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Simple Summary: Hydrothermal vents are regions such as hot springs found on the seafloor in the
mid-ocean and near tectonic plates. They contain fluids with highly enriched carbon dioxide, which
is the central element of life on Earth. Many organisms live in this environment and can survive in
extreme conditions (extremophiles), such as up to 400 ◦C or higher, low pH, and high pressure. All
organisms need the carbonic anhydrase (CA) enzyme to handle the acid-base imbalance through
the hydration of carbon dioxide and the production of bicarbonate necessary for pH homeostasis
and many cellular functions. The CAs have been categorized into eight families. In this study, we
focused on α-, β-, and γ-CAs from the thermophilic microbiome of marine hydrothermal vents.
Microorganisms in this environment need CA to capture CO2, which is an important contribution
to marine hydrothermal vent ecosystem functioning. Previously, we showed the transfer of β-CA
gene sequences from prokaryotes to protozoans, insects, and nematodes via horizontal gene transfer
(HGT). HGT is not only the transfer and movement of genetic information between organisms but is
also a powerful tool in natural biodiversity. If the CA coding gene is transferred horizontally between
microorganisms in hydrothermal vents, it is hypothesized that CA is essential for survival in these
environments and one of the key players in the carbon cycle in the ocean.

Abstract: Carbonic anhydrases (CAs) are metalloenzymes that can help organisms survive in hy-
drothermal vents by hydrating carbon dioxide (CO2). In this study, we focus on alpha (α), beta (β),
and gamma (γ) CAs, which are present in the thermophilic microbiome of marine hydrothermal
vents. The coding genes of these enzymes can be transferred between hydrothermal-vent organisms
via horizontal gene transfer (HGT), which is an important tool in natural biodiversity. We performed
big data mining and bioinformatics studies on α-, β-, and γ-CA coding genes from the thermophilic
microbiome of marine hydrothermal vents. The results showed a reasonable association between
thermostable α-, β-, and γ-CAs in the microbial population of the hydrothermal vents. This rela-
tionship could be due to HGT. We found evidence of HGT of α- and β-CAs between Cycloclasticus
sp., a symbiont of Bathymodiolus heckerae, and an endosymbiont of Riftia pachyptila via Integrons.
Conversely, HGT of β-CA genes from the endosymbiont Tevnia jerichonana to the endosymbiont
Riftia pachyptila was detected. In addition, Hydrogenovibrio crunogenus SP-41 contains a β-CA gene
on genomic islands (GIs). This gene can be transferred by HGT to Hydrogenovibrio sp. MA2-6, a
methanotrophic endosymbiont of Bathymodiolus azoricus, and a methanotrophic endosymbiont of
Bathymodiolus puteoserpentis. The endosymbiont of R. pachyptila has a γ-CA gene in the genome. If α-
and β-CA coding genes have been derived from other microorganisms, such as endosymbionts of
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T. jerichonana and Cycloclasticus sp. as the endosymbiont of B. heckerae, through HGT, the theory of
the necessity of thermostable CA enzymes for survival in the extreme ecosystem of hydrothermal
vents is suggested and helps the conservation of microbiome natural diversity in hydrothermal vents.
These harsh ecosystems, with their integral players, such as HGT and endosymbionts, significantly
impact the enrichment of life on Earth and the carbon cycle in the ocean.

Keywords: big data mining; carbonic anhydrase; extreme ecosystems; horizontal gene transfer;
hydrothermal vents; mobile genetic elements; thermophilic microbiome

1. Introduction

Deep-sea hydrothermal vents are one of the best environments for evolutionary studies.
Hydrothermal vents are regions such as hot springs found on the seafloor. These are located
in the mid-ocean and near tectonic plates initially discovered in 1977 at a depth of 2.5 km
around a hot spring on the Galápagos volcanic rift (spreading ridge) off the coast of
Ecuador [1,2]. Based on their characteristics, deep-sea hydrothermal vents are called either
black smokers or white smokers [3]. Black smokers’ fluid temperature goes up to 400 ◦C or
above and has a low pH, but white smokers have an alkaline pH, and their temperature
is approximately 40–75 ◦C [3]. Hydrothermal vents contain fluids with highly enriched
carbon dioxide (CO2), which are discharged into the deep sea by these vents [4]. CO2 is a
very stable form of carbon, the central element of life on Earth, and consists of a carbon
atom covalently double-bonded to two oxygen atoms. Carbonic acid (H2CO3) is derived
from the reaction of CO2 and water molecules, so the product is an unstable compound
that spontaneously splits into bicarbonate (HCO3

−) and protons (H+).
Many organisms live in this environment, especially bacterial and archaeal species

that can survive in extreme conditions such as high temperatures and pressure. The
organisms adapted to this habit are called extremophiles. All organisms need carbonic
anhydrases (CAs) to handle the large amount of CO2 and, consequently, the related acid-
base imbalance [5–7]. CA is the metalloenzyme that catalyzes the reversible hydration of
CO2 to HCO3 and H+ as follows:

CO2 + H2O↔ HCO3
− + H+

CAs are encoded by eight evolutionarily divergent gene families, including alpha
(α), beta (β), gamma (γ), delta (δ), zeta (ζ), eta (η), theta (θ), and iota (ι) CA. α-CA has
been reported in vertebrates, prokaryotes, fungi, algae, protozoa, and plants [7]. β-CA is
expressed in prokaryotes, plants, fungi, protozoa, arthropods, and nematodes [8–13]. γ-CA
is present in many plants, fungi, and prokaryotes. δ-CA and ζ-CA are present in marine
diatoms [7,12]. η-CA was identified in the causative agent of malaria, Plasmodium spp.,
and θ-CA was identified in marine diatoms [7,14,15]. Iota(ι)-CA was recently reported to
be expressed in diatoms and bacteria [16]. In this study, we focused on α-, β-, and γ-CAs
from the thermophilic microbiome of marine hydrothermal vents. These metalloenzymes
have an active site containing a Zn(II) metal ion cofactor [17], while Co(II) and Fe(II) can
be included in α- and γ-CA, respectively [7]. The structures of α-CAs are frequently
monomers and rarely dimers [18]; β-CAs are dimers, tetramers, or octamers [19]; and
γ-CAs are trimers [20].

A previous study showed thatβ-CA gene sequences could be transferred from prokary-
otes to protozoans, insects, and nematodes via HGT [21]. Additionally, the involvement
of bacterial β-CA gene sequences in the gastrointestinal tract and their horizontal transfer
to their host during evolution has been demonstrated [22]. HGT, also called lateral gene
transfer (LGT), is the transfer and movement of genetic information between organisms and
thus is differentiated from the vertical transmission of genes from parent to the next gener-
ations [23]. HGT plays a crucial role in natural biodiversity as a general mechanism [24,25],
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and it often causes dramatic changes in the ecological and pathogenic properties of bacterial
species, thereby promoting microbial diversification and speciation [25]. HGT may occur
via mobile genetic elements (MGEs) such as integrons, genomic islands (GIs), integrative
conjugative elements (ICEs), transposable elements (TEs), plasmids, and phages [26–30].
MGEs are parts of DNA that encode enzymes and other proteins that interpose the transfer
of DNA in HGT within genomes (intracellular mobility) or between bacterial cells (in-
tercellular mobility) [26]. Intercellular transfer of DNA takes three forms in prokaryotes:
transformation, conjugation, and transduction [31].

Integrons are MGEs that allow the capture and expression of exogenous genes. Inte-
grons have three essential core features: intI, attI, and Pc [32,33]. IntI is the gene encoding
an enzyme for catalyzing recombination between incoming gene cassettes called integron
integrase (IntI) [32]. AttI is an integron-associated recombination site [33], and Pc is an
integron-associated promoter that is expressed once a gene cassette is recombined [34].
The length of GIs is more than 10 kb, a part of a chromosome, recognized as discrete
DNA segments, and can be different from closely related strains, and transposase is a
primary tool for HGT through GIs [32–34]. Another family of MGEs is the integrative
conjugative element (ICE), called the conjugative transposon. ICEs have two features:
first, they are integrated into a host genome, and second, they encode a type IV secretion
system (functional conjugation system) [28,35]. TEs are DNA sequences that can move
from one location to another in the genome [30]. TEs fall into two classes: retrotransposons
(Class I) or RNA transposons [36] and true transposons (Class II) or DNA transposons that
consist of a transposase gene with two terminal inverted repeats (TIRs) on either side [30].
Additionally, insertion sequences (IS) are small MGEs that carry more than one or two
transposase genes [37]. The CA genes may be transferred between organisms living in
hydrothermal vents and their endosymbionts via HGT. Endosymbiotic bacteria are located
in the trophosome of the host, which contains animal cells, so-called bacteriocytes [38]. For
instance, one of the important living organisms living in deep-sea hydrothermal vents is the
giant tubeworm Riftia pachyptila, which lives with its symbiont bacteria. Nitrate, oxygen,
hydrogen sulfide, and inorganic carbon are taken up from the environment and it feeds its
symbiotic bacteria with these substances in an organ known as the trophosome [39].

In addition, about one-third of the added carbon from atmospheric CO2 uptake into
the ocean increases dissolved CO2 in seawater [40]. The accompanying acidification may
reduce the seawater saturation of calcite, thus affecting marine calcifications. CA helps the
concentration of inorganic carbon in the fluid from which calcium carbonate is sedimented
and directly affects the calcification in some calcifiers, such as gastropods, oysters, and giant
clams as well as coral calcification. The calcification can be reduced by 40%, which has been
affected by high atmospheric CO2 levels. Even a modest impact on producing carbonate
shells and skeletons may have important consequences on the global carbon cycle [41].

Microorganisms in this environment need CA to capture CO2, which is an important
contribution to marine hydrothermal vent ecosystem functioning [42]. It has been suggested
that α-CA evolution may contribute to the vulnerability to environmental changes of
bivalves and their diversity [43] since HGT would create a large variability acted on by
natural selection [39]. If the coding gene of this enzyme is transferred horizontally between
hydrothermal vent microorganisms, it is hypothesized that CA is essential for survival
and for preserving natural biodiversity in this extreme ecosystem. For this purpose, we
investigated the evolutionary relationship and the possibility of HGT in the hydrothermal
vent ecosystem. We conducted a large data mining and bioinformatics study focusing on the
HGT of α-, β- and γ-CA genes in the microbial population of deep-sea hydrothermal vents.

2. Materials and Methods
2.1. Identification of α-, β-, and γ-CA Sequences

We collected the names of all microbial populations from hydrothermal vents based
on the literature. The protein and DNA sequences of CA candidates were retrieved from
databases that were previously annotated in these databases after performing genomics
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and proteomics studies (Tables S1–S3). We retrieved their α-, β-, and γ-CA protein se-
quences from UniProt (http://www.uniprot.org/, 1 March 2023). In addition, we utilized
a Position-Specific Iterated BLAST (PSI-BLAST) in the National Center for Biotechnology
Information (NCBI) for two iterations to identify sequences that were homologous to the
query sequences from organisms originating from hydrothermal vents. Each CA family has
a defined conserved amino acid sequence to retrieve other CAs from the relevant CA family.
α-CAs have three conserved histidine residues [21] (Figure 1A) that can be used as a pattern
for identifying bacterial α-CAs. β-CAs have two highly conserved motifs; the first motif
includes three residues of cysteine, aspartic acid, and arginine (CxDxR); the second highly
conserved motif includes histidine and cysteine residues (HxxC) [21] (Figure 1B). γ-CAs
have three histidine residues as well as asparagine and glutamine residues (NxQxxxxxH)
and (HxxxxH) [44,45] (Figure 1C).

Figure 1. Conserved residues of CAs in the catalytic active sites. (A) Three “H” histidines are highly
conserved in α-CAs. (B) Two cysteines “C”, one histidine “H”, one aspartic acid “D”, and one
arginine “R” are highly conserved amino acids in β-CAs. (C) Three histidine residues “H”, one
asparagine “N”, and one glutamine “Q” are highly conserved amino acids in γ-CAs.

In addition, α-, β-, and γ-CA proteins from the microbiome of marine hydrothermal
vent ecosystems with taxonomic classifications have been listed in Table S1 [46–62], Table
S2 [63–95], and Table S3 [96–118], respectively.

Multiple sequence alignment (MSA) was performed using the Tree-based Consistency
Objective Function for Alignment Evaluation (T-Coffee) [119] for the identification of
conserved residues in α-, β-, and γ-CA protein sequences. Additionally, we analyzed
these MSA results in Jalview2 software [120]. Then, we made a dataset for each organism
(the whole genome, if available) from the NCBI database (https://www.ncbi.nlm.nih.gov/
nuccore) (Access date: 1 March 2023) and apperceived the α-, β-, and γ-CA gene positions
on our bacterial genomes from the Ensembl Bacteria (https://bacteria.ensembl.org) (Access

http://www.uniprot.org/
https://www.ncbi.nlm.nih.gov/nuccore
https://www.ncbi.nlm.nih.gov/nuccore
https://bacteria.ensembl.org
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date: 1 March 2023) and KEGG (https://www.genome.jp/kegg/) (Access date: 1 March
2023) databases. We annotated our integrons via Geneious prime version: 2021.0.3 software
with default parameters.

2.2. Phylogenetic Analysis

We retrieved the Tax ID of all microbiomes from marine hydrothermal vents contain-
ing α-, β-, and γ-CA from the UniProt database (https://www.uniprot.org/taxonomy/)
(Access date: 1 March 2023) and NCBI database (https://www.ncbi.nlm.nih.gov/taxonomy/)
(Access date: 1 March 2023) for more accuracy. Phylogenetic trees were constructed for
evolutionary study using maximum likelihood, and models with the lowest Bayesian Infor-
mation Criterion (BIC) scores were considered to best describe the substitution pattern [121]
via MEGA X software [122] and annotated in FigTree V1.4.4 software for all protein se-
quences. Then, we generated a heatmap based on the pairwise sequence identity between
them using GraphPad Prism version 8.00 software for Windows (www.graphpad.com,
1 March 2023).

2.3. Identification of α-, β-, and γ-CA Genes on the MGEs
2.3.1. Integrons

Integrons have three essential core features: intI, attI, and Pc [32–34], so we tried to
find these features in our dataset. Integrons gain new genes as part of gene cassettes [123].
In addition to these features, we needed to find cassettes as simple structures consisting of a
single open reading frame (ORF) bounded by a cassette-associated recombination site called
a 59-base element or attC [124]. Gene cassettes exist in a circular free state and are integrated
into attI [125,126]. Integron integrase mediates the integration of circular gene cassettes
by site-specific recombination between attI and attC reversibly and excises [126–128]. For
the identification of the mentioned features, we used the Integron finder. Integron Finder
has two forms: a standalone program (https://github.com/gem-Pasteur/Integron_Finder)
(Access date: 1 March 2023) and a web application (https://galaxy.pasteur.fr/#forms::
integronfinder) (Access date: 1 March 2023). Hidden Markov model (HMM) profiles were
used for the search of integron-integrase and covariance models for attC sites. Pattern
matching was also used for other features (such as promoters and attI sites) [129]. In this
study, we applied the web application of integron finder.

2.3.2. Genomic Islands (GIs)

Prediction of GIs was studied using tools such as SIGI-HMM, IslandPath-DIMOB [130],
PAI-IDA [131], and Centroid [132], based on the evaluation of sequence compositions as
well as BLAST homology searches and whole-genome sequence alignment for comparative
genomics methods [48]. For this purpose, we applied the IslandViewer 4 (http://www.
pathogenomics.sfu.ca/islandviewer/) (Access date: 1 March 2023) database using a web
server to predict and visualize genomic islands in bacterial and archaeal genomes [133].
After searching all microorganisms in this database, we retrieved their annotations and
searched for α-, β-, and γ-CA genes on their GIs.

2.3.3. Integrative Conjugative Elements (ICEs)

ICEs comprise the ICE integration and excision module, ICE conjugation module, and
ICE regulation module, which are the main genetic modules [134]. ICEs contain integrase-
and relaxase-coding genes and/or type IV secretion systems. For the identification of
ICEs, we used ICEberg 2.0 (https://db-mml.sjtu.edu.cn/ICEberg/) (Access date: 1 March
2023) [135,136].

2.3.4. Transposable Elements (TEs), Phages, and Plasmids

Insertion sequences (IS) and true transposons (Tn) consist of a transposase gene with
two terminal inverted repeats (TIRs) on either side [30]. IS are small mobile elements
that carry little more than one or two transposase genes [37]. For the identification of

https://www.genome.jp/kegg/
https://www.uniprot.org/taxonomy/
https://www.ncbi.nlm.nih.gov/taxonomy/
www.graphpad.com
https://github.com/gem-Pasteur/Integron_Finder
https://galaxy.pasteur.fr/#forms::integronfinder
https://galaxy.pasteur.fr/#forms::integronfinder
http://www.pathogenomics.sfu.ca/islandviewer/
http://www.pathogenomics.sfu.ca/islandviewer/
https://db-mml.sjtu.edu.cn/ICEberg/
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these elements, we used the MobileElementFinder web server (https://cge.cbs.dtu.dk/
services/MobileElementFinder/) (Access date: 1 March 2023) [137]. To study phages in
our datasets, we needed to find evidence of prophages. Evidence of insertion sites includes
alteration of GC content and the presence of tRNA flanking the region [138]. PhageWeb
(http://computationalbiology.ufpa.br/phageweb/) (Access date: 1 March 2023) was used
to search for this evidence. Utilizing information from a 2018 study by Sousa, A.L.d., et al.,
we set options to default (BLAST options to identify 80% and six minimum of CDS) in
prophage identification [139]. After that, we checked the location of our genes for the
position on the chromosome or plasmid.

3. Results
3.1. Identification of α-, β-, and γ-CA and Protein Sequences

This study evaluated 83 previously isolated microorganisms in or around hydrother-
mal vents (Tables S1–S3). They consisted of bacteria and archaea and were classified
into ten groups of bacterial species, including Alphaproteobacteria, Deltaproteobacteria,
Epsilonproteobacteria, Gammaproteobacteria, Zetaproteobacteria, Aquificae, Bacilli, De-
ferribacteres, Deinococci, and Fusobacteria, as well as four groups for archaea, including
Archaeoglobi, Methanopyri, Methanococci, and Thermococci. We retrieved 25 α-CA,
55 β-CA, and 47 γ-CA protein sequences from the UniProt database [140]. We must note
that we have abbreviated microorganism names for convenience, and they are stated in
the Supplementary Materials (Tables S1–S3). It is worth noting that many of these isolated
species from hydrothermal vents are endosymbiotic microorganisms.

The results of the MSA for verification of α-, β-, and γ-CA protein sequences are
shown in the Supplementary Materials (Figures S1–S3). Many α-CAs from the thermophilic
microbiome of marine hydrothermal vents have been studied previously [42]. At first, the
MSA of α-CA showed conserved residues (Figure S1) in which three conserved histidine
residues (His107, His109, and His126) [21] were visible and coordinated with the Zn2+

metal ion cofactor in the enzyme catalytic active site [141]. Next, the MSA of β-CAs showed
three conserved residues in the first highly conserved motif (CxDxR), including cysteine,
aspartic acid, and arginine, with variation in the residues between them [21]. The second
highly conserved motif (HxxC), which contained histidine and cysteine residues with two
other residues between them, was also observed [21] (Figure S2). Finally, in the MSA of
γ-CAs, we identified three histidine residues, asparagine and glutamine residues, that were
highly conserved [44,45] (Figure S3).

3.2. Phylogenetic Analysis

The results of phylogenetic analysis and heatmaps of α-, β-, and γ-CAs from the
thermophilic microbiome of hydrothermal vents are shown in Figure 2, Figure 3, and
Figure 4, respectively. We highlighted the bacterial CAs with blue and archaea with
orange. The evolutionary history was inferred using the maximum-likelihood method
and the result of calculating the best model using the Le Gascuel model with discrete
gamma distribution and invariable sites (LGGI) [142]. Since the phylogenetic analysis of
α-CAs from the thermophilic microbiome of marine hydrothermal vents has been studied
previously [42], we analyzed additional species, including Hydrogenovibrio crunogenus
(XCL-2), Hydrogenovibrio crunogenus (SP-41), Bacillus oceanisediminis, Sulfurivirga caldicuralii,
Caldithrix abyssi, an endosymbiont of Riftia pachyptila (vent Ph05), Bathymodiolus platifrons
as a methanotrophic gill symbiont, and Cycloclasticus sp. as symbionts of Bathymodiolus
heckerae, Nitrosophilus alvini, Nitrosophilus labii, Sulfurimonas paralvinellae, Hydrogenimonas
urashimensis, Sulfurovum indicum and Persephonella atlantica (Figure 2).

https://cge.cbs.dtu.dk/services/MobileElementFinder/
https://cge.cbs.dtu.dk/services/MobileElementFinder/
http://computationalbiology.ufpa.br/phageweb/
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Figure 2. Phylogenetic analysis of α-CAs from the thermophilic microbiome of hydrothermal vents.
(A) The tree’s branches and nodes were colored based on bootstrap values (0–1), and the bacterial
CAs and archaea were highlighted with blue and orange, respectively, via FigTree V1.4.4 software.
(B) α-CA pairwise sequence identity heatmap. The heatmap for the all-versus-all pairwise sequence
identity of α-CA calculations was generated using T-Coffee MSA. Pairwise sequence identity values
are colored from yellow (highest) to black (lowest).

Figure 3. Phylogenetic analysis of β-CAs from the thermophilic microbiome of hydrothermal vents.
(A) The tree’s branches and nodes were colored based on bootstrap values (0–1), and the bacterial
CAs and archaea were highlighted with blue and orange via FigTree V1.4.4 software. (B) β-CA
pairwise sequence identity heatmap. The heatmap for the all-versus-all pairwise sequence identity of
β-CA calculations was generated using T-Coffee MSA. Pairwise sequence identity values are colored
from yellow (highest) to black (lowest).
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Figure 4. Phylogenetic analysis of γ-CAs from the thermophilic microbiome of hydrothermal vents.
(A) The tree’s branches and nodes were colored based on bootstrap values (0–1), and the bacterial
CAs and archaea were highlighted with blue and orange, respectively, via FigTree V1.4.4 software.
We did not find any specific items between clades A and B or between clades C and D that can be
categorized as separate clades. (B) γ-CA pairwise sequence identity heatmap. The heatmap for the
all-versus-all pairwise sequence identity of γ-CA calculations was generated using T-Coffee MSA.
Pairwise sequence identity values are colored from yellow (highest) to black (lowest).

The phylogenetic tree ofα-CAs was performed with the highest log-likelihood (−9636.17).
Initial trees for the heuristic search were obtained automatically by applying neighbor-
joining and BioNJ algorithms to a matrix of pairwise distances estimated using the Jones-
Taylor-Thornton (JTT) model and then selecting the topology with a superior log-likelihood
value. A discrete gamma distribution was used to model evolutionary rate differences
among sites (two categories (+G, parameter = 1.1935)). The rate variation model allowed
some sites to evolve invariably ([+I], 3.92% sites). The tree was drawn to scale, with branch
lengths measured in the number of substitutions per site. Twenty-five α-CA amino acid
sequences were involved in this analysis. There were a total of 357 positions in the final
dataset. The analysis revealed that there is a common ancestor between Hc(XCL-2)-ACA
and Hc(SP-41)-ACA; Sr-ACA and S(NBC37-1)-ACA; G(EPR-M)-ACA and G(HR-1)-ACA;
Nt-ACA and Nl-ACA; and Pat-ACA and Ph-ACA.

The phylogenetic tree of β-CAs with the highest log-likelihood (−15,146.85) is shown
in Figure 3. Initial trees for the heuristic search were obtained automatically by applying
neighbor-joining and BioNJ algorithms to a matrix of pairwise distances estimated using
the JTT model and then selecting the topology with a superior log-likelihood value. A
discrete gamma distribution was used to model evolutionary rate differences among sites
(two categories (+G, parameter = 2.7462)). The rate variation model allowed some sites to
evolve invariably ([+I], 0.97% sites). This analysis involved 55 β-CA amino acid sequences.
There were a total of 308 positions in the final dataset. Based on bootstrap values and
identity, we divided this tree (Figure 3) into six clades from A to F. The analysis revealed
that there is a common ancestor between the β-CAs in each clade.

The phylogenetic tree of γ-CAs with the highest log-likelihood (−9786.77) is shown
in Figure 4. The initial phylogenetic trees for the heuristic search were automatically
obtained by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances
estimated using the JTT model. The topology with a superior log-likelihood value was then
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selected. A discrete gamma distribution was used to model evolutionary rate differences
among sites (two categories (+G, parameter = 1.6179)). The variation model rate allowed
some sites to evolve invariably ([+I], 3.65% sites). Forty-seven amino acid sequences were
involved in this analysis. There were a total of 219 positions in the final dataset. We divided
this tree into four clades from A to D based on bootstrap values and identity, similar to
the β-CA phylogenetic analysis. The analysis revealed that there is a common ancestor
between the γ-CAs in each clade.

3.3. Identification of α-, β-, and γ-CA Genes on MGEs
3.3.1. Integrons

Integrons are divided into complete integrons, In0 elements, and CALINs elements.
Complete integrons have an integrase and one attC site or more. The In0 elements consist of
an integron integrase without attC sites, and CALINs have two attC sites or more without
integron integrases. After searching integron features on our dataset, we found integrons
in many microorganisms, which have been mentioned in Table 1. We performed a BLAST
analysis on all protein CDS (protein-coding sequences) on integrons. The results showed
that only the endosymbiont of R. pachyptila and the endosymbiont of Tevnia jerichonana
have CA-coding genes in their integron area.

Table 1. Integrons in the thermophilic microbiome from hydrothermal vents.

Microorganisms Integron Type Integrase CA Gene

Cycloclasticus sp. symbiont of
Bathymodiolus heckerae

Endosymbiont of Riftia pachyptila
(vent Ph05)

Sulfurovum sp. NBC37-1

In0 Intersection tyr intI -
Integron 1: CALIN
Integron 2: CALIN - α-CA

β-CA
Integron 1: CALIN
Integron 2: CALIN - -

Caldithrix abyssi
Hydrogenovibrio crunogenus SP-41

CALIN - -
Integron 1: CALIN
Integron 2: CALIN

Integron 3: Complete
Integron 4: CALIN

Intersection tyr intI -

Thiomicrospira crunogena XCL-2
Bathymodiolus thermophilus

thioautotrophic gill symbiont
Endosymbiont of
Tevnia jerichonana

Halomonas sulfidaeris strain SST4

Integron 1: CALIN
Integron 2: CALIN - -

Integron 1: CALIN
Integron 2: CALIN
Integron 3: CALIN

- -

CALIN - β-CA
CALIN - -

Marinobacter sp. LQ44 Integron 1: CALIN
Integron 2: In0 Intersection tyr intI -

Sulfurimonas autotrophica Integron 1: In0
Integron 2: CALIN Intersection tyr intI -

Endosymbiont of
Bathymodiolus septemdierum

Integron 1: CALIN
Integron 2: CALIN

Integron 3: In0
Integron 4: CALIN
Integron 5: CALIN

Intersection tyr intI -

Hydrogenovibrio thermophilus
Thermococcus barophilus strain CH5

Complete Intersection tyr intI -
CALIN - -

Cycloclasticus sp. symbiont of
Bathymodiolus heckerae In0 Intersection tyr intI -

Endosymbiont of Riftia pachyptila
(vent Ph05)

Integron 1: CALIN
Integron 2: CALIN - α-CA

β-CA
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Table 1. Cont.

Microorganisms Integron Type Integrase CA Gene

Sulfurovum sp. NBC37-1 Integron 1: CALIN
Integron 2: CALIN - -

Caldithrix abyssi CALIN - -

Hydrogenovibrio crunogenus SP-41

Integron 1: CALIN
Integron 2: CALIN

Integron 3: Complete
Integron 4: CALIN

Intersection tyr intI -

Thiomicrospira crunogena XCL-2 Integron 1: CALIN
Integron 2: CALIN - -

Bathymodiolus thermophilus
thioautotrophic gill symbiont

Integron 1: CALIN
Integron 2: CALIN
Integron 3: CALIN

- -

Endosymbiont of
Tevnia jerichonana CALIN - β-CA

Halomonas sulfidaeris strain SST4 CALIN - -

Marinobacter sp. LQ44 Integron 1: CALIN
Integron 2: In0 Intersection tyr intI -

Sulfurimonas autotrophica Integron 1: In0
Integron 2: CALIN Intersection tyr intI -

Endosymbiont of
Bathymodiolus septemdierum

Integron 1: CALIN
Integron 2: CALIN

Integron 3: In0
Integron 4: CALIN
Integron 5: CALIN

Intersection tyr intI -

Hydrogenovibrio thermophilus Complete Intersection tyr intI -

Thermococcus barophilus strain CH5 CALIN - -

According to data analysis by Integron Finder, the endosymbiont of Riftia pachyptila
contains two integrons. The first integron has one CDS, and the second has two attC sites;
the CALIN type has six CDSs, an α-CA gene on the fourth CDS, and a β-CA gene on the
sixth CDS (Figure 5A). The endosymbiont of Tevnia jerichonana has one integron with two
attC sites, six CDS is CALIN type, and a β-CA gene on the fourth CDS (Figure 5B).

Figure 5. Integrons of endosymbionts of (A) Riftia pachyptila and (B) Tevnia jerichonana. The α- and
β-CA genes are bolded and marked with red stars.
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3.3.2. Genomic Islands (GIs)

According to the IslandViewer 4 (http://www.pathogenomics.sfu.ca/islandviewer/)
(Access date: 1 March 2023) database, 25 out of 83 of our microorganisms have GIs, and
only one of the Hydrogenovibrio crunogenus SP-41 GIs carries a β-CA gene (Hc(SP41)-BCA)
(UniProt ID: Q31FD6) and three transposase genes that are primary tools for HGT [143]
(Figure 6). This GI is predicted by SIGI-HMM [144] and IslandPath-DIMOB methods [130].
However, the HGT of β-CA genes with GIs between prokaryotes and protists was previ-
ously studied [22].

Figure 6. GIs of Hydrogenovibrio crunogenus SP-41. Hc(SP41)-BCA and transposase genes are marked
green and shown in the red box. The GC content is visible at the center of the figure.

3.3.3. Integrative Conjugative Elements (ICEs), Transposable Elements (TEs), Phages,
and Plasmids

According to ICEberg 2.0 (https://db-mml.sjtu.edu.cn/ICEberg/) (Access date:
1 March 2023) and MobileElementFinder web server results, we did not find any α-, β-,
and γ-CA genes on the ICEs and TEs. Additionally, using PhageWeb (https://github.com/
phagewebufpa/API (Access date: 25 April 2019), we did not find any evidence supporting
the transfer of α-, β-, and γ-CA genes via phages. Based on the details of our dataset, CA
genes were not located on the plasmids from the thermophilic microbiome of hydrothermal
vents, and all genes were found on the chromosomes.

4. Discussion

The evolutionary process in hydrothermal vent ecosystems and the role of viruses
in the biodiversity in this harsh environment have been studied previously. A study

http://www.pathogenomics.sfu.ca/islandviewer/
https://db-mml.sjtu.edu.cn/ICEberg/
https://github.com/phagewebufpa/API
https://github.com/phagewebufpa/API
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performed by Cheng et al. [145] revealed that bacteriophages are the most predominant
viruses across the global hydrothermal vents, while single-stranded DNA viruses, including
Microviridae and small eukaryotic viruses, have been located in the next steps. The
metagenomics analysis showed that this virome plays a crucial role in the evolution and
biodiversity of the microbiome of hydrothermal vents, especially Gammaproteobacteria
and Campylobacterota [145]. Although the bacteriophages have no role in the HGT of
CA genes in the hydrothermal ecosystems, our previous studies showed the HGT of β-CA
genes from prokaryotic endosymbionts to their protozoan, insects, and nematodes hosts.
In addition, the genomic islands have been shown to have a potential role in the HGT
of β-CA genes from ancestral prokaryotes to protists. Since then, no further study has
been performed on the HGT of CA genes. Since hydrothermal vent ecosystems have been
reported as potent environments for HGT and biodiversity, these harsh deep-sea fissures
were studied.

According to the heatmap and phylogenetic analysis (Figure 2) of α-CAs, Bpm-ACA
and Ca-ACA showed no significant relationship with the other α-CAs. Hc(XLC-2)ACA,
Hc(SP41)-ACA, and Sca-ACA clustered together with branch bootstrap values of 1.00,
showing significant relationships. Additionally, G(HR-1)-ACA and G(EPR-M)-ACA had
a branch bootstrap value of 1.00, indicating a robust evolutionary relationship similar to
that between Sr-ACA and S(NBC37-1)-ACA, whose bootstrap value was also 1.00. Similar
to a previous study, the branch for Pm-ACA and Ph-ACA was observed to have a high
bootstrap value of 0.99. A high branch bootstrap value of 0.86 was observed for CsBh-
ACA and Erp-ACA. It is necessary to mention that all the α-CAs above belong to the
Proteobacteria phylum except for Pm-ACA and Ph-ACA, which belong to the Aquificae
phylum. According to the heatmap and phylogenetic analysis (Figure 3) of β-CAs, in clade
A, Opr-BCA and It-BCA have poor relationships with other clade members, showing a
branch bootstrap value of 0.37. All members of clade B have the same root, but Mfe-BCA,
Mfo-BCA, and Mb-BCA have poor relationships with other clade members. In clade C, a
significant relationship between Sr-BCA, S(NBC37)-BCA, and Si-BCA showed a branch
bootstrap value of 1.00, in which pairwise sequence identities of more than 88.6% were
revealed. Although these three cases with a branch bootstrap value of 0.92 have a significant
relationship with Ns-BCA, they have a poor relationship with other members of clade C.
In clade D, a relationship between Erp-BCA, Et-BCA, and CsBh-BCA was observed with
a 1.00 branch bootstrap value, in which a pairwise sequence identity of more than 83.5%
was observed for all three. In clade E, the cluster containing Hts-BCA, Ts-BCA, Hc(XCL-2)
–BCA, and Btt-BCA was observed with a branch bootstrap value of 1.00. Clade F with
a 0.3 branch bootstrap value did not show a good relationship with other clades, while
Di-BCA and Ta-BCA have the same root as Tp-BCA, a member of archaea. According to
the heatmap and phylogenetic analysis of γ-CAs (Figure 4), clades A and B, with branch
bootstrap values of 0.02 and 0.001, respectively, have a very poor relationship with other
clades, including Erpi-GCA, Erp-GCA, and ET-GCA with different branch bootstrap values
of more than 0.98 and a pairwise sequence identity value of more than 97.78, which have
a significant relationship together. In addition, a meaningful relationship was observed
for Hts-GCA, Ts(S5)-GCA, and Sca-GCA with a branch bootstrap value of 0.99. In clade C,
archaea and bacteria have the same root, and according to the heatmap, all archaea have
high pairwise sequence identity values. In clade D, Gbah-GCA and Ggac-GCA have a good
relationship with a branch bootstrap value of 0.99 and a pairwise sequence identity value
of 69.18. According to the heatmap of γ-CA (Figure 4B) in clade D, Gs-GCA with a branch
bootstrap value of 0.99 and a pairwise sequence identity value of 94.29 had a significant
relationship with Gk-GCA.

CALIN elements (Table 1) might have arisen from a missing integrase in a previously
complete integron. The α- and β-CA genes from CALIN may be cut by the integron-
integrase and reinserted in the integron at an attI site. Since the stable circular form
of CALINs can survive in the environment, these genetic elements can be taken up by
transformable bacteria through a transformation mechanism [146]. On the other hand,
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integrons often capture cassettes from CALIN elements [129], so the α- and β-CA genes
can be derived from different microorganisms or transferred to other hosts. According
to the phylogenetic trees of α- and β-CA (Figures 2A and 3A), Erp-ACA has the highest
relationship with CsBh-ACA, with a bootstrap value of 0.40 and a pairwise sequence
identity value of 57.61, which is a weak relationship. In addition, it has a relatively weak
relationship with G(EPR-M)-ACA and G(HR-1)-ACA twins with a bootstrap value of
0.44 and pairwise sequence identity values of 55.19 and 57.39, respectively. The β-CAs
in clades A and B, with 0.02 and 0.001 branch bootstrap values, respectively, did not
have a good relationship with other clades. At the same time, Erp-BCA is the highest
related compound to Et-BCA and CsBh-BCA, with a 1.00 branch bootstrap value and
pairwise sequence identity of 99 and 100, respectively. Moreover, the β-CA gene (Et-BCA)
from the endosymbiont of T. jerichonana is related the highest to Erp-BCA and CsBh-
BCA, with a branch bootstrap value of 1.00 and pairwise sequence identity of 99 and 84,
respectively, which indicates the possibility of horizontal gene transfer of β-CA coding
genes in these microorganisms.

It should be noted that inorganic carbon from CO2 is first obtained from the environ-
ment via diffusion through the plume, a branchial organ [147]. Next, CO2 is transformed to
HCO3

− and transported to trophosome cells, particularly bicarbonate, at the surrounding
branchial plume interface. Then, HCO3

− is transformed to CO2 on the body fluids and
bacterial cells [148] and adhered via the bacterial symbiont enzyme RuBisCO form II. In
the arginine biosynthesis and pyrimidine pathways, carbamylphosphate synthetase uses
inorganic HCO3

− to start the biosynthesis process. Since the metabolic relationship be-
tween R. pachyptila and its endosymbiont is vital for the survival of each organism, this
issue can explain the cause and importance of HGT of CA in these organisms. Furthermore,
R. pachyptila contains an α-CA gene [149] with UniProt ID: Q8MPH8, which is not similar
to Erp-ACA.

Additionally, T. jerichonana has no reported CA family. Identification of the β-CA
gene beside three transposase genes on one of the GIs of H. crunogenus SP-41 could lead to
the theory that this gene may be transferred with plasmids and phages or occur through
transposon accumulation in recombination sites. Experimental studies have suggested
the release of about 1.5 billion symbionts from dead tubeworm clumps into the environ-
ment [47], which provides the opportunity for the spread and HGT of CA genes in the
environment and preparing the biodiversity condition.

In addition to the β-CA phylogenetic tree, the heatmap showed that the Hc(SP41)-
BCA in clade B is closely related to Hs(MA2-6)–BCA with a branch bootstrap value of 0.99
and a pairwise sequence identity value of 82.9. In addition, MeBa-BCA and MeBp-BCA
showed a close relationship with Hc(SP41)-BCA with branch bootstrap values of 1.0 and
pairwise sequence identity values of 76.56 for both cases. The HGT of hydrogenase-coding
genes between H. crunogenus SP-41 and H. crunogenus XCL-2 was studied previously [150];
however, in this study, H. crunogenus SP-41 (Hc(SP41)-BCA) had no HGT relationship with
H. crunogenus XCL-2. R. pachyptila has cytosolic α-CA in the trophosome. Although these
organisms need secretory CA for their physiological needs and use Erp-ACA, this theory
must be experimentally studied.

The significance of this study revealed that there is an evolutionary relationship
between Hc(XLC-2)ACA, Hc(SP41)-ACA, and Sca-ACA; G(HR-1)-ACA and G(EPR-M)-
ACA; Sr-ACA and S(NBC37-1)-ACA; Pm-ACA and Ph-ACA; and CsBh-ACA and Erp-ACA
in α-CAs. In addition, there is an evolutionary relationship between Sr-BCA, S(NBC37)-
BCA, and Si-BCA; Erp-BCA, Et-BCA, and CsBh-BCA; and Hts-BCA, Ts-BCA, Hc(XCL-2)
–BCA, and Btt-BCA in β-CAs. Additionally, there is an evolutionary relationship between
Erpi-GCA, Erp-GCA, and ET-GCA; Hts-GCA, Ts(S5)-GCA, and Sca-GCA; Gbah-GCA and
Ggac-GCA; and Gs-GCA and Gk-GCA in γ-CAs.

Elevated CO2 pressure in seawater can affect marine organisms by disrupting acid-
base physiology and decreasing mineralization rates (affecting calcium carbonate saturation
and calcification). Ocean uptake of anthropogenic CO2 and associated changes in seawater
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chemistry adversely affect biodiversity, other ecosystem processes, and the global carbon
cycle [151]. The HGT and distribution of CA genes in the hydrothermal vent area may also
help the survival and diversity of the organisms in this environment.

5. Conclusions

According to the results of this big data mining and bioinformatics study, α-, β-
, and γ-CAs from the thermophilic microbiome of marine hydrothermal vents have a
reasonable evolutionary relationship. The α-, β-, and γ-CA genes can be transferred to other
microorganism habitats in hydrothermal vents via HGT and cause natural biodiversity in
this extreme ecosystem. Given the presence of an integron with an integrase coding gene
in the Cycloclasticus sp. symbiont of Bathymodiolus heckerae, it is highly possible that the
α-CA coding gene is transferred between Cycloclasticus sp. as the symbiont of B. heckerae
and endosymbiont of Riftia pachyptila. This evolutionary phenomenon can also be applied
to β-CA-coding genes.

According to the β-CA gene on the endosymbiont of T. jerichonana and the endosym-
biont of R. pachyptila and the evolutionary relationship between them, the HGT of the β-CA
gene from the endosymbiont of T. jerichonana to the endosymbiont of R. pachyptila and
conversely is highly possible. In addition, the endosymbiont of R. pachyptila has a γ-CA
gene on the chromosome; if α- and β-CA coding genes are derived from other microorgan-
isms, such as the endosymbiont of T. jerichonana and Cycloclasticus sp. as the symbiont of B.
heckerae, the theory of the necessity of the CA enzyme for survival in this extreme ecosystem
and its effect on preserved natural biodiversity is proposed. Despite the presence of the
α-CA gene in R. pachyptila and the α-, β-, and γ-CA genes in its endosymbiont, this theory
is suggested for this giant marine worm. Therefore, the prokaryotic endosymbionts of
mussels and giant marine worms have evolutionary relationships through HGT. With more
focus on the HGT phenomenon, endosymbionts are integral parts of natural biodiversity
and ecosystem functioning of marine hydrothermal vents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology12060770/s1. Figure S1, Multiple Sequence Alignment
of α-CA from the thermophilic microbiome of hydrothermal vents; Figure S2, Multiple Sequence
Alignment of β-CAs from the thermophilic microbiome of hydrothermal vents; Figure S3, Multiple
Sequence Alignment of γ-CAs from the thermophilic microbiome of hydrothermal vents; Table
S1, α-CA proteins from the microbiome of marine hydrothermal vent ecosystems with taxonomic
classifications; Table S2, β-CA proteins from the microbiome of marine hydrothermal vent ecosystems
with taxonomic classifications; Table S3, γ-CA proteins from the microbiome of marine hydrothermal
vent ecosystems with taxonomic classifications.
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