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Abstract 
Context: Aging varies between individuals, with profound consequences for chronic diseases and longevity. One hypothesis to explain the 
diversity is a genetically regulated molecular clock that runs differently between individuals. Large human studies with long enough follow-up 
to test the hypothesis are rare due to practical challenges, but statistical models of aging are built as proxies for the molecular clock by 
comparing young and old individuals cross-sectionally. These models remain untested against longitudinal data.
Objective: We applied novel methodology to test if cross-sectional modeling can distinguish slow vs accelerated aging in a human population.
Methods: We trained a machine learning model to predict age from 153 clinical and cardiometabolic traits. The model was tested against 
longitudinal data from another cohort. The training data came from cross-sectional surveys of the Finnish population (n= 9708; ages 25-74 
years). The validation data included 3 time points across 10 years in the Young Finns Study (YFS; n= 1009; ages 24-49 years). Predicted 
metabolic age in 2007 was compared against observed aging rate from the 2001 visit to the 2011 visit in the YFS dataset and correlation 
between predicted vs observed metabolic aging was determined.
Results: The cross-sectional proxy failed to predict longitudinal observations (R2= 0.018%, P= 0.67).
Conclusion: The finding is unexpected under the clock hypothesis that would produce a positive correlation between predicted and observed 
aging. Our results are better explained by a stratified model where aging rates per se are similar in adulthood but differences in starting points 
explain diverging metabolic fates.
Key Words: metabolomics, metabolic aging, epidemiology, biological age, chronological age, stratified aging model, molecular clocks
Abbreviations: NMR, nuclear magnetic resonance; YFS, Cardiovascular Risk in Young Finns Study. 
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Understanding individual human aging is an important topic 
for individual and public health (1, 2). The recent surge in me
tabolomics (3, 4) has resulted in large-scale studies on human 
populations and initiated hope—and hype (5)—regarding 

how these data would solve the raison d’être of molecular 
aging and provide clues to mitigate these processes. A cross- 
sectional survey of young and old people is the easiest to or
ganize, but it yields the weakest epidemiological evidence; 
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only longitudinal designs can provide well-grounded informa
tion on life course trajectories (6-10). So far, most metabolo
mics aging studies have been cross-sectional (11-15).

In the absence of longitudinal data, the concept of biological 
or metabolic age (Fig. 1, A) has been introduced to capture 
age-related shifts in metabolism and other cellular processes 
(15-22). Typically, a cross-sectional multivariate regression 
model of age is constructed with the metabolites as the regres
sors. The residuals of the model are then interpreted as the dif
ference between an individual’s chronological and metabolic 
age (ie, a positive residual implies accelerated metabolic aging). 
The caveats of cross-sectional modeling are well recognized 
(5, 16, 23) although longitudinal data collections come with 
their own caveats. Time series data are not free from epidemio
logical confounding or statistical fluctuations. In addition, 

samples collected years apart are likely to be influenced by col
lection protocols, storage effects, and changes in biochemical 
assay methodologies. For these very reasons, we recently intro
duced new statistical procedures to assess sample quality and to 
adjust for bias in longitudinal metabolomics data (24).

In this study, we test the validity of the metabolic age con
cept by comparing cross-sectional predictions of accelerated 
aging (n = 9708 participants in the training set) against the ob
served rate of change across 3 consecutive time points in an in
dependent longitudinal dataset (n = 1009 participants and 10 
years of follow-up).

Methods
FINRISK surveys are cross-sectional, population-based studies 
conducted every 5 years since 1972 to monitor the risk of 
chronic diseases (25). For each survey, a representative random 
sample was selected from 25- to 74-year-old inhabitants of dif
ferent regions in Finland. The current study included eligible 
participants from FINRISK surveys conducted in 1997 and 
2007. Data collection including clinical examination and serum 
samples were available for these 2 surveys. Serum samples were 
stored at −70 °C. Samples were semi-fasting: participants were 
asked not to eat 4 hours prior to giving blood. The median fast
ing time was 5 hours (interquartile range, 4-6 hours). Clinical 
and serum metabolomics data were available from 5304 partic
ipants (mean age 48 ± 13 years) in the 1997 survey and 4616 
participants (mean age 52 ± 13 years) in the 2007 survey.

The Cardiovascular Risk in Young Finns Study (YFS) is a 
population-based prospective cohort study (26). It was con
ducted at 5 medical schools in Finland (Turku, Helsinki, 
Kuopio, Tampere, and Oulu), with the aim of studying the lev
els of cardiovascular risk factors in children and adolescents in 
different parts of the country. The baseline study in 1980 in
cluded 3596 children and adolescents aged between 3 and 
18 years. Results from clinical examination and fasting sam
ples were used in the present study. Clinical and serum metab
olomics data were available from 3 visits; in 2001 (1239 
women and 1007 men), 2007 (1186 women and 974 men) 
and 2011 (1112 women and 927 men).

Clinical Biomarkers and Sample Quality
Glucose, insulin, triglycerides, low- and high-density lipopro
tein cholesterol, C-reactive protein, and creatinine were as
sessed by standard clinical assays. To ensure the best 
possible estimates for age-associated changes in absolute con
centrations, we employed a two-stage pre-processing protocol 
(24). First, we constructed multivariate regression models of 
biomarkers that were available both from metabolomics and 
clinical assays (glucose, triglycerides, total cholesterol, high- 
density lipoprotein cholesterol, and serum creatinine). Each 
nuclear magnetic resonance (NMR) measure was predicted 
from the combination of 6 clinical biomarkers and the model 
residuals were considered indicative of data consistency. The 
final quality score was defined as the standardized sum of re
siduals over the biomarkers. Hence samples with unusual and 
correlated residuals in multiple biomarkers were likely to get 
an extreme quality score. The cutoffs for acceptable deviation 
were set at the points where there was greater than 5% chance 
that the observed quality score was from the expected normal 
distribution. Consequently, 7.9% of samples in the YFS and 
FINRISK were excluded. In the final analyses there were 
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Figure 1. Overview of the study design and datasets. (A) The concept 
of biological or metabolic age has been introduced as a proxy measure 
of human aging processes. First, quantitative biological data, such as 
metabolomics, are collected in a cross-sectional cohort. Next, a 
statistical model is built to predict an individual’s chronological age 
from the biological data. Lastly, the deviation of the model output from 
actual age (metabolic age residual) is interpreted as an indicator of the 
rate of biological aging. (B, C) We used a unique serum NMR 
metabolomics time-series resource based on the Cardiovascular Risk 
in Young Finns Study (YFS) that has been calibrated for longitudinal 
studies. For the first time it was possible to observe the rate of change 
in metabolic age directly and evaluate the usefulness of the 
cross-sectional metabolic age as an indicator of human aging 
processes.
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thus 9708 participants in the cross-sectional training data set 
and 1009 participants in the independent test data set, for 
whom there were clinical and serum metabolomics data avail
able in all the 3 YFS time points at 2001, 2007, and 2011.

Calibration Between Visits
The second correction was aimed at bias between visits. We 
exploited longitudinal biomarker data in YFS to calibrate con
secutive visits. We assumed a priori that subpopulations of the 
same sex, average age, and body mass have identical average 
metabolic profiles. This means that if subsets of individuals 
from 2 consecutive visits have identical average features, we 
would expect the subset averages of the biochemical data to 
be identical as well.

Given consecutive visits A and B in the YFS cohort, a subset 
of participants was selected from visit A and another mutually 
exclusive subset from visit B. The selection was optimized so 
that the subsets had matching age, sex (225 men and 225 
women), and body mass. We then defined a constant multi
plier C = exp(mean[log(subset of B) − log(subset of A)]) for 
each metabolic variable that was not a ratio. Lastly, the multi
plier was applied to the subset from visit B to equalize the 
measurement scale. The procedure was applied first to the 
2001 and 2007 visits, then to the 2007 and 2011 visits (24).

Metabolomics and the Selection of Metabolic 
Features
A high-throughput NMR metabolomics platform was used. 
This particular quantitative methodology has been widely 
used in epidemiology and genetics over the last 10 years 
(with roughly a million samples analyzed) and data are cur
rently available also in the UK Biobank (3, 27-29). The incor
porated 143 molecular outputs from this metabolomics 
platform feature particle, total lipid, triglyceride, free choles
terol, esterified cholesterol, and phospholipid concentrations 
in multiple lipoprotein subclasses (very low-, intermediate-, 
low-, and high-density lipoprotein subclasses (30)), circulat
ing apolipoprotein A-I and B concentrations, multiple clinical 
cholesterol (eg, remnant cholesterol) and triglyceride meas
ures, lipoprotein particle sizes, albumin, phosphatidylcholine 
and sphingomyelin, various fatty acids (eg, omega-3 and 
omega-6 fatty acids; saturated as well as mono- and polyun
saturated fatty acids, linoleic and docosahexaenoic acid) and 
their ratios, and numerous low-molecular-weight metabolites, 
including amino acids (eg, branched-chain and aromatic ami
no acids), glycolysis related measures (eg, glucose, lactate and 
pyruvate), ketone bodies (acetate, acetoacetate, and 3-hy
droxybutyrate), and a new inflammation marker GlycA— 
most of them in central pathways related to cardiometabolic 
health. In addition, 10 clinical traits were incorporated into 
the modeling: total, low- and high-density lipoprotein choles
terol, triglycerides, C-reactive protein, glucose, fasting insulin, 
body mass index, and systolic and diastolic blood pressure. 
These traits contained at most 5% of zero values (in order 
to prevent artifacts from excessive number of duplicates in 
the projection to latent structures [PLS]-modeling).

Multivariate Prediction of Metabolic Age
Metabolic age was modeled by projection to latent structures 
(PLS). The input variables included 153 clinical and quantita
tive metabolic traits that were available in all the cohorts 

(24). Quantitative NMR metabolomics data, constituting mul
tiple central pathways in cardiometabolic health, were used (as 
detailed above). This particular high-throughput methodology 
has been widely used in epidemiology over the last 10 years and 
data are currently available also in the UK Biobank (3, 4, 30). 
The training set included samples from the FINRISK 1997 
and 2007 surveys (4666 men and 5042 women after quality 
control). Separate PLS models were trained for men and wom
en. Before fitting the models, low-quality samples were filtered 
out and batch effects removed (31), the inputs were log- 
transformed if skewed, centered by mean and scaled by SD 
and any missing elements (<1.6%) were imputed by nearest- 
neighbor least-squares matching. The number of PLS compo
nents was optimized by screening the range between 2 and 50 
by 7-fold cross-validation. The screening was replicated 50 
times and the setting that produced the highest median 
Spearman correlation between predictions and observations 
was chosen for the final model (8 PLS components for both 
men and women). When the FINRISK-PLS was applied to 
the YFS, the inputs were standardized according to the means 
and SDs from the combined FINRISK surveys. The PLS coeffi
cients are available in a Supplement table (32). All statistical 
analyses were conducted in the R environment version 3.6 
and higher (https://www.R-project.org).

Results
The statistical model of metabolic age was trained with the 
FINRISK survey data and then applied to the 3 YFS time 
points (Fig. 1C). Specifically, associations between the 153 
clinical and metabolic measures and age were modeled by 
the PLS algorithm; this FINRISK-PLS model explained 
50.0% of the variation in chronological age in the combined 
training set (Fig. 2A) and 18.4% of age variance in those 
FINRISK participants who were 49 years of age or younger 
(ie, the same age range as the YFS participants).

We applied the FINRISK-PLS model to the calibrated YFS 
data to investigate whether the trajectory of age-associated 
changes in metabolism could be predicted by the modeling 
of population surveys (Fig. 2B). The FINRISK-PLS model 
overestimated age for the youngest peer group (the mean re
sidual was +7.0 years for the 24-year-olds) and underesti
mated age for the oldest peer group (−6.3 years for the 
49-year-olds). Overall, the FINRISK-PLS explained 16.0%
of the age variation in the YFS.

Lastly, we tested the hypothesis that a high predicted meta
bolic age compared with the chronological age of an individ
ual is indicative of accelerated aging processes (Fig. 1A). First, 
we demonstrated the phenomenon of regression toward the 
mean by comparing the FINRISK-PLS residuals in YFS in 
2001 against the observed differences between the model pre
dictions in 2011 and 2001. As expected, a strong inverse cor
relation was observed (Fig. 2C). We then modified the design 
by switching to residuals from the 2007 visit in the middle to 
eliminate the confounding effect. We observed no correlation 
between the metabolic age residual in 2007 and the observed 
change in metabolic age during the follow-up period 
(R2 = 0.018%, P = 0.67; Fig. 2D).

Discussion
Multiple population-based cohorts were leveraged to investi
gate how aging manifests in systemic metabolism and whether 
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modeling the metabolic age based on cross-sectional surveys 
provides information on an individual’s metabolic trajectory 
(Fig. 1A). We found no evidence that cross-sectional modeling 
of aging provides information on how fast metabolic profiles 
change over time for an individual (Fig. 2D).

Experimental studies indicate that molecular processes re
lated to aging are under genetic and epigenetic regulation, 
but it may be possible to slow down the molecular 
clock by caloric restriction and other interventions (1, 2, 
17, 22). Demonstrating this phenomenon in humans is chal
lenging, but the concept of metabolic age has been intro
duced as a proxy indicator of how far the clock has ticked 
(17, 22, 33, 34). Under the clock model, one could expect 
that a cross-sectional snapshot in the middle of the trajec
tory would reflect the divergent slopes that fan out from 
the starting point and that the snapshot could thus be used 
as a measure of accelerated aging (Fig. 3A). We could not 

detect the expected consequence of the molecular clock 
model of aging in young and middle-aged adults, as we could 
not establish a correlation between the metabolic age resid
uals and the observed change in metabolic age. As an alter
native explanation, we speculate that the results arose from 
stratified aging where the rates of adult metabolic aging per 
se are not predictable by the current metabolic health status 
(Fig. 3B). In addition to statistical fluctuations, the metabol
ic age residuals are likely to reflect the genetic and environ
mental determinants of circulating metabolism and the 
interplay between the current degree of adiposity and energy 
metabolism.

These findings are consequential for the current aging re
search in metabolomics, as molecular aging signatures are 
regularly derived from cross-sectional data and interpreted 
as representations of individuals’ biological ages. This ap
proach appears to be mostly, if not entirely, misplaced.

A C D

B

Figure 2. Metabolic age as a proxy for accelerated aging. (A) We used projections to latent structures (PLS) to predict an individual’s chronological age 
from the cross-sectional FINRISK surveys. (B) The FINRISK-PLS model was applied to the YFS data for independent validation. Model bias (gray bars) 
was defined as the difference between the true chronological age (black filled diamonds) and the median of the model prediction (open diamonds) for a 
given peer group. (C) Accurate comparison of metabolic age residuals and longitudinal change is not possible with only 2 time points due to the negative 
correlation artifact caused by regression toward the mean. (D) Comparison between the predicted aging rate as indicated by metabolic age residuals in 
2007 against the observed change in metabolic age as calculated between the 2001 and 2011 visits. Prediction performance is reported by Pearson 
correlation (R) and the horizontal gray lines indicate the +10-year expected change.
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