Contents lists available at ScienceDirect # **Environment International** journal homepage: www.elsevier.com/locate/envint The prevalences and levels of occupational exposure to dusts and/or fibres (silica, asbestos and coal): A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury Vivi Schlünssen ^{a,b,*,1}, Daniele Mandrioli ^{c,1}, Frank Pega ^{d,*,1}, Natalie C. Momen ^d, Balázs Ádám ^e, Weihong Chen ^f, Robert A. Cohen ^g, Lode Godderis ^h, Thomas Göen ⁱ, Kishor Hadkhale ^j, Watinee Kunpuek ^k, Jianlin Lou ^l, Stefan Mandic-Rajcevic ^{m,n}, Federica Masci ^{m,n}, Ben Nemery ^h, Madalina Popa ^o, Natthadanai Rajatanavin ^k, Daria Sgargi ^c, Somkiat Siriruttanapruk ^p, Xin Sun ^q, Repeepong Suphanchaimat ^{k,p}, Panithee Thammawijaya ^p, Yuka Ujita ^{r,s}, Stevie van der Mierden ^{c,t}, Katya Vangelova ^u, Meng Ye ^q, Muzimkhulu Zungu ^v, Paul T.J. Scheepers ^{w,x} - ^a Department of Public Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark - ^b National Research Center for the Working Environment, Copenhagen, Denmark - ^c Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy - ^d Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland - e Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, United Arab Emirates - f Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China - ^g Feinberg School of Medicine, Northwestern University, Chicago, IL, United States - ^h Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium - i University of Erlangen-Nuremberg, Erlangen, Germany - ^j Tampere University, Tampere, Finland - k International Health Policy Program, Ministry of Public Health, Nonthaburi, Thailand - ¹ Institute of Occupational Diseases, Hangzhou Medical College, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China - ^m Department of Health Sciences, University of Milano, Milan, Italy - ⁿ International Centre for Rural Health, San Paolo Hospital, Milan, Italy - ° Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium - ^p Division of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand - q National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China - Labour Administration, Labour Inspection and Occupational Safety and Health Branch, International Labour Organization, Geneva, Switzerland - s Decent Work Technical Support Team for East and South-East Asia and the Pacific, International Labour Organization, Thailand - ^t Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany - ^u National Center of Public Health and Analyses, Ministry of Health, Sofia, Bulgaria - v National Institute for Occupational Health, South Africa, Johannesburg, Gauteng Province, South Africa - w Radboud Institute for Health Sciences, Radboudumc, Nijmegen, The Netherlands - ^x Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands ## ARTICLE INFO Handling Editor: Dr. Paul Whaley Keywords: Silica Coal dust Exposure prevalence Asbestos # ABSTRACT Background: The World Health Organization (WHO) and the International Labour Organization (ILO) are developing joint estimates of the work-related burden of disease and injury (WHO/ILO Joint Estimates), with contributions from a large number of individual experts. Evidence from human, animal and mechanistic data suggests that occupational exposure to dusts and/or fibres (silica, asbestos and coal dust) causes pneumoconiosis. In this paper, we present a systematic review and meta-analysis of the prevalences and levels of occupational exposure to silica, asbestos and coal dust. These estimates of prevalences and levels will serve as input data for ### https://doi.org/10.1016/j.envint.2023.107980 Received 8 June 2020; Received in revised form 3 May 2023; Accepted 12 May 2023 $\,$ Available online 21 May 2023 0160-4120/© 2023 World Health Organization and International Labour Organization. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). ^{*} Corresponding authors at: Bartholins Alle 2, bg 1260, 8000 Aarhus C, Denmark (V. Schlünssen). 20 Avenue Appia, 1211 Geneva, Switzerland (F. Pega). E-mail addresses: vs@ph.au.dk (V. Schlünssen), pegaf@who.int (F. Pega). $^{^{1}}$ Joint first authorship. Exposure levels Systematic review estimating (if feasible) the number of deaths and disability-adjusted life years that are attributable to occupational exposure to silica, asbestos and coal dust, for the development of the WHO/ILO Joint Estimates. *Objectives*: We aimed to systematically review and *meta*-analyse estimates of the prevalences and levels of occupational exposure to silica, asbestos and coal dust among working-age (> 15 years) workers. Data sources: We searched electronic academic databases for potentially relevant records from published and unpublished studies, including Ovid Medline, PubMed, EMBASE, and CISDOC. We also searched electronic grey literature databases, Internet search engines and organizational websites; hand-searched reference lists of previous systematic reviews and included study records; and consulted additional experts. Study eligibility and criteria: We included working-age (\geq 15 years) workers in the formal and informal economy in any WHO and/or ILO Member State but excluded children (< 15 years) and unpaid domestic workers. We included all study types with objective dust or fibre measurements, published between 1960 and 2018, that directly or indirectly reported an estimate of the prevalence and/or level of occupational exposure to silica, asbestos and/or coal dust. Study appraisal and synthesis methods: At least two review authors independently screened titles and abstracts against the eligibility criteria at a first stage and full texts of potentially eligible records at a second stage, then data were extracted from qualifying studies. We combined prevalence estimates by industrial sector (ISIC-4 2-digit level with additional merging within Mining, Manufacturing and Construction) using random-effects meta-analysis. Two or more review authors assessed the risk of bias and all available authors assessed the quality of evidence, using the ROB-SPEO tool and QoE-SPEO approach developed specifically for the WHO/ILO Joint Estimates. Results: Eighty-eight studies (82 cross-sectional studies and 6 longitudinal studies) met the inclusion criteria, comprising > 2.4 million measurements covering 23 countries from all WHO regions (Africa, Americas, Eastern Mediterranean, South-East Asia, Europe, and Western Pacific). The target population in all 88 included studies was from major ISCO groups 3 (Technicians and Associate Professionals), 6 (Skilled Agricultural, Forestry and Fishery Workers), 7 (Craft and Related Trades Workers), 8 (Plant and Machine Operators and Assemblers), and 9 (Elementary Occupations), hereafter called manual workers. Most studies were performed in Construction, Manufacturing and Mining. For occupational exposure to silica, 65 studies (61 cross-sectional studies and 4 longitudinal studies) were included with > 2.3 million measurements collected in 22 countries in all six WHO regions. For occupational exposure to asbestos, 18 studies (17 cross-sectional studies and 1 longitudinal) were included with > 20,000 measurements collected in eight countries in five WHO regions (no data for Africa). For occupational exposure to coal dust, eight studies (all cross-sectional) were included comprising > 100,000 samples in six countries in five WHO regions (no data for Eastern Mediterranean). Occupational exposure to silica, asbestos and coal dust was assessed with personal or stationary active filter sampling; for silica and asbestos, gravimetric assessment was followed by technical analysis. Risk of bias profiles varied between the bodies of evidence looking at asbestos, silica and coal dust, as well as between industrial sectors. However, risk of bias was generally highest for the domain of selection of participants into the studies. The largest bodies of evidence for silica related to the industrial sectors of Construction (ISIC 41-43), Manufacturing (ISIC 20, 23-25, 27, 31-32) and Mining (ISIC 05, 07, 08). For Construction, the pooled prevalence estimate was 0.89 (95% CI 0.84 to 0.93, 17 studies, I2 91%, moderate quality of evidence) and the level estimate was rated as of very low quality of evidence. For Manufacturing, the pooled prevalence estimate was 0.85 (95% CI 0.78 to 0.91, 24 studies, I2 100%, moderate quality of evidence) and the pooled level estimate was rated as of very low quality of evidence. The pooled prevalence estimate for Mining was 0.75 (95% CI 0.68 to 0.82, 20 studies, I^2 100%, moderate quality of evidence) and the pooled level estimate was 0.04 mg/m 3 (95% CI 0.03 to 0.05, 17 studies, I2 100%, low quality of evidence). Smaller bodies of evidence were identified for Crop and animal production (ISIC 01; very low quality of evidence for both prevalence and level); Professional, scientific and technical activities (ISIC 71, 74; very low quality of evidence for both prevalence and level); and Electricity, gas, steam and air conditioning supply (ISIC 35; very low quality of evidence for both prevalence and level). For asbestos, the pooled prevalence estimate for Construction (ISIC 41, 43, 45,) was 0.77 (95% CI 0.65 to 0.87, six studies, I² 99%, low quality of evidence) and the level estimate was rated as of very low quality of evidence. For
Manufacturing (ISIC 13, 23-24, 29-30), the pooled prevalence and level estimates were rated as being of very low quality of evidence. Smaller bodies of evidence were identified for Other mining and quarrying (ISIC 08; very low quality of evidence for both prevalence and level); Electricity, gas, steam and air conditioning supply (ISIC 35; very low quality of evidence for both prevalence and level); and Water supply, sewerage, waste management and remediation (ISIC 37; very low quality of evidence for levels). For coal dust, the pooled prevalence estimate for Mining of coal and lignite (ISIC 05), was 1.00 (95% CI 1.00 to 1.00, six studies, I² 16%, moderate quality of evidence) and the pooled level estimate was 0.77 mg/m³ (95% CI 0.68 to 0.86, three studies, I2 100%, low quality of evidence). A small body of evidence was identified for Electricity, gas, steam and air conditioning supply (ISIC 35); with very low quality of evidence for prevalence, and the pooled level estimate being 0.60 mg/m³ (95% CI -6.95 to 8.14, one study, low quality of evidence). Conclusions: Overall, we judged the bodies of evidence for occupational exposure to silica to vary by industrial sector between very low and moderate quality of evidence for prevalence, and very low and low for level. For occupational exposure to asbestos, the bodies of evidence varied by industrial sector between very low and low quality of evidence for prevalence and were of very low quality of evidence for level. For occupational exposure to coal dust, the bodies of evidence were of very low or moderate quality of evidence for prevalence, and low for level. None of the included studies were population-based studies (i.e., covered the entire workers' population in the industrial sector), which we judged to present serious concern for indirectness, except for occupational exposure to coal dust within the industrial sector of mining of coal and lignite. Selected estimates of the prevalences and levels of occupational exposure to silica by industrial sector are considered suitable as input data for the WHO/ILO Joint Estimates, and selected estimates of the prevalences and levels of occupational exposure to asbestos and coal dust may perhaps also be suitable for estimation purposes. Protocol identifier: https://doi.org/10.1016/j.envint.2018.06.005. **PROSPERO registration number:** CRD42018084131. #### 1. Background The World Health Organization (WHO) and the International Labour Organization (ILO) produce the WHO/ILO Joint Estimates of the Workrelated Burden of Disease and Injury (WHO/ILO Joint Estimates) (Pega et al. 2021a; World Health Organization and International Labour Organization 2021a; World Health Organization; International Labour Organization 2021b; Pega et al. 2022a). The organizations estimate the numbers of deaths and disability-adjusted life years (DALYs) that are attributable to selected occupational risk factors. The WHO/ILO Joint Estimates are based on already existing WHO and ILO methodologies for estimating the burden of disease for selected occupational risk factors (International Labour Organization 2014; Prüss-Ustün et al. 2017). They expand these existing methodologies with estimation of the burden of several prioritized additional pairs of occupational risk factors and health outcomes. For this purpose, population attributable fractions, the proportional reduction in burden from the health outcome achieved by a reduction of exposure to the theoretical minimum risk exposure level (Murray et al. 2004), are calculated for each additional risk factoroutcome pair. These fractions are applied to the total burden of disease envelopes for the health outcome from the WHO Global Health Estimates (World Health Organization 2018). The WHO/ILO Joint Estimates may include a methodology for estimating, and estimates of the burden of silicosis, asbestosis and coal workers' pneumoconiosis attributable to occupational exposure to silica dust, asbestos fibres and coal (mine) dust, respectively, if feasible, as additional prioritized risk factor-outcome pairs. To select parameters with the best and least biased evidence for our estimation models, we conducted a systematic review and meta-analysis of studies on the prevalence and level of occupational exposure to these dusts and/or fibres, as per our protocol (Mandrioli et al. 2018). WHO and ILO, supported by a large number of individual experts, are in parallel also producing a systematic review and meta-analysis of the health effects of occupational exposure to silica, asbestos and coal (mine) dust on silicosis, asbestosis and coal workers' pneumoconiosis (Mandrioli et al. 2018). The organizations are also conducting or have completed several other systematic reviews and meta-analyses on other additional risk factor-outcome pairs (Descatha et al., 2018, 2020; Godderis et al., 2018; Li et al., 2018, 2020; Loomis et al., 2022; Pachito et al., 2021; Paulo et al., 2019; Pega et al., 2020b; Rugulies et al., 2019, 2021; Teixeira et al., 2021a; Tenkate et al., 2019; World Health Organization, 2021; Hulshof et al., 2019; Hulshof et al., 2021a; Hulshof et al., 2021b; Teixeira et al., 2019; Teixeira et al., 2021b). To our knowledge, these are the first systematic reviews and meta-analyses (with a pre-published protocol, Mandrioli et al. (2018)) conducted specifically for an occupational burden of disease study. An editorial provides an overview of this series of systematic reviews and meta-analyses from the WHO/ILO Joint Estimates and outlines its scientific, methodological, policy, editorial and other innovations (Pega et al. 2021b). Several new systematic review methods were also developed specifically for the WHO/ILO Joint Estimates (Pega et al. 2020a; Momen et al. 2022; Pega et al. 2022c; Pega et al. 2022b). The WHO/ILO joint estimation methodology and the WHO/ILO Joint Estimates are separate from these systematic reviews, and they are described in more detail and reported elsewhere (Pega et al. 2021a; World Health Organization and International Labour Organization 2021a,b; Nafradi et al. 2022; Pega et al. 2022a). For example, WHO/ILO Joint Estimates have been published of the global, regional and national burdens of ischemic heart disease and stroke attributable to exposure to long working hours for 183 countries (Pega et al. 2021a). #### 1.1. Rationale Occupational exposures to asbestos, silica and coal dust (defined as pure coal dust and dust from coal mining) are known occupational risk factors for pneumoconiosis. In the Global Burden of Disease Study 2016, asbestosis (as an outcome separate to coal workers' pneumoconiosis and other pneumoconiosis) and silicosis are 100% attributed to occupational exposure to asbestos and silica respectively (G. B. D. Risk Factors Collaborators 2017). In the same study, the entire burden of coal workers' pneumoconiosis and of other pneumoconiosis is 100% attributed to the risk factors occupational exposure to particulate matter, gases and fumes (G. B. D. Risk Factors Collaborators 2017). However, the populationattributable fractions may actually be smaller than 1.00, considering that some burden of pneumoconiosis may be caused by residential exposure to one or more sources of asbestos (Tarres et al. 2013), silica and coal dust (Akaoka et al. 2017) among residents near mines; nonoccupational exposure to silica from the natural environment (e.g. wind erosion and storms, including in deserts) (De Berardis et al. 2007); and from second-hand exposures (e.g. family members of exposed workers coming into contact with contaminated clothes etc.). To consider the feasibility of estimating the burden of pneumoconiosis from occupational exposure by inhalation of dusts and/or fibres, and to ensure that potential estimates of burden of disease are reported in adherence with the guidelines for accurate and transparent health estimates reporting (GATHER) (Stevens et al. 2016), WHO and ILO require a systematic review of studies on the prevalence of any occupational exposure to dusts and/or fibres, as well as a systematic review and metaanalysis of studies with estimates of the relative effect of occupational exposure to dusts and/or fibres on the prevalence of, incidence of and mortality from pneumoconiosis, compared with the theoretical minimum risk exposure level. The theoretical minimum risk exposure level is the exposure level that would result in the lowest possible population risk, even if it is not feasible to attain this exposure level in practice (Murray et al. 2004). These data and effect estimates should be tailored to serve as parameters for estimating the burden of pneumoconiosis from occupational exposure to silica, asbestos and coal dust in the WHO/ILO joint methodology. Apart from one systematic review assessing exposure to pure coal dust and the risk of interstitial lung diseases (Beer et al. 2017), we have not identified any previous systematic reviews on occupational exposure to dusts and/or fibres. However, there was a recent scoping review which looked at occupational exposure of silica and asbestos among industrial workers in Thailand (Kunpeuk et al. 2021). This study reported prevalence of exposure to be 100% in most of the included studies. Our systematic review covers studies on workers in the formal and informal economy. The informal economy is defined as "all economic activities by workers and economic units that are – in law or in practice – not covered or insufficiently covered by formal arrangements" (104th International Labour Conference 2015). It does not comprise "illicit activities, in particular the provision of services or the production, sale, possession or use of goods forbidden by law, including the illicit production and trafficking of drugs, the illicit manufacturing of and trafficking in firearms, trafficking in persons and money laundering, as defined in the relevant international treaties" (104th International Labour Conference 2015). Work in the
informal economy may lead to different exposures and exposure effects than does work in the formal economy. Therefore, we consider in the systematic review the formality of the economy reported in included studies. **Table 1**Definitions of the risk factors, risk factor levels and the minimum risk exposure levels. | Risk factor | Occupational exposure to silica | Occupational exposure to asbestos | Occupational exposure to coal dust | |---|-------------------------------------|---------------------------------------|--| | Risk factor levels | Two levels: | Two levels: | Two levels: | | | No occupational exposure to silica | No occupational exposure to asbestos | No occupational exposure to coal dust | | | Any occupational exposure to silica | Any occupational exposure to asbestos | Any occupational exposure to coal dust | | Theoretical minimum risk exposure level | No occupational exposure to silica | No occupational exposure to asbestos | No occupational exposure to coal dust | Footnote: Sourced from Mandrioli et al. (2018). ## 1.2. Description of the risk factor We have reviewed occupational exposure to three different types of dusts and/or fibres: (i) silica: (ii) asbestos: and (iii) coal dust. We define coal dust as dust from coal mining or dust from pure coal. Coal dust from coal mining may contain a combination of different types of coal, silica, various silicates and asbestos fibres, depending on the specific mineral composition of the mined substance. There are workers with exposure to coal dust only, such as those working in (bulk) transportation (e.g. bulk ports) and who use coal at work (e.g. coke ovens, electricity power plants and other industries using coal as ground material or power source). However, the most numerous occupational groups with exposure to coal dust include workers involved in excavating coal at the seam of coal mines and those working in downstream activities (e.g., haulage, maintenance and surface workers). The definition of the risk factors, the risk factor levels and their theoretical minimum risk exposure level are presented in Table 1. We define the risk factors as any occupational exposure by inhalation to silica dust, asbestos fibres or coal dust in the air. A priori, we assumed a theoretical minimum risk exposure level of no occupational exposure. Where possible we used the analytical limit of detection (LOD) as the cut-off between exposed and unexposed. For studies with a different cut-off between exposed and non-exposed, we converted reported levels to the standard levels and, if not possible, we included studies with these alternate exposure levels in the systematic review and discussed the implications. ### 2. Objectives To systematically review and *meta*-analyse evidence on the prevalences and levels of occupational exposure to silica, asbestos and coal dust among working-age (≥ 15 years) workers. ### 3. Methods ### 3.1. Developed protocol The study protocol registered in PROSPERO was (CRD42018084131). This protocol is in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols statement (PRISMA-P) (Moher et al. 2015; Shamseer et al. 2015). The abstract is in line with the Reporting Items for Systematic Reviews in journal and conference Abstracts (PRISMA-A) (Beller et al. 2013). Any modification of the methods stated in the protocol is reported in *Section* 8. Our systematic review is reported according to the Preferred Reporting Items for Systematic Review and Meta-Analysis statement (PRISMA) (Liberati et al. 2009). Our reporting of the parameters for estimating occupational exposure to silica, asbestos and coal dust in the systematic review adheres with the requirements of the Guidelines for Accurate and Transparent Health Estimates Reporting guidelines (Stevens et al. 2016). This is done because the WHO/ILO Joint Estimates that may be produced following the systematic review must also adhere to these reporting guidelines. #### 3.2. Searched literature #### 3.2.1. Electronic academic databases We searched the following electronic academic databases: - 1. Ovid Medline with Daily Update (1946 to 22 May 2018). - 2. PubMed (1946 to 20 June 2018). - 3. EMBASE (1974 to 5 June 2018). - 4. Web of Science with inclusion of three databases: - (a) Science Citation Index Expanded (1900 to 17 June 2018). - (b) Social Sciences Citation Index (1956 to 30 April 2018). - (c) Arts and Humanities Citation Index (1975 to 30 April 2018). - 5. OSH UPDATE with inclusion of three databases: - (a) CISDOC (1974 to 14 June 2018). - (b) HSELINE (1977 to 30 April 2018). - (c) NIOSHTIC-2 (1977 to 14 June 2018). All search strategies are presented in Appendix 1 in the Supplementary data. We searched in electronic databases operated in the English language using a search strategy in the English language. We adapted the Ovid Medline search syntax to suit the other electronic academic and grey literature databases. ### 3.2.2. Electronic grey literature databases We searched the following electronic academic databases: - 1. OpenGrey (https://www.opengrey.eu/). - 2. Grey Literature Report (https://greylit.org/). ## 3.2.3. Internet search engines We also searched the Google (https://www.google.com/) and Google Scholar (https://www.google.com/scholar/) Internet search engines and screened the first 100 hits for potentially relevant records, as has been done in Cochrane Reviews previously (Pega et al. 2022d). # 3.2.4. Organizational websites The websites of the following seven international organizations and national government departments were searched: - i. International Labour Organization (https://www.ilo.org). - ii. World Health Organization (https://www.who.int). - iii. European Agency for Safety and Health at Work (https://osha.europa.eu/en). - iv. Eurostat (https://www.ec.europa.eu/eurostat/web/main/h ome). - v. China National Knowledge Infrastructure (https://www.cnki.net/). - vi. Finnish Institute of Occupational Health (https://www.ttl. fi/en/). - vii. United States National Institute of Occupational Safety and Health (NIOSH), using the NIOSH data and statistics gateway (https://www.cdc.gov/niosh/data/). #### 3.2.5. Hand-searching and expert consultation We hand searched for potentially eligible studies in: - Reference lists of previous systematic reviews. - Reference lists of all included study records. - Study records published over the previous 24 months in the three peer-reviewed academic journals from which we obtained the largest number of included studies. - Study records that have cited an included study record (identified in the Web of Science citation database). - Collections of the review authors. Additional experts were contacted with a list of included studies, with the request to identify potentially eligible additional studies. ### 3.2.6. National information searches Review authors from four national government agencies conducted searches of national and local bibliographic and grey literature databases for their countries (Bulgaria, People's Republic of China, South Africa, and Thailand) in their national language or languages: - National Center of Public Health and Analyses, Ministry of Health, Bulgaria. - National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, People's Republic of China - National Institute for Occupational Health, South Africa. - International Health Policy Program, Ministry of Public Health, Thailand. ## 3.3. Selected studies Study selection was carried out with the Systematic Review tool Covidence (https://www.covidence.org). All study records identified in the search were downloaded to Endnote, and then duplicates were identified and deleted. Afterwards, at least two review authors independently screened titles and abstracts (step 1) and then full texts (step 2) of potentially relevant records. A third review author resolved disagreements between the two review authors. If a study record identified in the literature search was authored by a review author assigned to study selection or if an assigned review author was involved in the study, then the record was re-assigned to another review author for study selection. In the systematic review, the study selection process was documented in a flow chart, as per GATHER guidelines (Stevens et al. 2016). ## 3.4. Eligibility criteria The population and exposure criteria are described below. ## 3.4.1. Types of populations We included studies of working-age (≥ 15 years) workers in the formal or informal economy. Studies of children (aged < 15 years) and unpaid domestic workers were excluded. Participants residing in any WHO Member and/or ILO member State and workers in any industrial sector and occupation were included. ### 3.4.2. Types of exposures We included studies that define occupational exposure to dusts and/ or fibres in accordance with our standard definition (Table 1). For pneumoconiosis, cumulative exposure is the most biologically relevant exposure metric, but we also considered a non-cumulative exposure metric when insufficient cumulative exposure data were available to enable burden of disease estimation. We reviewed evidence separately for dusts and/or fibres from (i) asbestos, (ii) silica and (iii) coal dust. We included studies with direct or indirect information on the prevalences and levels of occupational exposure to the respective risk factor, possibly disaggregated by country, sex (two categories: female, male), age group (ideally in 5-year age bands, such as 20-24 years) and industrial sector (e.g. International Standard Industrial Classification of All Economic Activities, Revision 4 [ISIC Rev.4] (United Nations 2008) or occupation (as defined, for example, by the International Standard Classification of Occupations 1988 [ISCO-88] (International Labour Organization 1988) or 2008 [ISCO-08] (International
Labour Organization 2012). To be included, studies should as a minimum present data disaggregated by Country and Industry/Occupation. We included studies with exposure data for the years 1960 to June 2018. We included only studies with objective measurements of occupational exposure to eligible dusts and/ or fibres, such as quantitative samples of dusts and/or fibres collected by an expert using appropriate technologies. Subjective measures were excluded, such as self-reports from workers, workplace administrators or managers. We included studies with measures from any data source, including registry data. The eligible exposure measures of this systematic review were: - 1. Prevalence of any occupational exposure to silica - 2. Level of occupational exposure to silica among exposed workers - 3. Prevalence of any occupational exposure to asbestos - 4. Level of occupational exposure to asbestos among exposed workers - 5. Prevalence of any occupational exposure to coal dust - 6. Level of occupational exposure to coal dust among exposed workers ### 3.4.3. Types of studies We included quantitative studies of any design. These studies were judged to be informative of the relevant industrial sector, occupational group or national population. We excluded qualitative, modelling and case studies, as well as non-original studies without quantitative data (e. g. letters, commentaries and perspectives). Records written in any language were included. If a record was written in a language other than those spoken by the authors of this review or those of other reviews (Descatha et al. 2018; Godderis et al. 2018; Li et al. 2018; Mandrioli et al. 2018; Hulshof et al. 2019; Paulo et al. 2019; Rugulies et al. 2019; Teixeira et al. 2019; Tenkate et al. 2019; Descatha et al. 2020; Li et al. 2020; Pega et al. 2020b; Hulshof et al. 2021b; Hulshof et al. 2021a; Pachito et al. 2021; Rugulies et al. 2021; Teixeira et al. 2021b; Teixeira et al. 2021a; World Health Organization 2021; Loomis et al. 2022) in the series (i.e. Arabic, Bulgarian, Chinese, Danish, Dutch, English, French, Finnish, German, Hungarian, Italian, Japanese, Norwegian, Portuguese, Russian, Thai, Spanish, and Swedish), then the record was translated into English. Published and unpublished studies were included. Studies conducted using unethical practices were excluded from the review (e. g., studies that deliberately exposed humans to a known risk factor to human health); none were however found. ## 3.4.4. Types of prevalence and level measures We included studies with a direct or indirect measure of exposure prevalence and/or exposure level. Exposure can be defined as contact between an agent and a target. Contact takes place at an exposure surface over an exposure period (ES21 Federal Working Group on Exposure Science 2015) The prevalence (as here defined) is usually measured as the number of exposed persons (numerator) divided by the total number of persons (i.e., unexposed persons plus exposed persons) (denominator). It is usually reported in percentage points. The exposure level is measured in the unit milligram per cubic meter (mg/m 3) for silica and coal dust and in fibre per millilitre (f/ml) for asbestos. ### 3.5. Extracted data WHO and ILO developed a standard data extraction sheet and all data extractors piloted this sheet until there was convergence and Fig. 1. Flow diagram of study selection. Environment International 178 (2023) 107980 Table 2 Characteristics of included studies, Prevalence and level of occupational exposure to silica. | Study | Inclusion in meta-
analyses? | Study population | 1 | | | | | | | | |---|--|------------------------|------------------------|-------------------------------|-------------------------------|------------------------|--|---|------------------------|--| | Study ID | Industrial sector and estimate type | Number of measurements | Number of participants | Number of female participants | Country | Geographic
location | Target population | Industrial sector,
ISIC-4 | Occupation,
ISCO-08 | Age distribution | | Andersson 2009 (
Andersson et al.
2009; Andersson
et al. 2012) | Manufacturing (prevalence and level) | 2333 | 1691 | Unclear | Sweden | National | Manual iron foundries
workers in Sweden | 24 Manufacture of basic metals | | Unclear | | Archer 2002 (Archer et al. 2002) | Crop and animal production
(prevalence and level) | 37 | 27 | Unclear | United States
of America | Regional | Manual crop farm
workers in North
Carolina | 01 Crop and
animal production,
hunting and
related service
activities | 9211 | Unclear | | Azari 2009 (Azari
et al., 2009) | Construction (prevalence
and level); Manufacturing
(prevalence and level);
Mining (prevalence and
level) | | 194 | Unclear | Iran (Islamic
Republic of) | Local | Exposed manual
workers from various
industries in Tehran,
Iran (Islamic Republic
of) | 08 Other mining
and quarrying | | Unclear | | | | 40 | | | | | | 08 Other mining and quarrying | | Unclear | | | | 20 | | | | | | 24 Manufacture of basic metals | | Unclear | | | | 20 | | | | | | 42 Civil engineering | | Unclear | | | | 20 | | | | | | 41 Construction of buildings | | Unclear | | | | 80 | | | | | | 23 Manufacture of
other non-metallic
mineral products | | Unclear | | | | 14 | | | | | | 32 Other
manufacturing | | Unclear | | Bakke 2001(Bakke
et al. 2001) | Construction (prevalence and level) | 386 | 209 | 0 | Norway | National | Manual tunnel
construction workers in
Norway | 42 Civil
engineering | 8113 | Unclear | | Bakke 2014 (Bakke
et al. 2014) | Construction (prevalence and level) | 162 | 209 | 0 | Norway | National | Manual tunnel
construction workers in
Norway | 42 Civil
engineering | 8113 | Unclear | | Carneiro 2017 (
Carneiro et al.
2017) | Manufacturing (prevalence and level) | 50 | | 0 | Brazil | Region | Semi-precious stone
craftsmen in Minas
Gerais, Brazil | 23 Manufacture of
other non-metallic
mineral products | 7549 | Nonsilicotics:
Median 30, Rang
17–62. Silicotics
Median 34, Rang
25–56 | | Chen 2012 (Chen
et al. 2012) | Manufacturing (prevalence and level); Mining | 1,388,085 | 59,743 | 10,514 | China | National | Manual metal mine | 07 Mining of metal | 8111 | Unclear | | | (prevalence and level) | 782,644 | 59,743 | | | | workers in China
Manual metal mine | ores
07 Mining of metal | 8111 | Unclear | | | | 357 | 14,297 | | | | workers in China
Manual pottery workers
in China | ores 23 Manufacture of other non-metallic mineral products | 9329 | Unclear | | | | 867 | 14,297 | | | | Manual pottery workers in China | mineral products 23 Manufacture of other non-metallic mineral products | 9329 | Unclear | Table 2 (continued) | Study | Inclusion in meta-
analyses? | Study population | 1 | | | | | | | | |---|--|------------------------|------------------------|-------------------------------|--|------------------------|---|---|------------------------|--------------------------------| | Study ID | Industrial sector and estimate type | Number of measurements | Number of participants | Number of female participants | Country | Geographic
location | Target population | Industrial sector,
ISIC-4 | Occupation,
ISCO-08 | Age distribution | | Chen 2007 (Chen et al. 2007) | Manufacturing (prevalence) | 64 | | Unclear | Taiwan, China | Region | Manual refractory
workers in Taiwan,
China | 23 Manufacture of
other non-metallic
mineral products | 9329 | Unclear | | Churchyard 2004 (
Churchyard et al.
2004) | Mining (prevalence and level) | 506 | 112 | Unclear | South Africa | Local | Manual work
goldminers in South
Africa | 07 Mining of metal ores | 8111 | Above 40 | | Dion 2005 (Dion et al. 2005) | Manufacturing (prevalence) | 28 | 48 | Unclear | Canada | Region | Manual workers in
silicon carbide
production plants in
Canada | 20 Manufacture of
chemicals and
chemical products | 9329 | Unclear | | Estellita 2010 (| Manufacturing | | | | Brazil | Region | | | | Unclear | | Estellita 2010) | (prevalence); Mining
(prevalence) | 78 | | 0 | | - | Manual granite shop
workers in Brazil | 23 Manufacture of
other non-metallic
mineral products | 9329 | | | | | 14 | | 0 | | | Manual granite miners in
Brazil | 08 Other mining and quarrying | 8111 | | | Flanagan 2006 (
Flanagan et al.
2006) | | 1374 | | Unclear | United States
of America | National | Manual construction
workers in the United
States of America | 41 Construction of
buildings | 9313 | Unclear | | Foreland 2008 (
Føreland et al.
2008) | Manufacturing (prevalence and level) | 680 | 250 | Unclear | Norway | National | Manual silicon carbide
workers in Norway | 23 Manufacture of
other non-metallic
mineral products | 9329 | Unclear | | Fulekar 1999 (
Fulekar 1999) | | | | Unclear | India | Region | Quartz manufacturing
industry workers in
India | 23 Manufacture of
other non-metallic
mineral products | 9329 | Unclear | | Galea 2016 (Galea
et al. 2016) | Construction (level) | 49 | 25 | Unclear | United
Kingdom of
Great Britain
and
Northern
Ireland | Local | Manual tunnel workers
in London, the United
Kingdom of Great
Britain and Northern
Ireland | 42 Civil
engineering | 2146 | Unclear | | Golbabaei 2004 (
Golbabaei et al.
2004) | Mining (prevalence) | 60 | 18 | 0 | Iran (Islamic
Republic of) | Local | Manual stone quarry
workers in Iran (Islamic
Republic of) | 08 Other mining and quarrying | 9311 | Various age
groups: mean 31 | | Gottesfeld 2015 (
Gottesfeld et al.
2015) | Mining (prevalence and level) | 11 | 27 | Unclear | United
Republic of
Tanzania | Region | Manual artisanal small-
Scale Gold Mining in
the United Republic of
Tanzania | 07 Mining of metal ores | 9311 | Unclear | | Green 2008 (Green et al. 2008) | Mining (prevalence) | 79 | | 19 samples | India | Region | Manual young workers
in stone crushing sites
in India | 08 Other mining and quarrying | 7113 | Unclear | | Grove 2014 (Grové
et al. 2014) | | 42 | | Unclear | South Africa | National | Manual coal mine
workers in South Africa | 05 Mining of coal and lignite | 9311 | Unclear | | Guenel 1989 (Guénel
et al. 1989) | Construction (prevalence);
Manufacturing (prevalence) | | | | Denmark | National | | 42 Civil
engineering | | Unclear | | | | 87 | | Unclear | | | Manual road workers in
Denmark | 42 Civil engineering | 9311 | | | | | 21 | | Unclear | | | Manual stone cutters in
Denmark | 23 Manufacture of
other non-metallic
mineral products | 9311 | Unclear | Table 2 (continued) | Study | Inclusion in meta-
analyses? | Study population | 1 | | | | | | | | |---|---|------------------------|------------------------|-------------------------------------|-----------------------------|------------------------|---|--|------------------------|------------------| | Study ID | Industrial sector and estimate type | Number of measurements | Number of participants | Number of
female
participants | Country | Geographic
location | Target population | Industrial sector,
ISIC-4 | Occupation,
ISCO-08 | Age distribution | | Hammond 2016 (
Hammond et al.
2016) | Construction (prevalence and level) | 42 | | Unclear | United States
of America | Region | Manual asphalt
pavement milling in the
United States of
America | 42 Civil
engineering | 9313 | Unclear | | Hayumbu 2008 (
Hayumbu et al.
2008) | Mining (prevalence) | 203 | | Unclear | Zambia | Region | Manual copper mine
workers in Zambia | 07 Mining of metal ores | 9311 | Unclear | | Healy 2014 (Healy et al. 2014) | Manufacturing (prevalence) | 103 | | Unclear | Ireland | National | Manual stone-workers
involved in stone
restoration work in
Ireland | 23 Manufacture of
other non-metallic
mineral products | 7113 | Unclear | | Hicks 2006 (Hicks
and Yager 2006) | Electricity, gas, steam and
air conditioning supply
(prevalence) | 108 | | Unclear | United States
of America | Unclear | Manual coal power
plant workers in the
United States of
America | 35 Electricity, gas,
steam and air
conditioning
supply | 3131 | Unclear | | Huizer 2010 (Huizer
et al. 2010) | Construction (prevalence) | 22 | | unclear | Netherlands | National | Teachers and students
in Bricklaying
Vocational Training
Centers in the
Netherlands | 43 Specialized
construction
activities | 7112 | Unclear | | Khoza 2012 (Khoza
2012) | Construction (prevalence
and level); Manufacturing
(prevalence and level) | | | Unclear | South Africa | Region | Manual non-mining industry workers in South Africa | | 0105 | Unclear | | | | 54
95 | | Unclear | South Africa | Region | Foundry workers in
South Africa
Sandstone/sandblasting
workers in South Africa | 24 Manufacture of
basic metals
23 Manufacture of
other non-metallic
mineral products | 3135 | | | | | 49 | | Unclear | South Africa | Region | Construction workers in
South Africa | 41 Construction of
buildings | 9313 | | | | | 108 | | Unclear | South Africa | Region | Ceramics/potteries/
refractories workers in
South Africa | 32 Other
manufacturing | 8181 | | | | | 95 | | Unclear | South Africa | Region | Sandstone/sandblasting
workers South Africa | 23 Manufacture of other non-metallic mineral products | | | | | | 108 | | Unclear | South Africa | Region | Ceramics/potteries/
refractories workers in
South Africa | 32 Other
manufacturing | 8181 | | | Kim 2002 (Kim et al. 2002) | Professional, scientific and
technical activities (level) | 41 | 60 | 0 | Republic of
Korea | Region | Manual dental
technician in the
Republic of Korea | 74 Other professional, scientific and technical activities | 3251 | Mean 36, SD 5.9 | | Koo 2000 (Koo et al.,
2000) | Manufacturing (prevalence) | 22 | 209 | 0 | Republic of
Korea | Region | Manual Foundry
workers in the Republic
of Korea | 24 Manufacture of
basic metals | 3135 | Unclear | | Kreiss 1996 (Kreiss
and Zhen 1996) | Mining (level) | 484 | | Unclear | United States
of America | Local | Manual mine workers
in Colorado, the United
States of America | 07 Mining of metal ores | 9311 | Unclear | Table 2 (continued) | Study | Inclusion in meta-
analyses? | Study population | 1 | | | | | | | | |---|---|--------------------------|------------------------|-------------------------------|--|------------------------|---|---|------------------------|------------------| | Study ID | Industrial sector and estimate type | Number of measurements | Number of participants | Number of female participants | Country | Geographic
location | Target population | Industrial sector,
ISIC-4 | Occupation,
ISCO-08 | Age distribution | | Kullman 1995 (
Kullman et al.
1995) | Mining (prevalence and level) | 559 | 874 | Unclear | United States
of America | National | Manual workers in
American stone mining
and milling operations | 08 Other mining and quarrying | 8111 | Unclear | | Lee 2014 (Lee 2014) | Mining (prevalence) | 14 | | Unclear | Republic of
Korea | Region | Manual stone workers
in construction industry
in the Republic of Korea | 08 Other mining and quarrying | 7113 | Unclear | | Linch 2002 (Linch 2002) | Construction (prevalence) | 45 | | Unclear | United States
of America | Regions | Manual construction
workers in the United
States of America | 41 Construction of
buildings | 9313 | Unclear | | Love 1997 (Love
et al. 1997) | Mining (prevalence) | 626 | 1249 | 25 | United Kingdom of Great Britain and Northern Ireland | National | Manual workers in
opencast coalmining in
the United Kingdom of
Great Britain and
Northern Ireland | 08 Other mining and quarrying | 9311 | Unclear | | Love 1999 (Love
et al. 1999) | Heavy clay industry
(prevalence) | 1403 | 1925 | Unclear | United Kingdom of Great Britain and Northern Ireland | National | Workers in the heavy
clay industry in the
United Kingdom of
Great Britain and
Northern Ireland | 23 Manufacture of other non-metallic mineral products | Various | Unclear | | Mamuya 2006 (
Mamuya et al.
2006b; Mamuya
et al. 2006a) | Mining (prevalence and level) | 173 | | 0 | United
Republic of
Tanzania | Region | Manual coal mine
workers in the United
Republic of Tanzania | 08 Other mining and quarrying | 9311 | Unclear | | Nieuwenhuijsen
1999 (
Nieuwenhuijsen
et al. 1999) | Crop and animal production (prevalence) | 144 | | Unclear | United States
of America | Region | Manual farmers in
California, the United
States of America | 01 Crop and
animal production,
hunting and
related service
activities | 6330 | Unclear | | Nij 2003 (Tjoe Nij
et al. 2003; Tjoe
Nij et al. 2004) | Construction (prevalence and level) | 61 | | Unclear | Netherlands | National | Manual building
construction workers in
the Netherlands | 41 Construction of
buildings | 9313 | 30-34 years | | Normohammadi
2016 (
Normohammadi
et al. 2016) | Construction (prevalence and level) | 60 | | Unclear | Iran (Islamic
Republic of) | Region | Manual demolition
workers in Iran (Islamic
Republic of) | 43 Specialized construction activities | 9313 | 25–29 years | | Omidianidost 2015 (
Omidianidost et al.
2015;
Omidianidost et al.
2016) | Manufacturing (prevalence) | 80 | | Unclear | Iran (Islamic
Republic of) | Local | Manual foundry
workers in Iran (Islamic
Republic of) | 24 Manufacture of
basic metals | 7211 | Unclear | | Oudyk 1995 (Oudyk
1995) | Manufacturing (prevalence and level) | 1038 | | Unclear | Canada | Unclear | Manual ferrous
foundries workers in
Ontario, Canada | 24 Manufacture of basic metals | 7221 | Unclear | | Pandey 2017 (
Pandey 2017) | Mining (prevalence) | 69 | | Unclear | India | Region. | Manual coal miners in
Jharia, India | 05 Mining of coal and lignite | 8111 | Unclear | | Peters 2017 (Peters et al. 2017) | Mining (prevalence and level) | | | Unclear | Australia | Region | Mine workers in
Australia including
administrative workers | 07 Mining of metal ores | 9311 | Unclear | | | | 11,084
13,672
9180 | | | | | | | | | Table 2 (continued) | Study | Inclusion in <i>meta-</i> analyses? | Study population | 1 | | | | | | | |
--|--|----------------------------|------------------------|-------------------------------|-------------------------------|------------------------|---|--|------------------------|--------------------------| | Study ID | Industrial sector and estimate type | Number of measurements | Number of participants | Number of female participants | Country | Geographic
location | Target population | Industrial sector,
ISIC-4 | Occupation,
ISCO-08 | Age distribution | | | | 13,624
16,379
15,506 | | | | | | | | | | Radnoff 2014 (Radnoff et al. 2014; Radnoff and Kutz 2014) | Construction (prevalence
and level); Manufacturing
(prevalence and level);
Mining (prevalence and | 10,500 | | Unclear | Canada | Region | Manual cement plant,
sand and mineral, lime
stone workers in
Alberta, Canada | | | Unclear | | | level); Electricity, gas,
steam and air conditioning | 44 | | | | | | 24 Manufacture of basic metals | | | | | supply (prevalence and level) | 23 | | | | | | 32 Other
manufacturing | | | | | | 28 | | | | | | 35 Electricity, gas,
steam and air | | | | | | 16 | | | | | | conditioning supply 23 Manufacture of other non-metallic mineral products | | | | | | 78 | | | | | | 08 Other mining and quarrying | | | | | | 44 | | | | | | 41 Construction of
buildings | | | | | | 24 | | | | | | 42 Civil engineering | | | | | | 10 | | | | | | 43 Specialized construction activities | | | | Rando 2001 (Rando
et al. 2001) | Mining (level) | 14,249 | | Unclear | United States
of America | Region | Manual industrial sand
workers in the United
States of America | 08 Other mining and quarrying | 9311 | Unclear | | Rappaport 2003 (
Rappaport et al. | Construction (prevalence and level); Professional, | | | Unclear | United States
of America | Region | States of America | | | Unclear | | 2003) | scientific and technical activities (level) | 14 | 12 | | | | Painters in the United
States of America
construction industry | 43 Specialized construction activities | 7131 | | | | | 11 | 8 | | | | Bricklayers in the United
States of America
construction industry | 43 Specialized construction activities | 7112 | | | | | 46 | 23 | | | | Engineers in the United
States of America
construction industry | 71 Architectural
and engineering
activities; technical
testing and analysis | 3123 | | | | | 80 | 37 | | | | Construction workers in
the United States of
America construction
industry | 41 Construction of
buildings | 9313 | | | Rees 1992 (Rees
et al. 1992) | Manufacturing (prevalence) | 12 | 43 | Unclear | South Africa | Local | Manual pottery
workers in South Africa | 23 Manufacture of
other non-metallic
mineral products | 7314 | Unclear | | tokni 2016 (Rokni
2016) | Manufacturing (prevalence
and level); Mining
(prevalence and level) | | | Unclear | Iran (Islamic
Republic of) | Region | Manual workers from
different industries in
Iran (Islamic Republic
of) | inneral products | | 83% between 20
and 40 | | | | | | | | | | | (| continued on next pag | Table 2 (continued) 12 | Study | Inclusion in meta-
analyses? | Study population | | | | | | | | | |---|--|------------------------|------------------------|-------------------------------|-----------------------------|------------------------|--|---|------------------------|-----------------| | Study ID | Industrial sector and estimate type | Number of measurements | Number of participants | Number of female participants | Country | Geographic
location | Target population | Industrial sector,
ISIC-4 | Occupation,
ISCO-08 | Age distributio | | | | 12 | | Unclear | | | Foundry workers in Iran
(Islamic Republic of) | 24 Manufacture of basic metals | 8121 | | | | | 12 | | Unclear | | | Brick manufacturing
workers in Iran (Islamic
Republic of) | 23 Manufacture of other non-metallic mineral products | 9329 | | | | | 12 | | Unclear | | | Sand and gravel mining workers in Iran (Islamic | 08 Other mining and quarrying | 8111 | | | | | 12 | | Unclear | | | Republic of) Asphalt manufacturing workers in Iran (Islamic | 23 Manufacture of other non-metallic | 8111 | | | | | 12 | | Unclear | | | Republic of)
Sandblasters in Iran | mineral products 23 Manufacture of other non-metallic | 8111 | | | | | 12 | | Unclear | | | Ceramic manufacturing
workers in Iran | mineral products
32 Other
manufacturing | 8111 | | | | | 12 | | Unclear | | | Stone cutters and millers
in Iran | 23 Manufacture of other non-metallic mineral products | 7113 | | | | | 12 | | Unclear | | | Glass manufacturing
workers in Iran | 32 Other manufacturing | 7315 | | | Saiyed 1995 (Saiyed et al. 1995) | Manufacturing (prevalence) | | 292 | Unclear | India | Region | Manual pottery
workers in India | 32 Other
manufacturing | 7314 | Mean 33, SD 10 | | Sanderson 2000 (
Sanderson et al.
2000) | Mining (prevalence and level) | | | Unclear | United States
of America | Region | Manual industrial sand
workers in the United
States of America | 08 Other mining and quarrying | 9311 | Unclear | | | | 1278 | | | | | Industrial sand workers
in the United States of
America | | | | | | | 1299 | | | | | Industrial sand workers
in the United States of
America | | | | | | | 680 | | | | | Industrial sand workers
in the United States of
America | | | | | | | 1012 | | | | | Industrial sand workers
in the United States of
America | | | | | Sayler 2018 (Sayler et al. 2018) | Manufacturing (prevalence and level) | 46 | | 0 | Thailand | Region | Manual stone processors in Thailand | 23 Manufacture of other non-metallic mineral products | 8112 | Mean: 39, SD: 1 | | Scarselli 2014 (
Scarselli et al.
2014) | Construction (level);
Manufacturing (prevalence
and level) | | | Unclear | Italy | National | Manual workers from
different industries in
Italy | | | Unclear | | , | | 315 | | | | | Manufacture nonmetallic
mineral product workers
in Italy | 23 Manufacture of other non-metallic mineral products | | | | | | 181 | | | | | Manufacture basic metal
workers in Italy | 24 Manufacture of basic metals | | | | | | 217 | | | | | Manufacture furniture workers in Italy | 31 Manufacture of furniture | | | Table 2 (continued) | Study | Inclusion in <i>meta-</i>
analyses? | Study population | 1 | | | | | | | | |---|---|------------------------|------------------------|-------------------------------|-------------------------------|------------------------|--|--|------------------------|------------------| | Study ID | Industrial sector and estimate type | Number of measurements | Number of participants | Number of female participants | Country | Geographic
location | Target population | Industrial sector,
ISIC-4 | Occupation,
ISCO-08 | Age distribution | | | | 505 | | | | | Construction workers in Italy | 41 Construction of buildings | | | | Siltanen 1976 (
Siltanen et al.
1976) | Manufacturing (prevalence) | 1,639 | 4,316 | Unclear | Finland | National | Manual foundry
workers in Finland | 24 Manufacture of basic metals | | Unclear | | Swanepoel 2011 (
Swanepoel et al.
2011; Swanepoel
et al. 2018) | Crop and animal production (prevalence and level) | 298 | | unclear | South Africa | Region | Manual Farmers in
South Africa | 01 Crop and
animal production,
hunting and
related service
activities | | Unclear | | Tavakol 2017 (
Tavakol et al.
2017) | Construction (prevalence and level) | 85 | | Unclear | Iran (Islamic
Republic of) | National | Manual construction
workers in Iran (Islamic
Republic of) | 41 Construction of
buildings | 9313; 3123 | Mean 32 | | Ulvestad 2000 (
Ulvestad et al.
2000) | Construction (prevalence and level) | 339 | 193 | 0 | Norway | National | Manual construction workers in Norway | 42 Civil
engineering | 7119 | Unclear | | Ulvestad 2001a (
Ulvestad et al.
2001a; Ulvestad
et al. 2001b) | Construction (prevalence and level) | 226 | 86 | 0 | Norway | National | Manual construction
workers in Norway | 42 Civil
engineering | 7119 | Unclear | | van Deurssen 2014 (
van Deurssen et al.
2014; van
Deurssen et al.
2015) | Construction (prevalence and level) | 149 | 116 | 0 | Netherlands | Other | Manual construction
workers in the
Netherlands | 41 Construction of
buildings | 9313 | 35–39 years | | Verma 2014 (Verma
et al. 2014) | Mining (prevalence and level) | 277 | | Unclear | Canada | Local | Manual gold miners in
Ontario, Canada | 07 Mining of metal ores | 8111 | Unclear | | Wang 2015 (Wang et al. 2015) | Manufacturing (prevalence) | 2123 | 3129 | Unclear | China | Region | Manual workers in
different industries in
China | | | Unclear | | | | | | | | | | 20 Manufacture of chemicals and chemical products 23 Manufacture of other non-metallic mineral products 25 Manufacture of fabricated metal products, except machinery and
equipment 27 Manufacture of electrical equipment 24 Manufacture of basic metals 32 Other | | | | Watts 2012 (Watts et al. 2012) | Mining (level) | | | Unclear | United States of America | National | Manual workers in
different industries in
the United States of | manufacturing | | Unclear | Table 2 (continued) | Study | Inclusion in meta-
analyses? | Study population | 1 | | | | | | | | |--|---|------------------------|------------------------|-------------------------------|-------------------------------|------------------------|---|--|------------------------|------------------| | Study ID | Industrial sector and estimate type | Number of measurements | Number of participants | Number of female participants | Country | Geographic
location | Target population | Industrial sector,
ISIC-4 | Occupation,
ISCO-08 | Age distribution | | | | 3025 | | | | | Metal mining workers in
the United States of
America | 07 Mining of metal ores | 9311 | | | | | 1173 | | Unclear | | | Metal mining workers in
the United States of
America | 07 Mining of metal
ores | 9311 | | | | | 10,674 | | Unclear | | | Stone mine workers in the
United States of America | 08 Other mining and quarrying | 9311 | | | | | 5102 | | Unclear | | | Stone mine workers in the
United States of America | 08 Other mining and quarrying | 9311 | | | | | 10,753 | | Unclear | | | Crushed limestone
workers in the United
States of America | 08 Other mining and quarrying | 9311 | | | | | 4711 | | Unclear | | | Crushed limestone
workers in the United
States of America | 08 Other mining and quarrying | 9311 | | | | | 16,560 | | Unclear | | | Sand and gravel workers
in the United States of
America | 08 Other mining and quarrying | 9311 | | | | | 6571 | | Unclear | | | Sand and gravel workers
in the United States of
America | 08 Other mining and quarrying | 9311 | | | | | 3412 | | Unclear | United States of
America | National | Nonmetal miners in the
United States of America | 08 Other mining and quarrying | 9311 | Unclear | | | | 1192 | | Unclear | United States of
America | National | Nonmetal miners in the
United States of America | 08 Other mining and quarrying | 9311 | Unclear | | Veeks 2006 (Weeks
and Rose 2006) | Mining (prevalence and level) | 16,207 | | Unclear | United States
of America | National | Manual metal and non-
metal minors in the
United States of
America | 07 Mining of metal ores | 9311 | Unclear | | Voskie 2002 (
Woskie et al. 2002) | Construction (prevalence) | 260 | | Unclear | United States
of America | Unclear | Manual heavy and
highway construction
in the United States of
America | 43 Specialized construction activities | 9313 | Unclear | | Yassin 2005 (Yassin et al. 2005) | Construction (level);
Manufacturing (level);
Mining (level) | | | | United States
of America | | Manual workers from
different industries in
the United States of
America | | | Unclear | | | | 405 | | Unclear | | | Stoner cutters in the
United States of America | 08 Other mining and quarrying | 7113 | Unclear | | | | 91 | | Unclear | | | Tunnel construction
workers in the United
States of America | 42 Civil engineering | 7113 | Unclear | | | | 1760 | | Unclear | | | Iron foundries workers in
United States of America | 24 Manufacture of basic metals | 8121 | Unclear | | /ingratanasuk 2002
(Yingratanasuk
et al. 2002) | Mining (prevalence) | 148 | 97 | 33 | Thailand | Local | Manual Stone Carvers
in Thailand | 08 Other mining and quarrying | 7113 | Mean 33 | | Zarei 2017 (Zarei
et al. 2017) | Manufacturing (prevalence and level) | 55 | | 0 | Iran (Islamic
Republic of) | Local | Manual Foundry
workers in Iran (Islamic
Republic of) | 24 Manufacture of basic metals | 7214 | Mean 32, SD 6.9 | Study Study type Table 2 (continued) Inclusion in meta-Study Study population | | analyses? | | | | | | | | | | |---|--|------------------------|------------------------|-------------------------------|---------|------------------------|--|---|------------------------|------------------| | Study ID | Industrial sector and estimate type | Number of measurements | Number of participants | Number of female participants | Country | Geographic
location | Target population | Industrial sector,
ISIC-4 | Occupation,
ISCO-08 | Age distribution | | Zhuang 2001 (
Zhuang et al.
2001) | Manufacturing (prevalence and level); Mining (level) | | | | China | National | Manual mine and
pottery workers in
China | | | Unclear | | | | 56 | | Unclear | | | Tungsten miners in China | 07 Mining of metal ores | 9311 | | | | | 54 | | Unclear | | | Pottery workers in China | 23 Manufacture of other non-metallic mineral products | 7314 | | | | | 10 | | Unclear | | | Tin miners in China | 07 Mining of metal ores | 9311 | | | | | 23 | | Unclear | | | Iron/copper miners in
China | 07 Mining of metal ores | 9311 | | Exposure assessment | Study ID | Study design | Study period | Exposure
definition | Unit for
which
exposure
was
assessed | Mode of
exposure data
collection | Exposure
assessment
methods | Type of
exposure
measure
or
estimate | Dates
covered by
exposure
assessment
(years) | Shortest
and
longest
exposure
period | Levels/
intensity of
exposure | Potential co-
exposure with
other
occupational
risk factors | |---|---------------------------------------|----------------------|--|--|--|---|--|--|--|---|---| | Andersson 2009 (
Andersson et al.
2009; Andersson
et al. 2012) | Measurement data from
1968 to 2006 | 1968–May 2006 | Breathing zone
respirable silica,
mg/m³. Exposed:
Above LOQ | Individual
level | Technical
device for
recent years;
administrative
records for past
years.
Adjustments
made. | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | 1968–2006 | Unclear | AM: 0.084 mg/
m ³ , Median:
0.030 mg/m ³ ,
GM (GSD) 0.034
mg/m ³ (3.1) | Unclear | | Archer 2002 (
Archer et al.
2002) | Cross-sectional study | May–November
1999 | Breathing zone respirable silica, mg/m³, 4 h TWA. Exposed: Above LOD | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | 1999 | Unclear | AM (SD) 0.66
(1.56) mg/m ³ | Unclear | | Azari 2009 (Azari et al., 2009) | Cross-sectional study | Unclear | Breathing zone respirable silica, mg/m³. Exposed: above lowest exposure category | Individual
level | Technical
device | Active filter
sampling with
cyclone, IAS | Prevalence | Unclear | Unclear | Ctone outting and | None | Stone cutting and milling: GM 0.275 (95% CI 0.191 – $0.397) \text{ mg/m}^3$; Sand and gravel mining: GM 0.261 (95% CI 0.184 – $0.372) \text{ mg/m}^3$ Foundry work: 0.343 (0.231 - $0.510) \text{ mg/m}^3$ Asphalt preparation: Table 2 (continued) Study Study type | | | | | | | | | | | 0.267 (0.131 – | | |---|--|----------------------------------|---|---------------------|---------------------|--|------------|------------------------|---------|--|--| | | | | | | | | | | | 0.267 (0.131 – 0.369) mg/m³ Construction: 0.193 (0.124 – 0.301) mg/m³ Unclear Sand blasting: GM 0.272 (95% CI 0.172 – 0.429) mg/m³ | | | Bakke 2001 (Bakke
et al. 2001) | Cross-sectional study | June 1996–July
1999 | Breathing zone respirable silica, mg/m³. Exposed: Above LOD | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | 1996–1999 | Unclear | AM: 0.13 mg/m ³
GM (GSD) 0.035
(5.0) | VOC; Oil mist;
Oil vapour;
Formaldehyde;
Nitrogen
dioxide; Carbon
monoxide;
Carbon dioxide;
Ammonia;
Elemental
carbon | | Bakke 2014 (Bakke et al. 2014) | Case-control study | June 1996– July
1999 | Breathing zone respirable silica, mg/m³. Exposed: Above LOD | Individual
level | Technical
device | Active filter
sampling, X-ray
diffraction | Prevalence | 1996–1997 | Unclear | AM: 0.127 mg/
m ³ . GM: 0.063
(GSD 3.3). 10–90
percentile
0.0016–0.267 | Unclear | | Carneiro 2017
(
Carneiro et al.
2017) | Cross-sectional study | January
2006–November
2015 | Breathing zone
respirable
crystalline silica,
mg/m ³ . Exposed:
Above LOD | Individual
level | Technical
device | Active filter sampling with cyclone, X-ray diffraction | Prevalence | 2006–2015 | Unclear | AM 0.47 (95% C. I.0.39–0.61) mg/
m ³ . Range
0.07–2.3 mg/m3 | Unclear | | Chen 2012 (Chen et al. 2012) | | | Stationary
measurements,
total dust
converted to
respirable silica
dust by a
conversion factor.
Exposure
definition unclear | Group
level | Technical
device | Active filter sampling conversion factor from paired side-by-side measurements. Exposed: from numbers in the paper | Prevalence | | Unclear | | Unclear | | | Measurement data from
1960 to 1980
Measurement data from | 1960–1980
1981–2000 | | | | r.r. | | 1960–1980
1981–2000 | | GM (GSD) 0.057
mg/m³ (2.54)
GM (GSD) 0.032 | | | | 1981 to 2000
Measurement data from
1960 to 1980 | 1960–1980 | | | | | | 1960–1980 | | mg/m³ (2.51)
GM (GSD) 0.184
mg/m³ (2.112) | | | | Measurement data from 1981 to 2000 | 1981–2000 | | | | | | 1981–2000 | | GM (GSD) 0.092
mg/m³ (2.072) | | | Chen 2007 (Chen et al. 2007) | Cross-sectional study | Unclear | Breathing zone respirable crystalline silica, mg/m³. Exposure definition unclear | Group
level | Technical
device | Active filter
sampling with
cyclone, IS | Prevalence | Unclear | Unclear | 0.22-0.68 mg/
m ³ | Unclear
tinued on next page) | Table 2 (continued) | Study | Study type | | Exposure assessme | ent | | | | | | | | |---|-----------------------|---------------------------------|---|---------------------|---------------------|--|------------|-----------|-----------------|---|--| | Churchyard 2004 (
Churchyard et al.
2004) | Cross-sectional study | November 2000–
March 2001 | Breathing zone
respirable
crystalline silica,
mg/m³, 8 h TWA.
Exposure
definition:"90%
of subjects
between 0.029
and 0.075 mg/
m3″ | Group
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | 2000 | Unclear | AM (SD) 0.05
(0.72) mg/m ³ .
Range 0–0.71
mg/m ³ | None | | Dion 2005 (Dion et al. 2005) | Cross-sectional study | July 2000 | Breathing zone respirable crystalline silica, mg/m³. Exposed: Above LOD | Group
level | Technical
device | Active filter
sampling with
cyclone, silica
analysis method
unclear | Prevalence | 1999 | Around 1 month | Below LOD $-$ 0.16 mg/m 3 | Cristobalite at
much lower
levels | | Estellita 2010 (
Estellita 2010) | Cross-sectional study | Unclear | Breathing zone respirable crystalline silica, mg/m³. Exposed: Above LOD | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | | Unclear | | | | | | | | | | | | | | GM 0.1–0.2 mg/
m ³
GM ND-0.1 mg/ | Unclear
Unclear | | Flanagan 2006 (
Flanagan et al.
2006) | Cross-sectional study | 1992–2002 | Silica, mg/m ³ .
Exposure
definition unclear | Individual
level | Technical
device | Active filter
sampling, silica
analysis method
unclear | Other | 1992–2002 | Unclear | m ³
GM (GSD) 0.13
mg/m ³ (5.9) | None | | Foreland 2008 (
Føreland et al.
2008) | Cross-sectional study | November 2002–
December 2003 | Breathing zone respirable crystalline silica, mg/m³. Exposed: above LOD. | Individual
level | Technical
device | Silica
determined by
standard
methods e.g.
NIOSH, 1998 | Other | 2002–2003 | Unclear | GM: ND - 0.02
mg/m ³ | Fibres,
Crystalline
Silica, Silicon
Carbide and
Sulphur Dioxid
Low levels | | Fulekar 1999 (
Fulekar 1999) | Cross-sectional study | Unclear | Breathing zone
respirable dust in
mg/m³; percent
quartz assessed.
Exposed: above
LOD | Individual
level | Technical
device | Active filter
sampling with
cyclone, silica
analysis unclear | Prevalence | Unclear | Unclear | AM 0.76 mg/m ³ | Unclear | | Galea 2016 (Galea
et al. 2016) | Cross-sectional study | Unclear | Breathing zone respirable crystalline silica, mg/m³. Exposure definition unclear | Individual
level | Technical
device | Active filter sampling with cyclone, infrared spectroscopy and/or X-ray diffraction. | Prevalence | 6 days | Unclear | GM (GDD) 0.03
mg/m ³ (2.59).
Min -max: LOD –
0.24 mg/m ³ | Unclear | | Golbabaei 2004 (
Golbabaei et al.
2004) | Cross-sectional study | Unclear | Breathing zone respirable crystalline silica, mg/m³. Exposed: above LOD | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | Unclear | Unclear | AM
0.0050-0.057
mg/m ³ | None | | Gottesfeld 2015 (
Gottesfeld et al.
2015) | Cross-sectional study | 2014 | Breathing zone respirable crystalline silica, | Individual
level | Technical
device | Active filter sampling with | Prevalence | 2014 | 85 min –
7 h | AM (SD) 16.9
(8.7) mg/m ³ | Unclear | Table 2 (continued) | Study | Study type | | Exposure assessme | ent | | | | | | | | |---|-----------------------|---------------------------|---|---------------------|---------------------|---|------------|------------------------------|----------------------|--|--| | Green 2008 (Green
et al. 2008) | Cross-sectional study | April 2006 | mg/m³. Exposed:
above LOD
Breathing zone
respirable
crystalline silica,
mg/m³. Exposed:
above LOD | Group
level | Technical
device | cyclone, X-ray
diffraction
Active filter
sampling with
cyclone direct
reading
photometric
monitors | Prevalence | 2006 | 12h | AM 1.09 mg/m ³ | Domestic PM2.:
concentration:
0.534 mg/m³,
Environmental
respirable dust
concentration: | | Grove 2014 (Grové
et al. 2014) | Cross-sectional study | After 2008 | Breathing zone
and area samples
of respirable silica
dust, mg/m³.
Exposed: above | Individual
level | Technical
device | Active filter
sampling with
cyclone, silica
analysis unclear | Prevalence | After 2008 | 8 h shift | AM (SD) 0.005
0.242 (0-0.331)
mg/m ³ . Min-max
0.005-0.890
mg/m ³ | 0.161 mg/m3
Coal dust | | Guenel 1989 (
Guénel et al.
1989) | | | LOD Before 1970: number of respirable particles/m³. After 1970: Breathing zone respirable crystalline silica, mg/m³. Exposed: Quartz identified in the sample | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | | | | | | | | 1948–1980 | | | | | | 1968–1977 | Unclear | Unclear | Unclear | | Hammond 2016 (
Hammond et al.
2016) | Cross-sectional study | 1948–1980
Unclear | Breathing zone
Respirable
Crystalline Silica,
mg/m³. Exposed:
above LOD | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | 1968–1977
21 days | Unclear
7 to 12 h | Unclear
GM
0.0042-0.0092
mg/m³. AM
0.0049-0.0108
mg/m³. range
ND-0.024 mg/
m³ | <i>Unclear</i>
Unclear | | Hayumbu 2008 (
Hayumbu et al.
2008) | Cross-sectional study | Unclear | Breathing zone Respirable Crystalline Silica, mg/m ³ . Exposed: above LOD | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | Unclear | 8 h shift | AM 0.06–0.24
mg/m ³ Median
0.04–0.10 mg/
m ³ range 0–6.9
mg/m ³ | Unclear | | Healy 2014 (Healy et al. 2014) | Cross-sectional study | 3 years - unclear
when | Breathing zone respirable crystalline silica, mg/m³. Exposed: above LOD | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | 3 years -
unclear
when | 30-375
min | GM 0.008-0.14
mg/m ³ | Unclear | | Hicks 2006 (Hicks
and Yager 2006) | Cross-sectional study | Unclear | Breathing zone respirable crystalline silica, mg/m³, 8 h TWA. Exposed: Above TLV (0.025 mg/m³) | Individual
level | Technical
device | Active filter
sampling with
cyclone, silica
analysis unclear | Prevalence | Unclear | 8–12 h | AM 0.048-0.23
mg/m ³ | Unclear | Table 2 (continued) 19 | Study | Study type | | Exposure assessme | ent | | | | | | | | |---|---|-----------|---|---------------------|---------------------|---|------------|-----------|-------------------------
--|---------| | Huizer 2010 (
Huizer et al.
2010) | Other non-randomized intervention study | 2009–2010 | Breathing zone respirable crystalline silica, mg/m³. Exposed: crystalline silica idenfified in the sample | Individual
level | Technical
device | Active filter
sampling with
cyclone, IS | Prevalence | 2009–2010 | Unclear | Range ND –
0.049 mg/m ³ | Unclear | | Khoza 2012 (Khoza
2012) | Cross-sectional study | Unclear | sample Breathing zone respirable crystalline silica, mg/m³. Exposed: above LOD | Individual | Technical device | Active filter sampling with cyclone, IS | Prevalence | Unclear | 3
workdays
of 8 h | AM (SD) 0.17 (0.31) mg/m³. Min-max 0.010-0.662 mg/m³ AM (SD) 0.022-0.656 (0.021-1.247) mg/m³. Min-max 009-5.772 mg/m³ AM (SD) 0.017 (1.013) mg/m³. Min-max 0.009-0.062 mg/m³ AM (SD) (0.084-0.269 (0.086-0.477) mg/m³. Min-Max 0.009-0.355 mg/m³ AM (SD) 0.022-0.656 (0.021-1.247) mg/m³. Min-max 009-5.772 mg/m³ AM (SD) (0.084-0.269 (0.086-0.477) mg/m³. Min-Max 009-5.5752 mg/m³ AM (SD) (0.084-0.269 (0.086-0.477) mg/m³. Min-Max 0.009-0.355 mg/m³ AM (SD) | Unclear | | Kim 2002 (Kim
et al. 2002) | Cross-sectional study | Unclear | Breathing zone
respirable
crystalline silica,
mg/m³. Exposed:
above LOD | Individual
level | Technical
device | Active filter
sampling with
cyclone, IS | Prevalence | Unclear | Full-shift | AM
0.0065–0.0148
mg/m ³ (range
0.0005–0.0510
mg/m ³) | Unclear | | Koo 2000 (Koo
et al., 2000) | Cross-sectional study | Unclear | Breathing zone respirable crystalline silica, | Individual
level | Technical
device | Active filter sampling with cyclone, IS | Prevalence | Unclear | Unclear | GM (GSD)
0.023–0.079
mg/m ³ | None | Table 2 (continued) | Study | Study type | | Exposure assessme | ent | | | | | | | | |--|-----------------------|--|--|---------------------|---------------------|--|------------|-----------|------------|---|-----------------| | | | | mg/m³. Exposed:
above LOD | | | | | | | (1.42–2.81).
Min-max
0.006–0.147
mg/m ³ | | | Kreiss 1996 (Kreiss
and Zhen 1996) | Cross-sectional study | 1974–1982 | Respirable silica,
mg/m³. Exposed:
unclear | Individual
level | Technical
device | Active filter sampling, hard correction factor between respirable dust and silica, 12.3% | Prevalence | 1974–1982 | Unclear | AM (SD) 0.09
(0.12) mg/m ³ | None | | Kullman 1995 (
Kullman et al.
1995) | Cross-sectional study | Unclear | Breathing zone
respirable
crystalline silica,
mg/m ³ . Exposed:
above LOD | Individual
level | Technical
device | Active filter sampling with cyclone, IS | Prevalence | Unclear | Unclear | GM (GSD)
0.04–0.06 mg/
m ³ (1.62–1.94) | Asbestos fibres | | Lee 2014 (Lee 2014) | Cross-sectional study | Unclear | Breathing zone
respirable
crystalline silica,
mg/m³. Exposed:
Above TLV (0.025
mg/m³) | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | Unclear | Unclear | GM 0.043 mg/
m ³ | Unclear | | Linch 2002 (Linch
2002) | Cross-sectional study | 1992-1998 | Breathing zone
respirable
crystalline silica,
mg/m³ 8-hour
TWA. Exposed:
above LOD | individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | 1992–1998 | Unclear | Range ND – 10 mg/m ³ | Unclear | | Love 1997 (Love
et al. 1997) | Cross-sectional study | 1990 | Breathing zone respirable crystalline silica, mg/m³. Exposed: Above LOD | Individual
level | Technical
device | Active filter sampling with cyclone, IS | Prevalence | 1990 | Full-shift | AM 0.04–0.62
mg/m ³ Min-max
0.01–3.8 mg/m ³ | Unclear | | Love 1999 (Love
et al. 1999) | Cross-sectional study | Before 1999 | Breathing zone
respirable
crystalline silica,
mg/m ³ . Exposed:
Above LOD | Individual
level | Technical
device | Active filter
sampling with
cyclone, infrared
spectro-scopy | Prevalence | Unclear | Full-shift | AM 0.04–0.62
mg/m ³ Min-max
0.01–0.75 mg/
m ³ | Unclear | | Mamuya 2006 (
Mamuya et al.
2006a; Mamuya
et al. 2006b) | Cross-sectional study | January– August
2003 and
July–August
2004 | Breathing zone
respirable
crystalline silica,
mg/m ³ . Exposed:
Above LOD | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | 2003–2004 | Full-shift | AM (SD) 0.62
(2.36) mg/m ³
GM (GSD) 0.022
mg/m ³ (6.68) | Unclear | | Nieuwenhuijsen
1999
(Nieuwenhuijsen
et al. 1999) | Cross-sectional study | April 1995–June
1996 | Breathing zone
respirable
crystalline silica,
mg/m³. Exposed:
Above LOD | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | 1995–1996 | Unclear | Respirable dust
levels AM
0.03–4.447 mg/
m³) GM (GSD)
0.05–1.65 mg/
m³ (1.65–11.81)
18.6% silica in
the dust | endotoxin | | Nij 2003 (Tjoe Nij
et al. 2003; Tjoe
Nij et al. 2004) | Cross-sectional study | November
1999–December
1999 | Breathing zone respirable crystalline silica, | Individual
level | Technical
device | Active filter sampling with | Prevalence | 1999 | Full-shift | GM (GSD) 0.13
mg/m ³ (5.4). AM
0.4 mg/m ³ . Min- | None | Table 2 (continued) 21 | Study | Study type | | Exposure assessm | ent | | | | | | | | |--|--|-------------------------|--|---------------------|---------------------|---|------------|-----------|------------|--|---------| | | | . 110050 | mg/m³. Exposed:
Above LOD | | m 1 · · | cyclone, X-ray
diffraction | | 0010 2224 | n 11 1 12 | Max 0.0016–4.7
mg/m3 | | | Normohammadi
2016 (
Normohammadi
et al. 2016) | Cross-sectional study | April 2010–June
2011 | Breathing zone
respirable
crystalline silica,
mg/m ³ . Exposed:
Above LOD | Individual
level | Technical
device | Active filter sampling with cyclone, IS | Prevalence | 2010–2011 | Full-shift | AM (SD) 0.190
(0.138) mg/m ³ .
GM (GSD) 0.132
mg/m ³ (2.65) | Unclear | | Omidianidost 2015
(Omidianidost
et al. 2015;
Omidianidost
et al. 2016) | Cross-sectional study | Unclear | Breathing zone total silica, mg/m³. Exposed: above LOD | Group
level | Technical
device | Active filter
sampling, IS | Prevalence | Unclear | Unclear | AM (SD) 0.19
(0.08) mg/m ³ | Unclear | | Oudyk 1995 (Oudyk
1995) | Cross-sectional study | 1983–1988 | Breathing zone respirable crystalline silica, mg/m³ | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | 1983–1988 | Unclear | AM 0.086 mg/
m ³ GSD 2.95 | Unclear | | Pandey 2017 (
Pandey 2017) | Cross-sectional study | 2012–2014 | Breathing zone respirable crystalline silica, mg/m³. Exposed: above LOD | Individual
level | Technical
device | Active filter sampling with cyclone, IS | Prevalence | 2012–2014 | Unclear | AM 0.77–6.25
mg/m ³ . Min -
max 0.027–8.3
mg/m ³ | None | | Peters 2017 (Peters et al. 2017) | MeasurementMeasurement
data from 1986 to 2014 | 1986–2014 | Breathing zone respirable crystalline silica, mg/m³. Exposed: above LOD | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction or IS | Prevalence | 1986–2014 | Unclear | AM 0.043 mg/
m ³ . GM (GSD)
0.011 mg/m ³
(4.52) | Unclear | | | | 1986–1990 | | | | | | | | AM 0.101 mg/
m ³ . GM (GSD)
0.037 mg/m ³
(4.06) | | | | | 1991–1995 | | | | | | | | AM 0.054 mg/
m ³ . GM (GSD)
0.017 mg/m ³
(3.88) | | | | | 1996–2000 | | | | | | | | AM 0.058 mg/
m ³ . GM (GSD)
0.016 mg/m ³
(4.03) | | | | | 2001–2005 | | | | | | | | AM 0.031 mg/
m ³ . GM (GSD)
0.007 mg/m ³ | | | | | 2006–2010 | | | | | | | | (4.46)
AM 0.021 mg/
m ³ . GM (GSD)
0.006 mg/m ³ | | | | | 2011–2015 | | | | | | | | (3.78) AM 0.016 mg/ m³. GM (GSD) 0.006 mg/m3 (3.3352) | | | Radnoff 2014a +
2014b (Radnoff
et al. 2014) | Cross-sectional study | 2009–2013 | Breathing zone respirable crystalline silica, | Group
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | 2009–2013 | Unclear | (3.332)
GM (GSD)
0.007–0.010
mg/m ³
(1.60–2.51) Min- | Unclear | Table 2 (continued) | Study | Study type | | Exposure assessme | ent | | | | | | | | |---|-----------------------|-------------------------------
---|---------------------|---------------------|---|------------|-----------|---------|---|-------------------------| | | | | mg/m³. Exposed:
Above LOD | | | | | | | max: 0.003–1.7
mg/m³
GM (GSD) 0.02
mg/m³ (4.18)
GM (GSD) 0.02
mg/m³ (7.48)
GM (GSD) 0.024
mg/m³ (10.17)
GM (GSD) 0.09
mg/m³ (2.51)
GM (GSD) 0.048
mg/m³ (3.13)
GM (GSD) 0.055
mg/m³ (2.79)
GM (GSD) 0.013
mg/m³ (2.16)
GM (GSD) 0.027
mg/m³ (1.56) | | | Rando 2001 (Rando
et al. 2001) | Cross-sectional study | 1973– 1998 | Breathing zone
respirable
crystalline silica,
mg/m3. Exposed:
Unclear | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | 1973–1998 | Unclear | mg/m (1.36)
GM (GSD) 0.042
mg/m ³ (6.5) | Unclear | | Rappaport 2003 (
Rappaport et al.
2003) | Cross-sectional study | April
1992–October
2000 | Breathing zone
respirable
crystalline silica,
mg/m3. Exposed:
above LOD | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | 1992–2000 | Unclear | | Wet dust
suppression | | | | | | | | | | | | Median
(min-max) 0.32
(0.007-14.2)
mg/m ³ | | | | | | | | | | | | | Median
(min-max) 1.28
(0.26-26.2) mg/
m ³ | Wet dust
suppression | | | | | | | | | | | | Median
(min-max)
0.075
(0.007-0.800)
mg/m ³ | Wet dust
suppression | | | | | | | | | | | | Median
(min-max) 0.35
(0.007-5.9) mg/
m ³ | Wet dust
suppression | | Rees 1992 (Rees
et al. 1992) | Cross-sectional study | Unclear | Breathing zone
respirable
crystalline silica,
mg/m3. Exposed:
above LOD | Individual
level | Technical
device | Active filter sampling with cyclone, X-ray diffraction | Prevalence | Unclear | Unclear | Median 0.06–0.4
mg/m ³ | None | | Rokni 2016 (Rokni
2016) | Cross-sectional study | Unclear | Breathing zone respirable | Individual
level | Technical
device | Active filter sampling with | Prevalence | Unclear | < 8 h | | | Table 2 (continued) | Study | Study type | | Exposure assessme | ent | | | | | | | | |---|------------------------|-----------|---|---------------------|---------------------|---|------------|-----------|------------|---|--------------------| | | | | mg/m3. Exposed: | | | | | | | | | | Calmad 1005 (Calmad | Consequentianal study. | Uzalan | | Craus | Tabaical | Astino Eller | Danielana | Uzeleza | Uzeleza | AM (SD) 0.34
(0.11) mg/m ³
AM (SD) 0.19
(0.13) mg/m ³
AM (SD) 0.28
(0.10) mg/m ³
AM (SD) 0.24
(0.17) mg/m ³
AM (SD) 0.31
(0.18) mg/m ³
AM (SD) 0.17
(0.065) mg/m ³
AM (SD) 0.32
(0.12) mg/m ³
AM (SD) 0.13
(0.09) mg/m ³ | Nana | | Saiyed 1995 (Saiyed et al. 1995) | Cross-sectional study | Unclear | Stationary
respirable
crystalline silica,
mg/m³. Exposed:
above LOD | Group
level | Technical
device | Active filter
sampling, Pyro-
phosphoric acid
method for
determining free
silica | Prevalence | Unclear | Unclear | AM 0.019–8.28
mg/m ³ | None | | Sanderson 2000 (
Sanderson et al.
2000) | Cross-sectional study | | Breathing zone respirable crystalline silica, mg/m³. Exposed: above 0.005 mg/m³). | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | | Unclear | | Unclear | | | | 1974–1979 | | | | | | 1974–1979 | | GM (GSD) 0.051
mg/m ³ (10.5) | | | | | 1980–1984 | | | | | | 1980–1984 | Unclear | GM (GSD) 0.026
mg/m ³ (10.2) | | | | | 1985–1988 | | | | | | 1985–1988 | Unclear | GM (GSD) 0.012
mg/m³ (9.5) | | | | | 1989–1996 | | | | | | 1989–1996 | Unclear | GM (GSD)
0.0075 mg/m ³
(9.1) | | | Sayler 2018 (Sayler
et al. 2018) | | May 2015 | Breathing zone respirable crystalline silica, mg/m³. Exposed: above LOD | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | May 2015 | Full-shift | AM 0.0059 mg/
m3. GM (GSD)
0.0050 mg/mg ³
(1.7) | None | | Scarselli 2014 (
Scarselli et al.
2014) | Cross-sectional study | 1996–2012 | Breathing zone
and area
respirable
crystalline silica,
mg/m³, 8 h TWA.
Exposed: Above
TLV (0.025 mg/
m³) | Individual
level | Technical
device | Unclear | Prevalence | 1996–2012 | Full-shift | | Unclear | | | | | | | | | | | | AM 0.053 mg/
m ³ . GM (95%CI) | | | | | | | | | | | | | | tinued on next pag | Table 2 (continued) | Study | Study type | | Exposure assessme | ent | | | | | | | | |---|-----------------------|-------------------------------|---|---------------------|---------------------|---|------------|-----------|------------|--|---------| | | | | | | | | | | | 0.017
(0.015–0.020)
mg/m³ GSD
4.203
AM 0.013 mg/
m³. GM (95%CI)
0.007
(0.006–0.008)
mg/m³ GSD
2.617
AM 0.037 mg/
m³. GM (95%CI)
0.01
(0.008–0.012)
mg/m³ GSD
4.315
AM 0.057 mg/
m³. GM (95%CI)
0.045
(0.043–0.047)
mg/m³ GSD | | | Siltanen 1976 (
Siltanen et al.
1976) | Cross-sectional study | 1972–1974 | Breathing zone
and area
respirable
crystalline silica,
mg/m³. Exposed:
crystalline silica
identified in the
sample | Individual
level | Technical
device | Dust and
crystalline silica
was separated in
ethyl alcohol by
liquid
sedimentation | Prevalence | 1972–1974 | 2–8 h | AM 0.19–5.26
mg/m³. Median
0.13–2.10 mg/
m³ | Unclear | | Swanepoel 2011 (
Swanepoel et al.
2011; Swanepoel
et al. 2018) | Cross-sectional study | July
2006–November
2009 | Breathing zone respirable crystalline silica, mg/m³. Exposed: above LOD | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | 2006–2009 | Full-shift | AM 0.046 mg/
m ³ ; GM (GDS)
0.031 mg/mg
(2.3) | None | | Tavakol 2017 (
Tavakol et al.
2017) | Cross-sectional study | Unclear | Breathing zone respirable crystalline silica, mg/m³. Exposed: unclear | Individual
level | Technical
device | Active filter sampling with cyclone, IS | Prevalence | Unclear | 4 h | AM (SE) 0.13
mg/m ³ (0.019) | Unclear | | Ulvestad 2000 (
Ulvestad et al.
2000) | Cross-sectional study | 1996–1999 | Breathing zone
respirable
crystalline silica,
mg/m³.
Unexposed:
Outdoor
construction
workers | Group
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Other | 1996–1999 | Unclear | Tunnelling: AM 0.034 mg/m ³ . Outdoor construction work: AM 0.003 mg/m ³ | None | | Ulvestad 2001 (
Bakke et al. 2001;
Ulvestad et al.
2001a) | Case-control study | 1996–1999 | Breathing zone
respirable
crystalline silica,
mg/m³.
Unexposed:
Outdoor | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Other | 1996–1999 | Unclear | Drillers: AM
0.044 mg/m3.
Shotcreters: AM
0.019 mg/m³;
Outdoor | None | Table 2 (continued) | Study | Study type | | Exposure assessme | ent | | | | | | | | |---|-----------------------|---------------------------------------|---|---------------------|---------------------|--|------------|-----------|------------|---|-------------| | | | | construction
workers | | | | | | | workers: 0.003
mg/m ³ | | | van Deurssen 2014 (
van Deurssen
et al. 2014; van
Deurssen et al.
2015) | Cross-sectional study | November 2011
and February
2012 | Breathing zone respirable crystalline silica, mg/m³. Exposed: Above LOD | Individual
level | Technical
device | Active filter
sampling with
cyclone, IS and
X-ray diffraction | Prevalence | 2011–2012 | Unclear | GM (GSD) 0.1
mg /m ³ (3.84)
min-max
0.01-1.36 mg/
m ³ | unclear | | Verma 2014 (Verma et al. 2014) | Cross-sectional study |
1978–1979 | Breathing zone respirable crystalline silica, mg/m³. Exposed: Above LOD | Individual
level | Technical
device | Active filter sampling with cyclone, X-ray diffraction | Prevalence | Unclear | Full-shift | AM 0.08 mg/m³,
Median 0.04 mg/
m³, Min-max
0.01–0.85 | Unclear | | Wang 2015 (Wang
et al. 2015) | Cross-sectional study | Unclear | Respirable dust
with silica,
concentration
according to the
national standard.
Exposed: unclear -
numbers from
paper | Individual
level | Technical
device | Quantitative
measurement | Other | Unclear | Unclear | Range 0.04 to
46.7 mg/m ³
respirable dust,
silica content not
measured | Unclear | | | | | paper | | | | | | | Unclear
Unclear
Unclear
Unclear
Unclear
Unclear | | | Watts Jr 2012 (
Watts et al. 2012) | Cross-sectional study | | Breathing zone
and area
respirable
crystalline silica,
mg/m³. Exposed:
unclear | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | | Unclear | | Unclear | | | | 1993–2004 | uncicui | | | | | 1993–2004 | | GM (GSD) 0.039
mg/m ³ , (2.71) | | | | | 2005–2010 | | | | | | 2005–2010 | | GM 0.037 mg/
m ³ , GSD 2.54 | | | | | 1993–2004 | | | | | | 1993–2004 | | GM (GSD) 0.036
mg/m ³ , (2.75) | | | | | 2005–2010 | | | | | | 2005–2010 | | GM (GSD) 0.035
mg/m ³ , (2.58) | | | | | 1993–2004 | | | | | | 1993–2004 | | GM (GSD) 0.023
mg/m ³ , (2.39) | | | | | 2005–2010 | | | | | | 2005–2010 | | GM (GSD) 0.021
mg/m ³ , (2.36) | | | | | 1993–2004 | | | | | | 1993–2004 | | GM (GSD) 0.031
mg/m ³ , (2.57) | | | | | 2005–2010 | | | | | | 2005–2010 | | GM (GSD) 0.029
mg/m ³ , (2.47) | | | | Cross-sectional study | 1993–2004 | | | | | | 1993–2004 | | GM (GSD) 0.037
mg/m ³ , (2.70) | | | | Cross-sectional study | 2005–2010 | | | | | | 2005–2010 | | GM (GSD) 0.032
mg/m ³ , (2.53) | | | | | | | | | | | | | | inued on ne | Table 2 (continued) | Study | Study type | | Exposure assessm | ent | | | | | | | | |--|--|-----------------------------------|--|---------------------|---------------------|---|-----------------|------------------------|----------------------|--|--------------------------------| | Weeks 2006 (Weeks
and Rose 2006) | Cross-sectional study | 1998–2002 | Breathing zone
respirable
crystalline silica,
mg/m³. Exposed:
below 0.05 mg/
m3 | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | 1998–2002 | | AM 0.047 mg/
m ³ ; GM 0.0272
mg/m ³ | | | Woskie 2002 (
Woskie et al.
2002) | Cross-sectional study | June 1994– April
1999 | Breathing zone respirable crystalline silica, mg/m³. Exposed: Above LOD | Individual
level | Technical
device | Active filter sampling with cyclone, IS | Prevalence | 1994–1999 | Unclear | GM (GSD)
0.007–0.026
mg/m ³ (2.8.5.9) | Diesel particles | | Yassin 2005 (Yassin
et al. 2005) | Cross-sectional study | | Breathing zone respirable crystalline silica, mg/m ³ . Exposed: unclear | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | | Unclear | | Unclear | | | | 1988–2003 | | | | | | 1988–2003 | | GM (GSD) 0.091
mg/m ³ (2.601) | | | | | 1988–2003
1988–2004 | | | | | | 1988–2003
1988–2003 | Unclear | GM (GSD) 0.070
mg/m³ (2.289)
GM (GSD) 0.073 | | | Yingratanasuk 2002
(Yingratanasuk
et al. 2002) | Cross-sectional study | March
2000–October
2000. | Breathing zone respirable crystalline silica, mg/m³. Exposed: Above LOD | Group
level | Technical
device | Active filter sampling with cyclone, IS | Prevalence | 2000 | Full-shift | mg/m³ (2.404)
AM 0.05–0.88
mg/m³. 95%
percentile
0.13–2.12 mg/
m³ | Unclear | | Zarei 2017 (Zarei
et al. 2017) | Cross-sectional study | 2015 | Breathing zone respirable crystalline silica, mg/m³. Exposed: Above LOD | Individual
level | Technical
device | Active filter
sampling with
cyclone IS | Prevalence | 2015 | Full-shift | AM (SE) 0.25
(0.05) mg/m³,
Min-max
0.05–2.40 mg/
m³ | Formaldehyde,
triethylamine | | Zhuang 2001 (
Zhuang et al.
2001) | Cross-sectional study | 1988–1989 | Breathing zone respirable crystalline silica, mg/m ³ . Exposed: Unclear | Individual
level | Technical
device | Active filter
sampling with
cyclone, X-ray
diffraction | Prevalence | 1988–1989 | From 2.3
to 7.5 h | | Unclear | | | | | | | | | | | | AM 0.101 (SD 0.131) mg/m³ AM (SD) 0.116 (0.199) mg/m³ AM (SD) 0.10 (0.13–0.17) mg/m³ AM (SD) 0.017 (0.004) mg/m³ | | | Study
Study ID | Prevalence esti
Prevalence
estimate type | mate Definition of num population | merator | Count in numerator | N of study | | n of denominate | | unt in | Number of study | Point
estimate | | Study | Prevalence estir | nate | | | | | | | |---|--------------------------|--|--------------------|--|--|----------------------|---|-------------------| | Study ID | Prevalence estimate type | Definition of numerator population | Count in numerator | N of study
participants in
exposed group | Definition of denominator population (source population) | Count in denominator | Number of study participants in unexposed group | Point
estimate | | Andersson 2009 (Andersson et al. 2009; Andersson et al. | Prevalence | Exposed iron foundries workers in Sweden | 2174 | 2174 | Iron foundries workers in Sweden | 2333 | 159 | 93% | 2012) Table 2 (continued) | Study | Prevalence estin | | | | | | | | |---|-----------------------------|---|--------------------|--|---|-------------------------|---|-------------------------| | Study ID | Prevalence
estimate type | Definition of numerator population | Count in numerator | N of study
participants in
exposed group | Definition of denominator population (source population) | Count in
denominator | Number of stud
participants in
unexposed grou | estimate | | Archer 2002 (Archer et al.
2002)
Azari 2009 (Azari et al. (2009)) | Prevalence
Prevalence | Exposed farm workers in North Caroline, the United States of America Cumulative exposure to crystalline silica > 0.99 mg/m³-year in included industries | 34 | 34 | Farm workers in North Caroline, the
United States of America
Manual workers from various
industries in Iran (Islamic Republic
of) | 37 | 3 | 92% | | | | madatres | 32 | 32 | 01) | 40 | 8 | 79% | | | | | 16 | 16 | | 20 | 4 | 79% | | | | | 16 | 16 | | 20 | 4 | 79% | | | | | 16 | 16 | | 20 | 4 | 79% | | | | | 63 | 63 | | 80 | 17 | <i>7</i> 9% | | | | | 11 | 11 | | 14 | 3 | 79% | | Bakke 2001 (Bakke et al. 2001) | Prevalence | Exposed tunnel construction workers in Norway | 299 | 299 | Tunnel construction workers in Norway | 386 | 87 | 79% | | Bakke 2014 (Bakke et al. 2014) | Prevalence | Exposed tunnel construction workers in Norway | 151 | 151 | Tunnel construction workers in
Norway | 162 | 11 | 93% | | Carneiro 2017 (Carneiro et al. 2017) | Prevalence | Exposed stone craftsmen in Brazil | 50 | 50 | Stone craftsmen in Brazil | 50 | 0 | 100% | | Chen 2012 (Chen et al. 2012) | Prevalence | | | | | | | | | | | Exposed metal mine workers in China | 39,925 | 39,925 | Metal mine workers in China | 59,743 | 19,818 | 67% | | | | Exposed metal mine workers in China | 39,925 | 39,925 | Metal mine workers in China | 59,743 | 19,818 | 67% | | | | Exposed pottery workers in China | 9384 | 9384 | Pottery workers in China | 14,297 | 4913 | 66% | | | | Exposed pottery workers in China | 9384 | 9384 | Pottery workers in China | 14,297 | 4913 | 66% | | Chen 2007 (Chen et al. 2007) | Prevalence | Exposed refractory workers in
Taiwan, China | 36 | 36 | Refractory workers in Taiwan,
China | 64 | 0 | 56% | | Churchyard 2004 (Churchyard et al. 2004) | Prevalence | Exposed goldminers in South Africa | 112 | 112 | Goldminers in South Africa | 112 | 0 | 100% | | Dion 2005 (Dion et al. 2005) | Prevalence | Exposed workers in granite mining in Canada | 19 | 19 | Workers in granite mining in
Canada | 28 | 9 | 68% | | stellita 2010 (Estellita 2010) | | | | | | | | | | | Prevalence | Exposed granite shop workers in Brazil | <i>73</i> | <i>73</i> | Granite shop workers in Brazil | <i>7</i> 8 | 5 | 94% | | | Prevalence | Exposed granite miners in Brazil | 7 | 7 | Granite miners in Brazil | 14 | 7 | 50% | | lanagan 2006 (Flanagan et al. 2006) | Prevalence | Exposed construction workers in the
United States of America | Unclear | Unclear | Construction workers in the United States of America | 1374 | Unclear | | | Foreland 2008 (Føreland et al. 2008) | Prevalence | Exposed silicon carbide workers in Norway | 408 | 408 | Silicon carbide workers in Norway | 680 | 200 | 60% | | 'ulekar 1999 (Fulekar 1999) | Prevalence | Exposed quartz manufacturing industry workers in
India | Unclear | Unclear | Quartz manufacturing industry workers in India | Unclear | 0 | 100% | | Galea 2016- (Galea et al. 2016) | Prevalence | Exposed tunnel workers in London,
the United Kingdom of Great Britain
and Northern Ireland | < 49 | < 49 | Tunnel workers in London, the
United Kingdom of Great Britain
and Northern Ireland | 49 | Unclear | < 100% | | Golbabaei 2004 (Golbabaei
et al. 2004) | Prevalence | Exposed stone quarry workers in Iran (Islamic Republic of) | 60 | 60 | Stone quarry workers in Iran
(Islamic Republic of) | 60 | 0 | 100% | | ottesfeld 2015 (Gottesfeld
et al. 2015) | Prevalence | Exposed artisanal Small-Scale Gold
Mining in United Republic of
Tanzania | 11 | 11 | Artisanal Small-Scale Gold Mining
in United Republic of Tanzania | 11 | 0 | 100% | | Green 2008 (Green et al. 2008) | Prevalence | Exposed workers in stone crushing sites in India | 79 | 79 | Workers in stone crushing sites in India | 79 | 0 | 100% | | Grove 2014 (Grové et al. 2014)
Guenel 1989 (Guénel et al. | Prevalence | Exposed coal miners in South Africa | 42 | 42 | Coal miners in South Africa | 42 | 0 | 100% | | 1989) | Prevalence | Exposed road workers in Denmark | 80 | 80 | Road workers in Denmark | 87 | 7 | 91% | | | Prevalence | Exposed stone cutters in Denmark | 21 | 21 | Stone cutters in Denmark | 21 | 0 | 100% | | | | | | | | | (0 | continued on next page) | Table 2 (continued) | Study | Prevalence estin | | | | | | | | |---|-----------------------------|---|--------------------|--|---|----------------------|---|------------------| | Study ID | Prevalence
estimate type | Definition of numerator population | Count in numerator | N of study
participants in
exposed group | Definition of denominator population (source population) | Count in denominator | Number of study
participants in
unexposed group | Point
estimat | | Hammond 2016 (Hammond et al. 2016) | Prevalence | Exposed Asphalt Pavement Milling in the United States of America | 38 | 38 | Asphalt Pavement Milling in the
United States of America | 42 | 4 | 90% | | Hayumbu 2008 (Hayumbu et al. 2008) | Prevalence | Exposed copper mine workers in
Zambia | 152 | 152 | Copper mine workers in Zambia | 203 | 51 | 75% | | Healy 2014 (Healy et al. 2014) | Prevalence | Exposed stone-workers in Ireland | 55 | 55 | Stone-workers in Ireland | 103 | 48 | 53% | | Hicks 2006 (Hicks and Yager 2006) | Prevalence | Exposed coal power plant workers in the United States of America | 66 | 66 | Coal power plant workers in the
United States of America | 108 | 42 | 61% | | Huizer 2010 (Huizer et al. 2010) Khoza 2012 (Khoza 2012) | Prevalence Prevalence | Exposed teachers and students in
Bricklaying Vocational Training
Centers in the Netherlands | 10 | 10 | Teachers and students in
Bricklaying Vocational Training
Centers in the Netherlands
Non-mining industry workers in | 22 | 12 | 45% | | Kiioza 2012 (Kiioza 2012) | Prevalence | | | | South Africa | | | | | | | Foundry workers exposed to silica dust
in South Africa | 54 | 54 | Foundry workers from South Africa | 54 | 0 | 100% | | | | Sandstone/sandblasting workers exposed to silica dust in South Africa | 95 | 95 | Sandstone/sandblasting workers in
South Africa | 95 | 0 | 100% | | | | Construction workers exposed to silica dust in South Africa | 49 | 49 | Construction workers in South Africa | 49 | 0 | 100% | | | | Ceramics/potteries/refractories workers
exposed to silica dust in South Africa | 108 | 108 | Ceramics/potteries/refractories
workers in South Africa | 108 | 0 | 100% | | | | Sandstone/sandblasting workers
exposed to silica dust in South Africa | 95 | 95 | Sandstone/sandblasting workers in
South Africa | 95 | 0 | 100% | | | | Ceramics/potteries/refractories workers exposed to silica dust in South Africa | 108 | 108 | Ceramics/potteries/refractories
workers in South Africa | 108 | 0 | 100% | | Kim 2002 (Kim et al. 2002) | Prevalence | Exposed dental technicians in the
Republic of Korea | 41 | 41 | Dental technicians in the Republic of Korea | 41 | 0 | 100% | | Koo 2000 (Koo (2000) | Prevalence | Exposed foundry workers in the
Republic of Korea | 22 | 209 | Foundry workers in the Republic of
Korea | 22 | 0 | 100% | | Kreiss 1996 (Kreiss and Zhen
1996) | Prevalence | Exposed miners in Colorado, the
United States of America | Unclear | Unclear | Miners in Colorado, the United
States of America | 484 | Unclear | | | Kullman 1995 (Kullman et al.
1995) | Prevalence | Exposed Workers in American stone
mining and milling operations | 196 | 196 | Workers in American stone mining and milling operations | 559 | 363 | 35% | | Lee 2014 (Lee 2014) | Prevalence | Exposed stone workers in the construction industry in the Republic of Korea | 10 | 10 | Stone workers in the construction industry in the Republic of Korea | 14 | 4 | 71% | | Linch 2002 (Linch 2002) | Prevalence | Exposed construction workers in the
United States of America | 23 | 23 | Construction workers in the United
States of America | 45 | 22 | 49% | | Love 1997 (Love et al. 1997) | Prevalence | Exposed worker in opencast
coalmining in the United Kingdom of
Great Britain and Northern Ireland | 626 | 626 | Workers in opencast coalmining in
the United Kingdom of Great Britain
and Northern Ireland | 626 | 0 | 100% | | Love 1999 (Love et al. 1999) | Prevalence | Exposed worker in the clay industry
in the United Kingdom of Great
Britain and Northern Ireland | 1360 | 1360 | Worker in the clay industry in the
United Kingdom of Great Britain
and Northern Ireland | 1403 | 43 | 97% | | Mamuya 2006 (Mamuya et al. 2006a; Mamuya et al. 2006b) | Prevalence | Exposed coal miners in the United
Republic of Tanzania | 147 | 147 | Coal miners in the United Republic of Tanzania | 173 | 26 | 85% | | Nieuwenhuijsen 1999 (
Nieuwenhuijsen et al. 1999) | Prevalence | Exposed farmers in California, the
United States of America | 72 | 72 | Farmers in California, the United
States of America | 144 | 72 | 50% | | Nij 2003 (Tjoe Nij et al. 2003;
Tjoe Nij et al. 2004) | Prevalence | Construction workers in the
Netherlands exposed to respirable
quartz | 57 | 57 | Construction workers in the
Netherlands | 4 | 61 | 93% | | Normohammadi 2016 (
Normohammadi et al. 2016) | Prevalence | Exposed demolition workers in Iran (Islamic Republic of) | 60 | 60 | Demolition workers in Iran (Islamic
Republic of) | 60 | 0 | 100% | Table 2 (continued) | Study | Prevalence estir | | | | | | | | |---|-----------------------------|--|--------------------|--|--|----------------------|--|------------------------| | Study ID | Prevalence
estimate type | Definition of numerator population | Count in numerator | N of study
participants in
exposed group | Definition of denominator population (source population) | Count in denominator | Number of study
participants in
unexposed grou | estimate | | Omidianidost 2015 (Omidianidost et al. 2015; Omidianidost et al. 2016) | Prevalence | Exposed foundry workers in Iran
(Islamic Republic of) | 80 | 80 | Foundry workers in Iran (Islamic
Republic of) | 80 | 0 | 100% | | Oudyk 1995 (Oudyk 1995) | Prevalence | Exposed ferrous foundries workers in Ontario, Canada | 862 | 862 | Ferrous foundries workers in
Ontario, Canada | 1038 | 176 | 83% | | andey 2017 (Pandey 2017) | Prevalence | Exposed coal miners in Jharia, India | 69 | 69 | Coal miners in Jharia, India | 69 | 0 | 100% | | eters 2017 (Peters et al. 2017) | Prevalence | Exposed miners in Australia | 46,873 | 46,873 | Miners in Australia | 79,445 | 32,572 | | | | | | 9976 | 9976 | | 11,084 | 1108 | 90% | | | | | 11,895 | 11,895 | | 13,672 | 1777 | 87% | | | | | 7987 | 7987 | | 9180 | 1193 | 87% | | | | | 4496 | 4496 | | 13,624 | 9128 | 33% | | | | | 6060 | 6060 | | 16,379 | 10,319 | 37% | | | | | 6668 | 6668 | | 15,506 | 8838 | 43% | | adnoff 2014 (Radnoff et al.
2014; Radnoff and Kutz
2014) | Prevalence | Exposed cement plant, sand and
mineral, lime stone workers in
Alberta, Canada | | | Cement plant, sand and mineral,
lime stone workers in Alberta,
Canada | | | | | 2011) | | Institut cumulu | 38 | 38 | Sanada | 44 | 6 | 86% | | | | | 18 | 18 | | 23 | 5 | 78% | | | | | 22 | 22 | | 28 | 6 | 79% | | | | | 16 | 16 | | 16 | 0 | 100% | | | | | 56 | 56 | | 78 | 22 | 72% | | | | | 43 | 43 | | 44 | 1 | 98% | | | | | 22 | 22 | | 24 | 2 | 92% | | | | | 10 | 10 | | 10 | 0 | 100% | | ando 2001 (Rando et al.
2001) | Prevalence | Exposed industrial sand workers in the United States of America | Unclear | Unclear | Industrial sand workers in the
United States of America | Unclear | Unclear | | | appaport 2003 (Rappaport | Prevalence | | | | | | | | | et al. 2003) | | Exposed painters in the United States of
America construction industry | 13 | 13 | Painters in the United States of
America construction industry | 14 | 2 | 86% | | | Prevalence | Exposed bricklayers in the United States of America construction industry | 7 | 7 | Bricklayers in the United States of
America construction industry | 11 | 4 | 64% | | | Prevalence | Exposed engineers in the United States of
America construction industry | 34 | 34 | Engineers
in the United States of
America construction industry | 46 | 12 | 74 % | | | Prevalence | Exposed construction workers in the
United States of America construction
industry | 68 | 68 | Construction workers in the United
States of America construction
industry | 80 | 12 | 85% | | ees 1992 (Rees et al. 1992) | Prevalence | Exposed pottery workers in South
Africa | 12 | 12 | Pottery workers in South Africa | 12 | 0 | 100% | | okni 2016 (Rokni 2016) | Prevalence | | | | | | | | | | | Exposed foundry workers in Iran (Islamic Republic of) | 12 | 12 | Foundry workers in Iran (Islamic
Republic of) | 12 | 0 | 100% | | | | Exposed brick manufacturing workers in
Iran (Islamic Republic of) | 12 | 12 | Brick manufacturing workers in Iran (Islamic Republic of) | 12 | 0 | 100% | | | | Exposed sand and gravel mining workers in Iran (Islamic Republic of) | 12 | 12 | Sand and gravel mining workers in
Iran (Islamic Republic of) | 12 | 0 | 100% | | | | Exposed asphalt manufacturing workers in Iran (Islamic Republic of) | 12 | 12 | Asphalt manufacturing workers in
Iran (Islamic Republic of) | 12 | 0 | 100% | | | | Exposed sandblasters in Iran (Islamic
Republic of) | 12 | 12 | Sandblasters in Iran (Islamic Republic of) | 12 | 0 | 100% | | | | Exposed ceramic manufacturing workers in Iran (Islamic Republic of) | 12 | 12 | Ceramic manufacturing workers in
Iran (Islamic Republic of) | 12 | 0 | 100% | | | | - * | | | | | (c | ontinued on next page) | Table 2 (continued) | Study | Prevalence estimate Providence — Definition of numerator — Count in Number of study — Point in Order | | | | | | | | | | | |--|---|--|--------------------|--|--|----------------------|---|-------------------|--|--|--| | Study ID | Prevalence
estimate type | Definition of numerator population | Count in numerator | N of study
participants in
exposed group | Definition of denominator population (source population) | Count in denominator | Number of study participants in unexposed group | Point
estimate | | | | | | | Exposed stone cutters and millers in Iran
(Islamic Republic of) | 12 | 12 | Stone cutters and millers in Iran
(Islamic Republic of) | 12 | 0 | 100% | | | | | | | Exposed glass manufacturing workers in
Iran (Islamic Republic of) | 12 | 12 | Glass manufacturing workers in Iran (Islamic Republic of) | 12 | 0 | 100% | | | | | Saiyed 1995 (Saiyed et al.
1995) | Prevalence | Exposed pottery workers in India | 292 | 292 | Workers in Indian potteries | 292 | 0 | 100% | | | | | Sanderson 2000 (Sanderson | Prevalence | | | | | | | | | | | | et al. 2000) | | Exposed industrial sand workers in the
United States of America | 728 | 728 | Industrial sand workers in the United
States of America | 1278 | 550 | 57% | | | | | | Prevalence | Exposed industrial sand workers in the
United States of America | 740 | 740 | Industrial sand workers in the United
States of America | 1299 | 559 | 57% | | | | | | Prevalence | Exposed industrial sand workers in the
United States of America | 306 | 306 | Industrial sand workers in the United
States of America | 680 | 374 | 45% | | | | | | Prevalence | Exposed industrial sand workers in the
United States of America | 385 | 385 | Industrial sand workers in the United
States of America | 1012 | 627 | 38% | | | | | Sayler 2018 (Sayler et al. 2018)
Scarselli 2014 (Scarselli et al. | Prevalence
Prevalence | Exposed stone processors in Thailand | 18 | 18 | Stone processors in Thailand | 46 | 28 | 40% | | | | | 2014) | | Exposed manufacture of nonmetallic mineral product workers in Italy | 49 | 49 | Manufacture nonmetallic mineral product workers in Italy | 315 | 266 | 16% | | | | | | | Exposed manufacture of basic metal workers in Italy | 21 | 21 | Manufacture of basic metal workers in
Italy | 181 | 160 | 12% | | | | | | | Exposed manufacture of furniture workers in Italy | 39 | 39 | Manufacture of furniture workers in
Italy | 217 | 178 | 18% | | | | | | | Exposed construction workers in Italy | 471 | 471 | Construction workers in Italy | 505 | 34 | 93% | | | | | Siltanen 1976 (Siltanen et al.
1976) | Prevalence | Exposed foundry workers in Finland | 1608 | 1,608 | Foundry workers in Finland | 1639 | 21 | 98% | | | | | Swanepoel 2011 (Swanepoel et al. 2011; Swanepoel et al. 2018) | Prevalence | Exposed farmers in South Africa | 176 | 176 | Farmers in South Africa | 298 | 122 | 59% | | | | | Tavakol 2017 (Tavakol et al. 2017) | Prevalence | Exposed construction workers in Iran (Islamic Republic of) | 85 | 85 | Construction workers in Iran
(Islamic Republic of) | 85 | 0 | 100% | | | | | Ulvestad 2000 (Ulvestad et al. 2000) | Prevalence | Exposed construction workers in
Norway | 302 | 302 | Construction workers in Norway | 339 | 37 | 89% | | | | | Ulvestad 2001 (Ulvestad et al. 2001a; Ulvestad et al. 2001b) | Prevalence | Exposed construction workers in
Norway | 158 | 158 | Construction workers in Norway | 226 | 68 | 70% | | | | | van Deurssen 2014 (van
Deurssen et al. 2014; van
Deurssen et al. 2015) | Prevalence | Exposed construction workers in the Netherlands | 142 | 142 | Construction workers in the
Netherlands | 149 | | 95% | | | | | Verma 2014 (Verma et al. 2014) | Prevalence | Exposed gold miners in Ontario,
Canada | 252 | 252 | Gold miners in Ontario, Canada | 277 | 25 | 91% | | | | | Wang 2015 (Wang et al. 2015) | Prevalence | Exposed workers in the respective industries in China | 302 | 302 | All workers in all the respective industries in China | 2123 | | | | | | | | | | Unclear | Unclear | | Unclear | Unclear | 19% | | | | | | | | Unclear | Unclear | | Unclear | Unclear | 66% | | | | | | | | Unclear | Unclear | | Unclear | Unclear | 7% | | | | | | | | Unclear | Unclear | | Unclear | Unclear | 4% | | | | | | | | Unclear | Unclear | | Unclear | Unclear | 3% | | | | | Watts Jr 2012 (Watts et al. | Prevalence | | Unclear | Unclear | | Unclear | Unclear | 5% | | | | | 2012) | . revurence | Exposed metal miners the United States of America | Unclear | Unclear | Metal mining workers the United
States of America | 3025 | Unclear | | | | | Table 2 (continued) | Study | Prevalence estimate | | | | | | | | | | |---|-----------------------------|---|--------------------|--|--|----------------------|---|-----------------|--|--| | Study ID | Prevalence
estimate type | Definition of numerator population | Count in numerator | N of study
participants in
exposed group | Definition of denominator population (source population) | Count in denominator | Number of study
participants in
unexposed group | Point
estima | | | | | | Exposed metal miners the United States of America | Unclear | Unclear | Metal mining workers the United
States of America | 1173 | Unclear | | | | | | | Exposed stone miners the United States of America | Unclear | Unclear | Stone mine workers the United States of America | 10,674 | Unclear | | | | | | | Exposed stone miners the United States of America | Unclear | Unclear | Stone mine workers the United States of America | 5102 | Unclear | | | | | | | Exposed crushed limestone workers in the United States of America | Unclear | Unclear | Crushed limestone workers in the
United States of America | 10,753 | Unclear | | | | | | | Exposed crushed limestone workers in the United States of America | Unclear |
Unclear | Crushed limestone workers in the
United States of America | 4711 | Unclear | | | | | | | Exposed sand and gravel workers in the
United States of America | Unclear | Unclear | Sand and gravel workers in the United
States of America | 16,560 | Unclear | | | | | | | Exposed sand and gravel workers in the
United States of America | Unclear | Unclear | Sand and gravel workers in the United
States of America | 6571 | Unclear | | | | | | | Exposed nonmetal miners in the United States of America | Unclear | Unclear | Nonmetal miners in the United States of America | 3412 | Unclear | | | | | | | Exposed nonmetal miners in United
States of America | Unclear | Unclear | Nonmetal miners the United States of
America | 1192 | Unclear | | | | | Weeks 2006 (Weeks and Rose 2006) | Prevalence | Exposed metal and nonmetal miners the United States of America | 4408 | 4408 | Metal and nonmetal miners the
United States of America | 16,207 | 11,799 | 27% | | | | Voskie 2002 (Woskie et al. 2002) | Prevalence | Exposed heavy and highway
construction the United States of
America | 246 | 246 | Heavy and highway construction the United States of America | 260 | 14 | 95% | | | | assin 2005 (Yassin et al. 2005) | Prevalence | | | | | | | | | | | | | Exposed Stoner cutters the United States of America | Unclear | Unclear | Stoner cutters the United States of
America | 406 | Unclear | | | | | | | Exposed tunnel construction workers the
United States of America | Unclear | Unclear | Tunnel construction workers the
United States of America | 91 | Unclear | | | | | | | Exposed iron foundries workers the
United States of America | Unclear | Unclear | Iron foundries workers the United
States of America | 1760 | Unclear | | | | | ingratanasuk 2002 (
Yingratanasuk et al. 2002) | Prevalence | Exposed stone carvers in Thailand | 148 | 148 | Stone carvers in Thailand | 148 | 0 | 100% | | | | arei 2017 (Zarei et al. 2017) | Prevalence | Exposed foundry workers in Iran (Islamic Republic of) | 55 | 55 | Foundry workers in Iran (Islamic
Republic of) | 55 | 0 | 100% | | | | Zhuang 2001 (Zhuang et al. | Prevalence | | Unclear | Unclear | Unclear | | Unclear | | | | | 2001) | | Exposed tungsten miners in China | | | Tungsten miners in China | 56 | | | | | | | | Exposed pottery workers in China | | | Pottery workers in China | 54 | | | | | | | | Exposed tin miners in China | | | Tin miners in China | 10 | | | | | | | | Exposed iron/copper miners in China | | | Iron/copper miners in China | 23 | | | | | Footnotes: AM: Arithmetic mean, SD: Standard deviation, GM: Geometric mean, GSD: Geometric standard deviation, LOD: level of detection, LOQ: level of quantification, IAS: infrared absorption spectroscopy, IS: infrared spectroscopy. Where a study includes two or more estimates/measures, the first entry in the table provides an overview of the information from the study. Estimate/measure-specific information is provided in subsequent linings, in italics. agreement among them. Most data extractors participated in WHO's online training for the use of the data extraction sheet. At a minimum, two review authors independently extracted the data on occupational exposure to silica, asbestos or coal dust, disaggregated by country, sex, age and industrial sector and occupation. A third review author resolved conflicting extractions. Data were extracted on study characteristics (including study authors, study year, study country, participants and target population), study type (including study design and period) exposure assessment (including exposure definition, exposure assessment method, dates covered by the exposure assessment, and exposure level), prevalence estimate and study context. The estimates of exposure prevalences and levels from included studies were entered and managed with Microsoft Excel. Data on potential conflict of interest were also extracted from the included studies, such as financial disclosures, funding sources, and authors' affiliated organization. A modification of a previous method was used to identify and assess undisclosed financial interests (Forsyth et al. 2014). If no financial disclosure and conflict of interest statements were provided, other records were searched from this study published in the 36 months prior to the included study record and in other publicly available repositories (Drazen et al. 2010b; Drazen et al. 2010a). #### 3.6. Requested missing data Missing data were requested from the principal study author by email or phone, using the contact details provided in the principal study record. If no response was received at two weeks, a follow up email was sent. We requested silica data from six authors and silica and coal dust data from two authors. We received additional data on silica from two studies and additional coal dust data from one study. One author responded it was not possible to identify the data, and five authors did not respond (Appendix 2 in the Supplementary data). ### 3.7. Assessed risk of bias We used the RoB-SPEO tool for assessing risk of bias in studies estimating exposure to occupational risk factors (Pega et al. 2020a), which has been validated in a recent study (Momen et al. 2022). WHO and ILO developed this tool specifically for their systematic reviews for the development of the WHO/ILO Joint Estimates (Pega et al. 2022c). For each included study, two or more review authors independently assessed risk of bias with RoB-SPEO, and another review author resolved any conflicts between the individual assessments. ## 3.8. Synthesised evidence (including conducted meta-analysis) If we found two or more studies with an eligible measure of the prevalence estimate and/or level of exposure, two or more review authors independently assessed the heterogeneity (Deeks et al. 2011) of the studies in terms of population (WHO region and/or distribution by sex, age, industrial sector and occupation) and exposure (definition, measurement methods and level of exposure) following our protocol (Mandrioli et al. 2018). If we judged two or more measures of the prevalence or level of occupational exposure to be sufficiently homogenous, we pooled them in a quantitative *meta*-analysis, using the inverse variance method with a random effects model. We assessed statistical heterogeneity using the I² statistic, judging with QoE-SPEO (Pega et al. 2022b) a priori that the expected heterogeneity was moderate. The *meta*-analyses for prevalence were conducted in MetaXL (Epigear) using double arcsine transformation, which has been recommended in *meta*-analyses of prevalence (Barendregt et al. 2013). The number of measurements indicating exposure and total number of measurements in the study were entered into MetaXL. The *meta*-analyses for level were conducted using the statistical software RevMan version 5.4.1 (Nordic Cochrane Centre) and forest plots were produced. It was evident from our search that the vast majority of studies were identified within certain industrial sectors or groupings thereof (Mining, Manufacture and Construction). Apart from that only a limited number of other industrial sectors were represented. We therefore synthesised evidence per industrial sector (ISIC-4 code at 2-digit level with additional merging within Mining, Manufacture and Construction) for prevalence and level of occupational exposure to silica, asbestos and coal dust, respectively. All included data points from included studies are presented, together with *meta*-data on the study prevalence, and exposure level by country and industry. Forest plots for prevalence were generated by inputting the denominator and numerator for each prevalence estimate into MetaXL. Studies reported several different measures of the level of exposure and its dispersion, such as arithmetic means and standard deviations, geometric means and geometric standard deviation factors, medians, ranges, 95% confidence intervals (CIs). It is well recognized that the distribution of data of concentrations are usually skewed and are therefore well represented by a log-normal function, and best summarised by geometric mean, geometric standard deviation factor and suitable CIs. We chose to use these measures to *meta*-analyse level of exposures. When they were not available from studies, we estimated them using the following formulae: $$GM = \frac{AM}{\sqrt{1 + \frac{ASD^2}{AM^2}}}$$ $$GSD = exp\sqrt{ln\left(1 + \frac{ASD^2}{AM^2}\right)}GM = \exp\left(\frac{ln(a) + ln(b)}{2}\right)$$ $$GSD = exp\sqrt{2*ln\left(\frac{AM}{GM}\right)}$$ where GM and GSD are geometric mean and geometric standard deviation factor, AM and ASD are arithmetic mean and standard deviation, and (a) and (b) are the minimum and maximum values observed. Then, we calculated 95% CIs using the formula Lower limit = $$\frac{GM}{(SE^*)^q}$$ $Upper\ limit = GM*(SE^*)^q$ with $SE^* = (GSD)^{1/\sqrt{n}}$ and q is the 97.5% quantile of a t distribution with n-1 degrees of freedom. To generate the forest plots, the estimates for geometric means were entered into RevMan to three decimal places. Additionally, the standard error, generated from the 95% CI that is most distant from the point estimate was entered to six decimal places. ## 3.9. Conducted additional analyses We conducted subgroup analyses for mining, manufacture and construction (as here defined, and not as per ISIC classification) by WHO region based on disaggregated data from the studies included in the main *meta*-analysis only (to ensure a sufficiently homogenous dataset). We planned to also conduct subgroup analyses by sex, age group and occupation, but the data from included studies did not permit these analyses. In a sensitivity analysis we compared studies we judged as at high or probably high risk of bias due to selection into the study with studies judged as at low or probably low risk of this bias. ## 3.10. Assessed quality of evidence We used the QoE-SPEO approach for assessing the quality
of **Table 3**Study and measurement numbers by industrial sector, for prevalence and level of occupational exposure to silica. | Industrial sector | Prevalence | | | | Level | | | | | |---|-------------------------------|---------------------|-------------------|------------------------|-------------------------------|---------------------|-------------------|------------------------|--| | | Number of entries and studies | Number of countries | Number of regions | Number of measurements | Number of entries and studies | Number of countries | Number of regions | Number of measurements | | | Construction | 24 entries from
17 studies | 7 | 4 | 2479 | 25 entries from
16 studies | 8 | 4 | 2352 | | | Manufacturing | 39 entries from
24 studies | 15 | 6 | 40,073 | 30 entries from
14 studies | 10 | 6 | 7733 | | | Mining | 29 entries from
20 studies | 13 | 6 | 222,276 | 43 entries from
17 studies | 7 | 4 | 2,349,598 | | | Crop and animal production | 3 entries from 3 studies | 2 | 2 | 479 | 2 entries from 2 studies | 2 | 2 | 335 | | | Electricity, gas and air supply | 2 entries from 2 studies | 2 | 1 | 136 | 1 entry from 1 study | 2 | 1 | 28 | | | Professional, scientific and technical activities | 1 entry from 1 study | 1 | 1 | 41 | 3 entries from 2 studies | 2 | 2 | 18,313 | | evidence in studies estimating the prevalence and level of exposure to occupational risk factors (Pega et al. 2022b). QoE-SPEO was developed by WHO specifically for systematic reviews for the WHO/ILO Joint Estimates (Pega et al. 2022c). We sought to ensure consistency in the assessment of quality of evidence with the other WHO/ILO systematic reviews of prevalences in the series for the WHO/ILO Joint Estimates (Hulshof et al. 2021a; Teixeira et al. 2021b), including downgrading for the serious concerns for indirectness presented by bodies of evidence without any included studies being population-based, i.e., covering the entire workers' population in the relevant industrial sector, including all its sub-sectors. To assess publication bias for prevalence, Doi plots with LFK statistics (Furuya-Kanamori et al. 2018) were produced in MetaXL for each body of evidence comprising at least 10 study records. For levels, funnel plots were generated using RevMan. ### 4. Results ### 4.1. Study selection A flow diagram of the study selection is presented in Fig. 1. Of a total of 13,329 unique individual study records identified in our searches, 100 records from 91 studies fulfilled the eligibility criteria and were included in the systematic review. For the 35 of the excluded studies that most closely resembled inclusion criteria, the reasons for exclusion are listed in Appendix 3 in the Supplementary data. The three most common reasons for exclusion were no quantitative exposure data reported (n = 95), ineligible setting (n = 114), and ineligible study type (n = 66). Of the 100 included records, 96 were included in one or more quantitative *meta*-analyses. ## 4.2. Characteristics of included studies # 4.2.1. Occupational exposure to silica The characteristics of all included studies relating to prevalence and level of occupational exposure to silica are summarize in Table 2. In total, 65 studies from 73 study records that reported on occupational exposure to silica met the inclusion criteria. Of these, 55 studies described in 63 study records looked at silica prevalence. For silica level, there were 39 studies described in 46 study records. See Table 3 for a breakdown by industrial sector. For silica, the target population was from major ISCO groups coded 3, 6, 7, 8 and 9 at the 1-digit level, and almost all measurements were performed among workers with manual work. Only three silica studies included measurements from administrative workers (Love et al. 1999; Rappaport et al. 2003; Peters et al. 2017). No included studies were population-based. Therefore, no included individual study captured all subsectors or the entire population of workers in the industrial sector of interest. Additionally, the body of evidence (i.e., all included studies together) also did not capture all subsectors within the relevant industrial sector, nor the entire workers' population within the industrial sector. *4.2.1.1.* Study type. For silica, most studies were cross-sectional studies (50 out of 55 studies for prevalence and 34 out of 39 studies for level). 4.2.1.2. Population studied. For silica, the actual number of workers included in the studies may deviate from the number of measurements, i. e., nine of the studies were based on group-based estimates, and therefore the number of workers is underestimated. On the other hand, several studies included more than one measurement per person, and this overestimates the number of workers included. Forty-four out of 65 included silica studies did not state the number of workers included, but only the number of measurements. Thus, the sum of workers indicated in Table 2 (161,634 workers) is far below the number of measurements (2,369,742). The sum of female workers indicated in Table 2 is 10,572, but the true proportion of males and females is unclear. Eight studies included male workers only, three studies included both male and female workers, and the rest (54 studies) did not provide any information about the gender distribution. Most silica studies examined populations in the WHO Region of the Americas (21 studies from three countries), followed by populations in Europe (16 studies from eight countries) and populations in the Africa and Western Pacific (eight studies from three countries, and eight studies from four countries, respectively). The most commonly studied countries were the United States of America (15 studies), Iran (Islamic Republic of) (seven studies), Norway (five studies) and South Africa (five studies). The industrial sectors most commonly studied for occupational exposure to silica were Other mining and quarrying (19 studies), Manufacture of other non-metallic mineral products (14 studies), and Manufacture of basic metals (12 studies). The occupations studied in most silica studies were "Mining and Quarrying Labourers" (15 studies), followed by "Building Construction Labourers" (10 studies) and "Miners and Quarries" and "Manufacturing Labourers Not Elsewhere Classified" (seven studies). 4.2.1.3. Exposure studied. All 65 included silica studies used active filter sampling and gravimetric assessment followed by technical analysis for quantification of silica. Sixty-two studies included personal air sampling, three studies stationary measurements, and four did not specify the sampling collection mode. Sixty-three studies assessed respirable crystalline silica, and two studies collected other particles size fractions. Thirty-three studies used X-ray diffraction for analysis of the silica Environment International 178 (2023) 107980 Table 4 Characteristics of included studies, Prevalence and level of occupational exposure to asbestos. | Study | Inclusion in meta-
analyses? | Study population | | | | | | | | | | |--|--|------------------------|------------------------|-------------------------------|-------------------------------------|------------------------|---|---|------------------------|---------------------|--| | Study ID | Industrial sector and estimate type | Number of measurements | Number of participants | Number of female participants | Country | Geographic
location | Target population | Industrial sector,
ISIC-4 | Occupation,
ISCO-08 | Age
distribution | | | Ansari 2007 (Ansari
et al. 2007) | Manufacturing (prevalence and level) | | 65 | 16 | India | Local | Informal sector manual
asbestos mill workers in
India | 23 Manufacture of
other non-metallic
mineral products | 9329 | Unclear | | | Bird 2004 (Bird et al. 2004) | Electricity, gas, steam and air conditioning supply (prevalence) | 203 | Unclear | | United
States of
America | Region | | 35 Electricity, gas,
steam and air
conditioning supply | 3131 | Unclear | | | Borton 2012 (Borton et al. 2012) | Manufacturing
(prevalence) | 914 | Unclear | | United
States of
America | Local | Manual workers in a care
product manufacturing
company in Ohio, the
United States of America | 23 Manufacture of
other non-metallic
mineral products | 9329 | Unclear | | | Cattaneo 2012 (Cattaneo et al. 2012) | Other mining and quarrying (prevalence and level) | 105 | Unclear | | Italy | Local | Manual quarries and stone
processing workers in
Italy | 08 Other mining and quarrying | 8111 | Unclear | | | Damiran 2015 (
Damiran et al.
2015) | Electricity, gas, steam and
air conditioning supply
(prevalence and level) | 47 | Unclear | | Mongolia | Local | Manual special
construction workers in
Mongolia | 35 Electricity, gas,
steam and air
conditioning supply | 7124 | Unclear | | | Kakooei 2007 (
Kakooei et al.
2007) | Manufacturing
(prevalence) | 75 | Unclear | | Iran
(Islamic
Republic
of) | Local | Brake manufacturing
workers in Iran (Islamic
Republic of) | 30 Manufacture of
other transport
equipment | 7231 | Unclear | | | Kakooei 2014 (
Kakooei and
Normohammadi
2014) | Construction (prevalence and level) | 45 | Unclear | | Iran
(Islamic
Republic
of) | Local | Demolition workers in
Iran (Islamic Republic of) | 43 Specialized construction activities | 7111 | Unclear | | | Kauffer 2007 (
Kauffer and
Vincent 2007) | Construction (level);
Manufacturing (level) | | Unclear | Unclear | France | National | Manual workers from
different industries in
France | |
 Unclear | | | | | 392 | | | | | Workers manufacturing
non-metallic products in
France | 23 Manufacture of other non-metallic mineral products | | | | | | | 243
110 | | | | | Construction workers in
France
Workers manufacturing | 41 Construction of
buildings
24 Manufacture of | | | | | | | 114 | | | | | basic metals in France
Motor vehicles workers in
France | basic metals 29 Manufacture of motor vehicles, trailers and semi-trailers | | | | | | | 247 | | | | | Motor vehicles repair
workers in France | 45 Wholesale and repair of motor vehicles and | | | | | | | 15 | | | | | Textile workers in France | motorcycles
13 Manufacture of
textiles | | | | | | | 239
41 | | | | | Construction workers in
France
Motor vehicles repair | 41 Construction of
buildings
45 Wholesale and | | | | | | | 71 | | | | | workers in France | retail trade and repair
of motor vehicles and
motorcycles | | | | Table 4 (continued) | Study | Inclusion in meta-
analyses? | Study population | l | | | | | | | | |---|---|------------------------|------------------------|-------------------------------|-------------------------------------|------------------------|---|---|------------------------|--| | Study ID | Industrial sector and estimate type | Number of measurements | Number of participants | Number of female participants | Country | Geographic
location | Target population | Industrial sector,
ISIC-4 | Occupation,
ISCO-08 | Age
distribution | | | | 1454 | | | | | Demolition workers in
France | 41 Construction of buildings | unclear | | | | | 982 | | | | | Construction workers in
France | 41 Construction of
buildings | unclear | | | | | 79 | | | | | Construction (installation) workers in France | 41 Construction of
buildings | unclear | | | | | 111 | | | | | Construction (completion) workers in France | 41 Construction of
buildings | unclear | | | | | 1208 | | | | | Construction workers | 43 Specialized | unclear | | | | | 65 | | | | | (erection of roofs) in France
Construction workers | construction activities 43 Specialized | unclear | | | | | 6650 | | | | | (highways etc.) in France
Other construction workers | construction activities
43 Specialized | unclear | | | | | 725 | | | | | in France
Construction (insulation) | construction activities 43 Specialized | unclear | | | | | 4507 | | | | | workers in France
Sewage and sanitary
workers in France | construction activities
37 Sewerage | unclear | | | Maino 1995 (Maino et al. 1995) | Construction (prevalence and level) | 32 | Unclear | | Italy | Region | Manual asbestos removal workers in Italy | 43 Specialized construction activities | 9313 | Unclear | | Marioryad 2011 (
Marioryad et al.
2011) | Manufacturing (prevalence and level) | 98 | Unclear | | Iran
(Islamic
Republic
of) | Local | Manual asbestos cement
workers in Iran (Islamic
Republic of) | 23 Manufacture of
other non-metallic
mineral products | 8114 | 40–44 years | | Massaro 2012 (
Massaro et al.
2012) | Construction (prevalence and level) | 368 | Unclear | 0 | Italy | Region | Manual construction workers in Italy | 43 Specialized construction activities | | Unclear | | 2012) | | 5 | Unclear | 0 | Italy | Region | Manual construction workers in Italy | 43 Specialized construction activities | | Unclear | | Mlynarek 1996 (
Mlynarek et al.
1996) | | 302 | Unclear | Unclear | United
States of
America | Local | Manual building
maintenance workers in
the United States of
America | 43 Specialized construction activities | 9313 | Unclear | | Panahi 2011 (Panahi
et al. 2011) | Manufacturing (prevalence and level) | 45 | 120 | 0 | Iran
(Islamic
Republic
of) | Local | Manual asbestos cement
sheet manufacturing
workers in Iran (Islamic
Republic of) | 23 Manufacture of
other non-metallic
mineral products | 7114 | Mean age
(range) 41
(29–56) year | | Perkins 2008 (Perkins et al. 2008) | Construction (prevalence and level) | 564 | Unclear | Unclear | United
States of
America | Region | Manual road construction
workers in the United
States of America, natural
occurring asbestos | 43 Specialized construction activities | 9313 | Unclear | | Phanprasit 2009 (Phanprasit et al. 2009) | Manufacturing (prevalence and level) | 19 | Unclear | Unclear | Thailand | Unclear | Manual asbestos cement
sheet manufacturing
workers in Thailand | 23 Manufacture of
other non-metallic
mineral products | 8114 | Unclear | | Scarselli 2016 (
Scarselli et al.
2016) | Construction (prevalence
and level); Water supply,
sewerage, waste
management and
remediation (level) | 2440 | Unclear | Unclear | Italy | National | | 41 Construction of
buildings | | Unclear | Table 4 (continued) | Study | Inclusion in n
analyses? | lusion in meta- Study population | | | | | | | | | | |--|---|--|--|--|----------------------------------|---|--------------------------------------|--|--|--|--| | Study ID | Industrial sec
estimate type | | Number of measurements | Number of participants | Number of female participants | Country | Geographic location | Target population | Industria
ISIC-4 | al sector, Occupation ISCO-08 | n, Age
distribution | | Wang 2012 (Wang et al. 2012) Wilmoth 1994 (| Manufacturing
(prevalence)
Construction (| | 8583
4507
32
38 | Unclear
11 | 0
Unclear | China
United | Unclear
Local | Manual asbestos
manufacturing workers
China
Manual demolition | mineral p
43 Specia | ion
age
facture of Not applic
1-metallic
1roducts
Ilized 9313 | able Unclear
Unclear | | Wilmoth 1994) | | | | | | States of
America | | workers in Alaska, the
United States of America | construct
a activities | | | | Study | Study type | | Exposure assess | ment | | | <u> </u> | | | | | | Study ID | Study design | Study
period | Exposure
definition | Unit for
which
exposure
was
assessed | Mode of exposure data collection | Exposure
assessment
methods | Type of exposure measure or estimate | Dates covered
by exposure
assessment
(years) | Shortest and
longest
exposure
period | Levels/ intensity of
exposure | Potential co-
exposure with
other
occupational-
risk factors | | Ahmad Ansari
2007 (Ansari
et al. 2007) | Cross-sectional
study | Unclear | Breathing zone asbestos fibres, f/cm ³ . Exposed: above LOD | Individual
level | Technical
device | Active filter
sampling.
Microscope
membrane filter
analysis | Prevalence | Unclear | Unclear | AM 2.24–15.6 f/ml | No | | Bird 2004 (Bird
et al. 2004) | Cross-sectional study | Unclear.
June-August
in 2001 or in
2002 | | Group level | Technical
device | Active filter
sampling, PCM | Prevalence | 2001 or 2002 | Unclear | Range LOD $-$ 0.007 f/ml | Arsenic | | Borton 2012 (
Borton et al.
2012) | Cohort study
(retrospective) | 1972–1994 | Breathing zone
and area
sampling
asbestos fibres, f.
cm ³ . Exposed:
above LOD or
LOO | Individual
level | Technical
device | Active filter
sampling, PCM | Prevalence | Exposure
measurements
available
1972–1994 | Unclear | GM 1992: 3.32 f/ml, GN
1996: 1.49 f/ml, GM
1997–1997: 0.03 f/ml | A No | | Cattaneo 2012 (
Cattaneo et al.
2012) | Cross-sectional study | Unclear | Breathing zone
and Stationary
sampling
asbestos fibres, f,
cm3. Exposed:
above LOD | Individual
level | Technical
device | Active filter sampling, SEM equipped with 3 ray microanalysis. | Prevalence | Unclear | Unclear | AM (SD) 0.0500
(0.2275) f/ml. Median
0.0021 f/ml. Range
0.00005–1.8517 f/ml | Unclear | | Damiran 2015 (
Damiran et al.
2015) | Cross-sectional
study | Unclear | Breathing zone
and stationary
sampling
asbestos fibres, f/
cm ³ . Exposed:
above LOD | Individual
level | Technical
device | Active filter
sampling, PCM | Prevalence | Unclear | Unclear
(Average
sample time
in table 1
might be
exposure
period.) | AM 0.96 f/ml | Unclear | | Kakooei 2007 (
Kakooei et al.
2007) | Cross-sectional
study | 2002 | Breathing zone asbestos fibres, f/cm ³ . Estimated from the total | Individual
level | Technical
device | Active filter sampling of tota dust. PCOM | Prevalence | 2012 | 30–60 min | AM between 0.36 and 1.85 f/ml, SD between 0.02 and 0.08 f/ml | Unclear | Table 4 (continued) | Study | Study type | | Exposure assessm | ent | | | | | | | | |--|--------------------------|-----------------|--|--|---
---|--------------------------------------|---|---|---|--| | Study ID | Study design | Study
period | Exposure
definition | Unit for
which
exposure
was
assessed | Mode of
exposure
data
collection | Exposure
assessment
methods | Type of exposure measure or estimate | Dates covered
by exposure
assessment
(years) | Shortest and
longest
exposure
period | Levels/ intensity of exposure | Potential co-
exposure with
other
occupational-
risk factors | | | | | dust fraction.
Exposed: above
LOD | | | | | | | | | | Kakooei 2014 (
Kakooei and
Normohammadi
2014) | Cross-sectional
study | 2010–2011 | Breathing zone asbestos fibres, f/cm³. Estimated from the total dust fraction. Exposed: above LOD | Individual
level | Technical
device | Active filter
sampling, PCOM
and SEM) | Prevalence | 2010–2011 | 240-360 min | PCM: GM (GSD) 0.07 f/ml (0.339). Min-max 0.01-0.15 f/ml. SEM: GM (GSD) 0.20 f/ml (0.111). Min-max 0.02-0.36 f/ml | Unclear | | Kauffer 2007 (
Kauffer and
Vincent 2007) | Cross-sectional
study | | Breathing zone
and stationary
sampling
asbestos fibres, f/
cm ³ . Various
methods. | Individual
level | Technical
device | Active filter
sampling. PCOM | Prevalence | | Unclear | | Unclear | | | | 1986–1996 | | | | | | 1986–1996 | | AM 0.79 f/ml. Median
0.33 f/ml. Min-max
0.03–9.5 f/ml | | | | | 1986–1996 | | | | | | 1986–1996 | | AM 9.2 f/ml. Median
0.85 f/ml. Min-max
0.01–370 f/ml | | | | | 1986–1996 | | | | | | 1986–1996 | | AM 2.5 f/ml. Median
0.42 f/ml. Min-max
0.02–79 f/ml | | | | | 1986–1996 | | | | | | 1986–1996 | | AM 0.66 f/ml. Median
0.23 f/ml. Min-max
0.02–6.3 f/ml | | | | | 1986–1996 | | | | | | 1986–1996 | | AM 3.0 f/ml. Median
0.45 f/ml. Min-max
0.01–160 f/ml | | | | | 1986–1996 | | | | | | 1986–1996 | | AM 2.8 f/ml. Median 1.5
f/ml. Min-max 0.04–19
f/ml | | | | | 1997–2004 | | | | | | 1997–2004 | | AM 1.1 f/ml. Median
0.07 f/ml. Min-max
0.004–8.3 f/ml | | | | | 1997–2004 | | | | | | 1997–2004 | | AM 0.086 f/ml. Median 005 f/ml. Min-max 0.01–1.1 f/ml AM (SD) 0.005 (0.032) f/ml. GM (GSD) 0.003 f/ml (2.31) AM (SD) 0.010 (0.022) f/ml. GM (GSD) 0.004 f/ml (3.76) AM (SD) 0.017 (0.019 f/ml. GM (GSD) 0.008 f/ml (3.73) | | Table 4 (continued) | Study | Study type | | Exposure assessme | ent | | | | | | | | |---|--------------------------|-----------------|---|--|----------------------------------|--|---|---|---|---|--| | Study ID | Study design | Study
period | Exposure
definition | Unit for
which
exposure
was
assessed | Mode of exposure data collection | Exposure
assessment
methods | Type of
exposure
measure or
estimate | Dates covered
by exposure
assessment
(years) | Shortest and
longest
exposure
period | Levels/ intensity of exposure | Potential co-
exposure with
other
occupational-
risk factors | | | | | | | | | | | | AM (SD) 0.009 (0.022) f/ml. GM (GSD) 0.001 f/ml (16.63) AM (SD) 0.045(0.155) f/ml. GM (GSD) 0.006 f/ml (11.30) AM (SD) 0.004 (0.001) f/ml. GM (GSD) 0.004 f/ml (1.07) AM (SD) 0.036 (0.090) f/ml. GM (GSD) 0.011 f/ml (5.63) AM (SD) 0.011 (0.018) f/cc. GM (GSD) 0.006 f/cc (3.24) AM (SD) 0.016 (0.089) f/ml. GM (GSD) 0.003 f/ml. (GM (GSD) 0.003 f/ml. (7.67) | | | Maino 1995 (
Maino et al.
1995) | Cross-sectional
study | 1993–1994 | Breathing zone
and stationary
sampling
asbestos fibres,
ff/1. Exposed:
above LOD | Individual
level | Technical
device | Active filter
sampling, PCOM | Prevalence | 1993–1994 | Unclear | 64.15 ff/l | Unclear | | Marioryad 2011 (
Marioryad et al.
2011) | Cross-sectional
study | Unclear | Breathing zone asbestos fibres, f/cm³. Estimated from the total dust fraction. Exposed: above LOD | Individual
level | Technical
device | Active filter sampling, polarized light microscopy. | Prevalence | Unclear | 60-240 min | AM (SD) 0.3 (0.16) f/ml.
GM (GSD) 0.09 f/ml
(0.11). Min - max
0.02-0.69 f/ml | Unclear | | Massaro 2012 (
Massaro et al.
2012) | Cross-sectional study | 2008–2009 | Stationary
sampling
asbestos fibres,
ff/l. Exposed:
above LOD | Individual
level | Technical
device | Active filter
sampling, SEM
and EDS micro-
analysis | Prevalence | 2008–2009 | Unclear | Unclear | Unclear | | | Cross-sectional
study | 2008–2009 | Breathing zone
asbestos fibres,
ff/l. Exposed:
above LOD | Individual
level | Technical
device | Active filter
sampling, SEM
and EDS micro-
analysis | Prevalence | 2008–2009 | Unclear | 6.034 ff/l | Unclear | | Mlynarek 1996 (
Mlynarek et al.
1996) | Cross-sectional
study | 1988–1993 | Breathing zone
asbestos fibres, f/
cm³. Estimated
from the total
dust fraction. 8-
TWA | Individual
level | Technical
device | Active filter
sampling, PCM | Prevalence | Unclear | 5–477 min | AM between 0.003 and 0.042 f/ml SD between 0.0039 and 0.038 f/ml. Min max 0.0023–0.21f/ml | Unclear | | Panahi 2011 (Panahi et al. 2011) | Cross-sectional
study | 2009–2010 | Breathing zone asbestos fibres, f/cm³. Estimated from the total | Individual
level | Technical
device | Active filter sampling, PCM | Prevalence | 2009–2010 | 60 min | AM (SD) 0.0708 (0.05)
f/ml GM (GDS) 0.052 f/
ml(1.36) Min-max
0.012–0.243 f/ml | Unclear | Table 4 (continued) | Study | Study type | | Exposure assessme | ent | | | | | | | | |---|--------------------------|-----------------|--|--|---|--|--------------------------------------|---|---|--|--| | Study ID | Study design | Study
period | Exposure
definition | Unit for
which
exposure
was
assessed | Mode of
exposure
data
collection | Exposure
assessment
methods | Type of exposure measure or estimate | Dates covered
by exposure
assessment
(years) | Shortest and
longest
exposure
period | Levels/ intensity of exposure | Potential co-
exposure with
other
occupational-
risk factors | | | | | dust fraction.
Exposed: above
LOD | | | | | | | | | | Perkins 2008 (
Perkins et al.
2008) | Cross-sectional study | Unclear | Breathing zone asbestos fibres, f/cm ³ . Estimated from the total | Individual
level | Technical
device | Active filter sampling, PCOM | Prevalence | Unclear | Unclear | 371 samples above LOD,
below 0.1 f/ml: AM (SD)
0.028 (0.016) f/ml | Unclear | | | | | dust fraction.
Exposed: above
LOD | | | | | | | 16 samples above LOD,
Above 0.1 f/ml: AM
(SD) 0.18 (0.12) f/ml | | | Phanprasit 2009 (
Phanprasit et al.
2009) | Cross-sectional
study | 2002 | Breathing zone
asbestos fibres, f/
cm ³ . Exposed:
above 0.001f/
cm ³ | Individual
level | Technical
device | Active filter
sampling,
otherwise
unclear | Prevalence | 2002 | Unclear | AM (SD) 0.078 (0.19) f/ml | unclear | | Scarselli 2016 (
Scarselli et al.
2016) | Cross-sectional
study | 1996–2013 | | Individual
level | Technical
device | Active filter
sampling. PCOM
and/or SEM | Prevalence | 1996-2013 | 8 h work shift | | Unclear | | | | | | | | | | | | GM (GSD) 0.001–0.008
f/ml (2.31–16.68)
GM (GSD) 0.004–0.011
f/ml (1.07–11.3)
GM (GSD) 0.003 f/ml
(7.67) | | | Wang 2012 (Wang
et al. 2012) | Cross-sectional
study | 2002 | Breathing zone and stationary sampling asbestos fibre, f/cm³. Based on total dust samples. Exposed: above | Individual
level | Technical
device | Active filter
sampling, X-ray
diffraction and
TEM | Prevalence | 2002 | Full-shift | Personal sampling:
median 4.5–8.6 f/ml
(p25-p75 1.8–9.8 f/ml).
Area sampling: median
0.8–7.2 f/ml (p25-p75
0.6–28.3 f/ml) | Unclear | | Wilmoth 1994 (
Wilmoth 1994) | Cross-sectional
study | 1992 | LOD Breathing zone asbestos fibres, f/ cm³. Estimated from the total dust fraction. 8- TWA. Exposed: above LOD | Individual
level | Technical
device | Active filter
sampling, TEM | Prevalence | 1992 | 60–208 min. | AM Below 0.033 f/ml | Unclear | | Study
| Prevalen | ce estimate | | | | | | | | | | | Study ID | Prevalence estimate | | inition of numerator
pulation | | nt in
nerator | Number of study
participants in
exposed group | | on of denominator
on (source populati | Count in denomina | Number of study
tor participants in
unexposed group | Point
estimate | Table 4 (continued) | Study | Prevalence estir | nate | | | | | | | |---|-----------------------------|---|--|---|--|----------------------|---|-------------------| | Study ID | Prevalence
estimate type | Definition of numerator population | Count in numerator | Number of study
participants in
exposed group | Definition of denominator population (source population) | Count in denominator | Number of study
participants in
unexposed group | Point
estimate | | Ahmad Ansari 2007 (
Ansari et al. 2007) | Prevalence | Exposed informal sector asbestos mill workers in India | Not applicable | 65 | Informal sector asbestos mill
workers in India | Not applicable | 0 | 100% | | Bird 2004 (Bird et al. 2004) | Prevalence | Exposed power plant workers in the United States of America | 4 | 4 | Power plant workers in the United
States of America | 203 | 4 | 2% | | Borton, 2012 (Borton et al. 2012) | Prevalence | Exposed workers of care product
manufacturing in the United States
of America | 879 | 879 | Workers of care product
manufacturing in the United
States of America | 914 | 35 | 96% | | Cattaneo, 2012 (Cattaneo et al. 2012) | Prevalence | Exposed quarries and stone processing workers in Italy | 105 samples,
number of persons
unclear | 89 | Quarries and stone processing workers in Italy | 105 | 16 | 85% | | Damiran, 2015 (Damiran et al. 2015) | Prevalence | Exposed special construction workers in Mongolia | 46 | 46 | Special construction workers in
Mongolia | 47 | 1 | 98% | | Kakooei, 2007 (Kakooei
et al. 2007) | Prevalence | Exposed brake manufacturing workers in Iran (Islamic Republic of) | 75 | 75 | Brake manufacturing workers in
Iran (Islamic Republic of) | 75 | 0 | 100% | | Kakooei, 2014 (Kakooei
and Normohammadi
2014) | Prevalence | Exposed demolition workers in Iran (Islamic Republic of) | 45 | 45 | Demolition workers in Iran
(Islamic Republic of) | 45 | 0 | 100% | | Kauffer, 2007 (Kauffer | Prevalence | | Unclear | Unclear | | | Unclear | Unclear | | and Vincent 2007) | | Exposed workers manufacturing non-
metallic products in France | | | Workers manufacturing non-
metallic products in France | 392 | | | | | | Exposed construction workers in France | | | Construction workers in France | 243 | | | | | | Exposed workers manufacturing basic metals in France | | | Workers manufacturing basic metals in France | 110 | | | | | | Exposed motor vehicles workers in France | | | Motor vehicles workers in France | 114 | | | | | | Exposed motor vehicles repair workers in France | | | Motor vehicles repair workers in
France | 247 | | | | | | Exposed textile workers in France
Exposed construction workers in
France | | | Textile workers in France
Construction workers in France | 15
239 | | | | | | Exposed motor vehicles repair workers in France | | | Motor vehicles repair workers in
France | 41 | | | | | | Exposed demolition workers in France
Exposed construction workers in
France | 334
424 | 334
424 | Demolition workers in France
Construction workers in France | 1454
986 | 1120
562 | 23%
43% | | | | Exposed construction (installation) workers in France | | | Construction (installation) workers in France | 79
111 | | | | | | Exposed construction (completion) workers in France Exposed construction workers | 604 | 604 | Construction (completion) workers
in France
Construct-ion workers (erection of | 1208 | 604 | 50% | | | | (erection of roofs) in France Exposed construction workers | 004 | 004 | roofs) in France Construction workers (highways | 65 | 004 | 30% | | | | (highways etc.) in France | | | etc.) in France | 03 | | | | | | Exposed other construction workers in France | 5187 | 5187 | Other construction workers in
France | 6650 | 1463 | 78% | | | | Exposed construction (insulation) workers in France | 326 | 326 | Construction (insulation) workers in
France | 725 | 399 | 45% | | | | Exposed sewage and sanitary workers in France | 2434 | 2434 | Sewage and sanitary workers in
France | 4507 | 2073 | 54% | | Maino 1995 (Maino et al.
1995) | Prevalence | Exposed samples from environmental sampling | 32 | Not relevant | Total number of samples from environmental sampling | 32 | Not relevant | 100% | # Environment International 178 (2023) 107980 Table 4 (continued) | Study | Prevalence estir | nate | | | | | | | |--|--------------------------|---|--------------------|---|---|----------------------|---|-------------------| | Study ID | Prevalence estimate type | Definition of numerator population | Count in numerator | Number of study
participants in
exposed group | Definition of denominator population (source population) | Count in denominator | Number of study
participants in
unexposed group | Point
estimate | | Marioryad 2011 (
Marioryad et al. 2011) | Prevalence | Exposed asbestos cement workers in Iran (Islamic Republic of) | 98 | 98 | Asbestos cement workers in Iran
(Islamic Republic of) | 98 | 0 | 100% | | Massaro 2012 (Massaro et al. 2012) | Prevalence | Exposed construction workers in Italy | 244 | 244 | Construction workers in Italy | 368 | 124 | 66% | | | Prevalence | Exposed construction workers in Italy | 5 | 5 | Construction workers in Italy | 5 | 0 | 100% | | Mlynarek 1996 (Mlynarek et al. 1996) | Prevalence | Exposed building maintenance
workers in the United States of
America | Unclear | Unclear | Building maintenance workers in
the United States of America | 302 | Unclear | Unclear | | Panahi 2011 (Panahi et al. 2011) | Prevalence | Exposed asbestos cement sheet
manufacturing workers in Iran
(Islamic Republic of) | 45 | 45 | Asbestos cement sheet
manufacturing workers in Iran
(Islamic Republic of) | 45 | 0 | 100% | | Perkins 2008 (Perkins et al. 2008) | Prevalence | Exposed road construction workers in the United States of America, natural occurring asbestos | 387 | 387 | Road construction workers in the
United States of America, natural
occurring asbestos | 564 | 177 | 69% | | Phanprasit 2009 (
Phanprasit et al. 2009) | Prevalence | Exposed asbestos cement workers in Thailand | 15 | 15 | Asbestos cement workers in
Thailand | 19 | 4 | 79% | | Scarselli 2016 (Scarselli | Prevalence | | | | | | | | | et al. 2016) | | Exposed construction workers in Italy | 758 | 758 | Construction workers in Italy | 2440 | 1682 | 31% | | | | Exposed construction workers in Italy | 6117 | 6117 | Construction workers in Italy | 8583 | 2466 | 71% | | | | Exposed sewage workers in Italy | 2434 | 2434 | Sewage workers in Italy | 4507 | 2073 | 54% | | Wang 2012 (Wang et al. 2012) | Prevalence | Exposed asbestos manufacturing workers in China | 32 | 32 | Asbestos manufacturing workers in China | 32 | 0 | 100% | | Wilmoth 1994 (Wilmoth 1994) | Prevalence | Exposed demolition workers in
Alaska, the United States of America | 6 | 6 | Demolition workers in Alaska, the
United States of America | 38 | 32 | 16% | #### Footnotes: AM: Arithmetic mean, SD: Standard deviation, GM: Geometric mean, GSD: Geometric standard deviation, LOD: Level of detection, LOQ: Level of quantification, PCM: Phase contrast microscopy, PCOM: Phase-contrast optical microscopy, SEM: Scanning electron microscopy, TEM: Transmission electron microscopy. Where a study includes two or more estimates/measures, the first entry in the table provides an overview of the information from the study. Estimate/measure-specific information is provided in subsequent linings, in italics. Table 5 Study and measurement numbers by industrial sector for prevalence and level of occupational exposure to asbestos. | Industrial sector | Prevalence | | | | Level | | | | |--|-------------------------------|---------------------|-------------------|------------------------|-------------------------------|---------------------|-------------------|------------------------| | | Number of entries and studies | Number of countries | Number of regions | Number of measurements | Number of entries and studies | Number of countries | Number of regions | Number of measurements | | Construction | 6 | 3 | 3 | 16,580 | 6 | 4 | 3 | 12,240 | | Manufacturing | 7 | 5 | 4 | 1225 | 5 | 4 | 3 | 1431 | | Mining (other mining and quarrying) | 1 | 1 | 1 | 89 | 1 | 1 | 1 | 89 | | Electricity, gas and air supply | 2 | 2 | 2 | 108 | 1 | 1 | 1 | 46 | | Water supply, sewerage,
waste management and
remediation | NA | NA | NA | NA | 1 | 1 | 1 | 4507 | content, 18 studies used infrared spectrometry (IS), and 14 studies used other methods, or did not specify the method. In 41 studies, occupational exposure to silica was defined as silica measurements above the LOD, in six studies it was defines as above the occupational exposure limit (OEL), and in the remaining 18 studies it was defined in other ways or not specified. Fifty-five studies assessed exposure at an
individual level, whereas in 10 studies measurements (personal or stationary) were used to express exposure at group level. In the vast majority of studies, 60, current exposure (prevalence) was assessed, and only five studies used other exposure metrics. Measurements between 1960 and 2014 were identified. Twenty-three studies included full-shift measurement (above 4 hours), four studies included measurements with a duration of < 4 hours, and in the remaining 38 studies measurement duration was not specified. Forty-two studies presented a mean exposure level by AM (range $0.006-16.9 \text{ mg/m}^3$), 29 studies by GM (ND -1.65 mg/m^3), two studies by the median (range 0.075–1.3 mg/m³), and eight studies by other or unclear methods. For 56 studies a prevalence estimate was available, ranging from 0.12 to 1.00. #### 4.2.2. Occupational exposure to asbestos The characteristics of all included studies relating to prevalence and level of occupational exposure to asbestos are summarize in Table 4. In total, 18 studies from 18 study records that reported on occupational exposure to asbestos met the inclusion criteria. Of these, 17 studies described in 17 study records provided information on asbestos prevalence. For asbestos level, 12 studies described in 12 study records provided information. See Table 5 for a breakdown by industrial sector. The target population in all included studies was from major ISCO group 3, 7 and 9, and all measurements were performed among workers with manual work. No included studies were population-based. Therefore, no included individual study captured all subsectors or the entire population of workers in the industrial sector of interest. Additionally, the body of evidence (i.e., all included studies together) also did not capture all subsectors within the relevant industrial sector, nor the entire workers' population within the industrial sector. 4.2.2.1. Study type. For asbestos, most studies were cross-sectional (16 studies out of 17 for prevalence and all studies for level were cross-sectional). #### 4.2.3. Population studied For asbestos the actual number of workers included in the studies may deviate from the number of measurements, i.e., one of the studies was based on group-based estimates, and therefore the number of workers is underestimated. On the other hand, several studies included more than one measurement per person, and this overestimates the number of workers included. Thirteen of the included 18 asbestos studies did not state the number of workers included, but only the number of measurements. Thus, the sum of workers indicated in Table 4 (196 workers) is far below the number of measurements (35,604). The sum of female workers indicated in Table 4 is 16, but the true proportion of males and females is unclear. Three studies included male workers only, one study included both male and female workers, and the rest (14 studies) did not provide any information about the sex distribution. Most asbestos studies examined populations in the Americas and Europe (five studies from one country, and five studies from two countries, respectively), followed by populations in the Eastern Mediterranean (four studies from one country). The most studied countries were the United States of America (five studies), Iran (Islamic Republic of) (four studies), and Italy (four studies). The most studied industrial sectors for occupational exposure to asbestos were Manufacture of other non-metallic mineral products (seven studies), Specialized construction activities (six studies), and Electricity, gas, steam and air conditioning supply (two studies). The most studied occupations in asbestos studies were "Building Construction Labourers" (four studies), followed by "Cement, Stone and Other Mineral Products Machine Operators" (two studies) and "Manufacturing Labourers Not Elsewhere Classified" (two studies). 4.2.3.1. Exposure studied. All 18 included asbestos studies used active filter sampling and gravimetric assessment followed by technical analysis for quantification of asbestos fibres. Sixteen studies included personal air sampling, and six studies stationary measurements. Nine studies assessed asbestos fibres based on total dust, and the remaining nine studies did not specify the collected particle fraction. Ten studies used phase contrast microscopy for analysis of the content of asbestos fibres, five studies used scanning electron microscopy (SEM) or transmission electron microscopy (TEM), and three studies used other methods. In 13 studies, occupational exposure to asbestos was defined as asbestos fibres count above the LOD, and in the remaining five studies other definitions were used. Seventeen studies assessed exposure at an individual level and in one study stationary measurements were used to assess exposure at group level. All 18 studies assessed current exposure (prevalence). Measurements between 1972 and 2011 were identified. Five studies included full-shift measurement (above 4 hours), four studies included measurements with a duration below 4 hours, and in nine studies the sampling duration was unclear. Ten studies presented a mean exposure level by AM (range 0.03-16 f/ml), four studies by GM (range 0.03-3.2 f/ml), two studies by the median (range 0.002-8.6 f/ ml), and four studies by other or unclear methods. For 15 studies a prevalence estimate was available, ranging from 0.02 to 1.00. #### 4.2.4. Occupational exposure to coal dust The characteristics of all included studies relating to prevalence and level of occupational exposure to coal dust are summarize in Table 6. In total, eight studies from nine study records that reported on occupational exposure to coal dust met the inclusion criteria. Of these, seven studies described in eight study records looked at coal dust prevalence. For coal dust level, four studies described in five study Table 6 Characteristics of included studies, Prevalence and level of occupational exposure to coal dust. | Study ID | Industi
estima | rial sector and
te type | Number of measurements | Number of participants | Number of female participants | Country | Geographic
location | Target pop | oulation | Industrial sector,
ISIC-4 | Occupation
ISCO-08 | , Age
distribution | |---|------------------------------|--|---|---|---|---|--------------------------------------|--|---|--|-----------------------|---| | Bird 2004 (Bird et al. 2004) | and air | ity, gas, steam
conditioning
(prevalence and | 203 | Unclear | Unclear | United States of
America | Region | Manual pov
workers in
States of Ar | the United | 35 Electricity, gas,
steam and air
conditioning supply | 3131 | Unclear | | Grové et al.
2014) | Mining | of coal and
(prevalence) | 42 | Unclear | Unclear | South Africa | National | Manual coa
South Afric | | 05 Mining of coal and lignite | 9311 | Unclear | | Love 1997 (Love
et al. 1997) | · | of coal and
(prevalence) | 626 | 1249 | 25 | United Kingdom
of Great Britain
and Northern
Ireland | National | * | oalmining in the
gdom of Great | 05 Mining of coal
and lignite | 9311 | Unclear | | Lu 2016 (Lu
2016) | | of coal and
prevalence and | 108 | Unclear | Unclear | China | Local | Manual coa
China | al miners in | 05 Mining of coal and lignite | 9311 | Unclear | | Mamuya 2006 (
Mamuya et al.
2006a;
Mamuya et al.
2006b) | Mining | of coal and
(prevalence and | 204 | Unclear | 0 | United Republic
of Tanzania | Region | Manual coa
United Rep
Tanzania | al miners in the
ublic of | 05 Mining of coal
and lignite | 9311 | Unclear | | Piacitelli 1990 (Piacitelli et al. 1990) | Mining
lignite | of coal and
(level) | 99,220 | Unclear | Unclear | United States of
America | National | Manual sur
in the Unite
America | face coal miners
ed States of | 05 Mining of coal and lignite | 8111 | Unclear | | Tripathy 2015 (Tripathy 2015) Wang 2015 (Wang et al. 2015) | lignite
Mining | of coal and
(prevalence)
of coal and
(prevalence) | 4 | Unclear
2325 | Unclear
0 | India
China | Region
Region | Manual ope
miners in I
Manual coa
China | ndia | 05 Mining of coal
and lignite
05 Mining of coal
and lignite | 8111
Unclear | Unclear Mean (SD) 36.7 (8.5) years | | Study | Study type | : | Exposure assessme | nt | | | | | | | | | | Study ID | Study
design | Study
period | Exposure
definition | Unit for
which
exposure
was assessed | Mode of
exposure
data
collection | Exposure
assessment
methods | Type of exposure measure or estimate | Dates
covered by
exposure ass.
(years) | Shortest and
longest
exposure
period | Levels/ intensity of exposure | with | ntial co-exposure
other occupational
actors | | Bird 2004(
Bird et al.
2004) | Cross-
sectional
study | June-August
2001 or
2002 | Breathing zone
respirable coal
dust, mg/m3.
Exposed: Above
LOD | Individual
level | Technical
device | Active filter sampling with cyclone | Prevalence | 2001 or 2002 | Unclear | 199 out of 203
measurements below I
Range below LOD – 5
mg/m3. Estimated ov
mean below 0.3 mg/m
coal dust | LOD.
5.3
erall | ic, noise, heat stress | | Grove 2014 (
Grové et al.
2014) |
Cross-
sectional
study | 2006 | Breathing zone and
stationary
sampling of
respirable coal
dust, mg/m3.
Exposed: Above
LOD | Individual
level | Technical
device | Active filter
sampling with
cyclone | Prevalence | After 2008 | Full shift | AM 1.0–5.9 mg/m3
(min–max 0.9–9.2 mg | | coal dust and silica
ed | Potential co-exposure risk factors Unclear with other occupational Table 6 (continued) Study type Study 1990 period Study design Cross- Exposure assessment Unit for exposure Individual was assessed which Mode of exposure collection Technical data Exposure methods assessment Active filter Type of exposure estimate Prevalence measure or Dates (years) Unclear covered by exposure ass. Exposure definition Breathing zone Study Study ID Love 1997 (| Love 1997 (
Love et al.
1997) | sectiona
study | 1990
l | respirable mixed dust, mg/m3. Exposed: Above | lndividual
level | device | sampling with cyclone | Prevalen | ice Unclear | Full shift | Range 0.02–20 | 0.1 mg/m3 | Unclear | | |--|------------------------------|--------------------------|---|---------------------|---------------------|--|----------|---|----------------|---|--------------------------------|---|-------------------------------------| | Lu 2016 (Lu
2016) | Cross-
sectiona
study | 2014
I | Stationary
respirable coal
dust, mg/m3.
Exposed: Above
LOD | Group level | Technical
device | Area sampling
with
DUSTTRAK | Prevalen | 2014 | Unclear | AM (SD) 3.02-
(2.34–2.67) m | | Other metals
metalloids in
assessed (Fe,
Pb, Ni, Cd, an
Microbiologic
assessed | coal dust
Cu, Zn, Mn,
nd As): | | Mamuya 2006
(Mamuya
et al. 2006a;
Mamuya
et al. 2006b) | Cross-
sectional
study | 2003–2004 | Breathing zone respirable coal dust, mg/m3. Exposed: Above LOD | Individual
level | Technical
device | Active filter sampling with cyclone | Prevalen | ace 2003–2004 | 5–10 <i>h</i> | GM (GSD) 0.5
(5.37) Range (
mg/m3 | | Unclear | | | Piacitelli 1990
(Piacitelli
et al. 1990) | Cross-
sectiona
study | 1982–1986
l | Breathing zone respirable coal dust, mg/m3. Exposed: Above LOD | Group level | Technical
device | Active filter sampling with cyclone | Prevalen | nce 1980–1986 | Unclear | AM (SD) 0.6–0
mg/m3 |).7 (1.1–1.7) | Unclear | | | Tripathy 2015
(Tripathy
2015) | Cross-
sectiona
study | Unclear
l | Breathing zone PM10 Coal dust, mg/m3. Exposed: Above LOD | Individual
level | Technical
device | Active filter sampling | Prevalen | ice Unclear | Unclear | Range 4.6–29. | 5 mg/m3 | Unclear | | | Wang 2015 (
Wang et al.
2015) | Cross-
sectiona
study | 2013
1 | Coal dust, mg/m3.
Exposure definition
unclear | Unclear | Technical
device | Active filter sampling | Prevalen | ace 2013 | Unclear | AM 1.18-6.96 | mg/m3 | Unclear | | | Study | | Prevalence estimate | | | | | | | | | | | | | Study ID | | Prevalence estimate type | Definition of numera | tor population | Count in numerator | Number of stud
participants in
exposed group | у | Definition of denomin
population (source po | | Count in denominator | Number of participan unexposed | its in | Point estimate | | Bird 2004 (Bird 2004) | et al. | Prevalence | Exposed power plant v
United States of Ameri | | 4 | 4 | | Power plant workers in of America | United States | 203 | 199 | | 2% | | Grove 2014 (Gro | ové et al. | Prevalence | Exposed coal miners in | n South Africa | 42 | 42 | | Coal miners in South Af | frica | 42 | 0 | | 100% | | Love 1997 (Love
1997) | e et al. | Prevalence | Exposed worker in ope
coalmining in the Unit
Great Britain and Nort | ted Kingdom of | 626 | 626 | | Workers in opencast coathe United Kingdom of and Northern Ireland | | 626 | 0 | | 100% | | Lu 2016 (Lu 201
Mamuya 2006 (
Mamuya et al
Mamuya et al | . 2006a; | Prevalence
Prevalence | Exposed coal miners in
Exposed coal miners in
Republic of Tanzania | | 108
203 | 108
203 | | Coal miners in China
Coal miners in the Unite
Tanzania | ed Republic of | Unclear
204 | 0 | | 100%
99% | | | | | | | | | | | | | | (continued | on next page) | Shortest and longest period Full shift exposure Levels/ intensity of Range 0.02-20.1 mg/m3 exposure | 1 | | | |----|---|---------------------| | ۰ | ι | • | | | ¢ | ١ | | | ٠ | | | | ï | 3 | | | ì | • | | Ġ. | ŧ | | | | Š | 1 | | | ĕ | | | | ; | ۰ | | ĺ. | ١ | • | | ľ | 1 | | | ı | | ۰ | | 1 | ۰ | - | | | e | ١ | | | • | | | | • | | | ۰ | • | | | | ç | ١ | | ŀ | _ | | | | ١ | Poblo 6 (continued) | | | Prevalence
estimate | | | | | | | | |--|-----------------------------|---|-----------------------|---|--|-------------------------|---|-------------------| | | Prevalence
estimate type | Definition of numerator population | Count in
numerator | Number of study
participants in
exposed group | Definition of denominator population (source population) | Count in
denominator | Number of study
participants in
unexposed group | Point
estimate | | Piacitelli 1990 (
Piacitelli et al. 1990) | Prevalence | Exposed surface coal miners in the United States of America | | | Surface coal miners in the United States of America | 99,220 | | | | Tripathy 2015 (Tripathy 2015) | Prevalence | Exposed opencast coal miners in India | 4 | 4 | Opencast coal miners in India | 4 | 0 | 100% | | Wang 2015 (Wang et al. 2015) | Prevalence | Exposed coal miners in China | 2325 | 2325 | Coal miners in China | 2325 | 0 | 100% | Footnotes: Where a study includes two or more estimates/measures, the first entry in the table provides an overview of the information from the study. Estimate/measure-specific information is provided in subsequent linings, M: Arithmetic mean, SD: Standard deviation, GM: Geometric mean, GSD: Geometric standard deviation, LOD: level of detection, LOO: level of quantification records met the inclusion criteria. See Table 7 for a breakdown by industrial sector. The target population in all included studies was from major ISCO group 3, 7 and 9, and all measurements were performed among workers with manual work. No individual included study was population-based. For the industrial sector of Mining of coal and lignite (ISIC 05), we judged the body of evidence to probably capture all (or the great majority of) the industrial subsectors. For all other industrial sectors, all included studies collectively did not capture all industrial subsectors within the industrial sectors, and the respective body of evidence (i.e., all included studies together) also did not capture the entirety of the industrial sectors. 4.2.4.1. Study type. For coal dust, all studies for both prevalence and level were cross-sectional. #### 4.2.5. Population studied For coal dust the actual number of workers included in the studies may deviate from the number of measurements, i.e., two of the studies were based on group-based estimates, and therefore the number of workers is underestimated. On the other hand, several studies included more than one measurement per person, and this overestimates the number of workers included. Six of the included eight coal dust studies did not state the number of workers included, but only the number of measurements. Thus, the sum of workers indicated in Table 6 (3574) is far below the number of measurements (100,407). The sum of female workers indicated in Table 6 is 25, but the true proportion of males and females is unclear. Two studies included male workers only, one study included both male and female workers, and the rest (five studies) did not provide any information about the sex distribution. Most coal dust studies examined populations in the Africa and Western Pacific (two studies from two countries, and two studies from one country, respectively). The most commonly studied countries were the People's Republic of China (two studies) and the United States of America (two studies). The most studied industrial sector for occupational exposure to coal dust was Mining of coal and lignite (seven studies). One study was conducted in the Electricity, gas, steam and air conditioning supply industry. The occupations studied in most coal dust studies were "Mining and Quarrying Labourers" (four studies), followed by "Miners and Quarries" (two studies) and "Power Production Plant Operators" (one study). #### 4.2.6. Exposure studied All eight included coal dust studies used active filter sampling and gravimetric assessment of coal dust. Five studies included personal air sampling, two studies stationary measurements, and one study didn't specify the collection method. Five studies assessed respirable coal dust, two studies other particle size fractions, and one study did not define the collected particle fraction. In seven studies, occupational exposure to coal dust was defined as coal dust measurements above the LOD, in one study the definition was unclear. Five studies assessed exposure at an individual level, in two studies (one using personal and one stationary measurements) exposure was expressed at group level, while for one study it was unclear. In all eight studies, current exposure (prevalence) was assessed. Measurements between the years 1980 and 2014 were identified. Three studies included full-shift measurement
(above 4 hours), and for the remaining five studies the sampling duration was unclear. Four studies presented a mean exposure level by AM (range 0.6–7.0 mg/m³), one study by GM (0.6 mg/m³), and three studies by other methods, e.g., range. For seven studies a prevalence estimate was available, ranging from 0.02 to 1.00. Table 7 Study and measurement numbers by industrial sector, for prevalence and level of occupational exposure to coal dust. | Industrial sector | Prevalence | | | | Level | | | | |------------------------------------|-------------------------------|---------------------|-------------------|------------------------|-------------------------------|---------------------|-------------------|------------------------| | | Number of entries and studies | Number of countries | Number of regions | Number of measurements | Number of entries and studies | Number of countries | Number of regions | Number of measurements | | Mining (coal and lignite) | 6 entries from 6 studies | 5 | 4 | 3309 | 5 entries from 3 studies | 3 | 3 | 100,092 | | Electricity, gas
and air supply | 1 entry from 1 study | 1 | 1 | 203 | 1 entry from 1 study | 1 | 1 | 4 | Table 8 Risk of bias in included studies, Prevalence and level of occupational exposure to silica by industrial sector Construction: Construction of buildings (41), Civil engineering (42), Specialized construction activities (43). | Cohort | Azari 2009 | Bakke 2001 | Bakke 2014 | Galea 2016 | Guenel 1989 | Hammond 2016 | Huizer 2010 | Khoza 2012 | Linch 2002 | Nij 2003 | Normohammadi 2016 | Radnoff 2014 | Rappaport 2003 | Scarselli 2014 | Tavakol 2017 | Ulvestad 2000 | Ulvestad 2001a | van Deurssen 2014 | Woskie 2002 | Yassin 2005 | |--|-------------|-------------|-------------|------------|-------------|--------------|-------------|-------------|------------|-------------|-------------------|------------------|----------------|----------------|--------------|---------------|----------------|-------------------|-------------|-------------| | Meta-analysis | Prev, Level | Prev, Level | Prev, Level | Level | Prev | Prev, Level | Prev | Prev, Level | Prev | Prev, Level Prev | Level | | Industrial sector (ISIC 4) | 41;
42 | 42;
43 | 42 | 42 | 42 | 42;
43 | 43 | 41 | 41 | 41 | 43 | 41;
42;
43 | 41;
43 | 41 | 41 | 41;
42 | 42;
43 | 41;
43 | 43 | 42 | | Bias in selection of participants into the study | Н | PL | PL | PH | PH | PH | PH | Н | Н | PH | PL | PH | PH | РН | PL | PL | L | PL | PL | PH | | Bias due to lack of blinding of study personnel | PL | PL | PL | PL | L | PL | PH | PH | PL | PH | PL | Bias due to exposure misclassification | L | L | PH | PL | PL | L | PL | L | L | L | L | PH | L | PH | L | PL | PL | L | PH | PH | | Bias due to incomplete exposure data | PL | PL | PL | PH | PH | PL | PH | PL | PL | PL | PL | PL | PH | NR | PL | PH | PL | PL | PL | L | | Bias due to selective reporting of exposures | PL | П | п | PH | PL | PL | L | Н | PL | PL | PL | L | PL | NR | NR | L | п | п | PL | L | | Bias due to conflicts of interest | PL | PL | PH | PL | L | L | PH | PL | L | PL | L | PL | L | РН | PL | PH | PH | PL | L | PL | | Bias due to differences in
numerator and
denominator | PH | L | L | PH | L | PH | PH | PH | PH | PL | PH | PL | PH | NR | L | NR | L | L | L | L | | Other bias | L | PL | Ы | L | L | L | L. | L | L | ٦ | PH | L | L. | L | PH | NR | ۳ | ب | ٦ | PH | #### 4.3. Characteristics of studies awaiting classification We did not identify any studies that are awaiting classification. #### 4.4. Risk of bias within studies The risk of bias tables for each study with a rationale for the rating by RoB-SPEO risk of bias domain (Pega et al. 2020) are presented in Appendices 4-6 in the Supplementary data. #### 4.4.1. Occupational exposure to silica Tables 8-13 present an overview of risk of bias in included studies by industrial sector, where ISIC-4 codes at the level of 2-digits were merged for Construction, Manufacture and Mining. Table 9 Risk of bias in included studies, Prevalence and level of occupational exposure to silica by industrial sector Manufacturing: Manufacture of chemicals and chemical products (20), Manufacture of other non-metallic mineral product (23), Manufacture of basic metals (24), Manufacture of furniture (31), Other manufacturing (32). | Cohort | Andersson 2009 | Azari 2009 | Carneiro 2017 | Chen 2007 | Dion 2005 | Chen 2012 | Estellita 2010 | Foreland 2008 | Guenel 1989 | Healy 2014 | Koo 2000 | Khoza 2012 | Love 1999 | Omidianidost 2015 | Oudyk 1995 | Radnoff 2014 | Rees 1992 | Rokni 2016 | Saiyed 1995 | Sayler 2018 | Scarselli 2014 | Siltanen 1976 | Wang 2015 | Yassin 2005 | Zarei 2017 | Zhuang 2001 | |---|----------------|------------------|---------------|-----------|-----------|-------------|----------------|---------------|-------------|------------|----------|------------------|-----------|-------------------|-------------|------------------|-----------|------------------|-------------|-------------|------------------|---------------|-----------|-------------|-------------|-------------| | Meta-analysis | Prev, Level | Prev, Level | Prev, Level | Prev | Prev | Prev, Level | Prev | Prev, Level | Prev | Prev | Prev | Prev, Level | Prev | Prev | Prev, Level | Prev, Level | Prev | Prev, Level | Prev | Prev, Level | Prev, Level | Prev | Prev | Level | Prev, Level | Prev, Level | | Industrial sector (ISIC 4) | 24 | 23;
24;
32 | 23 | 23 | 20 | 23 | 23 | 23 | 23;
42 | 23 | 24 | 23;
24;
32 | 23 | 24 | 24 | 23;
24;
32 | 23 | 23;
24;
32 | 32 | 23 | 23;
24;
31 | 24 | 23 | 24 | 24 | 23 | | Bias in selection of participants into the study | PL | Н | PH | РН | PH | L | Н | PH | PH | PL | Н | Н | L | РН | PL | PH | PL | L | PL | L | PH | PL | PL | РН | PL | Н | | Bias due to lack of blinding of study personnel | PH | PL L | L | PH | РН | L | PL | L | PL | PL | PL | PL | NR | PL | PL | PL | PL | PL | PL | | Bias due to exposure misclassification | PH | L | L | L | п | L | РН | L | PL | L | L | L | PL | Н | Н | PH | PL | L | РН | L | РН | L | PL | РН | L | PL | | Bias due to incomplete exposure data | PH | PL | PL | РН | PL | PL | PL | PL | PH | PL | РН | PL | PL | PL | PL | PL | PL | L | H | L | NR | L | PL | L | L | PL | | Bias due to selective reporting of exposures | PL | PL | PL | PL | PL | L | Н | PL | PL | PL | PL | Н | PL | L | L | L | PL | ш | PL | L | NR | РН | PL | ш | PL | PL | | Bias due to conflicts of interest | PH | PL | PL | PL | PH | PL | PL | PL | L | PL | PL | PL | PH | PL | L | PL | L | L | PH | L | РН | PH | PL | PL | L | PL | | Bias due to differences in
numerator and denominator | L | PH | L | NR | L | L | L | NR | L | L | PH | PH | L | L | L | PL | PH | L | PL | NR | NR | L | PL | L | L | PH | | Other bias | L | L | L | L | L | L | L | L | L | L | L | L | L | PL | L | L | L | L | ш | NR | П | PL | NR | PH | PL | L | #### 4.4.1.1. Construction 4.4.1.1.1. Prevalence. Across the 18 included studies (Table 8), risk of bias was high or probably high for ten studies for bias in selection of participants into the study, three studies for bias due to lack of blinding of study personnel, four studies for bias due to exposure misclassification, four studies for bias due to incomplete exposure data, one study for bias due to selective reporting of exposures, five studies for bias due to conflicts of interest, seven studies for bias due to differences in numerator and denominator, and two studies for other bias. 4.4.1.1.2. Level. Across the 16 included studies (Table 8), risk of bias was high or probably high for nine studies for bias in selection of participants into the study, two studies for bias due to lack of blinding of study personnel, four studies for bias due to exposure misclassification, three studies for bias due to incomplete exposure data, two studies for bias due to selective reporting of exposures, four studies for bias due to conflicts of interest, six studies for bias due to differences in numerator and denominator, and three studies for other bias. #### 4.4.1.2. Manufacturing 4.4.1.2.1. Prevalence. Across the 25 included studies (Table 9), risk of bias was high or probably high for 13 studies for bias in selection of participants into the study, three studies for bias due to lack of blinding of study personnel, seven studies for bias due to exposure misclassification, five studies for bias due to incomplete exposure data, three studies for bias due to selective reporting of exposures, six studies for bias due to conflicts of interest and five studies for bias due to differences in numerator and denominator. 4.4.1.2.2. Level. Across the 14 included studies (Table 9), risk of bias was high or probably high for eight studies for bias in selection of participants into the study, two studies for bias due to lack of blinding of study personnel, five studies for bias due to exposure misclassification, one study for bias due to incomplete exposure data, one study for bias due to selective reporting of exposures, two studies for bias due to conflicts of interest, three studies for bias due to differences in numerator and denominator, and one study for other bias. #### 4.4.1.3. Mining 4.4.1.3.1. Prevalence. Across the 21 included studies (Table 10), risk of bias was high or probably high for nine studies for bias in selection of participants into the study, one study for bias due to lack of blinding of study personnel, four studies for bias due to exposure misclassification, four studies for bias due to incomplete exposure data, one study for bias due to selective reporting of exposures, one study for bias due to conflicts of interest, six studies for bias due to differences in numerator and denominator, and two studies for other bias. 4.4.1.3.2. Level. Across the 17 included studies (Table 10), risk of bias was high or probably high for six
studies for bias in selection of participants into the study, one study for bias due to lack of blinding of study personnel, five studies for bias due to exposure misclassification, three studies for bias due to incomplete exposure data, one study for bias due to selective reporting of exposures, one study for bias due to conflicts of interest, five studies for bias due to differences in numerator and denominator, and two studies for other bias. #### 4.4.1.4. Crop and animal production 4.4.1.4.1. Prevalence. Across the three included studies (Table 11), risk of bias was high or probably high for one study for bias in selection of participants into the study, one study for bias due to lack of blinding of study personnel, one study for bias due to selective reporting of exposures, and one study for bias due to differences in numerator and denominator. 4.4.1.4.2. Level. Across the two included studies (Table 11), risk of Table 10 Risk of bias in included studies, Prevalence and level of occupational exposure to silica for industrial sector Mining: Mining of coal and lignite (05), Mining of metal ores (07), Other mining and quarrying (08). | Cohort | Azari 2009 | Chen 2012 | Churchyard 2004 | Estellita 2010 | Golbabaei 2004 | Gottesfeld 2015 | Green 2008 | Hayumbu 2008 | Kreiss 1996 | Kullman 1995 | Lee, 2014 | Love 1997 | Mamuya 2006 | Pandey 2018 | Peters 2017 | Radnoff 2014 | Rando 2001 | Rokni 2016 | Sanderson 2000 | Verma 2014 | WattsJr 2012 | Weeks 2006 | Yassin 2005 | Yingratanasuk 2002 | Zhuang 2001 | |---|-------------|-------------|-----------------|----------------|----------------|-----------------|------------|--------------|-------------|--------------|-----------|-----------|-------------|-------------|-------------|--------------|------------|-------------|----------------|-------------|--------------|-------------|-------------|--------------------|-------------| | Meta-analysis | Prev, Level | Prev, Level | Prev, Level | Prev | Prev | Prev, Level | Prev | Prev | Level | Prev, Level | Prev | Prev | Prev, Level | Prev | Prev, Level | Prev, Level | Level | Prev, Level | Prev, Level | Prev, Level | Level | Prev, Level | Level | Prev | Prev, Level | | Industrial sector (ISIC 4) | 8 | 7 | 7 | 8 | 8 | 7 | 8 | 7 | 7 | 8 | 8 | 8 | 8 | 5 | 7 | 8 | 8 | 8 | 8 | 7 | 7,8 | 7 | 8 | 8 | 7 | | Bias in selection of participants into the study | Н | L | PL | Н | PH | PH | PH | PL | PH | PL | Н | PL | PL | PH | L | PH | PL | L | PL | L | L | L | PH | PL | Н | | Bias due to lack of blinding of study personnel | PL | PL | L | PL | PL | PL | PL | PL | PL | L | L | РН | PL | L | PL | PL | РН | PL | PL | PL | L | L | PL | PL | PL | | Bias due to exposure misclassification | L | L | L | PH | L | L | PL | PL | PH | L | Н | L | PL | L | PL | PH | PH | L | PH | L | L | L | PH | PL | PL | | Bias due to incomplete exposure data | PL | PL | PH | PL | PH | PL | PL | PL | PH | PL | L | PH | PH | L | PL | PL | L | L | PL | L | L | L | L | L | PL | | Bias due to selective reporting of exposures | PL | L | PL | Н | PL | PL | PL | PL | PH | PL | PL | PL | PL | PL | PL | L | L | L | PL | L | L | L | L | PL | PL | | Bias due to conflicts of interest | PL | PL | PL | PL | NR | PL | PL | PL | PH | PL | PL | PH | L | PL | PL | PL | L | L | PL | PL | L | PL | PL | PL | PL | | Bias due to differences in
numerator and denominator | PH | L | L | L | NR | PH | PH | PL | L | PL | L | PL | PH | L | PL | PL | L | L | PH | L | L | L | L | PL | PH | | Other bias | L | L | L | L | L | L | PH | L | L | L | L | L | L | L | L | L | NR | L | L | PH | L | L | PH | L | L | Legend Low PL Probably low PH Probably high H High NR Not reported/not applicable bias was high or probably high for one study for bias in selection of participants into the study, one study for bias due to selective reporting of exposures, and one study for bias due to differences in numerator and denominator. #### 4.4.1.5. Electricity, gas, steam and air conditioning supply 4.4.1.5.1. Prevalence. Across the two included studies (Table 12), risk of bias was high or probably high for two studies for bias in selection of participants into the study and one study for bias due to exposure misclassification. *4.4.1.5.2. Level.* For the one study in the body of evidence (Table 12), risk of bias was high or probably high for bias in selection of participants into the study and for bias due to exposure misclassification. #### 4.4.1.6. Professional, scientific and technical activities **4.4.1.6.1.** *Prevalence.* For the one study in the body of evidence (Table 13), risk of bias was high or probably high for bias in selection of participants into the study and for bias due to differences in numerator and denominator. 4.4.1.6.2. Level. Across the two included studies (Table 13), risk of bias was high or probably high for two studies for bias in selection of participants into the study, one study for bias due to exposure misclassification and two studies for bias due to differences in numerator and denominator. #### 4.4.2. Occupational exposure to asbestos Tables 14-18 present an overview of risk of bias in included studies by industrial sector, where ISIC-4 2-digit codes were merged for Construction (as here defined; not as per ISIC) and Manufacture (as here defined). #### 4.4.2.1. Construction 4.4.2.1.1. Prevalence. Across the six included studies (Table 14), risk of bias was high or probably high for one study for bias in selection of participants into the study, two studies for bias due to exposure misclassification, one studies for bias due to incomplete exposure data, one study for selective reporting of exposures, and one study for bias due to differences in numerator and denominator. 4.4.2.1.2. Level. Across the six included studies (Table 14), risk of bias was high or probably high for two studies for bias in selection of participants into the study, one study for bias due to exposure misclassification, and one study for bias due to incomplete exposure data. #### 4.4.2.2. Manufacturing 4.4.2.2.1. Prevalence. Across the seven included studies (Table 15), risk of bias was high or probably high for six studies for bias in selection of participants into the study, one study for bias due to exposure misclassification, one study for bias due to incomplete exposure data, two studies for bias due to selective reporting of exposures, three studies for bias due to differences in numerator and denominator, and two studies due to other bias. 4.4.2.2.2. Level. Across the five included studies (Table 15), risk of bias was high or probably high for five studies for bias in selection of participants into the study, one study for bias due to exposure misclassification, one study for bias due to incomplete exposure data, one study for bias due to selective reporting of exposures, and one study for bias due to differences in numerator and denominator. #### 4.4.2.3. Other mining and quarrying *4.4.2.3.1. Prevalence.* For the one study in the body of evidence (Table 16), risk of bias was high or probably high for bias in selection of Table 11 Risk of bias in included studies, Prevalence and level of occupational exposure to silica for industrial sector Crop and animal production (01). | Cohort | Archer 2003 | Nieuwenhuijsen 1999 | Swanepoel 2011 | |--|-------------|---------------------|----------------| | Meta-analysis | Prev, Level | Prev | Prev, Level | | Industrial sector (ISIC 4) | 1 | 1 | 1 | | Bias in selection of participants into the study | Н | PL | PL | | Bias due to lack of blinding of study personnel | L | PH | PL | | Bias due to exposure misclassification | L | L | PL | | Bias due to incomplete exposure data | L | PL | PL | | Bias due to selective reporting of exposures | Н | PL | PL | | Bias due to conflicts of interest | L | L | PL | | Bias due to differences in numerator and denominator | L | PL | PH | | Other bias | L | L | L | # Legend Low PL Probably low PH Probably high H High NR Not reported/not applicable participants into the study, bias due to lack of blinding of study personnel, bias due to incomplete exposure data, bias due to selective reporting of exposures, and bias due to differences in numerator and denominator. *4.4.2.3.2. Level.* The body of evidence for levels comprised the same study as the body of evidence for prevalence for occupational exposure to asbestos in Other mining and quarrying. #### 4.4.2.4. Electricity, gas, steam and air conditioning supply 4.4.2.4.1. Prevalence. Across the two included studies (Table 17), risk of bias was high or probably high for one study for bias in selection of participants into the study, one study for bias due to incomplete exposure data, and one study for bias due to differences in numerator and denominator. 4.4.2.4.2. Level. For the one study in the body of evidence (Table 17), risk of bias was high or probably high for bias in selection of participants into the study, bias due to incomplete exposure data, and bias due to differences in numerator and denominator. #### 4.4.2.5. Water supply, sewerage, waste management and remediation 4.4.2.5.1. Prevalence. No included studies considered prevalence of occupational exposure to asbestos in Water supply, sewerage, waste management and remediation. 4.4.2.5.2. Level. For the one study in the body of evidence (Table 18), risk of bias was rated low across all domains. ### 4.4.3. Prevalence and level of occupational exposure to coal dust by industrial sector Tables 19-20 present an overview of risk of bias in included studies by industrial sector. #### 4.4.3.1. Mining of coal and lignite 4.4.3.1.1. Prevalence. Across the six included studies (Table 19), risk of bias was high or probably high for four studies for bias in selection of participants into the study, one study for bias due to lack of blinding of study personnel, two studies for bias due to incomplete exposure data, one
study for bias due to selective reporting of exposures, two studies for bias due to conflicts of interest, and two studies for bias due to differences in numerator and denominator. 4.4.3.1.2. Level. Across the three included studies (Table 19), risk of bias was high or probably high for three studies for bias in selection of participants into the study, one study due to exposure misclassification, one study for bias due to incomplete exposure data, two studies for bias due to selective reporting of exposures, and one study for bias due to differences in numerator and denominator. #### 4.4.3.2. Electricity, gas, steam and air conditioning supply 4.4.3.2.1. Prevalence. For the one study in the body of evidence Table 12 Risk of bias in included studies, Prevalence and level of occupational exposure to silica for industrial sector Electricity, gas, steam and air conditioning supply (35). | Cohort | Hicks 2006 | Radnoff 2014a-2014b | |--|------------|---------------------| | Meta-analysis | Prev | Prev, Level | | Industrial sector (ISIC 4) | 35 | 35 | | Bias in selection of participants into the study | РН | РН | | Bias due to lack of blinding of study personnel | L | PL | | Bias due to exposure misclassification | L | PH | | Bias due to incomplete exposure data | PL | PL | | Bias due to selective reporting of exposures | PL | L | | Bias due to conflicts of interest | L | PL | | Bias due to differences in numerator and denominator | PL | PL | | Other bias | L | L | #### Legend (Table 20), risk of bias was rated low across all domains. 4.4.3.2.2. Level. The body of evidence for level of exposure comprised the same study as the body of evidence for prevalence for occupational exposure to coal dust in Electricity, gas, steam and air conditioning supply. #### 4.4.4. Results from studies excluded from the meta-analysis Tables on results from studies excluded from the *meta*-analyses on prevalences and levels for silica, asbestos and coal dust, respectively, as well as the reasons for their exclusion from the *meta*-analyses are available in Appendix 7 of the Supplementary data. The results are briefly described below by type of exposure. 4.4.4.1. Occupational exposure to silica. Nine out of 65 silica studies were not included in the *meta*-analyses for prevalence. For seven studies, no information on the prevalence was available, and for the two remaining studies, the prevalence ranges between 5% and up to "below 100%". Twenty-five out of 65 silica studies were not included in the *meta*-analyses for level of exposure. Not included studies did not present an eligible summary measure for *meta*-analysis and had a large variability in exposure levels ranging from LOD to 47 mg/m³. Taken together, the excluded studies did not systematically present lower or higher levels compared to the *meta*-analysed result. 4.4.4.2. Occupational exposure to asbestos. Two out of 18 asbestos studies were not included in the *meta*-analysis for prevalence. In these two studies no information on the actual prevalence was available. Not reported/not applicable Six out of 18 asbestos studies were not included in the *meta*-analyses for level of exposure. Not included studies did not present an eligible summary measure for *meta*-analysis and had a large variability in exposure levels ranging from LOD to 16 f/ml. The excluded studies tended to present higher exposure levels compared to the *meta*-analyzed results 4.4.4.3. Occupational exposure to coal dust. One out of eight coal dust studies was not included in the *meta*-analysis for prevalence. For this study no information on prevalence was available. Four out of eight coal dust studies were not included in the *meta*-analyses for level of exposure. The studies that were not included did not present an eligible summary measure for *meta*-analysis and had a large variability in exposure levels ranging from 0.02 to 30 mg/m³. Exposure levels tend to be higher compared to the *meta*-analyzed results. #### 4.5. Evidence synthesis Measurements from each of the sectors were considered sufficiently clinically homogenous to be included in the same quantitative *meta*-analysis, where ISIC-4 2-digit coded were merged for construction, manufacture and mining. Clinical homogeneity is the lack of clinical heterogeneity, which can be defined as "differences in participant characteristics, [and] types or timing of outcome [or exposure] Table 13 Risk of bias in included studies, Prevalence and level of occupational exposure to silica for industrial sector Professional, scientific and technical activities (71, 74). | Cohort | Grove 2014 | Love 1997 | Lu 2016 | Mamuya 2006 | Piacitelli 1990 | Tripathy 2015 | Wang 2015 | |--|------------|-----------|-------------|-------------|-----------------|---------------|-----------| | Meta-analysis | Prev | Prev | Prev, Level | Prev, Level | Level | Prev | Prev | | Industrial sector (ISIC 4) | 5 | 5 | 5 | 5 | 5 | 5 | 5 | | Bias in selection of participants into the study | PH | PL | PH | PH | Н | Н | L | | Bias due to lack of blinding of study personnel | L | PH | NR | PL | PL | PL | NR | | Bias due to exposure misclassification | L | L | L | PL | PH | L | L | | Bias due to incomplete exposure data | PL | PH | PL | PH | PL | PL | NR | | Bias due to selective reporting of exposures | PL | PL | PH | PL | PH | PL | ٦ | | Bias due to conflicts of interest | PL | PH | L | L | L | Н | NR | | Bias due to differences in numerator and denominator | L | PL | PL | PH | PL | PH | NR | | Other bias | L | L | L | L | L | L | NR | #### Legend L Low PL Probably low PH Probably high H High NR Not reported/not applicable measurements" (Chess and Gagnier 2016). #### 4.5.1. Occupational exposure to silica #### 4.5.1.1. Construction (ISIC 41-43) 4.5.1.1.1. Prevalence. The pooled prevalence estimate for Construction (ISIC 41–43, 17 studies, 2479 measurements, eight countries), was 0.89 (95% CI 0.84 to 0.93), with a moderate statistical heterogeneity (I^2 91%) (Fig. 2). 4.5.1.1.2. *Level.* The pooled level estimate for Construction (ISIC 41–43, 16 studies, 2352 measurements, seven countries), was 0.06 mg/m^3 (95% CI 0.05 to 0.06), with a high statistical heterogeneity (I² 100%) (Fig. 3). #### 4.5.1.2. Manufacturing (ISIC 20, 23–25, 27, 31–32) 4.5.1.2.1. Prevalence. The pooled prevalence estimate for Manufacturing (ISIC 20, 23–25, 27, 31–32, 24 studies, 40,073 measurements, 14 countries), was 0.85 (95% CI 0.78 to 0.91), with a high statistical heterogeneity (I^2 100%) (Fig. 4). 4.5.1.2.2. Level. The pooled level estimate for Manufacturing (ISIC 20, 23–25, 27, 31–32, 13 studies, 7733 measurements, nine countries), was 0.10 mg/m 3 (95% CI 0.09 to 0.11), with a high statistical heterogeneity (I 2 100%) (Fig. 5). #### 4.5.1.3. Mining (ISIC 05, 07, 08) 4.5.1.3.1. Prevalence. The pooled prevalence estimate for Mining (ISIC 05, 07, 08, 20 studies, 222,276 measurements, 13 countries), was 0.75 (95% CI 0.68 to 0.82), with a high statistical heterogeneity (I 2 100%) (Fig. 6). 4.5.1.3.2. Level. The pooled level estimate for Mining (ISIC 05, 07, 08, 17 studies, 2,429,043 measurements, seven countries), was 0.04 mg/m 3 (95% CI 0.03 to 0.05), with a high statistical heterogeneity (I 2 100 %) (Fig. 7). 4.5.1.4. Crop and animal production, hunting and related service activities (ISIC 01) *4.5.1.4.1. Prevalence.* The pooled prevalence estimate for Crop and animal production, hunting and related service activities (ISIC 01, three studies, 479 measurements, two countries), was 0.67 (95% CI 0.48 to 0.84), with a moderate statistical heterogeneity (I^2 93%) (Fig. 8). *4.5.1.4.2. Level.* The pooled level estimate for Crop and animal production, hunting and related service activities (ISIC 01, two studies, 335 measurements, two countries), was 0.13 mg/m 3 (95% CI -0.09 to 0.35), with a moderate statistical heterogeneity (I 2 89 %) (Fig. 9). #### 4.5.1.5. Electricity, gas, steam and air conditioning supply (ISIC 35) *4.5.1.5.1. Prevalence.* The pooled prevalence estimate for Electricity, gas, steam and air conditioning supply (ISIC 35, two studies, 136 measurements, two countries), was 0.69 (95% CI 0.51 to 0.84), with a moderate statistical heterogeneity ($\rm I^2$ 66%) (Fig. 10). *4.5.1.5.2. Level.* The level estimate for Electricity, gas, steam and air conditioning supply (ISIC 35) came from one study (28 measurements, one country). The estimate produced, once entered into RevMan, was 0.02 mg/m^3 (95% CI -0.01 to 0.06). Table 14 Risk of bias in included studies, Prevalence and level of occupational exposure to asbestos for industrial sector Construction: Construction of buildings (41), Specialized construction activities (43), Wholesale, retail trade, repair of vehicles and motorbikes (45). | Cohort | Kakooei 2014 | Kauffer 2007 | Maino 1995 | Massaro 2012 | Perkins 2008 | Scarselli 2016 | Wilmoth 1994 | |--|--------------|------------------|-------------|--------------|--------------|----------------|--------------| | Meta-analysis | Prev, Level | Level | Prev, Level | Prev, Level | Prev, Level | Prev, Level | Prev | | Industrial sector (ISIC 4) | 43 | 41,
43,
45 | 43 | 43 | 43 | 41,
43 | 43 | | Bias in selection of
participants into the study | PL | PH | PH | PL | L | L | PL | | Bias due to lack of blinding of study personnel | PL | PL | PL | PL | L | L | PL | | Bias due to exposure misclassification | PL | PL | PH | L | L | L | PH | | Bias due to incomplete exposure data | L | PL | PH | L | PL | L | L | | Bias due to selective reporting of exposures | PL | PL | PL | PL | L | L | PH | | Bias due to conflicts of interest | PL | PL | PL | PL | L | L | PL | | Bias due to differences in numerator and denominator | PL | PL | PL | PL | L | L | PH | | Other bias | ٦ | L | L | L | ٦ | L | L | ## L Low PL Probably low Probably
low PH Probably high H High #### 4.5.1.6. Professional, scientific and technical activities (ISIC 71,74) 4.5.1.6.1. Prevalence. The prevalence estimate for Professional, scientific and technical activities (ISIC 71,74) came from one study (41 measurements, 1 country). The estimate produced, once entered into MetaXL, was 0.99 (95% CI 0.96 to 1.00). *4.5.1.6.2. Level.* The pooled level estimate for Professional, scientific and technical activities (ISIC 71, 74, two studies, 87 measurements, two countries), was 0.01 mg/m^3 (95% CI -0.00 to 0.02), with a moderate statistical heterogeneity ($1^2 86 \%$) (Fig. 11). #### 4.5.2. Occupational exposure to asbestos #### 4.5.2.1. Construction (ISIC 41, 43, 45) 4.5.2.1.1. Prevalence. The pooled prevalence estimate for Construction (ISIC 41, 43, 45, six studies, 16,580 measurements, three countries), was 0.77 (95% CI 0.65 to 0.87), with a high statistical heterogeneity ($\rm I^2$ 99%) (Fig. 12). 4.5.2.1.2. Level. The pooled level estimate for Construction (ISIC 41, 43, 45, six studies, 12,240 measurements, four countries), was 0.02 f/cm^3 (95% CI 0.01 to 0.02), with a high statistical heterogeneity (I² 100 %) (Fig. 13). #### 4.5.2.2. Manufacturing (ISIC 13, 23, 24, 29, 30) *4.5.2.2.1. Prevalence.* The pooled prevalence estimate for Manufacturing (ISIC 13, 23, 24, 29, 30, seven studies, 1225 measurements, five countries), was 0.99 (95% CI 0.96 to 1.00), with a moderate statistical heterogeneity (I^2 75%) (Fig. 14). The pooled level estimate for Manufacturing (ISIC 13, 23, 24, 29, 30, five studies, 1432 measurements, five countries), was 0.16 f/cm^3 (95% CI 0.10 to 0.21), with a high statistical heterogeneity (I^2 97%) (Fig. 15). #### 4.5.2.3. Other mining and quarrying (ISIC 08) Not reported/not applicable *4.5.2.3.1. Prevalence.* The pooled prevalence estimate for Other mining and quarrying (ISIC 08) came from one study (89 measurements, one country). The estimate produced, once entered into MetaXL, was 0.85 (95% CI 0.77 to 0.91). 4.5.2.3.2. Level. The pooled level estimate for Other mining and quarrying (ISIC 08) came from one study (89 measurements, one country). The estimate produced, once entered into RevMan, was $0.01~\rm f/cm^3$ (95% CI 0.01 to 0.02). #### 4.5.2.4. Electricity, gas, steam and air conditioning supply (ISIC 35) *4.5.2.4.1. Prevalence.* The pooled prevalence estimate for Electricity, gas, steam and air conditioning supply (ISIC 35, two studies, 108 measurements, two countries), was 0.64 (95% CI 0.00 to 1.00), with a high statistical heterogeneity (I² 99%) (Fig. 16). *4.5.2.4.2. Level.* The level estimate for Electricity, gas, steam and air conditioning supply (ISIC 35) came from one study (46 measurements, one country). The estimate produced, once entered into RevMan, was 0.40 f/cm^3 (95% CI 0.21 to 0.58). 4.5.2.5. Water supply; sewerage, waste management and remediation (ISIC 37) *4.5.2.5.1. Prevalence.* There were no included studies that considered prevalence of occupational exposure to asbestos in the industrial sector of Water supply; sewerage, waste management and remediation (ISIC 37). *4.5.2.5.2. Level.* The level estimate for Water supply; sewerage, waste management and remediation (ISIC 37) came from one study (4507 measurements, one country). The estimate produced, once entered into RevMan, was 0.00 f/cm³ (95% CI 0.00 to 0.00). Table 15 Risk of bias in included studies, Prevalence and level of occupational exposure to asbestos for industrial sector Manufacturing: Manufacture of textiles (13), Manufacture of other non-metallic mineral product (23), Manufacture of basic metals (24), Manufacture of motor vehicles, trailers and semi-trailers (29), Manufacture of other transport equipment (30). | Cohort | Ahmad Ansari 2007 | Borton 2012 | Kakooei 2007 | Kauffer 2007 | Marioryad 2011 | Panahi 2011 | Phanprasit 2009 | Wang 2012 | |--|-------------------|-------------|--------------|------------------------|----------------|-------------|-----------------|-----------| | Meta-analysis | Prev, Level | Prev | Prev | Level | Prev, Level | Prev, Level | Prev, Level | Prev | | Industrial sector (ISIC 4) | 23 | 23 | 30 | 13,
23
24,
29 | 23 | 23 | 23 | 23 | | Bias in selection of
participants into the study | Н | PH | Н | PH | PH | PH | PH | L | | Bias due to lack of blinding of study personnel | PL | Bias due to exposure misclassification | L | PL | L | PL | L | PH | L | PL | | Bias due to incomplete exposure data | PL | PL | PL | PL | PL | PH | L | L | | Bias due to selective reporting of exposures | PL | PL | PH | PL | PL | Ι | PL | ٦ | | Bias due to conflicts of interest | PL | PL | PL | PL | L | L | PL | PL | | Bias due to differences in numerator and denominator | L | PH | PH | PL | PH | L | NR | PL | | Other bias | L | L | PH | L | L | L | L | PH | #### Legend PH Probably high #### 4.5.3. Occupational exposure to coal dust #### 4.5.3.1. Mining of coal and lignite (ISIC 05) 4.5.3.1.1. Prevalence. The pooled prevalence estimate for Mining of coal and lignite (ISIC 05, six studies, 3309 measurements, five countries), was 1.00 (95% CI 1.00 to 1.00), with a low statistical heterogeneity (I^2 16%) (Fig. 17). 4.5.3.1.2. Level. The pooled level estimate for Mining of coal and lignite (ISIC 05, three studies, 100,092 measurements, three countries), was 0.77 mg/m^3 (95% CI 0.68 to 0.86), with a high statistical heterogeneity (I^2 100%) (Fig. 18). #### 4.5.3.2. Electricity, gas, steam and air conditioning supply (ISIC 35) *4.5.3.2.1. Prevalence.* The prevalence estimate for Electricity, gas, steam and air conditioning supply (ISIC 35) came from one study (203 measurements, one country). The estimate produced, once entered into MetaXL, was 0.02 (95% CI 0.00 to 0.04). *4.5.3.2.2. Level.* The level estimate for Electricity, gas, steam and air conditioning supply (ISIC 35) came from one study (four measurements, one country). The estimate produced, once entered into RevMan, was 0.60 mg/m^3 (95% CI -6.95 to 8.14). #### 4.6. Additional analyses #### 4.6.1. Subgroup analysis, by WHO region Forest plots for subgroup analyses by WHO region can be found in Appendices 8–10 of the Supplementary data for exposures that have data for two or more WHO regions. Not reported/not applicable 4.6.1.1. Occupational exposure to silica. Table 21 presents the subgroup analyses for results by WHO region for prevalence and level of occupational exposure to silica for each industrial sector. For industrial sectors with more entries (Construction, Manufacturing and Mining) a large statistical heterogeneity within and between WHO regions was indicated suggesting that the prevalences and levels may differ substantially by WHO region for these industrial sectors. For the remaining sectors the number of entries was too limited to draw any conclusion. 4.6.1.2. Occupational exposure to asbestos. Table 22 presents the subgroup analyses for results by WHO region for prevalence and level of occupational exposure to asbestos for each industrial sector. For industrial sectors with more entries (Construction and Manufacturing) a large statistical heterogeneity within and between WHO regions was indicated suggesting that the prevalences and levels may differ substantially by WHO region for these industrial sectors. For the remaining sectors the number of entries was limited. For the remaining sectors the number of entries was too limited to draw any conclusion. 4.6.1.3. Occupational exposure to coal dust. Table 23 presents the subgroup analyses for results by WHO region for prevalence and level of occupational exposure to coal dust for each industrial sector. For the single industrial sector with more entries (Mining of coal and lignite) a low statistical heterogeneity and a very similar prevalence (99–100%) within and between WHO regions was evident. For levels, a large statistical heterogeneity was indicated suggesting that the levels may differ substantially by WHO region. For the remaining sectors the Table 16 Risk of bias in included studies, Prevalence and level of occupational exposure to asbestos for industrial sector Other mining and quarrying (08). | Cohort | Cattaneo 2012 | |---|---------------| | Meta-analysis | Prev, Level | | Industrial sector (ISIC 4) | 8 | | Bias in selection of participants into the study | PH | | Bias due to lack of blinding of study personnel | PH | | Bias due to exposure misclassification | PL | | Bias due to incomplete exposure data | РН | | Bias due to selective reporting of exposures | РН | | Bias due to conflicts of interest | PL | | Bias due to differences in
numerator and denominator | РН | | Other bias | L | | Legend | l | | | | | | | | | |--------|-----|----|--------------|----|---------------|---|------|----|-----------------------------| | L | Low | PL | Probably low | PH | Probably high | Н | High | NR | Not reported/not applicable | Table 17 Risk of bias in included studies, Prevalence and level of occupational exposure to asbestos for industrial sector Electricity, gas, steam and air conditioning supply (35). | Cohort | Bird 2004 | Damiran 2015 | |---|-----------|--------------| | Meta-analysis | Prev | Prev, Level | | Industrial sector (ISIC 4) | 35 | 35 | | Bias in selection of participants into the study | L | Н | | Bias due to lack of blinding of study personnel | L | PL | | Bias due to exposure misclassification | L | L | | Bias due to incomplete exposure data | L | PH | | Bias due to selective reporting of exposures | PL | PL | | Bias due to conflicts of interest | PL | PL | | Bias due to differences in
numerator and denominator | L | PH | | Other bias | L | L | ## L Low PL Probably low PH Probably high H High NR Not reported/not applicable Table 18 Risk of bias in included studies, Prevalence and
level of occupational exposure to asbestos for industrial sector Water supply, sewerage, waste management and remediation (37). | Cohort | Scarselli 2016 | |---|----------------| | Meta-analysis | Level | | Industrial sector (ISIC 4) | 37 | | Bias in selection of participants into the study | L | | Bias due to lack of blinding of study personnel | L | | Bias due to exposure misclassification | L | | Bias due to incomplete exposure data | L | | Bias due to selective reporting of exposures | L | | Bias due to conflicts of interest | L | | Bias due to differences in
numerator and denominator | L | | Other bias | L | #### Legend L Low PL Probably low PH Probably high H High NR Not reported/not applicable Table 19 Risk of bias in included studies, Prevalence and level of occupational exposure to coal dust for industrial sector Mining of coal and lignite (05). | Cohort | Grove 2014 | Love 1997 | Lu 2016 | Mamuya 2006a-b | Piacitelli 1990 | Tripathy 2015 | Wang 2015 | |--|------------|-----------|-------------|----------------|-----------------|---------------|-----------| | Meta-analysis | Prev | Prev | Prev, Level | Prev, Level | Level | Prev | Prev | | Industrial sector (ISIC 4) | 5 | 5 | 5 | 5 | 5 | 5 | 5 | | Bias in selection of participants into the study | PH | PL | PH | PH | Н | Н | L | | Bias due to lack of blinding of study personnel | L | PH | NR | PL | PL | PL | NR | | Bias due to exposure misclassification | L | L | L | PL | PH | L | L | | Bias due to incomplete exposure data | PL | PH | PL | PH | PL | PL | NR | | Bias due to selective reporting of exposures | PL | PL | PH | PL | PH | PL | L | | Bias due to conflicts of interest | PL | PH | L | L | L | Н | NR | | Bias due to differences in numerator and denominator | L | PL | PL | PH | PL | PH | NR | | Other bias | L | L | L | L | L | L | NR | #### Legend L Low PL Probably low PH Probably high H High NR Not reported/not applicable Table 20 Risk of bias in included studies, Prevalence and level of occupational exposure to coal dust for industrial sector Electricity, gas, steam and air conditioning supply (35). | Cohort | Bird 2004 | |---|-------------| | Meta-analysis | Prev, Level | | Industrial sector (ISIC 4) | 35 | | Bias in selection of participants into the study | L | | Bias due to lack of blinding of study personnel | L | | Bias due to exposure misclassification | L | | Bias due to incomplete exposure data | L | | Bias due to selective reporting of exposures | PL | | Bias due to conflicts of interest | PL | | Bias due to differences in
numerator and denominator | L | | Other bias | L | number of entries was too limited to draw any conclusion. ## 4.6.2. Sensitivity analysis, by risk of bias due to selection of participants into studies We carried out sensitivity analyses for each exposure to assess whether pooled estimates varied between studies considered at high/probably high risk of bias due to selection of participants into studies versus studies considered at low/probably low risk of bias due to selection of participants into studies. Forest plots are shown in Appendices 11–13 in the Supplementary data, for exposures whose bodies of evidence comprised studies with both high/probably high and low/probably low risk of bias due to selection of participants into studies. - 4.6.2.1. Occupational exposure to silica. Table 24 presents the sensitivity analyses for results by risk of bias due to selection region for prevalence and level of occupational exposure to silica. - 4.6.2.2. Occupational exposure to asbestos. Table 25 presents the sensitivity analyses for results by WHO region for prevalence and level of occupational exposure to asbestos for each industrial sector. - 4.6.2.3. Occupational exposure to coal dust. Table 26 presents the sensitivity analyses for results by WHO region for prevalence and level of occupational exposure to coal dust for each industrial sector. #### 4.7. Quality of evidence Using the QoE-SPEO approach (Pega et al. 2022b) for assessing quality of evidence of the entire body of evidence that WHO developed specifically for the WHO/ILO Joint Estimates, we judged the quality of evidence for each exposure, starting from a rating of high. Funnel plots, used in the assessment of publication bias for bodies of evidence comprising at least 10 studies, can be found in Appendix 14 of the Supplementary data (silica only, as no body of evidence related to asbestos or coal dust comprised 10 studies or more). Additionally, detailed information about the quality of evidence assessments can be found in the templates used for the assessment in Appendices 15–17. #### 4.7.1. Occupational exposure to silica Not reported/not applicable Table 27 displays the expected heterogeneity, number of downgrades and reasons for downgrading, and the final quality of evidence score for prevalence and level of occupational exposure to silica. #### 4.7.2. Occupational exposure to asbestos Table 28 displays the expected heterogeneity, number of downgrades and reasons for downgrading, and the final quality of evidence score for prevalence and level of occupational exposure to asbestos. #### 4.7.3. Occupational exposure to coal dust Table 29 displays the expected heterogeneity, number of downgrades and reasons for downgrading, and the final quality of evidence score for prevalence and level of occupational exposure to coal dust. #### 5. Discussion #### 5.1. Summary of evidence #### 5.1.1. Occupational exposure to silica The summary of findings for prevalence and level of occupational exposure to silica in each industrial sector is shown in Table 30. 5.1.1.1. Construction. The pooled prevalence estimate was 0.89 (95% CI 0.84 to 0.93, I² 91%, 17 studies, moderate quality of evidence) for occupational exposure to silica in Construction, and the pooled level estimate was 0.06 mg/m³ (95% CI 0.05 to 0.06, I² 100%, 16 studies, very low quality of evidence). Fig. 2. Main meta-analysis, prevalence of occupational exposure to silica, Construction ISIC 41-43. - 5.1.1.2. Manufacturing. The pooled prevalence estimate was 0.85 (95% CI 0.78 to 0.91, I^2 100%, 24 studies, moderate quality of evidence) for occupational exposure to silica in Manufacturing, and the pooled level estimate was 0.10 mg/m^3 (95% CI 0.09 to 0.11, I^2 100%, 14 studies, very low quality of evidence). - 5.1.1.3. Mining. The pooled prevalence estimate was 0.75 (95% CI 0.68 to 0.82, I2 100%, 20 studies, moderate quality of evidence) for occupational exposure to silica in Mining, and the pooled level estimate was 0.04 mg/m³ (95% CI 0.03 to 0.05, I2 100%, 17 studies, low quality of evidence). - 5.1.1.4. Crop and animal production. The bodies of evidence for the pooled prevalence estimate and the pooled level estimate for Crop and animal production were judged to be of very low quality of evidence. - 5.1.1.5. Electricity, gas, steam and air conditioning supply. The bodies of evidence for the pooled prevalence estimate and the pooled level estimate for Electricity, gas, steam and air conditioning supply were judged to be of very low quality of evidence. - 5.1.1.6. Professional, scientific and technical activities. The bodies of evidence for the pooled prevalence estimate and the pooled level estimate for Professional, scientific and technical activities were judged to be of very low quality of evidence. #### 5.1.2. Occupational exposure to asbestos Table 31 presents the summary of findings for prevalence and level of occupational exposure to asbestos by industrial sector. - 5.1.2.1. Construction. The pooled prevalence estimate was 0.77 (95% CI 0.65 to 0.87, I^2 99%, six studies, low quality of evidence) for occupational exposure to asbestos in Construction. The body of evidence for the pooled level estimate for Construction was judged to be of very low quality of evidence. - *5.1.2.2. Manufacturing.* The bodies of evidence for the pooled prevalence estimate and the pooled level estimate for Manufacturing were judged to be of very low quality of evidence. - *5.1.2.3. Mining (other mining and quarrying).* The bodies of evidence for the pooled prevalence estimate and the pooled level estimate for Mining were judged to be of very low quality of evidence. - 5.1.2.4. Electricity, gas, steam and air conditioning supply. The bodies of evidence for the pooled prevalence estimate and the pooled level estimate for Electricity, gas, steam and air conditioning supply were judged to be of very low quality of evidence. - 5.1.2.5. Water supply, sewerage, waste management and remediation. The body of evidence for the pooled level estimate for Water supply, sewerage, waste management and remediation was judged to be of very low quality of evidence. #### 5.1.3. Occupational exposure to coal dust Table 32 presents the summary of findings for prevalence and level of occupational exposure to silica by industrial sector are shown. 5.1.3.1. Mining (coal and lignite). The pooled prevalence estimate was <u>Footnotes</u> - (1) ISIC 42 - (2) ISIC 41 - (3) ISIC 42, tunnel construction (4) ISIC 42, tunnel construction - (5) ISIC 41 - (6) ISIC 42 - (7) ISIC 43 - (8) ISIC 43, construction, bricklayers - (9) ISIC 43, construction, painters - (10) ISIC 41 - (11) ISIC 42, tunnel construction - (12) ISIC 42, tunnel construction, outdoor - (13) ISIC 42, construction, drilling - (14) ISIC 42, shotcretes - (15) ISIC 42, construction, outdoor Fig. 3. Main meta-analysis, level of occupational exposure to silica, Construction ISIC 41-43. 1.00 (95% CI 1.00 to 1.00, $\rm I^2$ 16%, six studies, moderate quality of evidence) for occupational exposure to silica in Mining (coal and lignite), and the pooled level estimate was 0.77 mg/m³ (95% CI 0.68 to 0.86, $\rm I^2$ 100%, three studies, low quality of evidence). 5.1.3.2. Electricity, gas, steam and air conditioning supply. The
body of evidence for the pooled prevalence estimate for Electricity, gas, steam and air conditioning supply was judged to be of very low quality of evidence. The pooled level estimate was 0.60 mg/m3 (95% CI - 6.95 to 8.14, one study, low quality of evidence). #### 5.2. Comparison with previous systematic reviews evidence There has only been a prior scoping review on this topic, which only looked at occupational exposures to silica and asbestos among industrial workers in one country, namely Thailand (Kunpeuk et al. 2021). Similar to our systematic review, this scoping review found that most included studies reported the prevalences of occupational exposure to be 100% for both silica and asbestos, with two studies on occupational silica exposure reporting a lower prevalence (50% and 74%, respectively). The scoping review did not report a *meta*-analysis. #### 5.3. Strength and limitations of this review Our systematic review included 65 silica studies (62 included in *meta*-analysis) covering all six WHO regions, 18 asbestos studies (17 included in *meta*-analysis) covering five WHO regions (Region of the Americas, South-East Asia Region, European Region, Eastern Mediterranean Region, and Western Pacific Region), and eight coal dust studies (all included in *meta*-analysis) covering four WHO regions (African Region, Region of the Americas, South-East Asia Region, and European Region). This systematic review examines the bodies of evidence for both prevalence and level of these three occupational exposures by industrial sector. Globally, we aimed to include all silica, asbestos and coal dust measurements at workplaces performed since 1960. Even though we Fig. 4. Main meta-analysis, prevalence of occupational exposure to silica, Manufacturing ISIC 20, 23-25, 27, 31-32. systematically searched for measurement data in both academic and grey literature, it is evident we did not succeed in including all measurements of relevance. One main reason is that the study records from included studies often did not report the data of interest (see for example Heederik and Attfield (2000); Schonfeld et al. (2017)), and we were only able to include additional measurements to a limited extent after data requests from the principal study authors. Moreover, many exposure measurements are in databases (rather than study records), which we did not comprehensively review and access. We approached SYNJEM and FINJEM and asked for aggregated data- but did not receive the requested data. We expect an overlap in data between our systematic review and these exposure databases, due to our thorough search strategy including both peer-reviewed and grey literature. Future systematic reviews would benefit from updating the current work with these data (if and when feasible). Finally, our searches may have missed studies published in languages other than English. However, we searched many electronic bibliometric and grey literature databases using a comprehensive search strategy and consulted additional experts, which lead to us identifying only few additional eligible study records. Taken together, the current systematic review can be regarded as an important starting point for a global source, where prevalence and level of occupational exposure to silica, asbestos and coal dust can be ``` (1) ISIC 24 (2) ISIC 23 (3) ISIC 23, 1960-1980 (4) ISIC 23, 1981-2000 (5) ISIC 24 (6) ISIC 23, sandstone work including sandblasting (7) ISIC 32, ceramics/potteries/refractories work (8) ISIC 23, sandstone work including sandblasting (9) ISIC 32, ceramics/potteries/refractories work (10) ISIC 23 (11) ISIC 24 (12) ISIC 32 (13) ISIC 24 (14) ISIC 23, brick manufacturing (15) ISIC 23, asphalt manufacturing (16) ISIC 23, sand blasting (17) ISIC 32, stone cutters and millers (18) ISIC 23, brick manufacturing (19) ISIC 23, glass manufacturing (20) ISIC 23 (21) ISIC 24 (22) ISIC 31 ``` Fig. 5. Main meta-analysis, level of occupational exposure to silica, Manufacturing ISIC 20, 23-25, 27, 31-32. Fig. 6. Main meta-analysis, prevalence of occupational exposure to silica, Mining ISIC 05, 07, 08. assessed, and we are not aware of any other systematic review with meta-analysis on this topic. We included studies with information that enabled us to assess prevalence of exposure, where exposure was dichotomised into no (or low) versus any (or high) occupational exposure. Furthermore, we also included studies on level of occupational exposures. In most studies we defined exposure as measurements above the LOD and used measurements and not individuals as the unit of analysis. The LOD changes over time and depends on several factors, such as sampling duration, sampling method, the LOD of the analytical methods, and the sampling strategy, and therefore the LOD varies across studies. Still, we anticipate the LOD to be a good indication of no (or low) exposure in a given study. In few studies with no information on the LOD we defined exposure as measurements above an OEL. This likely resulted in an underestimation of the prevalence of exposure given that the LOD is generally well below the OEL. We included these studies to cover as many WHO regions and countries as possible. Only few studies used an OEL and we, therefore, do not anticipate this to have had a noteworthy impact on the overall prevalence found for occupational exposure to silica, asbestos and coal dust, respectively. Occupational exposure prevalence (often termed exposure probability) is, in the vast majority of epidemiological studies on health effects, based on silica, asbestos or coal dust internal or external job exposure matrices or exposure modelling. We found high occupational exposure prevalences for silica in Construction (89%) and Manufacturing (85%). Exposure prevalences for construction workers have been assessed from different external job exposure matrices, for example FINJEM (Kauppinen et al. 2013), MATGENE (Fevotte et al. 2011) and MATEMESP (Garcia et al. 2013). These job exposure matrices provide exposure prevalences between 14 and 90% for main manual construction job titles (construction and maintenance and building construction laborers) and between 40 and 90% for main manufacturing job titles (Ore and metal furnace operators, Glass and ceramics kiln and related machine operators, Mineral-ore- and stone-processing-plant operators). This exemplifies that our pooled prevalence estimates fall on the high end compared to occupational exposure prevalence estimates from other sources. Of note, our definition of exposure (above limit of detection) will result in higher prevalences of exposures compared to studies where different occupational exposure limits have been used to define exposure. We assumed that the proportion of measurements where exposure above LOD was found reflects the proportion of exposed individuals (workers). For example, for silica, within the industrial sectors that comprise Construction, we assume 89% of the source population of Fig. 7. Main meta-analysis, level of occupational exposure to silica, Mining ISIC 05, 07, 08. (27) ISIC 08, 2005-2010, crushing of limestone (28) ISIC 08, 1993-2004, sand and gravel work (29) ISIC 08, 2005-2010, sand and gravel work (30) ISIC 08, 1993-2004, non-metal mining (31) ISIC 08, 2005-2010, non-metal mining (32) ISIC 07, Tungsten mining (33) ISIC 07, Tin mining (34) ISIC 07, Iron/cupper mining Fig. 8. Main meta-analysis, prevalence of occupational exposure to silica, Crop and animal production, hunting and related service activities ISIC 01. Fig. 9. Main meta-analysis, level of occupational exposure to silica, Crop and animal production, hunting and related service activities ISIC 01. Fig. 10. Main meta-analysis, prevalence of occupational exposure to silica, Electricity, gas, steam and air conditioning supply ISIC 35. Fig. 11. Main meta-analysis, level of occupational exposure to silica, Professional, scientific and technical activities ISIC 71, 74. Fig. 12. Main meta-analysis, prevalence of occupational exposure to asbestos, Construction ISIC 41, 43, 45. | | | | | Risk Difference | R | isk Difference | | |-----------------------|-------------------------------|---------------|----------|--------------------|-----------|----------------|-----| | Study or Subgroup | Risk Difference | SE | Weight | IV, Random, 95% CI | IV, | Random, 95% CI | | | Kakooei 2014 | 0.07 | 0.00041 | 9.1% | 0.07 [0.07, 0.07] | | - | | | Kauffer 2007 (1) | 0.85 | 0.136939 | 0.0% | 0.85 [0.58, 1.12] | | | • | | Kauffer 2007 (2) | 0.063 | 0.010942 | 3.0% | 0.06 [0.04, 0.08] | | | | | Maino 1995 | 0.035 | 0.007731 | 4.5% | 0.04 [0.02, 0.05] | | | | | Massaro 2012 | 0.049 | 0.033508 | 0.4% | 0.05 [-0.02, 0.11] | | + | | | Perkins 2008 (3) | 0.024 | 0.000689 | 9.1% | 0.02 [0.02, 0.03] | | | | | Perkins 2008 (4) | 0.15 | 0.024984 | 0.8% | 0.15 [0.10, 0.20] | | | | | Scarselli 2016 (5) | 0.006 | 0.000449 | 9.1% | 0.01 [0.01, 0.01] | | • | | | Scarselli 2016 (6) | 0.004 | 0.000034 | 9.2% | 0.00 [0.00, 0.00] | | • | | | Scarselli 2016 (7) | 0.011 | 0.000238 | 9.2% | 0.01 [0.01, 0.01] | | | | | Scarselli 2016 (8) | 0.006 | 0.000273 | 9.2% | 0.01 [0.01, 0.01] | | • | | | Scarselli 2016 (9) | 0.003 | 0.000067 | 9.2% | 0.00 [0.00, 0.00] | | • | | | Scarselli 2016 (10) | 0.004 | 0.000176 | 9.2% | 0.00 [0.00, 0.00] | | • | | | Scarselli 2016 (11) | 0.008 | 0.001254 | 8.9% | 0.01 [0.01, 0.01] | | - | | | Scarselli 2016 (12) | 0.001 | 0.000351 | 9.2% | 0.00 [0.00, 0.00] | | • | | | Total (95% CI) | | | 100.0% | 0.02 [0.01, 0.02] | | • | | | Heterogeneity: Tau² = | 0.00; Chi ^z = 2801 | 4.04, df = 14 | (P < 0.0 | 0001); I²= 100% | -0.2 -0.1 | 0 0.1 | 0,2 | | | | | | | -0.2 -0.1 | Level (f/cm3) | | Fig. 13. Main meta-analysis, level of occupational exposure to asbestos, Construction ISIC 41, 43, 45. Fig. 14. Main meta-analysis, prevalence of occupational exposure to asbestos, Manufacturing ISIC 13, 23, 24, 29, 30. workers to be exposed. By doing so we assumed that the measured sample was a
random sample of the target population (i.e., all workers), and eventually the source population (i.e., also all workers). This may be a reasonable assumption for some industrial sectors, for example mining and quarrying where we expected that most silica measurements originated from routine sampling involving most workers, and we expected a large proportion of mineworkers to be occupationally exposed to silica dust. For other industries, such as farming, we anticipated a smaller fraction to be occupationally exposed to silica, and furthermore a worst-case sampling strategy was often used. Therefore, we present the estimates of prevalence and level by industrial sector. Still, we have raised at least serious concerns regarding external validity (in the QoE-SPEO downgrade domain of indirectness (Pega et al. 2022b)) for the current bodies of evidence for most industrial sectors, mostly due to the fact that measurements are currently unavailable for industrial subsectors in which exposure to the occupational risk factor is not expected to occur. This lack of evidence for workers in all or some of the unexposed industrial subsectors for an industrial sector will have led to an overestimation of the prevalence and level of exposure at the level of the entire population of workers for the industrial sector in our *meta*-analyses. Additionally, we considered risk of bias from selection into the study during the risk of bias and quality of evidence assessments, as this Fig. 15. Main meta-analysis, level of occupational exposure to asbestos, Manufacturing ISIC 13, 23, 24, 29, 30. Fig. 16. Main meta-analysis, prevalence of occupational exposure to asbestos, Electricity, gas, steam and air conditioning supply ISIC 35. Fig. 17. Main meta-analysis, prevalence of occupational exposure to coal dust, Mining of coal and lignite ISIC 05. was a risk of bias domain of prime concern across the occupational exposures. Day-to-day variability in exposure is the largest variance component of airborne occupational measurements (Kromhout et al. 1993), which can only be assessed if more than one measurement per person is available. Repeated measurements were available in some of the included studies, and therefore, the day-to-day variability is to some extent included in the exposure prevalence and level estimates we present in this systematic review. We presented and included repeated measurements as independent, individual measurements, and therefore the day-to-day variability cannot be separated out, and we are not sure whether this approach has resulted in underestimation or overestimation of the true prevalence and level of occupational exposure. We only included studies with objective measurements of occupational exposure to silica, asbestos and coal dust, i.e., quantitative samples of dust and/or fibres collected by an expert using appropriate technologies. This strict requirement allowed us to take the national, regional and global exposure assessment one step further, based on the estimates of exposure prevalence and level on measurements data from several WHO regions and from the most relevant industrial sectors. This is an improvement over the CAREX initiative which modelled estimates for number of workers occupationally exposed to asbestos and silica, estimated via proxy of occupation and/or industrial sector. Additionally, they only provided information from European Union and a few other countries (Kauppinen et al. 2000; Blanco-Romero et al. 2011; Peters et al. 2015). Few studies provided data disaggregated by sex and age group, preventing subgroup analyses by sex and age group, and consequently such disaggregated data are unavailable for the WHO/ILO Joint Estimates. Overall, only few studies reported female workers to be present in the study population; however, most studies did not provided information about the sex distribution of the exposure prevalence and/or level. Our systematic review is also limited to data derived mainly from the formal economy. While we also searched for data from the informal #### Footnotes - (1) Opencast coalmining 2014 - (2) Opencast coalmining 2014 - (3) Surface coal miners 1982-1986 - (4) Surface coal miners 1982-1986 Fig. 18. Main meta-analysis, level of occupational exposure to coal dust, Mining of coal and lignite ISIC 05. economy, we were unable to find eligible studies (apart from one asbestos study and one coal dust study where the type of economy was uncertain). Therefore, the results of this systematic review are mainly representative for workers in the formal economy. When personal sampling was available, we assessed the occupational exposure prevalence and level based on personal samples only. In few included studies where only stationary sampling was available, we used these measurements in the same way as the personal measurements. This may underestimate the prevalence and level, as stationary measurements in general underestimate personal exposures at the workplace. However, this was the case in very few included studies only, and therefore we do not think this had a noteworthy impact on our prevalence and level estimates. Neither *meta*-analysis by year or decade, nor time trend analyses were included in this systematic review (Mandrioli et al. 2018). Thus, the result of the current systematic review should be regarded as grand means of prevalences and levels for occupational exposure to silica, asbestos and coal dust for the decades of 1960–2015. Time trends will be an important component of future work on national, regional and global occupational dust and fibre exposure prevalences and levels. In the literature, crystalline silica and quartz are often used synonymously, and in this systematic review we have not distinguished between crystalline silica and quartz, which is the main component of crystalline silica. We consequently judge our results to be valid for assessment of both quartz and crystalline silica. We only included studies using exposure assessment based on active filter sampling and gravimetric assessment followed by technical analysis as our gold standard. We thus did not expect any information bias. Most measurements were full shift measurements, and only few included studies reported shorter sampling durations (below 4 hours). In most included studies the silica content was measured in respirable dust. Most coal dust studies measured respirable coal dust, too. The respirable dust fraction refers to the particle distribution that can reach the lower airways and is therefore highly relevant for silicosis and coal worker's pneumoconiosis. In most studies the silica content of the respirable dust was estimated by X-ray diffraction or infrared spectroscopy with only a few exceptions that we believe did not affect the overall results. In most studies counting of asbestos fibres was done using phase-contrast microscopy (PCM), but a few studies used the more sensitive method of scanning electron microscopy (SEM). A study that used both methods (Kakooei and Normohammadi 2014) found that the fibre concentration was twice as high for SEM than for PCM. Therefore, absolute levels of occupational exposure to asbestos fibres were likely underestimated. As most existing health effects studies with dose–response data have used PCM measurements we do not believe this caused noteworthy bias. Performing *meta*-analyses for exposure prevalence we used a double arcsine transformation, enabling us to deal with skewed data. However, it was not possible to carry out tests of subgroup differences for these analyses. In the absence of a statistical test, we used the point estimates and 95% CIs to judge differences between subgroups. We acknowledge that this judgment-based approach has limitations. To the best of our knowledge, occupational exposure data for level of silica, asbestos and coal dust is best described by a log-normal distribution. In the *meta*-analysis of exposure levels, we therefore used geometric mean (GM) and geometric standard deviation (GSD), either directly or after transformation from AM, SD and range (Zwillinger 2000; Lavoué et al. 2007). For some studies we assumed the median value to reflect GM, and we used the range in GMs to assess GM if the distribution was narrow (ratio between highest and lowest exposure \leq 2). This allowed us to include a large proportion of the studies in the meta-analyses for level. We judged this adjustment to be minor and to have negligible impact on the results. All meta-analyses used a weighted average from a random-effects model based on the inverse variance method. Since, our data were not normally distributed they cannot be well represented by arithmetic means and symmetric confidence intervals. Some of the lower 95% CI limits for pooled estimates of exposure level are negative, which is impossible as there is no negative exposure. This is due to the methods used, that only allowed us to produce symmetric confidence intervals, when the lower 95% CI limit should be capped at 0. This will have led to spurious results in the pooled estimates of very small and heterogeneous subgroups. However, by using the standard error of the confidence interval furthest away from each point estimate in the meta-analyses, we will have overestimated uncertainty, rather than underestimated it. We have been unable to identify a better approach for this kind of meta-analysis and believe this is a current methodological gap for *meta*-analyses of levels of exposure. Future methodological work is required to address this gap in systematic reviews in Exposure Science. A further gap we identified for systematic reviews of prevalences and levels is the lack of an easy to interpret plot to assess publication bias for skewed data. We emphasize again that this systematic review identified no population-based studies that were eligible for inclusion. The included studies did not sample workers from all subsectors within the industrial sectors of
interest, nor did they sample the entire worker population within the subsectors that they did sample; instead they sampled those subsectors and workers within these who were likely to be occupationally exposed to dusts or fibers, respectively. In other words, and importantly, we consider it highly likely that unexposed workers were systematically selected out of the included studies and are therefore systematically underrepresented in the current bodies of evidence available for synthesis in this systematic review. Therefore, we judge the Table 21 Subgroup meta-analysis, prevalence and level of occupational exposure to silica by industrial sector across WHO regions. | Industrial sector | WHO Region | Prevalence (95% confidence interval) | Numbers of measures (entries) of prevalence of exposure, studies, and countries, and I^2 | Level mg/m ³ (95% confidence interval) | Numbers of measures
(entries) of level of
exposure, studies, and
countries, and I ² | P value for test o
subgroup
differences for
levels ^a | |---|--------------------------|--------------------------------------|--|---|---|--| | Construction | Africa | 1.00 (0.97 to 1.00) | 1 entry from 1 study,1 country | 0.01 (0.01 to 0.01) | 1 entry from 1 study, 1 country | P < 0.00001 | | | Americas | 0.87 (0.79 to 0.93) | 10 entries from 5 studies, 2 countries, I ² 86% | 0.04 (0.02 to 0.07) | 8 entries from 4 studies, 2 countries, I ² 92% | | | | Eastern
Mediterranean | 0.94 (0.81 to 1.00) | 4 entries from 3 studies, 1 country, I ² 87% | 0.18 (0.12 to 0.24) | 4 entries from 3 studies, 1 country, I ² 97% | | | | Europe | 0.87 (0.79 to 0.94) | 9 entries from 8 studies, 3 countries, I ² 93% | 0.03 (0.02 to 0.04) | 12 entries from 8 studies, 4 countries, I ² 99% | | | | South-East Asia | _b | _b | _b | b | | | | Western Pacific | _b | _b | _b | _b | | | Manufacturing | Africa | 1.00 (0.99 to 1.00) | 4 entry from 2 studies, 1 country, I ² 0% | 0.08 (0.02 to 0.14) | 5 entries from 1 study, 1 country, I ² 98% | P < 0.00001 | | | Americas | 0.87 (0.79 to 0.93) | 7 entries from 5 studies, 2 countries, I ² 83% | 0.07 (0.05 to 0.10) | 6 entries from 4 studies, 3 countries, I ² 98% | | | | Eastern
Mediterranean | 0.96 (0.91 to 1.00) | 12 entries from 4 studies, 1 country, I ² 79% | 0.24 (0.20 to 0.28) | 10 entries from 3 studies, 1 country, I ² 88% | | | | Europe | 0.65 (0.41 to 0.87) | 9 entries from 7 studies, 7 countries, I ² 100% | 0.02 (0.00 to 0.03) | 5 entries from 3 studies, 3 countries, I ² 99% | | | | South-East Asia | 0.81 (0.00 to 1.00) | 2 entries from 2 studies, 2 countries, I ² 99% | 0.01 (0.00 to 0.01) | 1 entry from 1 study, 1 country | | | | Western Pacific | 0.61 (0.43 to 0.77) | 5 entries from 4 studies, 2 countries, I ² 100% | 0.11 (0.05 to 0.18) | 3 entries from 2 studies, 1 country, I ² 99% | | | Mining | Africa | 0.93 (0.73 to 1.00) | 4 entries from 4 studies, 3 countries, I ² 98% | 0.04 (0.01 to 0.06) | 4 entries from 3 studies, 2 countries, I ² 82% | P < 0.00001 | | | Americas | 0.53 (0.39 to 0.66) | 9 entries from 6 studies, 3 countries, I ² 99% | 0.04 (0.03 to 0.04) | 26 entries from 9 studies, 2 countries, I ² 100% | | | | Eastern | 0.95 (0.78 to 1.00) | 3 entries from 3 studies, 1 | 0.27 (0.25 to 0.29) | 2 entries from 2 studies, 1 | | | | Mediterranean | | country, I2 88% | | country, I ² 0% | | | | Europe | 0.71 (0.67 to 0.74) | 1 entry from 1 study, 1 country | _b | _b | | | | South-East Asia | 1.00 (0.99 to 1.00) | 3 entries from 3 studies, 2 countries, I ² 0% | _b | _b | | | | Western Pacific | 0.66 (0.53 to 0.78) | 9 entries from 3 studies, 3 countries, I ² 100% | 0.03 (0.01 to 0.04) | 9 entries from 3 studies, 2 countries, I ² 100% | | | Crop and animal production | Africa | 0.59 (0.53 to 0.64) | 1 entry from 1 study, 1 country | 0.03 (0.03 to 0.03) | 1 entry from 1 study, 1 country | P = 0.003 | | | Americas | 0.73 (0.23 to 1.00) | 2 entries from 2 studies, 1 country, I ² 96% | 0.26 (0.11 to 0.41) | 1 entry from 1 study, 1 country | | | | Eastern | _b | _b | _b | _b | | | | Mediterranean | | | | | | | | Europe | _b | _b | _b | _D | | | | South-East Asia | _b | _b
_b | _b | _b
_b | | | | Western Pacific | _b
b | _b | _b
b | _b | | | electricity, gas, steam
and air conditioning | Africa
Americas | 0.69 (0.51 to 0.84) | 2 entries from 2 studies, 2 countries. I ² 66% | 0.02 (-0.01 to | 1 entry from 1 study, 1 | NA | | supply | Eastern | _b | countries, I 66% | 0.06) | country
_b | | | | Mediterranean | - | - | - | - | | | | Europe | b | b | b | b | | | | South-East Asia | -
b | b | -
b | b | | | | Western Pacific | _
_b | _
_b | _
_b | b | | | Professional, scientific | Africa | -
b | <u>-</u>
b | b | <u>-</u>
b | P = 0.45 | | and technical activities | Americas | _b | _b | 0.07 (-0.10 to
0.25) | 1 entry from 1 study, 1 country | r = 0.43 | | acarnes | Eastern
Mediterranean | _b | _b | _b | _b | | | | Europe | _b | _b | _b | _b | | | | South-East Asia | b | _b | b | b | | | | Western Pacific | 0.99 (0.96 to 1.00) | 1 entry from 1 study, 1 country | 0.01 (-0.00 to 0.02) | 2 entries from 1 study, 1 country | | ^a P value for test of subgroup differences is shown for level estimates only as it was not possible to generate this for the subgroup analyses for prevalence. pooled estimates from the *meta*-analyses presented here to overestimate both prevalences and levels of exposure within industrial sectors. One avenue to seek to address this overestimation would be to develop a new method to adjust for non-representative measurement of the industrial sectors of interest and the workers within the selected subsectors that were sampled. However, we judged this to be an infeasible option because the global input measurements data required for such a new estimation model are unavailable, such as the proportion of workers per industrial subsector of interest and the proportion of exposed and unexposed workers by subsector. Since adjustment for the selection bias in the included studies though modelling was infeasible, we addressed the overestimation of exposure prevalences and levels in the QoE-SPEO quality of evidence assessments (Pega et al. 2022b), consistent with previous WHO/ILO systematic reviews of occupational exposure ^b No data available. **Table 22**Subgroup *meta-*analysis, prevalence and level of occupational exposure to asbestos by industrial sector across WHO regions. | WHO Region | Prevalence (95% confidence interval) | Numbers of measures
(entries) of prevalence of
exposure, studies, and
countries, and I ² | Level f/ml (95% confidence interval) | Numbers of measures
(entries) of level of
exposure, studies, and
countries, and I ² | P value for test of
subgroup
differences for
levels ^a | |-------------------|--|--|--------------------------------------|---|---| | Africa | _b | _b | _b | _b | P < 0.00001 | | Americas | 0.78 (0.57 to
0.96) | 2 entries from 2 studies, 1 country, I ² 87% | 0.08 (-0.04 to 0.21) | 2 entries from 1 study, 1 country, I ² 96% | | | Eastern | 1.00 (0.96 to | 1 entry from 1 study, 1 | 0.07 (0.07 to | 1 entry from 1 study, 1 | | | Mediterranean | 1.00) | country | 0.07) | country | | | Europe | 0.70 (0.54 to
0.85) | 6 entries from 3 studies, 1 country, I ² 100% | 0.01 (0.00 to 0.01) | 12 entries from 4 studies, 2 countries, I ² 99% | | | South-East Asia | _b | ь | _b | b | | | | _b | _b | _b | _b | | | | _b | _b | _b | _b | P < 0.00001 | | Americas | 0.96 (0.95 to
0.97) | 1 entry from 1 study, 1 | _b | _b | | | Eastern | | • | 0.07 (0.03 to | 2 entries from 2 studies. 1 | | | Mediterranean | | | • | | | | | _b | _b | | | | | r | | | | | | | South-East Asia | 0.93 (0.62 to | 2 entries from 2 studies 2 | | * * | | | boutil Edst 1 Bit | * | | | | | | Western Pacific | | * | _b | | | | Western Lucine | * | • | | | | | Africa | _b | _b | _b | _b | NA | | | _b | _b | _b | _b | | | | _b | _b | _b | _b | | | Mediterranean | | | | | | | Europe | | 1 entry from 1 study, 1 | • | 1 entry from 1 study, 1 | | | | | country | | country | NA | | Americas | 0.31) | country | | | | | Eastern | _b | _b | _b | _b | | | Mediterranean | | | | | | | Europe | | | | | | | South-East Asia | _b | _b | _b | _b | | | Western Pacific | 0.98 (0.91 to
1.00) | 1 entry from 1 study, 1 country | 0.40 (0.21 to
0.58) | 1 entry from 1 study, 1 country | | | Africa | b | ь | <u>b</u> | b | NA | | Americas | _b | _b | _b | _b | | | Eastern | _b | _b | _b | _b | | | Mediterranean | | | | | | | Europe | _b | _b | 0.00 (0.00 to 0.00) | 1 entry from 1 study, 1 country | | | South-East Asia | _b | _b | _b | _b | | | | | | | | | | | Africa Americas Eastern Mediterranean Europe South-East Asia Western Pacific Africa
Americas Eastern Mediterranean Europe South-East Asia Western Pacific Africa Americas Eastern Mediterranean Europe South-East Asia Western Pacific Africa Americas Eastern Mediterranean Europe South-East Asia Western Pacific Africa Americas Eastern Mediterranean Europe South-East Asia Western Pacific Africa Americas Eastern Mediterranean Europe South-East Asia Western Pacific Africa Americas Eastern Mediterranean Europe | Africa | Africa | Africa | Africa | a P value for test of subgroup differences is shown for level estimates only as it was not possible to generate this for the subgroup analyses for prevalence. prevalences in the series, produced as part of the WHO/ILO Joint Estimates (Hulshof et al. 2021a; Teixeira et al. 2021b). Under the QoE-SPEO domain of Indirectness, we added downgrading of the quality of evidence for all bodies of evidence for all exposure prevalences and levels for all industrial sectors by one level for the serious concerns we had for the lack of evidence from population-based studies. This resulted in the Working Group having at least serious concerns regarding indirectness (and therefore external validity) for these bodies of evidence, especially when these bodies of evidence are applied to assign exposure to the workers' population to produce official health estimates of national, regional and global occupational risk factor exposures and their attributable burden of disease. The only exception was that we did not downgrade the quality of evidence in this way for the prevalence and level of occupational exposure to coal dust within the industrial sector of Mining of coal and lignite, as we judged the included studies to cover all relevant industrial subsectors, reducing our concerns for indirectness. This systematic review was a global effort that brought together experts from international organizations, national governments (including those of Bulgaria, Denmark, People's Republic of China, South Africa, and Thailand), and research agencies (including academies of science and universities). Policy staff, clinical practitioners and academic experts collaborated, ensuring broad applicability and suitability of the systematic review and its findings. The systematic review provides the exposure scientific evidence base needed for WHO and ILO to consider producing global health estimates: the WHO/ILO Joint Estimates. #### 6. Use of evidence for burden of disease estimation This systematic review and *meta*-analysis was conducted by WHO and ILO, supported by a large number of individual experts, for the development of the WHO/ILO Joint Estimates. More specifically, it provides a crucial evidence base for both organizations to consider producing estimates of the burden of silicosis, asbestosis, and coal workers' pneumoconiosis attributable to occupational exposure to silica, asbestos and coal dust, respectively. This systematic review found a large body of evidence from a large number of occupational exposure studies, especially for silica, across all WHO regions. Some of the bodies ^b No data available. Table 23 Subgroup *meta-*analysis, prevalence and level of occupational exposure to coal dust by industrial sector across WHO regions. | Industrial sector | WHO Region | Prevalence (95% confidence interval) | Numbers of measures (entries) of prevalence of exposure, studies, and countries, and I^2 | Level f/ml (95% confidence interval) | Numbers of measures
(entries) of level of
exposure, studies, and
countries, and I ² | P value for test of
subgroup
differences for level | |----------------------------|-----------------|--------------------------------------|--|--------------------------------------|---|--| | Mining of coal and lignite | Africa | 0.99 (0.98 to 1.00) | 2 entries from 2 studies, 2 countries, I ² 0% | 0.75 (0.47 to 1.03) | 1 entry from 1 study, 1 country | P < 0.00001 | | _ | Americas | _a | _a | 0.65 (0.55 to 0.75) | 2 entries from 1 study, 1 country, I ² 100% | | | | Eastern | <u>_</u> a | _a | _a | a | | | | Mediterranean | | | | | | | | Europe | 1.00 (1.00 to 1.00) | 1 entry from 1 study, 1 country | _a | _a | | | | South-East Asia | 1.00 (0.61 to 1.00) | 1 entry from 1 study, 1 country | _a | _a | | | | Western Pacific | 1.00 (1.00 to 1.00) | 2 entries from 2 studies, 1 country, I ² 0% | 2.44 (2.09 to 2.80) | 2 entries from 1 study, 1 country, I ² 0% | | | Electricity, gas, steam | Africa | _b | b | _b | b | NA | | and air
conditioning | Americas | 0.02 (0.00 to 0.04) | 1 entry from 1 study, 1 country | 0.60 (-6.95 to
8.14) | 1 entry from 1 study, 1 country | | | supply | Eastern | _b | _b | _b | _b | | | | Mediterranean | 1 | | | 1 | | | | Europe | _D | _D | _D | _ ^D | | | | South-East Asia | _D | _D | _D | _b | | | | Western Pacific | _b | _b | _b | _b | | ^a P value for test of subgroup differences is shown for level estimates only as it was not possible to generate this for the subgroup analyses for prevalence. **Table 24**Sensitivity *meta*-analysis, prevalence and level of occupational exposure to silica by industrial sector by risk of bias rating for selection of participants into the studies. | Industrial sector | Risk of bias rating for
selection of
participants into the
studies | Prevalence (95% confidence interval) | Numbers of measures (entries) of prevalence of exposure, studies, and countries, and I ² | Level mg/m ³ (95% confidence interval) | Numbers of measures
(entries) of level of
exposure, studies, and
countries, and I ² | P value for test of
subgroup
differences for
level ^a | |--|---|--------------------------------------|---|---|---|--| | Construction | High/Probably high | 0.86 (0.79 to
0.92) | 15 entries from 9 studies, I ² 84% | 0.08 (0.06 to
0.10) | 14 entries from 9 studies,
I ² 98% | P = 0.004 | | | Low/Probably low | 0.93 (0.87 to
0.93) | 9 entries from 8 studies, I ²
95% | 0.04 (0.03 to
0.05) | 1 entry from 7 studies, I ² 100% | | | Manufacturing | High/Probably high | 0.81 (0.64 to
0.95) | 20 entries from 12 studies, I ² 99% | 0.08 (0.07 to
0.10) | 17 entries from 8 studies, I ² 99% | P < 0.0001 | | | Low/Probably low | 0.89 (0.80 to 0.96) | 19 entries from 12 studies, I ² 100% | 0.14 (0.12 to 0.16) | 13 entries from 6 studies,
I ² 100% | | | Mining | High/Probably high | 0.90 (0.76 to
1.00) | 8 entries from 8 studies, I ² 92% | 0.08 (0.06 to
0.10) | 12 entries from 6 studies,
I ² 99% | P < 0.0001 | | | Low/Probably low | 0.69 (0.60 to
0.78) | 21 entries from 12 studies, I ² 100% | 0.03 (0.02 to 0.04) | 31 entries from 11 studies, I ² 100% | | | Crop and animal production | High/Probably high | 0.92 (0.80 to
0.99) | 1 entry from 1 study | 0.26 (0.11 to
0.41) | 1 entry from 1 study | P = 0.003 | | | Low/Probably low | 0.55 (0.46 to 0.63) | 2 entries from 2 studies, I ² 66% | 0.03 (0.03 to 0.03) | 1 entry from 1 study | | | Electricity, gas, steam
and air
conditioning | High/Probably high | 0.69 (0.51 to
0.84) | 2 entries from 2 studies, 2 countries | 0.02 (-0.01 to
0.06) | 2 entries from 2 studies, 2 countries | NA | | supply | Low/Probably low | _b | _b | _b | _b | | | Professional,
scientific and | High/Probably high | 0.99 (0.96 to
1.00) | 1 entry from 1 study, 1 country | 0.01 (-0.00 to
0.02) | 1 entry from 1 study, 1 country | NA | | technical activities | Low/Probably low | _b | _b | _b | _b | | ^a P value for test of subgroup differences is shown for level estimates only as it was not possible to generate this for the subgroup analyses for prevalence. of evidence were judged to be of moderate quality of evidence; for example, for occupational exposure to silica in Mining we judged the body of evidence for prevalence to be of moderate quality of evidence. Additionally, the bodies of evidence for prevalence of occupational exposure to silica in Construction and Manufacturing were also judged to be of moderate quality of evidence; and the body of evidence for prevalence of exposure to coal dust in Mining (coal and lignite) was judged to have moderate quality of evidence. We consider these suitable as input data for WHO/ILO modelling of work-related burden of disease and injury. Furthermore, other selected estimates of the prevalences and levels of occupational exposure to asbestos and coal dust may perhaps also be suitable for estimation purposes (with limitations acknowledged). #### 7. Conclusions Our systematic review and *meta*-analysis concluded that the quality of the bodies of evidence for prevalences and levels of occupational exposure to silica, asbestos and coal dust vary by industrial sector. For silica, while some bodies of evidence (i.e. prevalence of exposure in Construction, Manufacturing and Mining) were of moderate quality of evidence, others were of low or very low quality of evidence. The bodies of evidence for asbestos were judged to be of low or very low quality of evidence. For coal dust, the bodies of evidence were judged to be of ^b No data available. ^b No data available. Table 25 Sensitivity meta-analysis, prevalence and level of occupational exposure to asbestos by industrial sector by risk of bias rating for selection of participants into the studies. | Industrial sector | Risk of bias for
selection
of
participants into the
studies | Prevalence (95% confidence interval) | Numbers of measures
(entries) of prevalence of
exposure, studies, and
countries, and I ² | Level f/ml (95%
confidence
interval) | Numbers of measures
(entries) of level of
exposure, studies, and
countries, and 1 ² | P value for test of
subgroup
differences for
level ^a | |--|--|--------------------------------------|--|--|---|--| | Construction | High/Probably high | 1.00 (0.95 to
1.00) | 1 entry from 1 study | 0.11 (0.03 to
0.18) | 3 entries from 2 studies, I ² 95% | P = 0.02 | | | Low/Probably low | 0.73 (0.59 to
0.84) | 9 entries from 6 studies, I ² 100% | 0.01 (0.01 to 0.02) | 12 entries from 4 studies, I ² 100% | | | Manufacturing | High/Probably high | 0.98 (0.95 to
1.00) | 6 entries from 6 studies, I ² 79% | 0.16 (0.10, 0.21) | 10 entries from 5 studies, I ² 97% | NA | | | Low/Probably low | 1.00 (0.95 to
1.00) | 1 entry from 1 study | _b | _b | | | Other mining and quarrying | High/Probably high | 0.85 (0.77 to
0.91) | 1 entry from 1 study | 0.01 (0.01 to 0.02) | 1 entry from 1 study | NA | | | Low/Probably low | _b | _b | _b | _b | | | Electricity, gas, steam and air conditioning | High/Probably high | 0.98 (0.91 to
1.00) | 1 entry from 1 study | 0.40 (0.21 to
0.58) | 1 entry from 1 study | NA | | supply | Low/Probably low | 0.20 (0.11 to
0.31) | 1 entry from 1 study | _b | _b | | | Water supply, | High/Probably high | b | _b | _b | _b | NA | | sewerage, waste
management and
remediation | Low/Probably low | _b | _b | 0.00 (0.00 to
0.00) | 1 entry from 1 study, 1 country | | ^a P value for test of subgroup differences is shown for level estimates only as it was not possible to generate this for the subgroup analyses for prevalence. Table 26 Sensitivity meta-analysis, prevalence and level of occupational exposure to coal dust by industrial sector by risk of bias rating for selection of participants into the studies. | Industrial sector | Risk of bias rating for
selection of
participants into the
studies | Prevalence (95% confidence interval) | Numbers of measures
(entries) of prevalence of
exposure, studies, and
countries, and I ² | Level f/ml (95% confidence interval) | Numbers of measures
(entries) of level of
exposure, studies, and
countries, and I ² | P value for test of
subgroup
differences for
level ^a | |---|---|--------------------------------------|--|--------------------------------------|---|--| | Mining of coal and lignite | High/Probably high | 0.99 (0.99 to
1.00) | 4 entries from 4 studies, I ² 0% | 0.77 (0.68, 0.86) | 5 entries from 3 studies | NA | | Ü | Low/Probably low | 1.00 (1.00 to
1.00) | 2 entries from 2 studies, I ²
0% | _b | _b | | | Electricity, gas, | High/Probably high | b | _b | _b | _b | NA | | steam and air
conditioning
supply | Low/Probably low | 0.02 (0.00 to
0.04) | 1 entry from 1 study | 0.60 (-6.95 to
8.14) | 1 entry from 1 study | | ^a P value for test of subgroup differences is shown for level estimates only as it was not possible to generate this for the subgroup analyses for prevalence. either moderate quality of evidence (i.e., prevalence in Mining of coal and lignite), low quality of evidence or very low quality of evidence. Selected estimates of the prevalences and levels of occupational exposure to silica are considered suitable as input data for the WHO/ILO Joint Estimates, and selected estimates of the prevalences and levels of occupational exposure to asbestos and coal dust may perhaps also be suitable for estimation purposes. #### 8. Differences between protocol and systematic review • In our protocol (Mandrioli et al. 2018), we intended to use a modified version of theNavigation Guide risk of bias tool, but then WHO and ILO developed a specific tool for assessing risk of bias in studies estimating prevalence and level of exposure to occupational risk factors (RoB-SPEO (Pega et al. 2020a)), and WHO validated the tool working with individual experts (Momen et al. 2022). We applied this dedicated tool in this systematic review. - We intended in the protocol to use a modified version of the Navigation Guide approach for assessing quality of evidence. WHO subsequently developed a specific approach for assessing quality of evidence in occupational exposure prevalence and level studies (QoE-SPEO (Pega et al. 2022b)). This approach was applied in the systematic review. - We intended to review only the prevalence of any occupational exposure to dusts and/or fibres. However, at the review stage, we also included as additional eligible exposures the level of exposure to silica, asbestos and coal dust. The reason was that WHO and ILO started considering building a cumulative exposure model for the WHO/ILO Joint Estimates, which required data on both prevalences and levels of exposures to dusts and/or fibres. - We intended to produce one pooled estimate of prevalence of occupational exposure for each of silica, asbestos and coal dust, however, it became apparent that a large number of studies were subject to selection bias. Prevalence estimates from the bodies of evidence b No data available. ^b No data available. **Table 27**Ratings from QoE-SPEO for prevalence and level of occupational exposure to silica. | Industrial sector | Type Rating of expected heterogeneity (QoE-
SPEO Step 1; (Pega et al. 2022b)) | | Number of downgrades and reasons
for downgrading (if any)
(QoE-SPEO Step 2) | Final quality of evidence rating (QoE-SPEO Step 3) | |--|--|--------|--|--| | Construction | Prevalence | High | Total downgrade of -1 -1 for serious concerns about indirectness | Moderate quality of evidence | | | Level | High | Total downgrade of -3 -1 for serious concerns about risk of bias -1 for serious concerns about indirectness -1 for serious concerns about imprecision | Very low quality of evidence | | Manufacturing | Prevalence | High | Total downgrade of -1 -1 for serious concerns about indirectness | Moderate quality of evidence | | | Level | High | Total downgrade of -3 -1 for serious concerns about risk of bias -1 for serious concerns about indirectness -1 for serious concerns about imprecision | Very low quality of evidence | | Mining | Prevalence | High | Total downgrade of -1
-1 for serious concerns about
indirectness | Moderate quality of evidence | | | Level | High | Total downgrade of -2 -1 for serious concerns about indirectness -1 for serious concerns about imprecision | Low quality of evidence | | Crop and animal production | Prevalence | High | Total downgrade of -3 -1 for serious concerns about risk of bias -2 for very serious concerns about indirectness | Very low quality of evidence | | | Level | High | Total downgrade of -4 -2 for serious concerns about risk of bias -2 for very serious concerns about indirectness | Very low quality of evidence | | Electricity, gas, steam and air conditioning supply | Prevalence | Medium | Total downgrade of -3 -1 for serious concerns about risk of bias -2 for very serious concerns about indirectness | Very low quality of evidence | | | Level | High | Total downgrade of -3 -1 for serious concerns about risk of bias -2 for very serious concerns about indirectness | Very low quality of evidence | | Professional, scientific and
technical activities | Prevalence | High | Total downgrade of -5 -1 for serious concerns about risk of bias -2 for very serious concerns about indirectness -1 for serious concerns about inconsistency -1 for serious concerns about imprecision | Very low quality of evidence | | | Level | High | Total downgrade of -5 -1 for serious concerns about risk of bias -2 for very serious concerns about indirectness -2 for very serious concerns about imprecision | Very low quality of evidence | could not be applied to all workers. Therefore, occupational exposure to silica, asbestos and coal dust were pooled within industrial sectors only (and not across all industrial sectors as originally planned). - We intended to include studies reporting exposure data disaggregated by country, sex, age group, industrial sector and occupation, but due to limited data on sex and age group we were only able to include studies with data disaggregated by country and industrial sector. - We intended to use Rayyan Systematic Reviews Web App or DistillerSR for study selection but used Covidence instead. - We planned to use the computer software Stata to carry out the metaanalyses for both occupational exposure prevalence and level. However, for prevalence *meta*-analyses we used MetaXL. Additionally, double arcsine transformation was used to provide confidence limits within the floor and ceiling (0–100%). The levels
meta-analyses were entered into RevMan. - We planned to generate funnel plots for all *meta*-analyses, however as these have been shown to provide erroneous results when pooling proportions (Hunter et al. 2014) we generated Doi plots with LFK statistics to assess publication bias (Cheema et al. 2022). - We planned to update the PubMed search performed up to 30 April 2018, but for pragmatic reasons in order to finalise the systematic review we did not perform an updated search, and the last searches in all databases were performed between April and June 2018. Table 28 Ratings from QoE-SPEO for prevalence and level of occupational exposure to asbestos. | Industrial sector | Туре | Rating of expected heterogeneity (QoE-SPEO Step 1; (Pega et al. 2022b)) | Number of downgrades and reasons
for downgrading (if any)
(QoE-SPEO Step 2) | Final quality of evidence rating (QoE-SPEO Step 3) | |---|---------------------|---|--|--| | Construction | Prevalence | High | Total downgrade of -2 -2 for very serious concerns about indirectness | Low quality of evidence | | | Level | High | Total downgrade of -4 -2 for very serious concerns about indirectness | Very low quality of evidence | | Manufacturing | Prevalence | High | -2 for very serious concerns about imprecision Total downgrade of -4 -1 for serious concerns about risk of bias -2 for serious concerns about | Very low quality of evidence | | | Level | High | indirectness -1 for serious concerns about imprecision Total downgrade of -4 -2 for serious concerns about risk of bias | Very low quality of evidence | | Other mining and quarrying | Prevalence | High | 2 for serious concerns about indirectness Total downgrade of -4 2 for very serious concerns about risk of bias | Very low quality of evidence | | | Level | High | -2 for very serious concerns about indirectness Total downgrade of -6 -2 for very serious concerns about risk of bias | Very low quality of evidence | | | | | -2 for very serious concerns about indirectness -1 for serious concerns about inconsistency -1 for serious concerns about | | | Electricity, gas, steam and air conditioning supply | Prevalence | High | imprecision Total downgrade of -3 -1 for serious concerns about risk of bias -2 for very serious concerns about | Very low quality of evidence | | | Level | High | indirectness Total downgrade of -3 -1 for serious concerns about risk of bias -2 for very serious concerns about | Very low quality of evidence | | Motor comply conversed | Duor1 | NA | indirectness | NIA | | Water supply, sewerage, waste
management and remediation | Prevalence
Level | NA
High | NA Total downgrade of -6 -2 for very serious concerns about indirectness -2 for very serious concerns about inconsistency | NA
Very low quality of evidence | | | | | -2 for very serious concerns about imprecision | | We did not originally plan to conduct sensitivity analyses, but in the systematic review did conduct one sensitivity analysis for each exposure. We compared studies we judged as at high or probably high risk of bias in bias due to selection into the study with studies judged as at low or probably low risk of this bias. The rationale was that our primary concerns for risk of bias was in this domain, and we wanted to check for differences in included studies by level of risk of bias to inform our quality of evidence assessments. #### 9. Financial support All authors are salaried staff members of their respective institutions. This publication was prepared with financial support to WHO from the National Institute for Occupational Safety and Health of the Centres for Disease Control and Prevention of the United States of America (Grant 1E11OH0010676-02; Grant 6NE11OH010461-02–01; and Grant 5NE11OH010461-03–00); the German Federal Ministry of Health (BMG Germany) under the BMG-WHO Collaboration Programme 2020–2023 (WHO specified award ref. 70672); the Spanish Agency for International Cooperation (AECID) (WHO specified award ref.71208). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. #### 10. Sponsors The sponsors of this systematic review are WHO and the ILO. **Table 29**Ratings from QoE-SPEO for prevalence and level of occupational exposure to coal dust. | Industrial sector | Туре | Rating of expected heterogeneity (QoE-
SPEO Step 1; Pega et al. 2022b) | Number of downgrades and reasons
for downgrading (if any)
(QoE-SPEO Step 2) | Final quality of evidence rating (QoE-SPEO Step 3) | |--|------------|---|---|--| | Mining of coal and lignite | Prevalence | Low | Total downgrade of -1
-1 for serious concerns about risk of bias | Moderate quality of evidence | | | Level | High | Total downgrade of -2 -1 for serious concerns about risk of bias -1 for serious concerns about indirectness | Low quality of evidence | | Electricity, gas, steam and air
conditioning supply | Prevalence | High | Total downgrade of -4 -2 for very serious concerns about indirectness -1 for serious concerns about inconsistency -1 for serious concerns about imprecision | Very low quality of evidence | | | Level | High | Total downgrade of -2 -2 for very serious concerns about indirectness | Low quality of evidence | **Table 30**Summary of evidence for prevalence and level of occupational exposure to silica. Prevalence and level of occupational exposure to silica among workers Population: Any manual workers Settings: All countries and work settings Exposure: Occupational exposure to silica | Industrial sector | Prevalence | | | Level | Level | | | | |---|------------------------------------|---|--|---|--|--|--|--| | | Prevalence
estimate
(95% CI) | No. of measurements (studies) | QoE-SPEO quality of evidence rating ^{a,b} | Level estimate
mg/m ³
(95% CI) | No. of measurements (studies) | QoE-SPEO quality of evidence rating ^{a,b} | | | | Construction | 0.89 (0.84 to 0.93) | 2479 measurements
(24 entries from 17
studies) | ⊕⊕⊕⊖
Moderate quality of
evidence | _ c | 2352 measurements
(25 entries from 16
studies) | ⊕⊖⊖⊖
Very low quality of
evidence | | | | Manufacturing | 0.85 (0.78 to 0.91) | 40,073 measurements
(39 entries from 24
studies) | ⊕⊕⊕⊖
Moderate quality of
evidence | _ c | 7733 measurements
(30 entries from 14
studies) | ⊕⊖⊖⊖ Very low quality of evidence | | | | Mining | 0.75 (0.68 to 0.82) | 222,276 measurements
(29 entries from 20
studies) | ⊕⊕⊕⊖
Moderate quality of
evidence | 0.04 (0.03 to 0.05) | 2,349,598
measurements
(43 entries from 17
studies) | ⊕⊕⊖⊖
Low quality of evidence | | | | Crop and animal production | _ c | 479 measurements (3 entries from 3 studies) | ⊕⊖⊖⊖ Very low quality of evidence | _ c | 335 measurements
(2 entries from 2
studies) | ⊕⊖⊖⊖
Very low quality of
evidence | | | | Electricity, gas, steam and air conditioning supply | _ c | 136 measurements (2 entries from 2 studies) | ⊕⊖⊖⊖ Very low quality of evidence | _ c | 28 measurements
(1 entry from 1 study) | ⊕⊖⊖⊖ Very low quality of evidence | | | | Professional, scientific and technical activities | _ c | 41 measurements
(1 entry from 1 study) | ⊕⊖⊖
Very low quality of
evidence | _ c | 18,313 measurements
(3 entries from 2
studies) | ⊕⊖⊖
Very low quality of
evidence | | | ^a QoE-SPEO quality of evidence ratings (Pega et al. 2022b): Moderate quality of evidence: Further research is likely to have an important impact on our confidence in the estimate of prevalence and may change the estimate. Low quality of evidence: Further research is very likely to have an important impact on our confidence in the estimate of prevalence and is likely to change the estimate. Very low quality of evidence: We are very uncertain about the estimate. #### **Author contributions** Had the idea for the systematic review: FP, Ivan Ivanov (WHO), Nancy Leppink (ILO). Coordinated the entire series of systematic reviews: FP, YU. Selected the lead reviewers and gathered the review teams: FP, Ivan Ivanov, Nancy Leppink. Were the lead reviewers of this systematic review: VS, DM, PTJS. Led the design of the systematic review including developed the standard methods: FP. Contributed substantially to the design of the systematic review: VS, DM, NCM, DS, SvdM, PTJS. Conducted the search: VS, DM, PTJS. Selected studies: VS, DM, DS, SvdM, PTJS. Extracted data: VS, DM, BA, WC, WK, JL, SM-R, FM, MP, NR, DS, SS, XS, RS, PT, SvdM, KV. Requested missing data: VS. Assessed risk of bias: VS, DM, BA, WC, RAC, LG, TG, BN, WK, JL, SM-R, FM, NR, DS, SS, XS, RS, PT, SvdM, KV, MY. Conducted the meta-analyses: VS, FP, NCM, DS. ^aHigh quality of evidence: Further research is very unlikely to change our confidence in the estimate of prevalence. ^b See Table 27 and Appendix 15 for details
of downgrading. ^c Pooled estimate not shown due to very low quality of evidence. evidence Table 31 Summary of evidence for prevalence and level of occupational exposure to asbestos. Prevalence and level of occupational exposure to asbestos among workers Population: Any manual workers Settings: All countries and work settings Exposure: Occupational exposure to asbestos | Industrial sector | Prevalence | | | Level | | | |--|------------------------------------|-------------------------------|--|---|-------------------------------|--| | | Prevalence
estimate
(95% CI) | No. of measurements (studies) | QoE-SPEO quality of evidence rating ^{a,b} | Level
estimate f/
cm ³
(95% CI) | No. of measurements (studies) | QoE-SPEO quality of evidence rating ^{a,b} | | Construction | 0.77 | 16,580 measurements | ⊕⊕⊖⊖ | _ c | 12,240 measurements | ⊕⊖⊖⊖ | | | (0.65 to 0.87) | (9 entries from 6 | Low quality of | | (15 entries from 6 | Very low quality of | | | | studies) | evidence | | studies) | evidence | | Manufacturing | _ c | 1225 measurements | ⊕⊖⊖⊖ | _ c | 1431 measurements | ⊕⊖⊖⊖ | | | | (7 entries from 7 | Very low quality of | | (10 entries from 5 | Very low quality of | | | | studies) | evidence | | studies) | evidence | | Mining (other mining and quarrying) | _ c | 89 measurements | ⊕⊖⊖⊖ | _ c | 89 measurements | ⊕⊖⊖⊖ | | | | (1 entry from 1 study) | Very low quality of | | (1 entry from 1 study) | Very low quality of | | | | | evidence | | | evidence | | Electricity, gas, steam and air conditioning supply | _ c | 108 measurements | ⊕⊖⊖⊖ | _ c | 46 measurements | ⊕⊖⊖⊖ | | | | (2 entries from 2 | Very low quality of | | (1 entry from 1 study) | Very low quality of | | | | studies) | evidence | | | evidence | | Water supply; sewerage, waste management and remediation | _ | 0 measurements | - | _ c | 4507 measurements | ⊕⊖⊖⊖ | | | | (0 entries from | | | (1 entry from 1 study) | Very low quality of | ^a QoE-SPEO quality of evidence ratings (Pega et al. 2022b): *High quality of evidence*: Further research is very unlikely to change our confidence in the estimate of prevalence. *Moderate quality of evidence*: Further research is likely to have an important impact on our confidence in the estimate of prevalence and may change the estimate. *Low quality of evidence*: Further research is very likely to have an important impact on our confidence in the estimate of prevalence and is likely to change the estimate. *Very low quality of evidence*: We are very uncertain about the estimate. Table 32 Summary of evidence for prevalence and level of occupational exposure to coal dust. 0 studies) | Prevalence and level of occupational exposure to coal dust among w | orkers | |--|--------| | Population: Any manual workers | | Settings: All countries and work settings Exposure: Occupational exposure to coal dust Industrial sector Prevalence Level OoE-SPEO quality of Prevalence QoE-SPEO quality of No. of measurements Level estimate No. of measurements estimate (studies) evidence rating mg/m³ (studies) evidence rating (95% CI) (95% CI) Mining (Coal and lignite) 1.00 3,309 measurements 0000 0.77 100,092 measurements (1.00 to 1.00) (6 entries from 6 Moderate quality of (0.68 to 0.86) (5 entries from 3 Low quality of evidence studies) evidence studies) Electricity, gas, steam and air 203 measurements 0.60 4 measurements conditioning supply (1 entry from 1 study) Very low quality of (-6.95 to 8.14) (1 entry from 1 study) Low quality of evidence evidence Assessed quality of evidence: VS, DM, BA, WC, LG, KH, WK, JL, FM, BN, NR, SM-R, DS, RS, SvdM, KV, MZ, PTJS. Facilitated the quality of evidence assessments: FP, NCM. Developed the standards and wrote the template for all systematic reviews in the series: FP. Wrote the first draft of the manuscript using the template: VS, FP. Revised the manuscript critically for important intellectual content: All authors. Ensured tailoring of the systematic review for WHO/ILO estimation purposes: FP, NCM. Ensured harmonization across systematic reviews in the series: FP, NCM Approved the final version of the systematic review to be published: All authors. Agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved: All authors. #### CRediT authorship contribution statement **Vivi Schlünssen:** Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Supervision, ^b See Table 28 and Appendix 16 for details of downgrading. ^c Pooled estimate not shown due to very low quality of evidence. ^a QoE-SPEO quality of evidence ratings (Pega et al. 2022b): *High quality of evidence*: Further research is very unlikely to change our confidence in the estimate of prevalence. *Moderate quality of evidence*: Further research is likely to have an important impact on our confidence in the estimate of prevalence and may change the estimate. *Low quality of evidence*: Further research is very likely to have an important impact on our confidence in the estimate of prevalence and is likely to change the estimate. *Very low quality of evidence*: We are very uncertain about the estimate. ^b See Table 29 and Appendix 17 for details of downgrading. ^c Pooled estimate not shown due to very low quality of evidence. Validation, Visualization, Software, Writing – original draft, Writing – review & editing. Daniele Mandrioli: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Supervision, Validation, Writing - review & editing. Frank Pega: Conceptualization, Data curation, Formal analysis, Investigation, Funding acquisition, Methodology, Project administration, Supervision, Validation, Writing – original draft, Writing – review & editing. Natalie C. Momen: Data curation, Formal analysis, Investigation, Methodology, Project administration, Supervision, Validation, Visualization, Writing review & editing. Balázs Ádám: Data curation, Formal analysis, Investigation, Validation, Writing – review & editing. Weihong Chen: Data curation, Formal analysis, Investigation, Validation, Writing - review & editing. Robert A. Cohen: Data curation, Formal analysis, Investigation, Validation, Writing – review & editing. Lode Godderis: Data curation, Formal analysis, Investigation, Validation, Writing - review & editing. Thomas Göen: Data curation, Formal analysis, Investigation, Validation, Writing – review & editing. Kishor Hadkhale: Data curation, Formal analysis, Investigation, Validation, Writing – review & editing. Watinee Kunpuek: Data curation, Formal analysis, Investigation, Validation, Writing – review & editing. Jianlin Lou: Data curation, Formal analysis, Investigation, Validation, Writing – review & editing. Stefan Mandic-Rajcevic: Data curation, Formal analysis, Investigation, Validation, Writing – review & editing. Federica Masci: Data curation, Formal analysis, Investigation, Validation, Writing - review & editing. Ben Nemery: Data curation, Formal analysis, Investigation, Validation, Writing - review & editing. Madalina Popa: Data curation, Formal analysis, Investigation, Validation, Writing - review & editing. Natthadanai Rajatanavin: Data curation, Formal analysis, Investigation, Validation, Writing - review & editing. Daria Sgargi: Data curation, Formal analysis, Investigation, Methodology, Validation, Visualization, Writing – review & editing. Somkiat Siriruttanapruk: Data curation, Formal analysis, Investigation, Validation, Writing - review & editing. Xin Sun: Data curation, Formal analysis, Investigation, Validation, Writing - review & editing. Repeepong Suphanchaimat: Data curation, Formal analysis, Investigation, Validation, Writing - review & editing. Panithee Thammawijaya: Data curation, Formal analysis, Investigation, Validation, Writing - review & editing. Yuka Ujita: Conceptualization, Project administration, Supervision, Investigation, Validation, Writing – review & editing. Stevie van der Mierden: Data curation, Formal analysis, Investigation, Methodology, Validation, Writing - review & editing. Katya Vangelova: Data curation, Formal analysis, Investigation, Validation, Writing - review & editing. Meng Ye: Data curation, Formal analysis, Investigation, Validation, Writing review & editing. Muzimkhulu Zungu: Data curation, Formal analysis, Investigation, Validation, Writing - review & editing. Paul T.J. Scheepers: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Supervision, Validation, Visualization, Writing - review & editing. #### **Declaration of Competing Interest** The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Professor Vivi Schlünssen was the Chair of the Danish Quality Committee for Occupational Exposure Limits of the Danish Working Environment Authority from the year 2016, up until 30 June 2022. The other authors declare no conflicts of interest. #### Data availability Data will be made available on request. #### Acknowledgments We thank Dr. Paul Whaley (Systematic Reviews Editor, Environment International; Lancaster Environment Centre, Lancaster University) and Professor Tim Driscoll (University of Sydney) for the editorial guidance and support; Dr. Ivan Ivanov (WHO) and Nancy Leppink (ILO) for their coordination and other support for this systematic review; research librarian Elizabeth Bengtsen (National Research Centre for the Working Environment) for assistance with the search strategies; Dr. Angel Dzhambov (Medical University of Plovdiv and Graz University of Technology)
for statistical advice; and Anne-Line Nippierd Imbsen (WHO) for contributing to the editing of the manuscript. Dr. Yuka Ujita and then Dr. Halim Hamzaoui were the ILO focal point for the WHO/ILO Joint Estimates. Professor Claudio Colosio was a member of the Working Group for WHO/ILO Systematic Review 3 on the prevalences and levels of occupational exposure to dusts and/or fibres (silica, asbestos and coal) from 25 August 2017 to 11 January 2023. WHO gratefully acknowledges Professor Colosio's participation at the meetings and contribution to the work of the Working Group. The authors alone are responsible for the views expressed in this article, and they do not necessarily represent the views, decisions or policies of the institutions with which they are affiliated. #### Appendix A. Supplementary data Supplementary data to this article can be found online at https://doi.org/10.1016/j.envint.2023.107980. #### References - 104th International Labour Conference. Transition from the informal to the formal economy (Recommendation No. 204). Available from: https://www.ilo.org/dyn/normlex/en/f?p=NORMLEXPUB:12100:0::NO::P12100_ILO_CODE:R204, accessed 17 June 2021.; 2015. - Akaoka, K., McKendry, I., Saxton, J., Cottle, P.W., 2017. Impact of coal-carrying trains on particulate matter concentrations in South Delta, British Columbia, Canada. Environ. Pollut. 223, 376–383. - Andersson, L., Bryngelsson, I.L., Ohlson, C.G., Nayström, P., Lilja, B.G., Westberg, H., 2009. Quartz and dust exposure in Swedish iron foundries. J. Occup. Environ. Hyg. 6, 9–18. - Andersson, L., Burdorf, A., Bryngelsson, I.L., Westberg, H., 2012. Estimating trends in quartz exposure in Swedish iron foundries–predicting past and present exposures. Ann. Occup. Hyg. 56, 362–372. - Ansari, F.A., Ahmad, I., Ashquin, M., Yunus, M., Rahman, Q., 2007. Monitoring and identification of airborne asbestos in unorganized sectors, India. Chemosphere 68, 716–723. - Archer, J.D., Cooper, G.S., Reist, P.C., Storm, J.F., Nylander-French, L.A., 2002. Exposure to respirable crystalline silica in eastern North Carolina farm workers. AIHA J (Fairfax, Va) 63, 750–755. - Azari, M.R.R., M., Salehpour, S., Mehrabi, Y., Jafari, M.J., Moaddeli, A.N., Movahedi, M., Ramezankhani, A., Hatami, H., Mosavion, M.A., Ramazani, B., 2009. Risk Assessment of Workers Exposed to Crystalline Silica Aerosols in the East Zone of Tehran. Tanaffos 8, 43-50. - Bakke, B., Stewart, P., Ulvestad, B., Eduard, W., 2001. Dust and gas exposure in tunnel construction work. Aihaj 62, 457–465. - Bakke, B., Ulvestad, B., Thomassen, Y., Woldbaek, T., Ellingsen, D.G., 2014. Characterization of occupational exposure to air contaminants in modern tunnelling operations. Ann. Occup. Hyg. 58, 818–829. - Barendregt, J.J., Doi, S.A., Lee, Y.Y., Norman, R.E., Vos, T., 2013. Meta-analysis of prevalence. J. Epidemiol. Community Health 67, 974–978. - Beer, C., Kolstad, H.A., Sondergaard, K., Bendstrup, E., Heederik, D., Olsen, K.E., Omland, O., Petsonk, E., Sigsgaard, T., Sherson, D.L., Schlunssen, V., 2017. A systematic review of occupational exposure to coal dust and the risk of interstitial lung diseases. Eur Clin Respir J 4, 1264711. - Beller, E.M., Glasziou, P.P., Altman, D.G., Hopewell, S., Bastian, H., Chalmers, I., Gotzsche, P.C., Lasserson, T., Tovey, D., 2013. Prisma for Abstracts Group. PRISMA for Abstracts: reporting systematic reviews in journal and conference abstracts. PLoS Med. 10, e1001419. - Bird, M.J., MacIntosh, D.L., Williams, P.L., 2004. Occupational exposures during routine activities in coal-fueled power plants. J. Occup. Environ. Hyg. 1, 403–413. - Blanco-Romero, L.E., Vega, L.E., Lozano-Chavarria, L.M., Partanen, T.J., 2011. CAREX Nicaragua and Panama: Worker exposures to carcinogenic substances and pesticides. Int. J. Occup. Environ. Health 17, 251–257. - Borton, E.K., Lemasters, G.K., Hilbert, T.J., Lockey, J.E., Dunning, K.K., Rice, C.H., 2012. Exposure estimates for workers in a facility expanding Libby vermiculite: updated values and comparison with original 1980 values. J. Occup. Environ. Med. 54, 1350–1358. - Carneiro, A.P., Braz, N.F., Algranti, E., Bezerra, O.M., Araujo, N.P., Amaral Eng Hyg, L.S., Edmé, J.L., Sobaszek, A., Chérot-Kornobis, N., 2017. Silica exposure and disease in semi-precious stone craftsmen, Minas Gerais, Brazil. Am. J. Ind. Med. 60, 239-247. - Cattaneo, A., Somigliana, A., Gemmi, M., Bernabeo, F., Savoca, D., Cavallo, D.M., Bertazzi, P.A., 2012. Airborne concentrations of chrysotile asbestos in serpentine quarries and stone processing facilities in Valmalenco, Italy. Ann Occup Hyg 56, 671–683. - Cheema, H.A., Shahid, A., Ehsan, M., Ayyan, M., 2022. The misuse of funnel plots in meta-analyses of proportions: are they really useful? Clin. Kidney J. 15, 1209–1210. - Chen, J.L., Su, L.F., Tsai, C.L., Liu, H.H., Lin, M.H., Tsai, P.J., 2007. Mass, number and surface area concentrations of alpha-quartz exposures of refractory material manufacturing workers. J. Occup. Health 49, 411–417. - Chen, W., Liu, Y., Wang, H., Hnizdo, E., Sun, Y., Su, L., Zhang, X., Weng, S., Bochmann, F., Hearl, F.J., Chen, J., Wu, T., 2012. Long-term exposure to silica dust and risk of total and cause-specific mortality in Chinese workers: a cohort study. PLoS Med. 9, e1001206. - Chess, L.E., Gagnier, J.J., 2016. Applicable or non-applicable: investigations of clinical heterogeneity in systematic reviews. BMC Med. Res. Method. 16, 19. - Churchyard, G.J., Ehrlich, R., teWaterNaude, J.M., Pemba, L., Dekker, K., Vermeijs, M., White, N., Myers, J., 2004. Silicosis prevalence and exposure-response relations in South African goldminers. Occup. Environ. Med. 61, 811–816. - Damiran, N., Silbergeld, E.K., Frank, A.L., Lkhasuren, O., Ochir, C., Breysse, P.N., 2015. Exposure to airborne asbestos in thermal power plants in Mongolia. Int. J. Occup. Environ. Health 21, 137–141. - De Berardis, B., Incocciati, E., Massera, S., Gargaro, G., Paoletti, L., 2007. Airborne silica levels in an urban area. Sci. Total Environ. 382, 251–258. - Deeks, J., Higgins, J., Altman, D., 2011. Chapter 9: Analysing data and undertaking meta-analyses. In: Higgins, J., Green, S., (Eds.), Cochrane Handbook for Systematic Reviews of Interventions Version 510: The Cochrane Collaboration; 2011 Available from https://trainingcochraneorg/handbook/archive/v51/, accessed 17 June 2021; 2011 - Descatha, A., Sembajwe, G., Baer, M., Boccuni, F., Di Tecco, C., Duret, C., Evanoff, B.A., Gagliardi, D., Ivanov, I.D., Leppink, N., Marinaccio, A., Magnusson Hanson, L.L., Ozguler, A., Pega, F., Pell, J., Pico, F., Prüss-Üstün, A., Ronchetti, M., Roquelaure, Y., Sabbath, E., Stevens, G.A., Tsutsumi, A., Ujita, Y., Iavicoli, S., 2018. WHO/ILO work-related burden of disease and injury: protocol for systematic reviews of exposure to long working hours and of the effect of exposure to long working hours on stroke. Environ. Int. 119, 366–378. - Descatha, A., Sembajwe, G., Pega, F., Ujita, Y., Baer, M., Boccuni, F., Di Tecco, C., Duret, C., Evanoff, B.A., Gagliardi, D., Godderis, L., Kang, S.K., Kim, B.J., Li, J., Magnusson Hanson, L.L., Marinaccio, A., Ozguler, A., Pachito, D., Pell, J., Pico, F., Ronchetti, M., Roquelaure, Y., Rugulies, R., Schouteden, M., Siegrist, J., Tsutsumi, A., Iavicoli, S., 2020. The effect of exposure to long working hours on stroke: a systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. Environ. Int. 142, 105746. - Dion, C., Dufresne, A., Jacob, M., Perrault, G., 2005. Assessment of exposure to quartz, cristobalite and silicon carbide fibres (whiskers) in a silicon carbide plant. Ann. Occup. Hyg. 49, 335–343. - Drazen, J.M., Van der Weyden, M.B., Sahni, P., Rosenberg, J., Marusic, A., Laine, C., Kotzin, S., Horton, R., Hebert, P.C., Haug, C., Godlee, F., Frizelle, F.A., de Leeuw, P. W., DeAngelis, C.D., 2010a. Uniform format for disclosure of competing interests in ICMJE journals. J. Am. Med. Assoc. 303, 75–76. - Drazen, J.M., de Leeuw, P.W., Laine, C., Mulrow, C., DeAngelis, C.D., Frizelle, F.A., Godlee, F., Haug, C., Hebert, P.C., James, A., Kotzin, S., Marusic, A., Reyes, H., Rosenberg, J., Sahni, P., Van der Weyden, M.B., Zhaori, G., 2010b. Toward more uniform conflict disclosures: the updated ICMJE conflict of interest reporting form. J. Am. Med. Assoc. 304, 212–213. - ES21 Federal Working Group on Exposure Science. Glossary of Exposure Science Terms, 2015. - Estellita, L.D.S.A., Anjos, R.M.D., Yoshimura, E.M., Velasco, H., Da Silva, A., Aguiar, J., 2010. Analysis and risk estimates to workers of Brazilian granitic industries and sandblasters exposed to respirable crystalline silica and natural radionuclides. Radiat. Measure. 45, 196-203. - Fevotte, J., Dananche, B., Delabre, L., Ducamp, S., Garras, L., Houot, M., Luce, D., Orlowski, E., Pilorget, C., Lacourt, A., Brochard, P., Goldberg, M., Imbernon, E., 2011. Matgene: a program to develop job-exposure matrices in the general population in France. Ann. Occup. Hyg. 55, 865–878. - Flanagan, M.E., Seixas, N., Becker, P., Takacs, B., Camp, J., 2006. Silica exposure on construction sites: results of an exposure monitoring data compilation project. J. Occup. Environ. Hyg. 3, 144–152. - Føreland, S., Bye, E., Bakke, B., Eduard, W., 2008. Exposure to fibres, crystalline silica, silicon carbide and sulphur dioxide in the norwegian silicon carbide industry. Ann. Occup. Hyg. 52, 317–336. - Forsyth, S.R., Odierna, D.H., Krauth, D., Bero, L.A., 2014. Conflicts of interest and critiques of the use of systematic reviews in policymaking: an analysis of opinion articles. Syst. Rev. 3, 122. - Fulekar, M.H., 1999. Occupational exposure to dust in quartz manufacturing industry. Ann. Occup. Hyg. 43, 269–273. - Furuya-Kanamori, L., Barendregt, J.J., Doi, S.A.R., 2018. A new improved graphical and quantitative method for detecting bias in meta-analysis. Int. J. Evid. Based Healthc. 16, 195–203. - G. B. D. Risk Factors
Collaborators, 2017. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390. 1345-1422. - Galea, K.S., Mair, C., Alexander, C., de Vocht, F., van Tongeren, M., 2016. Occupational Exposure to Respirable Dust, Respirable Crystalline Silica and Diesel Engine Exhaust Emissions in the London Tunnelling Environment. Ann. Occup. Hyg. 60, 263–269. - Garcia, A.M., Gonzalez-Galarzo, M.C., Kauppinen, T., Delclos, G.L., Benavides, F.G., 2013. A job-exposure matrix for research and surveillance of occupational health and safety in Spanish workers: Matemesp. Am. J. Ind. Med. 56, 1226–1238. - Godderis, L., Boonen, E., Cabrera Martimbianco, A.L., Delvaux, E., Ivanov, I.D., Lambrechts, M.C., Latorraca, C.O.C., Leppink, N., Pega, F., Pruss-Ustun, A.M., Riera, R., Ujita, Y., Pachito, D.V., 2018. WHO/ILO work-related burden of disease and injury: Protocol for systematic reviews of exposure to long working hours and of the effect of exposure to long working hours on alcohol consumption and alcohol use disorders. Environ. Int. 120, 22–33. - Golbabaei, F., Barghi, M.A., Sakhaei, M., 2004. Evaluation of workers' exposure to total, respirable and silica dust and the related health symptoms in Senjedak stone quarry, Iran. Ind Health 42, 29–33. - Gottesfeld, P., Andrew, D., Dalhoff, J., 2015. Silica Exposures in Artisanal Small-Scale Gold Mining in Tanzania and Implications for Tuberculosis Prevention. J. Occup. Environ. Hyg. 12, 647–653. - Green, D.A., McAlpine, G., Semple, S., Cowie, H., Seaton, A., 2008. Mineral dust exposure in young Indian adults: an effect on lung growth? Occup. Environ. Med. 65, 306–310. - Grové, T., Van Dyk, T., Franken, A., Du Plessis, J., 2014. The evaluation and quantification of respirable coal and silica dust concentrations: a task-based approach. J. Occup. Environ. Hyg. 11, 406–414. - Guénel, P., Breum, N.O., Lynge, E., 1989. Exposure to silica dust in the Danish stone industry. Scand. J. Work Environ. Health 15, 147–153. - Hammond, D.R., Shulman, S.A., Echt, A.S., 2016. Respirable crystalline silica exposures during asphalt pavement milling at eleven highway construction sites. J. Occup. Environ. Hyg. 13, 538–548. - Hayumbu, P., Robins, T.G., Key-Schwartz, R., 2008. Cross-sectional silica exposure measurements at two Zambian copper mines of Nkana and Mufulira. Int. J. Environ. Res. Public Health 5, 86–90. - Healy, C.B., Coggins, M.A., Van Tongeren, M., MacCalman, L., McGowan, P., 2014. Determinants of respirable crystalline silica exposure among stoneworkers involved in stone restoration work. Ann. Occup. Hyg. 58, 6–18. - Heederik, D., Attfield, M., 2000. Characterization of dust exposure for the study of chronic occupational lung disease: a comparison of different exposure assessment strategies. Am. J. Epidemiol. 151, 982–990. - Hicks, J., Yager, J., 2006. Airborne crystalline silica concentrations at coal-fired power plants associated with coal fly ash. J. Occup. Environ. Hyg. 3, 448–455. Huizer, D., Spee, T., Lumens, M., Kromhout, H., 2010. Exposure to respirable dust and - Huizer, D., Spee, T., Lumens, M., Kromhout, H., 2010. Exposure to respirable dust and crystalline silica in bricklaying education at Dutch vocational training centers. Am. J. Ind. Med. 53, 628–634. - Hulshof, C.T.J., Colosio, C., Daams, J.G., Ivanov, I.D., KC, P., Kuijer, P.P.F.M., Leppink, N., Mandic-Rajcevic, S., Masci, F., van der Molen, H.F., Neupane, S., Nygard, C.H., Oakman, J., Pega, F., Proper, K., Pruss-Ustun, A.M., Ujita, Y., Frings-Dresen, M.H.W., 2019. WHO/ILO work-related burden of disease and injury: Protocol for systematic reviews of exposure to occupational ergonomic risk factors and of the effect of exposure to occupational ergonomic risk factors on osteoarthritis of hip or knee and selected other musculoskeletal diseases. Environ. Int. 125, 554–566. - Hulshof, C.T.J., Pega, F., Neupane, S., van der Molen, H.F., Colosio, C., Daams, J.G., Descatha, A., KC, P., Kuijer, P.P.F.M., Mandic-Rajcevic, S., Masci, F., Morgan, R.L., Nygard, C.H., Oakman, J., Proper, K.I., Solovieva, S., Frings-Dresen, M.H.W., 2021a. The prevalence of occupational exposure to ergonomic risk factors: A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. Environ Int 146, 106157. - Hulshof, C.T.J., Pega, F., Neupane, S., Colosio, C., Daams, J.G., KC, P., Kuijer, P.P.F.M., Mandic-Rajcevic, S., Masci, F., van der Molen, H.F., Nygard, C.H., Oakman, J., Proper, K.I., Frings-Dresen, M.H.W., 2021b. The effect of occupational exposure to ergonomic risk factors on osteoarthritis of hip or knee and selected other musculoskeletal diseases: A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. Environ Int 106349. - Hunter, J.P., Saratzis, A., Sutton, A.J., Boucher, R.H., Sayers, R.D., Bown, M.J., 2014. In meta-analyses of proportion studies, funnel plots were found to be an inaccurate method of assessing publication bias. J. Clin. Epidemiol. 67, 897–903. - International Labour Organization, 1988. International standard classification of occupations (ISCO-88). ILO, Geneva. - $\label{lem:condition} International\ Labour\ Organization.\ ISCO-08:\ International\ Standard\ Classification\ of\ Occupations,\ 2012.$ - International Labour Organization, 2014. Safety and health at work: a vision for sustainable prevention: XX World Congress on Safety and Health at Work 2014: Global Forum for Prevention, 24-27 August 2014, Frankfurt, Germany. - Kakooei, H., Sameti, M., Kakooei, A.A., 2007. Asbestos exposure during routine brake lining manufacture. Ind. Health 45, 787–792. - Kakooei, H., Normohammadi, M., 2014. Asbestos exposure among construction workers during demolition of old houses in Tehran, Iran. Ind Health 52, 71–77. - Kauffer, E., Vincent, R., 2007. Occupational exposure to mineral fibres: analysis of results stored on colchic database. Ann. Occup. Hyg. 51, 131–142. - Kauppinen, T., Toikkanen, J., Pedersen, D., Young, R., Ahrens, W., Boffetta, P., Hansen, J., Kromhout, H., Maqueda Blasco, J., Mirabelli, D., de la Orden-Rivera, V., Pannett, B., Plato, N., Savela, A., Vincent, R., Kogevinas, M., 2000. Occupational exposure to carcinogens in the European Union. Occup. Environ. Med. 57, 10–18. - Kauppinen, T., Uuksulainen, S., Saalo, A., Makinen, I., 2013. Trends of occupational exposure to chemical agents in Finland in 1950–2020. Ann. Occup. Hyg. 57, 593–609. - Khoza, N.G.T., Schutte, P.C., 2012. Worker exposure to silica dust in South African nonmining industries in Gauteng: an exploratory study. Occupational Health Southern Africa 18, 18-26. - Kim, T.S., Kim, H.A., Heo, Y., Park, Y., Park, C.Y., Roh, Y.M., 2002. Level of silica in the respirable dust inhaled by dental technicians with demonstration of respirable symptoms. Ind. Health 40, 260–265. - Koo, J.W.C., Park, C.Y., Lee, S.H., Lee, K.S., Roh, Y.M., Yim, H.W., 2000. The effect of silica dust on ventilatory function of foundry workers. J. Occup. Health 42, 251-257. - Kreiss, K., Zhen, B., 1996. Risk of silicosis in a Colorado mining community. Am. J. Ind. Med. 30, 529–539 - Kromhout, H., Symanski, E., Rappaport, S.M., 1993. A comprehensive evaluation of within- and between-worker components of occupational exposure to chemical agents. Ann. Occup. Hyg. 37, 253–270. - Kullman, G.J., Greife, A.L., Costello, J., Hearl, F.J., 1995. Occupational exposures to fibers and quartz at 19 crushed stone mining and milling operations. Am. J. Ind. Med. 27, 641–660. - Kunpeuk, W., Julchoo, S., Phaiyarom, M., Sosom, J., Sinam, P., Sukaew, T., Rajatanavin, N., Suphanchaimat, R., Thammawijaya, P., Siriruttanapruk, S., 2021. A Scoping Review on Occupational Exposure of Silica and Asbestos among Industrial Workers in Thailand. Outbreak, Surveillance, Investigation Response 14, 41–61. - Lavoué, J., Bégin, D., Beaudry, C., Gérin, M., 2007. Monte Carlo simulation to reconstruct formaldehyde exposure levels from summary parameters reported in the literature. Ann. Occup. Hyg. 51, 161–172. - Lee, Y.K., B., Seok Kwak, H., Young Park, S., Choi, B.-S., 2014. The stone workers exposure to crystalline silica in the construction industry. Europ. Respiratory J. 44. - Li, J., Brisson, C., Clays, E., Ferrario, M.M., Ivanov, I.D., Landsbergis, P., Leppink, N., Pega, F., Pikhart, H., Prüss-Üstün, A., Rugulies, R., Schnall, P.L., Stevens, G., Tsutsumi, A., Ujita, Y., Siegrist, J., 2018. WHO/ILO work-related burden of disease and injury: protocol for systematic reviews of exposure to long working hours and of the effect of exposure to long working hours on ischaemic heart disease. Environ. Int. 119, 558–569. - Li, J., Pega, F., Ujita, Y., Brisson, C., Clays, E., Descatha, A., Ferrario, M.M., Godderis, L., Iavicoli, S., Landsbergis, P.A., Metzendorf, M.I., Morgan, R.L., Pachito, D.V., Pikhart, H., Richter, B., Roncaioli, M., Rugulies, R., Schnall, P.L., Sembajwe, G., Trudel, X., Tsutsumi, A., Woodruff, T.J., Siegrist, J., 2020. The effect of exposure to long working hours on ischaemic heart disease: a systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. Environ. Int. 142, 105739. - Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gotzsche, P.C., Ioannidis, J.P., Clarke, M., Devereaux, P.J., Kleijnen, J., Moher, D., 2009. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 6, e1000100. - Linch, K.D., 2002. Respirable concrete dust-silicosis hazard in the construction industry. Appl. Occup. Environ. Hyg. 17, 209–221. - Loomis, D., Dzhambov, A.M., Momen, N.C., Chartres, N., Descatha, A., Guha, N., Kang, S. K., Modenese, A., Morgan, R.L., Ahn, S.,
Martinez-Silveira, M.S., Zhang, S., Pega, F., 2022. The effect of occupational exposure to welding fumes on trachea, bronchus and lung cancer: A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. Environ. Int. 170, 107565. - Love, R.G., Miller, B.G., Groat, S.K., Hagen, S., Cowie, H.A., Johnston, P.P., Hutchison, P. A., Soutar, C.A., 1997. Respiratory health effects of opencast coalmining: a cross sectional study of current workers. Occup. Environ. Med. 54, 416–423. - Love, R.G., Waclawski, E.R., Maclaren, W.M., Wetherill, G.Z., Groat, S.K., Porteous, R.H., Soutar, C.A., 1999. Risks of respiratory disease in the heavy clay industry. Occup. Environ. Med. 56, 124–133. - Lu, J.J., S., Tao, J., Hu, J., 2016. Analysis of dust to evaluate the incidence of pneumoconiosis in huainan coal mines. Analy. Lett. 49, 1783-1793. - Maino, A., Gianelle, V., Onida, F., Albiero, S., 1995. Occupational exposure to asbestos in removal and protective treatment of roof coverings. Med. Lav. 86, 546–554. - Mamuya, S.H., Bråtveit, M., Mwaiselage, J., Mashalla, Y.J., Moen, B.E., 2006a. High exposure to respirable dust and quartz in a labour-intensive coal mine in Tanzania. Ann. Occup. Hyg. 50, 197–204. - Mamuya, S.H., Bråtveit, M., Mwaiselage, J., Moen, B.E., 2006b. Variability of exposure and estimation of cumulative exposure in a manually operated coal mine. Ann. Occup. Hyg. 50, 737–745. - Mandrioli, D., Schlunssen, V., Adam, B., Cohen, R.A., Colosio, C., Chen, W., Fischer, A., Godderis, L., Goen, T., Ivanov, I.D., Leppink, N., Mandic-Rajcevic, S., Masci, F., Nemery, B., Pega, F., Pruss-Ustun, A., Sgargi, D., Ujita, Y., van der Mierden, S., Zungu, M., Scheepers, P.T.J., 2018. WHO/ILO work-related burden of disease and injury: Protocol for systematic reviews of occupational exposure to dusts and/or fibres and of the effect of occupational exposure to dusts and/or fibres on pneumoconiosis. Environ. Int. 119, 174–185. - Marioryad, H., Kakooei, H., Shahtaheri, S.J., Yunesian, M., Azam, K., 2011. Assessment of airborne asbestos exposure at an asbestos cement sheet and pipe factory in Iran. Regul. Toxicol. Pharm. 60, 200–205. - Massaro, T., Baldassarre, A., Pinca, A., Martina, G.L., Fiore, S., Lettino, A., Cassano, F., Musti, M., 2012. Exposure to asbestos in buildings in areas of Basilicata - characterized by the presence of rocks containing tremolite. G. Ital. Med. Lav. Ergon. $34,\,568-570$. - Mlynarek, S., Corn, M., Blake, C., 1996. Asbestos exposure of building maintenance personnel. Regul. Toxicol. Pharm. 23, 213–224. - Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L.A., Group, P.-P., 2015. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4, 1. - Momen, N.C., Streicher, K.N., da Silva, D.T.C., Descatha, A., Frings-Dresen, M.H., Gagliardi, D., Godderis, L., Loney, T., Mandrioli, D., Modenese, A., Morgan, R.L., Pachito, D., Scheepers, P.T.J., Sgargi, D., Paulo, M.S., Schlünssen, V., Sembajwe, G., Sørensen, K., Teixeira, L.R., Tenkate, T., Pega, F., 2022. Assessor burden, inter-rater agreement and user experience of the RoB-SPEO tool for assessing risk of bias in studies estimating prevalence of exposure to occupational risk factors: An analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Iniury. Environ. Int. 107005. - Murray, C.J.L., Ezzati, M., Lopez, A.D., Rodgers, A., Vander Hoorn, S., 2004. Comparative Quantification of Health Risks: Conceptual Framework and Methodological Issues. In: Ezzati, M., Lopez, A.D., Rodgers, A., Murray, C.J.L. (Eds.), Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors. World Health Organization, Geneva - Nafradi, B., Kiiver, H., Neupane, S., Momen, N.C., Streicher, K.N., Pega, F., 2022. Estimating the population exposed to a risk factor over a time window: A microsimulation modelling approach from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. PLoS One 17, e0278507. - Nieuwenhuijsen, M.J., Noderer, K.S., Schenker, M.B., Vallyathan, V., Olenchock, S., 1999. Personal exposure to dust, endotoxin and crystalline silica in California agriculture. Ann. Occup. Hyg. 43, 35–42. - Normohammadi, M., Kakooei, H., Omidi, L., Yari, S., Alimi, R., 2016. Risk Assessment of Exposure to Silica Dust in Building Demolition Sites. Saf. Health Work 7, 251–255. - Omidianidost, A., Ghasemkhani, M., Azari, M.R., Golbabaei, F., 2015. Assessment of Occupational Exposure to Dust and Crystalline Silica in Foundries. Tanaffos 14, 208–212. - Omidianidost, A., Ghasemkhani, M., Kakooei, H., Shahtaheri, S.J., Ghanbari, M., 2016. Risk Assessment of Occupational Exposure to Crystalline Silica in Small Foundries in Pakdasht. Iran. Iran J Public Health 45, 70–75. - Oudyk, J.D., 1995. Review of an extensive ferrous foundry silica sampling program. Appl. Occup. Environ. Hyg. 10, 331–340. - Pachito, D.V., Pega, F., Bakusic, J., Boonen, E., Clays, E., Descatha, A., Delvaux, E., De Bacquer, D., Koskenvuo, K., Kroger, H., Lambrechts, M.C., Latorraca, C.O.C., Li, J., Cabrera Martimbianco, A.L., Riera, R., Rugulies, R., Sembajwe, G., Siegrist, J., Sillanmaki, L., Sumanen, M., Suominen, S., Ujita, Y., Vandersmissen, G., Godderis, L., 2021. The effect of exposure to long working hours on alcohol consumption, risky drinking and alcohol use disorder: A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. Environ. Int. 146. 106205. - Panahi, D., Kakooei, H., Marioryad, H., Mehrdad, R., Golhosseini, M., 2011. Evaluation of exposure to the airborne asbestos in an asbestos cement sheet manufacturing industry in Iran. Environ. Monit. Assess. 178, 449–454. - Pandey, J.K.A., D., Gorain, S., Dubey, R.K., Vishwakarma, M.K., Mishra, K.K., Pal, A.K., Characterisation of respirable dust exposure of different category of workers in Jharia Coalfields. Arab. J. Geosci. 2017, 10. - Paulo, M.S., Adam, B., Akagwu, C., Akparibo, I., Al-Rifai, R.H., Bazrafshan, S., Gobba, F., Green, A.C., Ivanov, I., Kezic, S., Leppink, N., Loney, T., Modenese, A., Pega, F., Peters, C.E., Pruss-Ustun, A.M., Tenkate, T., Ujita, Y., Wittlich, M., John, S.M., 2019. WHO/ILO work-related burden of disease and injury: Protocol for systematic reviews of occupational exposure to solar ultraviolet radiation and of the effect of occupational exposure to solar ultraviolet radiation on melanoma and non-melanoma skin cancer. Environ. Int. 126, 804–815. - Pega, F., Norris, S.L., Backes, C., Bero, L.A., Descatha, A., Gagliardi, D., Godderis, L., Loney, T., Modenese, A., Morgan, R.L., Pachito, D., Paulo, M.B.S., Scheepers, P.T.J., Schlunssen, V., Sgargi, D., Silbergeld, E.K., Sorensen, K., Sutton, P., Tenkate, T., Correa, T., da Silva, D., Ujita, Y., van Deventer, E., Woodruff, T.J., Mandrioli, D.-SPEO., 2020a. A tool for assessing risk of bias in studies estimating the prevalence of exposure to occupational risk factors from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. Environ. Int. 135, 105039. - Pega, F., Chartres, N., Guha, N., Modenese, A., Morgan, R.L., Martinez-Silveira, M.S., Loomis, D., 2020b. The effect of occupational exposure to welding fumes on trachea, bronchus and lung cancer: A protocol for a systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. Environ. Int. 145, 106089. - Pega, F., Nafradi, B., Momen, N.C., Ujita, Y., Streicher, K.N., Pruss-Ustun, A.M., Technical Advisory Group, Descatha, A., Driscoll, T., Fischer, F.M., Godderis, L., Kiiver, H.M., Li, J., Magnusson Hanson, L.L., Rugulies, R., Sorensen, K., Woodruff, T. J., 2021a. Global, regional, and national burdens of ischemic heart disease and stroke attributable to exposure to long working hours for 194 countries, 2000-2016: A systematic analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. Environ Int 106595. - Pega, F., Momen, N.C., Ujita, Y., Driscoll, T., Whaley, P., 2021b. Systematic reviews and meta-analyses for the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. Environ. Int. 155, 106605. - Pega, F., Hamzaoui, H., Nafradi, B., Momen, N.C., 2022a. Global, regional and national burden of disease attributable to 19 selected occupational risk factors for 183 countries, 2000–2016: A systematic analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. Scand. J. Work Environ. Health. - Pega, F., Momen, N.C., Gagliardi, D., Bero, L.A., Boccuni, F., Chartres, N., Descatha, A., Dzhambov, A.M., Godderis, L., Loney, T., Mandrioli, D., Modenese, A., van der - Molen, H.F., Morgan, R.L., Neupane, S., Pachito, D., Paulo, M.S., Prakash, K.C., Scheepers, P.T.J., Teixeira, L., Tenkate, T., Woodruff, T.J., Norris, S.L., 2022b. Assessing the quality of evidence in studies estimating prevalence of exposure to occupational risk factors: The QoE-SPEO approach applied in the systematic reviews from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. Environ. Int. 161, 107136. - Pega, F., Momen, N.C., Bero, L., Whaley, P., 2022c. Towards a framework for systematic reviews of the prevalence of exposure to environmental and occupational risk factors. Environ. Health 21, 64. - Pega, F., Pabayo, R., Benny, C., Lee, E.-Y., Lhachimi, S., Liu, S.Y., 2022d. Unconditional cash transfers for reducing poverty and vulnerabilities: effect on use of health services and health outcomes in low- and middle-income countries. Cochrane Database Syst. Rev. - Perkins, R.A., Hargesheimer, J., Vaara, L., 2008. Evaluation of public and worker exposure due to naturally occurring asbestos in gravel discovered during a road construction project. J. Occup. Environ. Hyg. 5,
609–616. - Peters, C.E., Ge, C.B., Hall, A.L., Davies, H.W., Demers, P.A., 2015. CAREX Canada: an enhanced model for assessing occupational carcinogen exposure. Occup. Environ. Med. 72, 64–71. - Peters, S., Vermeulen, R., Fritschi, L., Musk, A.B., Reid, A., de Klerk, N., 2017. Trends in exposure to respirable crystalline silica (1986–2014) in Australian mining. Am. J. Ind. Med. 60, 673–678. - Phanprasit, W., Sujirarat, D., Chaikittiporn, C., 2009. Health risk among asbestos cement sheet manufacturing workers in Thailand. J. Med. Assoc. Thai. 92 (Suppl 7), 5115–5120. - Piacitelli, G.M., Amandus, H.E., Dieffenbach, A., 1990. Respirable dust exposures in U.S. surface coal mines (1982–1986). Arch. Environ. Health 45, 202–209. - Prüss-Ustün, A., Wolf, J., Corvalán, C., Neville, T., Bos, R., Neira, M., 2017. Diseases due to unhealthy environments: An updated estimate of the global burden of disease attributable to environmental determinants of health. J. Public Health 39, 464–475. - Radnoff, D., Todor, M.S., Beach, J., 2014. Occupational exposure to crystalline silica at Alberta work sites. J. Occup. Environ. Hyg. 11, 557–570. - Radnoff, D.L., Kutz, M.K., 2014. Exposure to crystalline silica in abrasive blasting operations where silica and non-silica abrasives are used. Ann. Occup. Hyg. 58, 19–27. - Rando, R.J., Shi, R., Hughes, J.M., Weill, H., McDonald, A.D., McDonald, J.C., 2001. Cohort mortality study of North American industrial sand workers. III. Estimation of past and present exposures to respirable crystalline silica. Ann. Occup. Hyg. 45, 209–216. - Rappaport, S.M., Goldberg, M., Susi, P., Herrick, R.F., 2003. Excessive exposure to silica in the US construction industry. Ann. Occup. Hyg. 47, 111–122. - Rees, D., Cronje, R., du Toit, R.S., 1992. Dust exposure and pneumoconiosis in a South African pottery. 1. Study objectives and dust exposure. Br. J. Ind. Med. 49, 459–464. - Rokni, M.M., Hashemi, S.T., Asadi, S.M., Boogaard, P.J., Heibati, B., Yetilmezsoy, K., Abdul-Wahab, S.A., 2016. Risk assessment of workers exposed to crystalline silica aerosols. Human Ecol. Risk Assess.: Int. J. 22, 1678-1686. - Rugulies, R., Ando, E., Ayuso-Mateos, J.L., Bonafede, M., Cabello, M., Di Tecco, C., Dragano, N., Durand-Moreau, Q., Eguchi, H., Gao, J., Garde, A.H., Iavicoli, S., Ivanov, I.D., Leppink, N., Madsen, I.E.H., Pega, F., Pruss-Ustun, A.M., Rondinone, B. M., Sorensen, K., Tsuno, K., Ujita, Y., Zadow, A., 2019. WHO/ILO work-related burden of disease and injury: Protocol for systematic reviews of exposure to long working hours and of the effect of exposure to long working hours on depression. Environ. Int. 125. 515–528. - Rugulies, R., Sørensen, K., Di Tecco, C., Bonafede, M., Rondinone, B.M., Ahn, S., Ando, E., Ayuso-Mateos, J.L., Cabello, M., Descatha, A., Dragano, N., Durand-Moreau, Q., Eguchi, H., Gao, J., Godderis, L., Kim, J., Madsen, I.E.H., Pachito, D.V., Sembajwe, G., Siegrist, J., Tsuno, K., Ujita, Y., Wang, J., Zadow, A., Iavicoli, S., Pega, F., 2021. The effect of exposure to long working hours on depression: A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-Related Burden of Disease and Injury. Environ. Int. 155, 106629. - Saiyed, H.N., Ghodasara, N.B., Sathwara, N.G., Patel, G.C., Parikh, D.J., Kashyap, S.K., 1995. Dustiness, silicosis & tuberculosis in small scale pottery workers. Indian J. Med. Res. 102, 138–142. - Sanderson, W.T., Steenland, K., Deddens, J.A., 2000. Historical respirable quartz exposures of industrial sand workers: 1946–1996. Am. J. Ind. Med. 38, 389–398. - Sayler, S.K., Long, R.N., Nambunmee, K., Neitzel, R.L., 2018. Respirable silica and noise exposures among stone processing workers in northern Thailand. J. Occup. Environ. Hyg. 15, 117–124. - Scarselli, A., Corfiati, M., Marzio, D.D., Iavicoli, S., 2014. Evaluation of workplace exposure to respirable crystalline silica in Italy. Int. J. Occup. Environ. Health 20, 301–307. - Scarselli, A., Corfiati, M., Di Marzio, D., 2016. Occupational exposure in the removal and disposal of asbestos-containing materials in Italy. Int Arch Occup Environ Health 89, 857–865. - Schonfeld, S.J., Kovalevskiy, E.V., Feletto, E., Bukhtiyarov, I.V., Kashanskiy, S.V., Moissonier, M., Straif, K., McCormack, V.A., Schuz, J., Kromhout, H., 2017. Temporal Trends in Airborne Dust Concentrations at a Large Chrysotile Mine and its Asbestos-enrichment Factories in the Russian Federation During 1951–2001. Ann Work Expo Health 61, 797–808. - Shamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L.A., Group, P.-P., 2015. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 350, 67647. - Siltanen, E., Koponen, M., Kokko, A., Engström, B., Reponen, J., 1976. Dust exposure in Finnish foundries. Scand. J. Work Environ. Health 2 (Suppl 1), 19–31. - Stevens, G.A., Alkema, L., Black, R.E., Boerma, J.T., Collins, G.S., Ezzati, M., Grove, J.T., Hogan, D.R., Hogan, M.C., Horton, R., Lawn, J.E., Marusic, A., Mathers, C.D., Murray, C.J., Rudan, I., Salomon, J.A., Simpson, P.J., Vos, T., Welch, V., 2016. Guidelines for accurate and transparent health estimates reporting: the GATHER statement. Lancet 388, e19–e23. - Swanepoel, A., Swanepoel, C., Rees, D., 2018. Determinants of respirable quartz exposure in farming. J. Occup. Environ. Hyg. 15, 71–79. - Swanepoel, A.J., Kromhout, H., Jinnah, Z.A., Portengen, L., Renton, K., Gardiner, K., Rees, D., 2011. Respirable dust and quartz exposure from three South African farms with sandy, sandy loam, and clay soils. Ann. Occup. Hyg. 55, 634–643. - Tarres, J., Alberti, C., Martinez-Artes, X., Abos-Herrandiz, R., Rosell-Murphy, M., Garcia-Allas, I., Krier, I., Cantarell, G., Gallego, M., Canela-Soler, J., Orriols, R., 2013. Pleural mesothelioma in relation to meteorological conditions and residential distance from an industrial source of asbestos. Occup. Environ. Med. 70, 588–590. - Tavakol, E., Azari, M., Zendehdel, R., Salehpour, S., Khodakrim, S., Nikoo, S., Saranjam, B., 2017. Risk Evaluation of Construction Workers' Exposure to Silica Dust and the Possible Lung Function Impairments. Tanaffos 16, 295–303. - Teixeira, L.R., Azevedo, T.M., Bortkiewicz, A., Correa da Silva, D.T., de Abreu, W., de Almeida, M.S., de Araujo, M.A.N., Gadzicka, E., Ivanov, I.D., Leppink, N., Macedo, M.R.V., de, S.M.E.M.G., Pawlaczyk-Luszczynska, M., Pega, F., Pruss-Ustun, A.M., Siedlecka, J., Stevens, G.A., Ujita, Y., Braga, J.U., 2019. WHO/ILO work-related burden of disease and injury: Protocol for systematic reviews of exposure to occupational noise and of the effect of exposure to occupational noise on cardiovascular disease. Environ Int 125, 567–578. - Teixeira, L.R., Pega, F., Dzhambov, A.M., Bortkiewicz, A., da Silva, D.T.C., de Andrade, C.A.F., Gadzicka, E., Hadkhale, K., Iavicoli, S., Martinez-Silveira, M.S., Pawlaczyk-Luszczynska, M., Rondinone, B.M., Siedlecka, J., Valenti, A., Gagliardi, D., 2021a. The effect of occupational exposure to noise on ischaemic heart disease, stroke and hypertension: A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-Related Burden of Disease and Injury. Environ. Int. 106387. - Teixeira, L.R., Pega, F., de Abreu, W., de Almeida, M.S., de Andrade, C.A.F., Azevedo, T. M., Dzhambov, A.M., Hu, W., Macedo, M.R.V., Martinez-Silveira, M.S., Sun, X., Zhang, M., Zhang, S., Correa da Silva, D.T., 2021b. The prevalence of occupational exposure to noise: A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. - Tenkate, T., Adam, B., Al-Rifai, R.H., Chou, B.R., Gobba, F., Ivanov, I.D., Leppink, N., Loney, T., Pega, F., Peters, C.E., Pruss-Ustun, A.M., Silva Paulo, M., Ujita, Y., Wittlich, M., Modenese, A., 2019. WHO/ILO work-related burden of disease and injury: Protocol for systematic reviews of occupational exposure to solar ultraviolet radiation and of the effect of occupational exposure to solar ultraviolet radiation on cataract. Environ. Int. 125, 542–553. - Tjoe Nij, E., Hilhorst, S., Spee, T., Spierings, J., Steffens, F., Lumens, M., Heederik, D., 2003. Dust control measures in the construction industry. Ann. Occup. Hyg. 47, 211–218. - Tjoe Nij, E., Höhr, D., Borm, P., Burstyn, I., Spierings, J., Steffens, F., Lumens, M., Spee, T., Heederik, D., 2004. Variability in quartz exposure in the construction industry: implications for assessing exposure-response relations. J. Occup. Environ. Hvg. 1, 191–198. - Tripathy, D.D., Badu, A., Kanungo, R., 2015. Assessment and modelling of dust concentration in an opencast coal mine in India. Global Nest J. 17, 825-834. - Ulvestad, B., Bakke, B., Melbostad, E., Fuglerud, P., Kongerud, J., Lund, M.B., 2000. Increased risk of obstructive pulmonary disease in tunnel workers. Thorax 55, 277–282. - Ulvestad, B., Bakke, B., Eduard, W., Kongerud, J., Lund, M.B., 2001a. Cumulative exposure to dust causes accelerated decline in lung function in tunnel workers. Occup. Environ. Med. 58, 663–669. - Ulvestad, B., Lund, M.B., Bakke, B., Djupesland, P.G., Kongerud, J., Boe, J., 2001b. Gas and dust exposure in underground construction is associated with signs of airway inflammation. Eur. Respir. J. 17, 416–421. - United Nations, D.o.E.a.S.A.S.D.-S.D. International Standard Industrial Classification of All Economic Activities- Revision 4. Statistical Papers. United Nations, New York: United Nations. - van Deurssen, E., Pronk, A., Spaan, S., Goede, H., Tielemans, E., Heederik, D., Meijster, T., 2014. Quartz and respirable dust in the Dutch construction industry: a baseline exposure assessment as part of a multidimensional intervention approach. Ann. Occup. Hyg. 58, 724–738. - van Deurssen, E., Meijster, T., Oude Hengel, K.M., Boessen, R., Spaan, S., Tielemans, E., Heederik, D., Pronk, A., 2015. Effectiveness of a Multidimensional Randomized Control Intervention to
Reduce Quartz Exposure Among Construction Workers. Ann. Occup. Hyg. 59, 959–971. - Verma, D.K., Rajhans, G.S., Malik, O.P., des Tombe, K., 2014. Respirable dust and respirable silica exposure in Ontario gold mines. J. Occup. Environ. Hyg. 11, 111–116. - Wang, L., Liu, X., Yu, D., Wang, L., Zhou, X., Zi, Y., 2015. Current situation of prevention and treatment of silicosis in Jinshan District of Shanghai, China. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 33, 456–458. - Wang, X., Yano, E., Qiu, H., Yu, I., Courtice, M.N., Tse, L.A., Lin, S., Wang, M., 2012. A 37-year observation of mortality in Chinese chrysotile asbestos workers. Thorax 67, 106–110. - Watts Jr., W.F., Huynh, T.B., Ramachandran, G., 2012. Quartz concentration trends in metal and nonmetal mining. J. Occup. Environ. Hyg. 9, 720–732. - Weeks, J.L., Rose, C., 2006. Metal and non-metal miners' exposure to crystalline silica, 1998–2002. Am. J. Ind. Med. 49, 523–534. - Wilmoth, R.C.T., Taylor, M.S., 1994. Asbestos release from the demolition of two schools in Fairbanks, Alaska. Appl. Occup. Environ. Hygiene 9, 409-417. #### World Health Organization. Global Health Estimates 2016. 2018. - World Health Organization, 2021. The effect of occupational exposure to solar ultraviolet radiation on malignant skin melanoma and non-melanoma skin cancer: a systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. World Health Organization, Geneva. - World Health Organization; International Labour Organization, 2021a. WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury, 2000–2016: Technical Report with Data Sources and Methods. World Health Organization, Geneva. - World Health Organization; International Labour Organization, 2021b. WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury, 2000–2016: Global Monitoring Report. World Health Organization, Geneva. - Woskie, S.R., Kalil, A., Bello, D., Virji, M.A., 2002. Exposures to quartz, diesel, dust, and welding fumes during heavy and highway construction. AIHA J (Fairfax, Va) 63, 447–457. - Yassin, A., Yebesi, F., Tingle, R., 2005. Occupational exposure to crystalline silica dust in the United States, 1988–2003. Environ. Health Perspect. 113, 255–260. - Yingratanasuk, T., Seixas, N., Barnhart, S., Brodkin, D., 2002. Respiratory health and silica exposure of stone carvers in Thailand. Int. J. Occup. Environ. Health 8, 301–308. - Zarei, F., Rezazadeh Azari, M., Salehpour, S., Khodakarim, S., Omidi, L., Tavakol, E., 2017. Respiratory Effects of Simultaneous Exposure to Respirable Crystalline Silica Dust, Formaldehyde, and Triethylamine of a Group of Foundry Workers. J Res Health Sci 17, e00371. - Zhuang, Z., Hearl, F.J., Odencrantz, J., Chen, W., Chen, B.T., Chen, J.Q., McCawley, M. A., Gao, P., Soderholm, S.C., 2001. Estimating historical respirable crystalline silica exposures for Chinese pottery workers and iron/copper, tin, and tungsten miners. Ann. Occup. Hyg. 45, 631–642. - Zwillinger, D.K., 2000. Standard probability and statistics tables and formulae. Chapman & Hall/CRC, Boca Raton, FL.