ𝑙(𝐈𝑞 − 𝐏𝑙)𝐘𝑙  . 

 

Often R may not be known and need to be estimated. In this case, the distribution 

of F is only approximate. However, with the multivariate uniform covariance model, 

when investigating the progression only we can take 𝐂 = [𝐈𝑠 ⊗ (𝟎, 𝐈)]. It can then be 

shown that the test statistics have an exact F-distribution. 

For the example data, c1 = 12 (SBP), c2 = 10 (DPB) and c3 = 12 (HR). To test if the 

progression is the same in both groups, we attained 

 

𝐹 =
1811.041/31

66.26201
= 0.88166, 

 

which gives the P-value 𝑃(𝐹31,2470 ≥ 0.88166) ≈ 0.654967. Therefore, the null 

hypothesis of equal progression for each of the variables in these groups is not reject-

ed. The fitted mean curves are shown in figure 2. 
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Fig. 2. Fitted mean curves for systolic blood pressure (SBP), diastolic blood pressure (DBP) 

and heart rate (HR) during the test day. Solid line is for Group 1 (normotensive) and dotted line 

for Group 2 (Borderline hypertensive and hypertensive) (Source: created by the authors). 

4 Models Based on Finite Mixtures 

4.1 Introduction 

Denote random vectors of longitudinal measurements as 𝐲𝑖 = (𝑦𝑖1, 𝑦𝑖2 , … , 𝑦𝑖𝑝𝑖
)ˊ and 

the marginal probability density of yi with possible time-dependent covariates Xi as 

f(yi | Xi) for i = 1, …, N. It is assumed that f (yi | Xi) follows a mixture of K densities  

 

𝑓(𝐲𝑖  |𝐗𝑖) = ∑ 𝜋𝑘𝑓𝑘(𝐲𝑖  |𝐗𝑖) ,𝐾
𝑘=1            ∑ 𝜋𝑘 = 1𝐾

𝑘=1   with 𝜋𝑘 > 0, 

 

where πk is the probability of belonging to the cluster k and 𝑓𝑘(𝐲𝒊 |𝐗𝒊) is the density 

for the kth cluster. If the multivariate normal distribution is assumed, we have  

 

𝑓𝑘(𝐲𝑖  |𝐗𝑖) = (2𝜋)−
1
2|𝚺𝑖𝑘|−

𝑝𝑖
2 exp {−

1

2
(𝐲𝑖 − 𝝁𝑖𝑘)ˊ𝚺𝑖𝑘

−1(𝐲𝑖 − 𝝁𝑖𝑘)} , 
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where 𝝁𝑖𝑘(𝜽𝑘, 𝑿𝑖) is a function of covariates Xi with parameters θk  and Σik(σk) is a 

variance-covariance matrix within the kth cluster, involving a vector of unique covar-

iance parameters σk. In the most general case, μk and Σk are the unstructured mean and 

covariance matrices. However, often some more parsimonious structures are imposed 

either on μk, or Σk or on both.   

In this article, we focus on the normal GLM case (so-called trajectory analysis; see 

e.g. Nagin 1999, 2005). It is then simply assumed that 

 

𝝁𝑘 = 𝐗𝑖𝜽𝑘   with 𝚺𝑘 = 𝜎𝑘
2𝐈 

 

Note that this conditional independence assumption does not mean independence over 

the whole sample. One important aim is to identify and estimate the possible sub-

populations as well as possible. Therefore, often a natural interpretation of the identi-

fied groups is emphasized jointly with model selection and statistical fit criteria. 

4.2 Data Analysis: Analysis of Drinking Profiles 

The Northern Swedish Cohort Study covers all pupils who in 1981 attended the final 

year of compulsory school (at age 16) in Luleå. The number of participants in all 

follow-up surveys (1983, 1986, 1995 and 2007) was 1,005. For this study, we used 

the alcohol consumption (converted to absolute alcohol in centiliters) of male partici-

pants at the age of 16, 18, 21, 35 and 42 years (for more details, see Virtanen et al. 

(2015)). 

 

Table 1. Results of the fits of the mixture models with k = 1, 2, …, 7 and 𝜆 ∈ [−2, 2] 

 

K �̂� L BIC AIC 

1 0.16 -16367.23 32770.40 32744.47 

2 0.04 -16065.51 32206.09 32151.02 

3 0.00 -15961.67 32037.55 31953.35 

4 0.08 -15885.47 31924.28 31810.94 

5 0.08 -15852.29 31897.07 31754.58 

6 0.04 -15818.75 31869.12 31697.49 

7 0.04 -15802.01 31874.97 31674.20 

   Source: Authors’ own processing. 
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Fig. 3. Fitted trajectory curves for alcohol consumption of males (Source: created by the au-

thors). 

The distribution of alcohol consumption is highly skewed, but there is a relatively 

high probability of zero observations (semicontinuous data). This kind of data is quite 

common in many areas (cf. zero inflation). One possible solution to the problem is to 

apply mixture modeling, where one component of the mixture functions is degenerat-

ed near to zero. The advantage is that the mixture approach allows additional hetero-

geneity by avoiding a sharp dichotomy between zero and near-zero observations. A 

brief summary of the methods for semicontinuous and zero-inflated data is presented 

in Min and Agresti (2005). 

Here the so-called “broken stick” model was applied as the basic model for trans-

formed observations: 

𝑌(𝜆) = 𝛽0 + 𝛽1𝑡 + 𝛽2(𝑡 − 𝐾1)+ + 𝜖 , 
 

𝐾1 = 21, (.)+ equals (.) if (.) ≥ 0 and 0 otherwise. The model consists of two com-

bined straight lines at the age of 21. 

The number of clusters K and the transformation parameter of the Box-Cox trans-

formation was jointly estimated. Depending on the criterion, a different K is selected. 
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With AIC, the minimum is obtained for K = 7 and with BIC, the minimum is obtained 

for K = 6 (Table 1). Our choice was K = 6, which was also in line with the earlier 

studies with these data (e.g. Virtanen et al. (2015)). The estimate of the transformation 

parameter (Box-Cox) �̂� = 0.04 suggested the log transformation.   

The estimated mixture proportions are 𝜋1= 0.1558; 𝜋2 = 0.1034; 𝜋3 = 0.0737; 𝜋4 = 

0.2677; 𝜋5 = 0.2526 and 𝜋7 = 0.1468. Group 3 is the zero or near-zero cluster. Inter-

estingly, those who had a high consumption level at the earlier ages tended to main-

tain a high consumption level also at the later ages. 

4.3 Extension: Semiparametric Mean Model 

The set of explanatory variables in Xi is divided into the parametric part Ui and the 

non-parametric part ti, where ti is the vector of measuring times t1, . . . ,t𝑝𝑖
. For the ith 

individual within the kth cluster, we assume the semiparametric model  

 

𝐲𝑖𝑘 = 𝐠𝑖𝑘(𝒕𝑖) + 𝐔𝑖𝐛𝑘 + 𝝐𝑖  , 
 

where 𝑔𝑖𝑘(𝐭𝑖) is a smooth vector of twice differentiable functions evaluated at time 

points ti, Ui is a matrix of h covariates (constant term not included), bk is a parameter 

vector to be estimated and Var (𝝐𝑖) = 𝜎𝑘
2𝐈𝑖 . 

When using the EM algorithm, the estimation problem can be seen as a missing data 

problem, where yi are observed but “group indicators” 𝐳ˊ𝑖  are missing. We denote 

  

𝐲𝑖
∗ = (𝐲ˊ𝑖 , 𝐳ˊ𝑖)ˊ 

 

where zik = 1 if yi stemmed from the kth component; otherwise, zik = 0. The vectors z1, 

. . . , zN can now be seen as realized values of random vectors Z1, . . . , ZN from the 

multinomial distribution. The complete-data, joint penalized log-likelihood function is 

(see Nummi et al. (2018) for details) 

  

𝑙𝑐(𝜙) = ∑ ∑ {𝑧𝑖𝑘[log(𝜋𝑘) + log(𝑓𝑘)] −
𝛼𝑘

2𝑁
𝐠ˊ𝑘𝐊𝐠𝑘} .

𝐾

𝑘=1

𝑁

𝑖=1

   

 

The E step is to calculate 

𝐸(𝑍𝑖𝑘|�̂�, 𝐲1, … , 𝐲𝑁) =
�̂�𝑘𝑓𝑘(𝐲𝑖|𝐗𝑖 , �̂�𝑘)

∑ �̂�𝑙𝑓𝑙(𝐲𝑖|𝐗𝑖 , �̂�𝑙)
𝐾
𝑙=1

= �̂�𝑖𝑘  

 

where �̂�1, …,  �̂�𝐾are vectors consisting of estimates of mixing distribution mean and 

variances. In the M step, the expected log-likelihood for the completed data 

 

𝐸[𝑙𝑐(𝝓)] = ∑ ∑ {�̂�𝑖𝑘[log(𝜋𝑘) + log(𝑓𝑘)] −
𝛼𝑘

2𝑁
𝐠ˊ𝑘𝐊𝐠𝑘} 

𝐾

𝑘=1

𝑁

𝑖=1
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Table 2. Results of the sequence analysis of combined employee-employer data. 

 

Main activity Combined (%) Study group (%) Reference (%) 

Employed 52 49 55 

Disability pension 12 13 11 

Retired 12 10 13 

Part-time retired 10 9 11 

Unemployed 9 11 7 

Unemp. pension 5 8 3 

Source: Authors’ own processing. 

 

is maximized. These two steps are iterated until convergence. The method gives 

closed-form formulas for gk and bk with estimates for πk. Here each of the k group can 

be smoothed independently, and thus this provides a very flexible model within each 

of the k clusters. In Nummi et al. (2018), a technique providing an approximate solu-

tion is also introduced. This makes semiparametric mixture analysis possible in gen-

eral statistical software developed for mixture regression. 

5 Clustering Techniques for Categorical Longitudinal Data: 

Factory Downsizing 

Example of sequence analysis is based on Statistics Finland’s combined employee-

employer data (FLEED), which includes data for all 15–70 year old of those who 

lived in Finland in 1988–2014. For research purposes a random sample of the size of 

one–third was taken. The starting point of the study group is those enterprices that 

reduced more than 30 % of staff or were dismissed in the year 2005. The actual study 

group taken then consisted a sample of 7,730 people (aged 45-60) who lost their job 

in 2005 (followed until 2014). A reference group of matched (Propensity score) 7,844 

people from the same register who did not lose their job in 2005 was also taken. Since 

the data are categorical (employment status), so-called sequence analysis was applied 

to the combined data. Sequence analysis was performed with R software using the 

Weighted Cluster library Studer (2013). The number of clusters was evaluated using 

the Average Silhouette Width. For further details on the data, methods and results, we 

refer to Kurvinen et al. (2018). 

Finally, six clusters were identified that were named according to the main activity 

prevailing in the group. The results are presented in Table 2. It is observed that in the 

study group about half of the sample still continued in employment. It can be seen as 

an indication of an effective labor market policy in Finland. However, there is clearly 

an elevated risk (compared to those who continued as employed) for those who lost 

their job entering the unemployment group and the unemployment pension group 

even after controlling for covariates gender, age, sector of employment, education, 

socio-economic status, type of residence area, employment and unemployment in 

2004 and sickness allowance paid in 2003–2004. 
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Although sequence analysis is mainly descriptive in nature, a suitable experimental 

study design can also provide a framework for further estimation and testing of im-

portant statistical quantities. 
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