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Abstract

Tumor-stroma ratio (TSR) is a prognostic factor for many types of solid tumors. In this study,

we propose a method for automated estimation of TSR from histopathological images of

colorectal cancer. The method is based on convolutional neural networks which were

trained to classify colorectal cancer tissue in hematoxylin-eosin stained samples into three

classes: stroma, tumor and other. The models were trained using a data set that consists of

1343 whole slide images. Three different training setups were applied with a transfer learn-

ing approach using domain-specific data i.e. an external colorectal cancer histopathological

data set. The three most accurate models were chosen as a classifier, TSR values were pre-

dicted and the results were compared to a visual TSR estimation made by a pathologist.

The results suggest that classification accuracy does not improve when domain-specific

data are used in the pre-training of the convolutional neural network models in the task at

hand. Classification accuracy for stroma, tumor and other reached 96.1% on an indepen-

dent test set. Among the three classes the best model gained the highest accuracy (99.3%)

for class tumor. When TSR was predicted with the best model, the correlation between the

predicted values and values estimated by an experienced pathologist was 0.57. Further

research is needed to study associations between computationally predicted TSR values

and other clinicopathological factors of colorectal cancer and the overall survival of the

patients.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0286270 May 26, 2023 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS
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Introduction

Deep learning (DL) has been the state-of-the-art medical image analysis technology for the last

decade. It has been applied to various tasks also in digital pathology, e.g., tissue classification

between normal and tumor tissues, defining tumor subtype, recognition (e.g. dividing cells) and

segmentation (patch- or pixel-level segmentation) [1]. Tasks other than purely morphological

have also been carried out, such as training DL models to predict certain genetic changes from

hematoxylin-eosin (H&E)-stained histopathological sections without e.g. immunohistochemical

staining [2–6]. These are relevant and meaningful efforts because the aforementioned tasks are

time-consuming and expensive when carried out using manual laboratory methods [7].

A common challenge for developing artificial intelligence methods lies in the insatiable

data hunger of DL algorithms. The lack of annotated data is also one of the most significant

challenges for digital pathology [8]. Gaining a sufficient amount of high-quality training and

testing data means hours of work for pathologists to annotate regions of interest to digitized

images. One way to alleviate the data scarcity problem could be, e.g., transfer learning.

Transfer learning means utilizing a pre-trained neural network that has already learned a

machine learning task in some domain that is not necessarily the same as in the target applica-

tion. Transfer learning can be accomplished, e.g. using pre-trained ImageNet [9] neural net-

work architecture that will provide the initial parameter values for the model. Although

ImageNet model has been trained with images representing dogs, planes and houses, that are

essentially very dissimilar to histopathological images, initializing weights of the convolutional

neural network (CNN) model with ImageNet has been shown to increase prediction accuracy

in medical imaging tasks [1, 10]. Sometimes a pre-trained model can also be available from the

target domain. Some studies have shown that such a domain-specific pre-trained model may

further improve prediction performance in the context of histopathological image analysis

when compared to the ImageNet-initialization [10, 11]. In the medical domain, the deeper

models have been shown to perform better as a feature extractor compared to shallow and lin-

ear models [12]. On the other hand, also lightweight models have performed well when trans-

fer learning is applied, as seen in a study by Zhang et al. [13]. ImageNet-based transfer

learning is a common approach in digital pathology in general [9, 14, 15], and it is also the

most common transfer learning approach in DL models trained with colorectal cancer (CRC)

histopathological images [16].

This study focuses on automating the estimation of TSR from histopathological images of

CRC using transfer learning. CRC is the second most death-causing cancer in the world with

over 900,000 deaths every year [17]. One prognostic factor for CRC is the proportion of stroma

within the tumor site. It has been shown to associate with the survival of the patient in many

solid cancer types. The low amount of stroma (TSR� 50%) associates with a better prognosis

[18–21].

Pathologists determine TSR visually by following a certain scoring protocol [22]. The main

problem of this approach is the reproducibility of the TSR scoring. Overview by Van Pelt et al.

[22] showed that the Cohen’s kappa scores measuring the inter-observer agreement of visual

TSR using binary scoring (TSR > 50% = stroma-high and TSR� 50% = stroma-low) ranged

from 0.60 to 0.89. Automated TSR estimation may improve reproducibility, but it is a chal-

lenging task and a new relatively new concept.

Automated estimation of TSR begins by tiling a histopathological whole-slide image (WSI)

into smaller image patches. After that TSR can be predicted by classifying the patches and cal-

culating the proportion of tumor and stroma. Another approach is to use a particular spot that

is a smaller part of the WSI selected by a pathologist to calculate TSR. Both approaches have

been applied in previous studies [23–28].
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Sirinukuvattana et al. [23, 24] automated the TSR estimation using a CNN model trained

for nuclei detection. They trained a model based on VGG19 [29] architecture to classify nine

tissue types and the accuracies for detecting stroma and tumor were 90.4% and 96.0%, respec-

tively. In contrast to other TSR-related studies, their results did not show prognostic value for

TSR [25–27].

Zhao et al. [26] proposed a nine-class CNN model using transfer learning for which overall

classification accuracies on two test sets were 95.7% and 97.5%. Classification accuracies for

tumor and stroma were 92.8% and 70.9% on the test set 1 that was published by Kather et al.

[30]. The test set 2 was a random sample from images collected at Yunnan Cancer Hospital.

Classification accuracies for tumor and stroma on the test set 2 were 97.2% and 89.1%. Zhao

et al. used pathologists annotations as ground truth for TSR estimation on 126 image blocks of

size 1 μm2, the predicted tumor and stroma areas were in high agreement with pathologists’

annotations (Pearson r = 0.939, 95% CI 0.914—0.957). When splitting the patient cohort into

two categories stroma-low (TSR < 48.8%) and stroma-high (TSR�48.8%) based on the TSR

results of their model, TSR was shown to be an independent prognostic factor in the overall

survival of CRC patient.

Instead of using the whole slide as an input for a neural network model, an alternative

approach is to calculate TSR from the same circular spot where the visual TSR estimation takes

place. The downside of this approach is the manual effort needed to point the spot for the

machine learning model. Geessink et al. [28] developed an 11-layer VGG neural network on

129 patients to classify nine tissue types. Using 50% cutoff-value between stroma-high and

stroma-low categories there was a considerable disagreement between the model and patholo-

gist (Cohen’s kappa κ = 0.239). Cohen’s kappa score was slightly improved (κ = 0.521) using

the median of the TSR values estimated with the model as a cutoff value for stroma-high and

stroma-low. Also, stroma-high- and stroma-low grouping showed a strong prognostic value

when the median was used as a cutoff value.

In the present study, 12 DL models for estimating TSR for CRC samples were developed

and tested using three different transfer learning setups, four different pre-trained CNN archi-

tectures, and two distinct CRC data sets. Models were trained to classify image patches into

three different tissue classes: tumor, stroma and other. Three best-performing CNN models

were chosen to estimate TSR from WSIs in a separate TSR test set. The predicted TSR values

were then compared with the pathologist’s TSR estimates.

Materials and methods

Data

In this study, two mutually independent CRC data sets were used: a CRC data set from Central

Finland Health Care District (“CFHCD-data”) and a public CRC data set (“NCT-CRC-HE-

100K”) [30].

CFHCD-data consists of 1343 patients of primary colorectal cancers (stages I-IV) with

one WSI from each patient. The cohort is described in detail by Elomaa et al. [31]. The WSIs

were scanned with Hamamatsu NanoZoomer-XR with resolution of 0.5 microns per pixel

(MPP).

Automated estimation of the TSR-value for a single WSI is based on calculating the ratio of

patches representing stroma and tumor classes. The estimation process consists of two steps:

1) CNN-classification of patches for a WSI 2) Calculation of the ratio of tumor and stroma

patches.

For developing and testing the models, CFHCD-data were split into two disjoint sets at ran-

dom. The first one (Dev-set) consisted of 169 WSIs and was used in developing CNN
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classification models and the second one (TSR-test set) consisted of 1174 WSIs and it was

applied to test CNN-based estimation of the TSR-value. The overall study flow is presented in

Fig 1.

Before tiling and preprocessing, Dev-set was annotated by an experienced pathologist into

three different tissue categories, tumor, stroma and other. The annotations were accomplished

with QuPath image analysis tool [32]. The class other includes debris, lymphocytes, mucus,

normal epithelium and smooth muscle (See Fig 2). Ground truth TSR-values (from now on

referred to as true TSR-values) were visually assessed by the pathologist for the TSR-test set fol-

lowing the protocol by Van Pelt et al. [22].

A subsample (n = 31,337) of NCT-CRC-HE-100K data set were used to investigate the

effects of domain-specific pre-training of the CNN models. The original data includes 100,000

patches tiled from 86 WSIs (0.5 MPP). The patches are pre-labeled to nine tissue classes:

Fig 1. Diagram of the studyflow. Patches for training were tiled from 152 annotated WSIs (CNN-train), the classifier test set of 17 WSIs (CNN-test) was excluded

from the training data. TSR-values were predicted for the remaining 1174 WSIs (TSR-test) and compared with the TSR-values determined visually by a pathologist.

https://doi.org/10.1371/journal.pone.0286270.g001
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adipose, debris, lymphocytes, mucus, normal, smooth muscle, stroma and tumor. In this

study, only patches representing stroma (10,446 patches) and tumor (10,446 patches) classes

were used as such, whereas a random sample of 10,445 patches from debris, lymphocytes,

mucus, normal and smooth muscle classes with even distribution was drawn and assigned to a

class called other.

Tiling and preprocessing of WSIs

Following the annotation of the WSIs in Dev-set they were tiled into smaller WSI patches

(224 × 224 pixels / 101 μm × 101 μm). Tiling was performed with a sliding window procedure

with 64 pixels overlapping. If less than 75% of the patch area included annotated pixels, the

patch was discarded from further analyses. All patches were color normalized by Macenko’s

method [33].

Since the classifiers were not trained to detect the image background and adipose tissue, the

WSIs in the TSR-test set were tiled in the following way: First, to remove image background

and adipose tissue, a binary mask was applied using Otsu’s algorithm for choosing the optimal

threshold value [34]. After this the image patches were tiled using a sliding window procedure

with no overlapping. If the masked area was less than 75%, the patch was discarded from fur-

ther analyses. Macenko’s method was applied for color normalization of the patches [33].

Training and evaluation of classifiers

For training and selecting the best CNN models Dev-set was split at random into two distinct

WSI sets of CNN-train (n = 152) and CNN-test (n = 17) with the constraints that after the

Fig 2. Annotation examples. Examples of annotations from each class. The patches were extracted from annotated

areas, and they were color normalized using Macenko’s method [33].

https://doi.org/10.1371/journal.pone.0286270.g002
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tiling process the maximum difference of eighty patches in the training distribution of the tar-

get classes was allowed and the minimum number of patches was nine hundred in each test

class. The constraints were applied to ensure approximately balanced class distribution in

CNN-train and that the size of CNN-test is at least 10% of Dev-set.

This resulted in 24,329 and 2,770 input patches for training and testing of the classifiers,

respectively. The final numbers of patches in the CNN-train/CNN-test classes were 8139/900,

8060/900, and 8130/900 for tumor, stroma and other, respectively. Examples of image patches

from each class are shown in Fig 3.

For predicting TSR in WSIs, four convolutional neural network (CNN) architectures, Alex-

Net [35], GoogleNet [36], ResNet50 [37], VGG19 [29], were trained on CNN-train to classify

the patches into three tissue types: tumor, stroma and other. For all the CNN models, the input

layer was set according to the WSI patch dimensions 224 × 224, and the output layer was soft-

max function (dimension = 3).

Three different pre-training strategies for CNN models were applied (SETUP-1, SETUP-2

and SETUP-3). In SETUP-1 the CNN model was first initialized with ImageNet [9] weights

and thereafter pre-trained with the domain-specific subsample of NCT-CRC-HE-100K-data

before finalizing the training with CNN-train. In SETUP-2 training on CNN-train started

directly from ImageNet weights. In SETUP-3 the CNNs were first initialized with random

weights using PyTorch default parameters and then subsequently pre-trained with the subsam-

ple of NCT-CRC-HE-100K-data and finalized with CNN-train.

For both pretraining the CNN models on the NCT-CRC-HE-100K patches as well as fine-

tuning the models on CFHCD-data (CNN-train and CNN-test), the most suitable values for

hyperparameters were selected using 5-fold cross-validation (C-V) CNN-train. In 5-fold C-V

data are split at random into the five subsets. Then each subset acts once as a test fold (set)

while the four other are used for training. The error estimate for a model is the average error

over the test folds.

After finding the best hyperparameter values for the neural networks, the optimal num-

ber of epochs was determined with an early stopping model selection strategy on CNN-

train using approximately 1/3 of the training patches for validation. The final model was

then trained once more on the full CNN-train until the optimal number of epochs was

reached.

Fig 3. Example patches from each class. The image patches were taken from annotated areas and the number of patches was balanced between the groups. The other
class includes, e.g., debris, normal epithelium and smooth muscle.

https://doi.org/10.1371/journal.pone.0286270.g003
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The generalization performance of each CNN model was then assessed by computing the

classification accuracy, precision, recall and F1-score of the models on CNN-test (2,770

CFHCD-patches).

For more information about chosen hyperparameters, see S1 Table.

Calculating tumor-stroma ratio

TSR was calculated for each WSI in TSR-test as the ratio of patches classified by a CNN model

as stroma and tumor:

TSR ¼
nstroma

ntumor þ nstroma
; ð1Þ

where nstroma and ntumor are the number of stroma and tumor patches, respectively.

Equipment and software

All the neural network models were trained on Linux GPU server Tesla P100, x 86_64 with

Python-version 3.8.5. using PyTorch- and TorchVision-libraries, versions 1.9.0 and 0.10.0,

respectively. OpenCV 4.5.2 was utilized when masking the WSIs. Color normalization was

applied with an open-source library StainTools, available for download at GitHub: https://

github.com/Peter554/StainTools. Performance metrics were calculated with Scikit-learn 0.24.2

metrics-module.

Results

Validation and test results of the final models

Classification accuracy metrics on the CNN-test set are shown for all the final CNN models in

Table 1. The three highest values were obtained by training the models directly from Ima-

genet-pretrained weights. The differences between the three best CNN architectures are negli-

gible. Only Alexnet showed slightly poorer performance in terms of classification accuracy. To

support the interpretation of the results also validation accuracies are reported in Table 2.

A more detailed comparison between true and predicted classifications on CNN-test can be

seen for the most accurate top-3 models in Fig 4. All the models performed well in detecting

the tumor class but had slight difficulties distinguishing between classes stroma and other.
Precision, recall and F1-score are shown in Table 3. The numbers show that all the top-3

models attained excellent hit rate (recall > 0.9) for all classes as well as they are accurate in pre-

dicting positive cases (precision > 0.9). Consequently all the models attained high F1-score

(> 0.9). The observed differences between the top-3 models are so small that they can most

likely be explained by random variation.

Table 1. Test accuracies.

SETUP 1 accuracy SETUP 2 accuracy SETUP 3 accuracy

Alexnet 91.95% 92.42% 91.79%

Googlenet 94.94% 95.40% 95.37%

ResNet50 94.94% 96.09% 92.57%

VGG19 95.19% 95.65% 92.64%

Test accuracies of all final models on the CNN-test set, top-3 models are shown bold.

https://doi.org/10.1371/journal.pone.0286270.t001
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Tumor-stroma ratio predictions

Distributions of the predicted TSR values on the TSR-test set are shown for the top-3 models

in Fig 5. Examples of the most accurate and least accurate TSR predictions on WSIs shown in

S1 Fig.

Table 2. Validation accuracies.

SETUP 1 accuracy SETUP 2 accuracy SETUP 3 accuracy

Alexnet 90.19% 92.90% 92.30%

Googlenet 93.35% 92.19% 93.69%

ResNet50 93.39% 92.96% 91.49%

VGG19 94.17% 93.29% 91.11%

Validation accuracies for all final CNN classification models, top-3 models are shown bold.

https://doi.org/10.1371/journal.pone.0286270.t002

Fig 4. Confusion matrices. Classification results of top-3 models on the CNN-test set.

https://doi.org/10.1371/journal.pone.0286270.g004

Table 3. Precision, recall and F1-score.

model class precision recall F1-score

SETUP 2 / Googlenet other 0.97 0.90 0.93

stroma 0.91 0.97 0.94

tumor 0.99 0.99 0.99

SETUP 2 / ResNet50 other 0.97 0.92 0.94

stroma 0.93 0.97 0.95

tumor 0.99 0.99 0.99

SETUP 2 / VGG19 other 0.95 0.93 0.94

stroma 0.94 0.95 0.94

tumor 0.98 0.99 0.99

Precision, recall and F1-score on the CNN-test set of top-3 models. The CNN-test set included 2770 image tiles.

https://doi.org/10.1371/journal.pone.0286270.t003
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Mean, median, standard error of the estimate (SEE), standard deviation (std) of predicted

TSR values and the number of WSIs in each category are shown in Table 4. The results show

that all the models overestimate the TSR value in the three lowest target categories (10%, 20%

and 30%) and underestimate in the remaining target categories. All the models perform best in

the category 60% (the mean differences between the predicted and true TSR values 1.4)

whereas the poorest performance is observed in the categories 10% and 80% (the mean differ-

ences between the predicted and true TSR values 14.4 and 14.2 respectively). The smallest

Fig 5. Results from TSR prediction: Boxplots. Boxplots showing the distributions of the predicted TSR values and Pearson correlation coefficient (r) of predicted and

true TSR values for the top-3 models on the TSR-test set. The results are shown for each visually estimated TSR value category on the discrete scale {10%, 20%, . . .,

90%}. The standard error of the estimate (SEE) is the overall SEE of all categories.

https://doi.org/10.1371/journal.pone.0286270.g005

Table 4. TSR results: Statistics.

SETUP 2 / Googlenet

True TSR 10% 20% 30% 40% 50% 60% 70% 80% 90%

Predicted TSR mean 24.6 32.0 35.4 38.4 44.1 58.5 60.5 65.8 86.4

median 23.0 28.9 32.4 35.9 42.2 58.6 59.6 65.4 96.0

SEE 20.7 20.5 16.8 15.1 17.2 19.3 21.3 25.0 14.7

std 14.9 16.6 16.0 15.1 16.1 19.3 19.1 20.8 14.8

n 53 95 105 200 284 229 143 51 13

SETUP 2 / ResNet50

True TSR 10% 20% 30% 40% 50% 60% 70% 80% 90%

Predicted TSR mean 24.7 31.3 35.5 38.5 44.4 58.6 60.6 66.0 86.0

median 21.7 28.3 32.4 34.8 42.3 58.8 59.6 63.6 94.7

SEE 21.9 20.2 17.0 15.4 17.4 19.4 21.4 24.8 15.5

std 16.3 16.8 16.2 15.3 16.5 19.4 19.4 20.7 15.6

n 53 95 105 200 284 229 143 51 13

SETUP 2 / VGG19

True TSR 10% 20% 30% 40% 50% 60% 70% 80% 90%

Predicted TSR mean 23.3 31.0 34.4 37.1 43.1 57.7 60.1 65.9 85.7

median 22.0 28.3 31.6 33.6 41.7 58.8 58.9 64.1 94.0

SEE 19.0 19.6 16.5 15.1 17.4 19.4 21.7 25.1 14.8

std 13.7 16.3 16.0 14.9 16.0 19.3 19.4 21.0 14.8

n 53 95 105 200 284 229 143 51 13

Main statistics from top-3 models on the TSR-test set. The results are shown based on the visually estimated TSR-value on the discrete scale {10%, 20%, . . ., 90%}. The

overall SEE of all categories combined shown in Fig 5.

https://doi.org/10.1371/journal.pone.0286270.t004

PLOS ONE Automated scoring of tumor-stroma ratio from histopathological images of colorectal cancer with deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0286270 May 26, 2023 9 / 13

https://doi.org/10.1371/journal.pone.0286270.g005
https://doi.org/10.1371/journal.pone.0286270.t004
https://doi.org/10.1371/journal.pone.0286270


SEEs are observed in categories 30%, 40% and 90%. When grouping the TSR values into

stroma-high (TSR > 50%) and stroma-low (TSR� 50%), the Cohen’s kappa scores between

the true and predicted TSR values were 0.32 (SETUP 2 / Googlenet), 0.33 (SETUP 2 /

ResNet50) and 0.33 (SETUP 2 / VGG19).

Discussion

The aim of this study was to investigate how accurately CNN-based machine learning models

can predict the ratio of tumor and stroma tissue in WSI samples. For the best model (ResNet50

architecture) the correlation between the true and predicted TSR values was 0.57 (SEE = 18.6).

Approximately the same performance was obtained with GoogleNet and VGG19 architectures.

Utility of domain-specific pre-training of CNN models was also investigated, but no meaning-

ful differences were observed. The results show that the same or even better performance with

comparable computational cost can be achieved in the present task without domain-specific

pre-training of CNN.

Even though the automated TSR were predicted from the whole tissue area in contrast to

the pathologist who selected a small spot for estimation, their outcomes correlates (r = 0.57)

rather well. Cohen’s kappa score (κ = 0.33) for stroma-high and stroma-low classification was

comparable with results from the previous study by Geessink et al. [28] where Cohen’s kappa

score for stroma-high and stroma-low with 50% cutoff-value was 0.24. An overview by [22]

show that the inter-observer kappa-values variate between 0.60 to 0.89 when pathologists esti-

mate the TSR of CRC binary into stroma-high and stroma-low.

In this study SEE was lowest in TSR categories 30%, 40% and 90%. When comparing the

means of the predicted TSR values with the true TSR values, the best performing set of images

was the one with TSR 60% and the second largest number of samples. Balancing the data for

TSR prediction task might bring more consistency to the results.

The results also indicate that the most difficult part of the classification task is to separate

stroma and other. This can be due to the visual similarity of smooth muscle and fibrotic

stroma. This may cause the classifier to make a mistake since the smooth muscle tissue belongs

to the other class. The smooth muscle and stroma are difficult to separate even by the human

eye. Despite the minor weaknesses, the classification accuracy of the best CNN models was

comparable to previous studies [25, 26]. The classification accuracy for the tumor tissue was

over 98% with all top-3 models.

Despite the promising performance of machine learning bringing some aspects of the visual

estimation procedure could improve the automated models. For example, only tumor-related

stroma tiles could be taken into account. Another option could be mimicking the visual

human process by going through the image frame by frame and choosing one spot for making

the final TSR prediction. In addition to these, using a smaller tile size might increase classifying

accuracy since some tumor areas, as well as stromal areas in between, seem to be quite narrow.

This could have a significant effect on the quality of TSR predictions.

Even though accuracy of the proposed automated method for TSR estimation does not fully

compare to human visual analysis, the reproducibility of computational model outcomes is a

major advantage. Automated machine learning based tools would bring reproducibility to

daily practices and the TSR estimation process, in particular. Moreover, TSR estimation with

an automated machine learning model can be completed in a fraction of the time compared to

the visual method.

This study has some limitations. Firstly, the aim of this research was to develop models on

the Finnish population and, therefore, their generalizability to other populations can not be

guaranteed without further research. When interpreting the results, it is important to consider
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the size of test data. All the test results are, however, produced by trying the models only once

on the independent random test set which guarantees that the models were not overfit to the

test samples. In order to take the models into clinical use more extensive external tests are

needed.

As visually estimated TSR has been shown to be an independent prognostic factor in solid

cancer types [18–21], further studies should take place for assessing the correlation of the

machine learning predicted TSR values with other clinicopathological factors and the overall

survival of patients. If a correlation is found, the model should be optimized to perform better

in terms of generalizability. Also a “hotspot”-analysis of TSR, in which a spot where to estimate

the TSR would be manually chosen, should be considered as it would ease the computational

burden of DL based method and thereby improve the prediction accuracy.

Supporting information

S1 Table. Hyperparameters. Chosen parameters in the final training phase of all models. LR

refers to the learning-rate and optimizer is the optimization-function used. Parameters were

chosen using 5-fold cross-validation. Loss-function was cross-entropy for all setups.

(TEX)

S1 Fig. TSR prediction examples. Examples of TSR prediction on four WSIs.

(TIF)
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14. Bayramoglu N, Heikkilä J. Transfer learning for cell nuclei classification in histopathology images. In:

European Conference on Computer Vision. Springer; 2016. p. 532–539.

15. Kieffer B, Babaie M, Kalra S, Tizhoosh HR. Convolutional neural networks for histopathology image

classification: Training vs. using pre-trained networks. In: 2017 Seventh International Conference on

Image Processing Theory, Tools and Applications (IPTA). IEEE; 2017. p. 1–6.

16. Davri A, Birbas E, Kanavos T, Ntritsos G, Giannakeas N, Tzallas AT, et al. Deep Learning on Histopath-

ological Images for Colorectal Cancer Diagnosis: A Systematic Review. Diagnostics. 2022; 12(4):837.

https://doi.org/10.3390/diagnostics12040837 PMID: 35453885

17. World Health Organization W. Cancer: Key Facts. Cancer. 2020;.

18. West N, Dattani M, McShane P, Hutchins G, Grabsch J, Mueller W, et al. The proportion of tumour cells

is an independent predictor for survival in colorectal cancer patients. British journal of cancer. 2010; 102

(10):1519–1523. https://doi.org/10.1038/sj.bjc.6605674 PMID: 20407439

19. Huijbers A. The proportion of tumor-stroma as a strong prognosticator for stage II and III colon cancer

patients: validation in the VICTOR trial. Annals of oncology. 2013; 24(1):179–185. https://doi.org/10.

1093/annonc/mds246 PMID: 22865778

20. Ma W. Tumor-stroma ratio is an independent predictor for survival in esophageal squamous cell carci-

noma. Journal of Thoracic Oncology. 2012; 7(9):1457–1461. https://doi.org/10.1097/JTO.

0b013e318260dfe8 PMID: 22843085

21. Mesker WE. The carcinoma–stromal ratio of colon carcinoma is an independent factor for survival com-

pared to lymph node status and tumor stage. Analytical Cellular Pathology. 2007; 29(5):387–398.

https://doi.org/10.1155/2007/175276 PMID: 17726261

PLOS ONE Automated scoring of tumor-stroma ratio from histopathological images of colorectal cancer with deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0286270 May 26, 2023 12 / 13

https://doi.org/10.1016/j.media.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28778026
https://doi.org/10.3174/ajnr.A5667
http://www.ncbi.nlm.nih.gov/pubmed/29748206
https://doi.org/10.1038/s41591-018-0177-5
http://www.ncbi.nlm.nih.gov/pubmed/30224757
https://doi.org/10.1038/s41467-020-17678-4
http://www.ncbi.nlm.nih.gov/pubmed/32747659
https://doi.org/10.1038/s41416-020-01122-x
https://doi.org/10.1038/s41416-020-01122-x
http://www.ncbi.nlm.nih.gov/pubmed/33204028
https://doi.org/10.4103/jpi.jpi_53_18
http://www.ncbi.nlm.nih.gov/pubmed/30607305
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1186/s12880-022-00793-7
https://doi.org/10.1186/s12880-022-00793-7
http://www.ncbi.nlm.nih.gov/pubmed/35418051
https://doi.org/10.3390/diagnostics12040837
http://www.ncbi.nlm.nih.gov/pubmed/35453885
https://doi.org/10.1038/sj.bjc.6605674
http://www.ncbi.nlm.nih.gov/pubmed/20407439
https://doi.org/10.1093/annonc/mds246
https://doi.org/10.1093/annonc/mds246
http://www.ncbi.nlm.nih.gov/pubmed/22865778
https://doi.org/10.1097/JTO.0b013e318260dfe8
https://doi.org/10.1097/JTO.0b013e318260dfe8
http://www.ncbi.nlm.nih.gov/pubmed/22843085
https://doi.org/10.1155/2007/175276
http://www.ncbi.nlm.nih.gov/pubmed/17726261
https://doi.org/10.1371/journal.pone.0286270


22. Van Pelt GW. Scoring the tumor-stroma ratio in colon cancer: procedure and recommendations. Virch-

ows Archiv. 2018; 473(4):405–412. https://doi.org/10.1007/s00428-018-2408-z PMID: 30030621

23. Sirinukunwattana K, Raza SEA, Tsang YW, Snead D, Cree I, Rajpoot N. A spatially constrained deep

learning framework for detection of epithelial tumor nuclei in cancer histology images. In: International

Workshop on Patch-based Techniques in Medical Imaging. Springer; 2015. p. 154–162.

24. Sirinukunwattana K, Snead D, Epstein D, Aftab Z, Mujeeb I, Tsang YW, et al. Novel digital signatures of

tissue phenotypes for predicting distant metastasis in colorectal cancer. Scientific reports. 2018; 8(1):1–

13. https://doi.org/10.1038/s41598-018-31799-3 PMID: 30209315

25. Kather JN, Krisam J, Charoentong P, Luedde T, Herpel E, Weis CA, et al. Predicting survival from colo-

rectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS medicine.

2019; 16(1):e1002730. https://doi.org/10.1371/journal.pmed.1002730 PMID: 30677016

26. Zhao K. Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall sur-

vival in resectable colorectal cancer. EBioMedicine. 2020; 61:103054. https://doi.org/10.1016/j.ebiom.

2020.103054 PMID: 33039706

27. Park JH, Richards CH, DC M. The relationship between tumour stroma percentage, the tumour micro-

environment and survival in patients with primary operable colorectal cancer. Ann Oncol. 2014; 25:644–

651. https://doi.org/10.1093/annonc/mdt593 PMID: 24458470

28. Geessink OG, Baidoshvili A, Klaase JM, Bejnordi BE, Litjens GJ, van Pelt GW, et al. Computer aided

quantification of intratumoral stroma yields an independent prognosticator in rectal cancer. Cellular

Oncology. 2019; 42(3):331–341. https://doi.org/10.1007/s13402-019-00429-z PMID: 30825182

29. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv

preprint arXiv:14091556. 2014;.

30. Kather JN, Halama N, Marx A. 100,000 histological images of human colorectal cancer and healthy tis-

sue; 2018.
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