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Effects of electron-electron interactions in the Yu-Shiba-Rusinov lattice model
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In two-dimensional superconductors, Yu-Shiba-Rusinov bound states, induced by the magnetic impurities,
extend over long distances giving rise to a long-range hopping model supporting a large number of topological
phases with distinct Chern numbers. Here, we study how the electron-electron interactions affect, on a mean-field
level, the selection of the realized Chern numbers and the magnitudes of the topological energy gaps in this
model. We find that, in the case of an individual choice of the model parameters, the interactions can enhance
or reduce the topological gap as well as cause topological phase transitions because of the complex interplay
of superconductivity, magnetism, and the large spatial extent of the Yu-Shiba-Rusinov states. By sampling a
large number of realizations of Yu-Shiba-Rusinov lattice models with different model parameters, we show
that, statistically, the interactions have no effect on the realized Chern numbers and typical magnitudes of the
topological gaps. However, the interactions substantially increase the likelihood of the largest topological gaps
in the tails of the energy gap distribution in comparison to the noninteracting case.
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I. INTRODUCTION

Magnetic impurities in conventional and nonmagnetic
impurities in unconventional superconductors give rise to Yu-
Shiba-Rusinov bound states, which were studied extensively
both theoretically and experimentally [1–7]. An important
property of these states in two-dimensional systems, as well as
in three-dimensional layered structures, anisotropic systems,
and systems supporting surface states, is that they spatially
extend over long distances [5,6,8–13]. Therefore, in the pres-
ence of impurity chains and lattices, the coherent overlapping
impurity states can give rise to long-range hopping models
and topological superconductivity [14–18].

The one-dimensional magnetic adatom chains are theoret-
ically predicted to support Majorana zero modes localized at
the end of the chain [14–16,19–24] and promising signatures
were experimentally observed [25–29]. These observations
attracted significant interest in the quantum computing com-
munity because the non-Abelian braiding statistics of the
Majorana zero modes. In particular, they can be utilized in
topological quantum computing and when the quantum in-
formation stored in the Majorana qubits is protected from
local sources of noise [30,31]. Although most of the braid-
ing proposals were developed for Majorana nanowires [31],
different methods for manipulating the quantum information
in Yu-Shiba-Rusinov chains are also currently being explored
[32–34]. Also the identification of Majorana zero modes from
other low-energy bound states remains an active field of
research [35,36].

The case of a two-dimensional Yu-Shiba-Rusinov lattice
is theoretically even more interesting [17,37–45]. In this case
the hybridization of the Yu-Shiba-Rusinov states gives rise

a rich phase diagram containing a large number of differ-
ent topological phases [17,39–41]. These topological phases
are described by an integer-valued Chern number C [46],
which determines the number of chiral Majorana edge modes
(see Fig. 1) and value of the quantized thermal conductance
[47,48]. So far the quantization of the thermal conductance in
superconductors has remained elusive, but recent experiments
show promising signatures of the Majorana edge modes in the
local density of states (LDOS) data measured via the scan-
ning tunneling spectroscopy techniques [49–52], and unbiased
methods for identifying the Chern number from LDOS are
currently under development [53–57]. Therefore, there are
reasons to be optimistic that the topological phase diagram
of the Yu-Shiba-Rusinov lattice system can be probed also
experimentally in the near future.

The rich topological phase diagram of the Yu-Shiba-
Rusinov lattice model [17,39–41] calls for a detailed theoreti-
cal analysis of the different factors that may play an important
role in the selection of the topological phases, which are
actually realized in the experiments. So far most of the studies
mainly focused on extrinsic factors and it is known, for exam-
ple, that in the presence of strong disorder only the C = 0 and
C = 1 phases survive [58], out of the dozens of topologically
distinct phases appearing in a clean system [17,41]. Here, we
study an important intrinsic factor which is present also in the
highest quality samples: the effect of electron-electron inter-
actions. We may expect that they lead to competing effects.
On one hand, the interactions favor states with large energy
gaps to lower the free energy in the many-particle systems.
On the other hand, the phases with large Chern numbers
are most fragile to the effects of the perturbations because
they arise from a complex interplay of the superconductivity,
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FIG. 1. (a) Schematic representation of the Yu-Shiba-Rusinov
lattice consisting of a square lattice of magnetic impurities with a
lattice constant a = 4 placed on the top of a two-dimensional su-
perconductor. (b) The electron-electron interaction terms considered
in this work are the onsite U and the nearest-neighbor interaction
V . (c) Bulk band structure and (d) Berry curvature �(k) for a Yu-
Shiba-Rusinov lattice with a = 8, ν = 0.1, J = 2.272t , α = 0.113t ,
� = 0.06t , U = −0.37t , realizing a topological phase with Chern
number C = 7. (e) The surface density of states for the same model
parameters featuring seven chiral Majorana edge modes.

magnetism, and large spatial extent of the Yu-Shiba-Rusinov
states. In particular, the increase of the energy gap leads to a
shorter coherence length decreasing the long-range coupling
between the Shiba states, which is essential for realizing
large Chern numbers. Therefore, the interactions could favor
the phases with small Chern numbers, where it is easier to
open sizable energy gaps. But, in order that the interactions
could result in a change of the Chern number from a large
to a small value the system, in the absence of first-order
transitions, has to undergo a series of energy gap closings.
Thus, the interactions can also lead to lowering of the energy
gaps. We show that these competing tendencies in this type
of complicated system supporting dozens of topologically
distinct phases lead to rather surprising statistical effects. By
sampling a large number of realizations of Yu-Shiba-Rusinov
lattice models with different model parameters, we show that,
statistically, the interactions have practically no effect on the
realized Chern numbers and typical magnitudes of the topo-
logical gaps. However, the interactions substantially enhance
the likelihood of the rare realizations of large topological gaps
in the tails of the energy gap distribution in comparison to the
noninteracting case.

II. MODEL

The Hamiltonian of the system takes the form

H = Hkin + HR + HJ + HSC, (1)

where Hkin describes the nearest-neighbor hopping

Hkin = t
∑
〈i j〉

c†
i,sc j,s, (2)

HR is the Rashba spin-orbit coupling

HR = iα
∑
〈i j〉

ẑ · (di j × σs,s′ )c†
i,sc j,s′ , (3)

HJ is the magnetic exchange coupling induced by the
impurities

HJ = J
∑
i∈imp

σ z
s,s′c†

i,sci,s′ , (4)

and HSC describes the superconducting pairing

HSC = �
∑

i

c†
i,↑c†

i,↓ + H.c. (5)

Here c†
i,s is the creation operator for an electron in site i and

spin s, di j = ri − r j , and i ∈ imp indicates that the summation
is over the impurity sites. We assume that the impurity sites
form a square lattice with lattice constant of a, as shown in
Fig. 1(a).

The many-body interactions are included by means of an
local U and nearest-neighbor V density-density interaction
[see Fig. 1(b)] of the form

Hint = HU + HV , (6)

HU = U
∑

i

c†
i,↑ci,↑c†

i,↓ci,↓, (7)

HV = V
∑
〈i j〉

(∑
s

c†
i,sci,s

)(∑
s

c†
j,sc j,s

)
. (8)

The Hamiltonian is solved at the mean-field level Hint ≈ HMF
int

including all the bilinear contractions of the mean-field

HMF
int =

∑
i, j,s,s′

χ s,s′
i, j c†

i,sc j,s′ +
∑

i, j,s,s′
ξ s,s′

i, j c†
i,sc

†
j,s′ + H.c., (9)

giving rise to hopping, pairing, chemical potential, and
spin-orbit coupling renormalization [59]. We elaborate now
on the different terms that emerge. Local interactions
involving c†

i,↑ci,↑c†
i,↓ci,↓ give rise to chemical potential,

collinear magnetic 〈c†
i,↑ci,↑〉c†

i,↓ci,↓, noncollinear magnetic

〈c†
i,↑ci,↓〉c†

i,↓ci,↑, and s-wave superconducting 〈c†
i,↑c†

i,↓〉ci,↑ci,↓
terms or their renormalization (including all combinations).
First-neighbor interactions (

∑
s c†

i,sci,s)(
∑

s c†
j,sc j,s) lead to

chemical potential, collinear magnetic 〈c†
i,↑ci,↑〉c†

j,↓c j,↓, hop-

ping 〈c†
i,sc j,s〉c†

j,sci,s, spin-flip hopping including synthetic

spin-orbit 〈c†
i,↑c j,↓〉c†

i,↓c j,↑, and singlet and triplet supercon-

ducting terms 〈c†
i,sc

†
j,s′ 〉ci,sc j,s′ , including all combinations.
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FIG. 2. (a) Phase diagram of the noninteracting model as a function of filling ν and the exchange interaction J for α = 0.1t and � = 0.06t .
(b,c) Illustrations of effects of interactions on the mean-field superconductivity and magnetization, respectively. The magnetic impurity is
located at the center of the unit cell. The parameters are (b) ν = 0.101, J = 2.433t , α = 0.112t , � = 0.054t , U = −0.702t and (c) ν = 0.115,
J = 2.172t , α = 0.117t , � = 0.052t , U = 0.644t , V = 0.012t . (d), (e) Examples of spectra where the interactions enhance the gap and reduce
the gap, respectively. The parameters are (d) ν = 0.115, J = 2.172t , α = 0.117t , � = 0.052t , U = 0.644t , V = 0.012t and (e) ν = 0.1,
J = 2.272t , α = 0.113t , � = 0.06t , U = −0.37t . (f) Illustration of topological phase transitions as a function of interaction strength U for
ν = 0.1, J = 2.272t , α = 0.113t , � = 0.06. In all cases we assume a square lattice of impurities with a lattice constant a = 8.

Our mean-field calculations include all the different contrac-
tions of two-field operators in a fully self-consistent manner,
capturing all those effects on the same footing. By studying
separately the cases where only U is present (U -interacting
case) and both U and V are present (UV -interacting case) we
can also get some idea how the range of the interactions affects
the results. The self-consistent calculations are performed at
fixed filling of the normal state ν ∈ [0, 1]. Since we assume
everywhere that � 	 t , ν also approximately describes the
filling of the bands in the presence of superconductivity.
We compute the Chern number numerically using a gauge-
invariant description of Chern number associated with the
Berry connection defined on a discretized Brillouin zone [60]
(see the Appendix for more details). Importantly, because the
sign of the Chern number is not important for our analysis,
everywhere in the paper we denote with C the absolute value
of the Chern number.

For concreteness, we show in Fig. 1(c) the electronic
structure of a specific example of the Yu-Shiba-Rusinov lat-
tice model. The corresponding Berry curvature distribution
�(k) is shown in Fig. 1(d) and by integrating �(k) over
the Brillouin zone we obtain a Chern number C = 7. As a
consequence of C = 7, the spectral function in a semi-infinite
geometry features seven chiral edge modes crossing the en-
ergy gap, as shown in Fig. 1(e).

III. EFFECTS OF INTERACTIONS ON INDIVIDUAL
REALIZATIONS

In the limit when � 	 t and the impurity lattice constant
satisfies a 
 1, the noninteracting model of Eqs. (1) to (5)
supports a rich topological phase diagram as a function of
model parameters [17,39,41]. In Fig. 2(a) we show a repre-
sentative phase diagram for a = 8 as a function of filling ν

and the exchange interaction J for α = 0.1t and � = 0.06t .
It contains topological phases with Chern numbers ranging
from 0 to 15 arising due to the long-range coupling between
the Yu-Shiba-Rusinov states [17]. The high Chern number
topological phases originate from rather peculiar situations
where the longer-range couplings between the Shiba states
are larger than the shorter-range couplings, and therefore they
cover only small areas of the parameter space [see Fig. 2(a)].
This also means that the phases with large C are quite fragile
against the effects of perturbations and, for example, in the
presence of strong disorder only the C = 0 and C = 1 phases
survive [58].

The electron-electron interactions can influence the topo-
logical phases because they can modify the spatial profiles of
the mean fields. We find that in the presence of interactions
the superconducting mean field is modulated with the period
a of the magnetic impurities. A representative example of
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FIG. 3. Median energy gap values for different values of C in
the noninteracting, U -interacting, UV -interacting cases for different
impurity lattice constants (a) a = 2, (b) a = 4, (c) a = 6, and (d) a =
8. The sampling of the model parameters is described in the main
text.

a single unit cell of the impurity lattice with the magnetic
impurity located at the center of it is shown in Fig. 2(b). In the
case of magnetization, the interactions do not only modify the
magnitude of the mean field, but also lead to an appearance
of magnetization textures where the direction of the magne-
tization varies within the unit cell [see Fig. 2(c)]. We find
that these effects can both enhance and reduce the topological
energy gap and even cause topological phase transitions [see
Figs. 2(d) to 2(f)]. Therefore, we conclude that the interaction
effects can play an important role in the determination of the
topological phase and the magnitude of the topological gap in
the case of individual samples.

IV. STATISTICAL EFFECTS OF INTERACTIONS

The model parameters are rarely known accurately in ex-
periments. Therefore, rather than studying the system for
specific model parameters, it is important to establish the
statistical effects of the interactions on the existence of the
topological phases with high C and for the magnitudes of
the corresponding energy gaps. For this purpose we collected
statistics of the gap sizes and Chern numbers for 50 000 sets
of model parameters in impurity lattices with lattice con-
stant a =: 2, 4, 6, 8. In the sampling we use common ranges
ν ∈ [0.1, 0.45], α ∈ t[0.08, 0.12], � ∈ t[0.048, 0.072], U ∈
t[−1.0, 1.0], and V ∈ t[−0.5, 0.5], whereas the sampling of
J for each a is chosen so that the topological phase diagrams
contain a large number of topologically distinct phases. We
use J ∈ t[0.76, 1.2] for a = 2, J ∈ t[1.4, 2.1] for a = 4, and
J ∈ t[1.8, 2.7] for a = 6 and a = 8.

In Fig. 3 we show the median energy gap values for dif-
ferent values of C in the noninteracting, U -interacting, and
UV -interacting cases for different impurity lattice constants.
The median gap values oscillate as a function of C, but there
is also a general tendency for the energy gaps to become

smaller and smaller with increasing values of C. Importantly,
we find that the median energy gaps have remarkably simi-
lar magnitudes and dependence on C in the noninteracting,
U -interacting, and UV -interacting cases (see Fig. 3). This
suggests that the interactions are not statistically relevant in
the determination of the topological phases and magnitudes
of the topological gaps within the quite large range of in-
teraction strengths considered. We believe that the interval
of the electron-electron interaction strengths is sufficiently
large to draw reliable conclusions because the interactions are
screened by the superconductor and therefore larger interac-
tion strengths are unlikely to occur in the realization of the
Shiba lattice models.

The median gap values of course give only partial infor-
mation about the distribution of the gap values and it could
be possible that the interactions still affect the shape of this
distribution. In Fig. 4 we plot the whole statistical distribution
of the gap values in the cases of small, intermediate, and large
Chern numbers. The distributions are practically identical in
the noninteracting, U -interacting, and UV -interacting cases in
the case of small gap sizes. Since the distribution function de-
cays approximately exponentially with the increasing energy
gap values (see Fig. 4) the small gap values occur much more
commonly than the large ones, so that the typical gap sizes are
indeed the same in the interacting and noninteracting cases.
However, the rare events corresponding to large topological
gaps show a drastically different phenomenology. As shown
in Fig. 4, for all the Chern numbers interactions substan-
tially increase the probability of the largest topological gaps.
In that regime, the noninteracting gap distribution decreases
much faster than exponentially when the energy gap values
approach the upper bound of the gap values of the correspond-
ing Chern numbers that can be realized in the noninteracting
Yu-Shiba-Rusinov model. In the presence of interactions, the
number of samples exhibiting a large topological gap becomes
much larger than in the noninteracting case, demonstrating
that the interactions play an important role in the case of these
rare events.

V. CONCLUSION AND DISCUSSION

To conclude, we studied the effects of electron-electron
interactions in the two-dimensional Yu-Shiba-Rusinov lattice
model on the mean-field level and our results show that the
interactions can enhance or reduce the topological gap as
well as cause topological phase transitions. We showed that,
statistically, the distributions of the Chern numbers and the
topological energy gaps in the noninteracting and interact-
ing cases are approximately the same for the most common
realizations where the energy gaps are reasonably small. Inter-
estingly, we find that the probability of rare realizations with
large energy gaps, located at the tails of statistical distribu-
tions, are strongly enhanced by interactions. Such realizations
are challenging to find experimentally due to their small
likelihood, but they would be the most suitable ones for the
applications of topological superconductivity.

Our results provide also a starting point for studies of
more subtle correlation effects in Shiba lattice models. We
believe that the consideration of the interaction effects be-
yond the mean-field theory, such as quantum fluctuations
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FIG. 4. Statistical distributions of the energy gap values in the noninteracting, U -interacting, and UV -interacting cases for different lattice
constants (a)–(c) a = 4, (d)–(f) a = 6, and (g)–(i) a = 8, respectively. The statistical distributions are nearly identical in all cases in the regime
of small energy gaps. In contrast, interactions substantially modify the tails of the distributions increasing the likelihood of large topological
gaps.

[61,62] and Kondo physics [63], might be worth pursuing be-
cause these models may support unprecedented many-particle
phenomenology thanks to the interplay of superconductivity,
magnetism, high Chern numbers, and the large spatial extent
of the Yu-Shiba-Rusinov states. In particular, the interactions
in this type of high-Chern number quasi-flat-band system
could lead to fractionalization and more exotic non-Abelian
phases.

However, the current problem would pose a great chal-
lenge for most of the methods developed for calculating
the properties of low-dimensional interacting systems. The
biggest challenge in the exact diagonalization, tensor-network
[64], and neural-network [65] calculations would be the large

supercell. We note that there is a similar limitation emerges
also in moiré systems, but there the projection of interactions
on a single or few low-energy bands allows to get a reduced
effective model [66,67]. An alternative strategy would be to
use a dynamical mean-field theory [68] or GW methodology
[69] to obtain a more accurate picture of the renormalization
of the electronic structure due to interactions. Finally, we point
out that, because the interactions in our calculations do not
lead to spontaneous breaking of symmetries, it is also possible
that the mean-field calculations provide a reasonably good
description of the many-body states [70].

Many of the current realizations of Yu-Shiba-Rusinov
states are in multiorbital systems. In this case, our results can

174522-5



KACHIN, OJANEN, LADO, AND HYART PHYSICAL REVIEW B 107, 174522 (2023)

still be applicable for a dilute lattice of adatoms because, in
this case, the hybridization of the Shiba states is weak so
that the low-energy Shiba bands are expected to originate
dominantly from one of the orbitals. Nevertheless, ultimately,
the realistic modeling of the interaction effects in Yu-Shiba-
Rusinov lattices should be based on a multiorbital Wannier
Hamiltonian extracted from first-principles density func-
tional theory calculations, together with a multiorbital model
for the magnetic impurity with orbital-dependent exchange
couplings.
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APPENDIX: MULTIBAND CALCULATION
OF THE CHERN NUMBER

The conventional definition of the Berry curvature requires
the computation of a derivative of the wave functions. The
gauge degree of freedom of the eigenstates, giving rise to a
different random phase for each k-point, causes a problem
when attempting to compute derivatives numerically. This
problem is avoided in the Wilson loop formalism in a dis-
cretized k-mesh. We denote the eigenstates and eigenenergies
of a Bogoliubov–de Gennes Hamiltonian Hk with |	α

k 〉 and
εα

k , respectively.
The Berry phase of the occupied states for a closed loop of

discrete k-points k1, k2, . . . , kn, k1 can be computed as

φA = arg[det(R)], (A1)

where

R = R1,2R2,3, . . . , Rn,1, (A2)

Rα,β

n,n+1 = 〈
	α

kn

∣∣	β

kn+1

〉
, (A3)

and α, β runs over the negative energy states ε
α,β

k < 0. It is
worth noting that this definition is gauge invariant under any
local non-Abelian transformation in the manifold of occupied
states. This implies that the random phases and mixing of the
eigenstates are not influencing the numerical calculation of the
Berry phase. The previous formula can be derived by recalling
that, in a diagonal multiband scenario, the total Berry phase is
the sum of the phases of the diagonal components of R, which
in a matrix-invariant form can be written as Eq. (A1). The
Berry phase φA is related to the Berry curvature �(k) as

φA =
∫

A
�(k)d2k, (A4)

where A is the area of the k-space encircled by the Berry
phase path. Therefore, by applying Eq. (A1) to an arbitrarily
small path surrounding each point k, the Berry curvature can
be computed as

�(k) = lim
A→0

φA/A, (A5)

with A an infitesimally small area. Thus, an accurate numeri-
cal calculation of the Berry curvature requires a dense mesh.
Finally, the Chern number can be computed by integrating the
Berry curvature in the full Brillouin zone

C = 1

2π

∫
BZ

�(k)d2k. (A6)

The calculation of the Chern number was numerically imple-
mented using the PYQULA library [59].
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