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A generalizable deep learning regression model for automated
glaucoma screening from fundus images
Ruben Hemelings 1,2✉, Bart Elen2, Alexander K. Schuster3, Matthew B. Blaschko 4, João Barbosa-Breda 1,5,6, Pekko Hujanen7,
Annika Junglas3, Stefan Nickels3, Andrew White 8, Norbert Pfeiffer3, Paul Mitchell8, Patrick De Boever 9,10, Anja Tuulonen7 and
Ingeborg Stalmans1,11

A plethora of classification models for the detection of glaucoma from fundus images have been proposed in recent years. Often
trained with data from a single glaucoma clinic, they report impressive performance on internal test sets, but tend to struggle in
generalizing to external sets. This performance drop can be attributed to data shifts in glaucoma prevalence, fundus camera, and
the definition of glaucoma ground truth. In this study, we confirm that a previously described regression network for glaucoma
referral (G-RISK) obtains excellent results in a variety of challenging settings. Thirteen different data sources of labeled fundus
images were utilized. The data sources include two large population cohorts (Australian Blue Mountains Eye Study, BMES and
German Gutenberg Health Study, GHS) and 11 publicly available datasets (AIROGS, ORIGA, REFUGE1, LAG, ODIR, REFUGE2, GAMMA,
RIM-ONEr3, RIM-ONE DL, ACRIMA, PAPILA). To minimize data shifts in input data, a standardized image processing strategy was
developed to obtain 30° disc-centered images from the original data. A total of 149,455 images were included for model testing.
Area under the receiver operating characteristic curve (AUC) for BMES and GHS population cohorts were at 0.976 [95% CI:
0.967–0.986] and 0.984 [95% CI: 0.980–0.991] on participant level, respectively. At a fixed specificity of 95%, sensitivities were at
87.3% and 90.3%, respectively, surpassing the minimum criteria of 85% sensitivity recommended by Prevent Blindness America.
AUC values on the eleven publicly available data sets ranged from 0.854 to 0.988. These results confirm the excellent
generalizability of a glaucoma risk regression model trained with homogeneous data from a single tertiary referral center. Further
validation using prospective cohort studies is warranted.
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INTRODUCTION
Glaucoma is a leading cause of irreversible vision impairment, and
it will further increase due to an ageing global population1. This
growth will only add to the current high rate of over 50% of
undetected cases in developed and developing countries2–5.
Current primary open-angle glaucoma (POAG) screening

methods are not cost-effective in population-based settings, as
they would generate a large number of false positives with a
disease prevalence at 3.5% in populations aged 40–80 years6–8.
This would overburden the health system, which is currently
running at or above its capacity. Diagnosis is currently done
opportunistically whenever a patient is seen by an eye health
practitioner. This scenario cannot improve current rates of
undiagnosed patients and, at the same time, identify those at
higher risk of blindness. Screening solutions in the form of intra-
ocular pressure (IOP) measurements miss glaucoma cases with
normal tension, which can represent a high proportion of
POAG7,9,10. Meanwhile, visual field testing is lengthy and produces
highly variable results11. Glaucoma referral based on artificial
intelligence (AI) analysis of digital fundus images has been
proposed as a potential solution, given the modality’s widespread
availability, low associated cost and non-invasive characteristic12.
Moreover, convolutional neural networks (CNNs) can extract

glaucomatous information from fundus images that exceed the
capabilities of most human experts, such as the quantitative
estimation of retinal nerve fiber layer thickness (RNFL)13 or
glaucoma detection when the optic disc is removed from the
image14.
AI-based glaucoma detection has been reported with high

performance on internal validation, but the performance
degraded in external testing conditions and, more specifically, in
real-world settings15–17. Effective AI models trained on labeled
fundus images from a single medical center need to be robust to
distribution changes when deployed in new settings that feature
Out-of-Distribution (OoD) data18. This requirement transcends the
classical assumption in machine learning that train and test data
come from the same distribution19. Such a data shift can arise
when the model was trained on images captured with a particular
fundus camera and tested on images from a second device. This
inter-center heterogeneity in fundus images can be due to varying
fields of view (FOV), color distribution, illumination, and area of
interest (disc-centered or macula-centered). Differences in popula-
tion, such as ethnicity, myopia prevalence and glaucoma
prevalence are other common causes of data shifts that lead to
degraded performance. Furthermore, a wide variety of glaucoma
definitions exist, exacerbating the challenges related to OoD data.
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Solutions to counter data shifts, such as domain adaptation, have
been described in the context of retinal image analysis, leading to
improved generalizability20,21. However, these approaches often
rely on the availability of labeled images from the target set
during model development. This is typically not encountered in
real-world applications, as these models should work on
prospective data from new sources.
This work expands on the validation of convolutional neural

networks (CNNs) for glaucoma screening from fundus images
(Fig. 1). Instead of a CNN that performs binary classification
(glaucoma or not), we opted for a regression CNN that outputs a
continuous risk score. This risk score for CNN training was expert-
estimated vertical cup-disc ratio (VCDR), which increases alongside
glaucoma severity. The estimation of other glaucoma-related
continuous biomarkers using regression CNNs has been described
in related work, such as average RNFL thickness13 and Bruch’s
membrane opening-minimum rim width (BMO-MRW)22. However,
the analysis of thresholding those CNN-estimated variables
against a glaucoma ground truth is limited.
The generalizability and robustness of our previously described

glaucoma risk regression model (G-RISK)14 was assessed on fundus
images from two large population cohorts, the Blue Mountains
Eye Study (BMES)2 and the Gutenberg Health Study (GHS)23, as
well as on eleven external publicly available data sets. The

performance of the model was evaluated using the glaucoma
ground truth defined by the data set owners, which varied widely,
providing a comprehensive assessment of the model’s ability to
adapt to different populations, imaging conditions, and ground
truth definitions.

RESULTS
Final data selection
G-RISK was validated on thirteen independent data sets from six
countries, including three large screening cohorts. From the initial
151,145 color fundus images pool, a total number of 149,455 test
images were included after quality control (removal rate of 1.12%,
see “Methods”—Image quality control). Examples of image
preprocessing are in Fig. 2, one before-after pair per data source.
Glaucoma prevalence ranged from 1.08% in GHS to 56.17% in
ACRIMA data.

Population-based data
In the two population-based studies (BMES and GHS), the trained
G-RISK obtained AUC scores of 0.976 [95% CI: 0.967–0.986] and
0.984 [95% CI: 0.978–0.986] on participant level, respectively.
Harmonized sensitivity and specificity were at ~92.2% for BMES
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Fig. 1 Overview of the G-RISK regression approach versus conventional glaucoma detection CNNs that are trained with binary labels.
Both models were described in our previous work on explainable AI for glaucoma detection. The mismatch between the prevalence in a
tertiary referral center (used for model development) and sparse real world data (external testing) leads to overprediction in the latter. The
prediction histogram illustrates this phenomenon in the binary classification approach (a), with significantly more cases referred to as being
glaucomatous than with G-RISK (b). Also note the spike in cases with prediction close to 1, versus a consistent decrease in cases as the
prediction value increases for G-RISK. TV refers to the optimal threshold value. TV is typically fixed at 0.5 in binary classification models due to
a sharp sigmoid/softmax activation function. In a regression approach with linear activation, TV can be set at a different value, depending on
the costs associated with FP and FN. c Examples of fundus images with an increasing G-RISK score.

R. Hemelings et al.

2

npj Digital Medicine (2023)   112 Published in partnership with Seoul National University Bundang Hospital

1
2
3
4
5
6
7
8
9
0
()
:,;



BMES

GHS

AIROGS

ORIGA

REFUGE1

ODIR

REFUGE2

GAMMA

LAG RIM-ONE r3

RIM-ONE DL ACRIMA

PAPILA

UZL (training)

original processed original processed

Fig. 2 Examples of the training set and thirteen data sets used for external testing of G-RISK for generalizable glaucoma detection. Each
pair displays a randomly selected original unprocessed image that features glaucoma-induced damage (left) and the corresponding 30° disc-
centered result after image manipulation (right), prepared for G-RISK input.
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and ~94.2% for GHS when thresholding at 0.70 in both sets. For
BMES, the AUC value was equal to 0.967 [95% CI: 0.956–0.979] on
eye level. When maintaining a 95% specificity on participant level,
sensitivity levels reached 87.3% and 90.3% on BMES and GHS,
respectively.

Publicly available data
The performance of the CNN model remained high in the publicly
available data sets although being characterized by considerable
heterogeneity in image capturing and glaucoma ground truth
procedures. The lowest AUC value of 0.854 [95% CI: 0.821–0.886]
was recorded on the complete ORIGA data (650 images), with
balanced specificity and sensitivity at 78%. On the other side of
the spectrum, the evaluation on GAMMA resulted in an AUC of
0.987 [95% CI: 0.971–1]. The CNN maintained performance (AUC of
0.917 [95% CI: 0.900–0.933]) in the challenging ODIR data set,
which features additional ocular diseases, including diabetic
retinopathy and age-related macular degeneration. Glaucoma
prevalence in this set also approaches real-world distributions
(4.70%). Detailed results for all data sources and subsets are in
Table 1.

Prediction threshold analysis
Optimal threshold values (TV) for the publicly available data sets
ranged from 0.58 (REFUGE1) to 0.75 (ODIR) on image level. TV was
more elevated in sets that contained other pathologies (0.75 in
the multi-disease set of ODIR and 0.74 in the diabetes population
of AIROGS), or when glaucoma suspects were regarded as non-
glaucomatous (0.66 to 0.71 in RIM-ONE r3, 0.64 to 0.70 in PAPILA).
TV also increased when screening for advanced glaucoma
compared to early glaucoma (0.67 versus 0.64 in GAMMA subsets).
Finally, TV increased from image level (0.65) to participant level
(0.70) on BMES data due to taking the maximum prediction of
both eyes per individual. TV per data set can be retrieved from the
last column of Table 1.
Using a fixed threshold value of 0.7 across all data sets does not

impact the AUC score, but alters the sensitivity and specificity
values. Table 2 shows specificity values range from 0.70 on PAPILA
to 0.99 on REFUGE1 data. Sensitivity values fall between 0.68
(ORIGA) and 0.94 (GHS, PAPILA, AIROGS).
Figure 3 displays 12 multi-plots with ROC curve, calibration

curve, and G-RISK prediction histogram per data set. Predictions
fell between 0.2 and 1.0, with mode typically around 0.45 in sets

Table 1. Performance of G-RISK in external data sets.

Data #cases Prevalence (%) AUC [95% CI] Specificity Sensitivity Threshold value (TV)

Population-based studies

BMES (eye) 6927 2.14 0.967 [0.956–0.979] 0.907
0.900
0.950
0.975

0.899
0.912
0.824
0.736

0.65
0.64
0.70
0.75

BMES (participant) 3554 2.87 0.976 [0.967–0.986] 0.923
0.900
0.950
0.975

0.922
0.922
0.873
0.765

0.70
0.67
0.73
0.77

GHS (participant)
11,528 (23,318
images)

1.08 0.984 [0.978–0.990] 0.938
0.900
0.950
0.975

0.935
0.984
0.903
0.806

0.70
0.67
0.72
0.75

Publicly available data set (image level, unless otherwise stated)

AIROGS 100,022 3.11 0.963 [0.960–0.965] 0.900
0.900
0.950
0.975

0.899
0.899
0.798
0.675

0.74
0.74
0.78
0.82

ORIGA 650 25.85 0.854 [0.821–0.886] 0.778 0.774 0.66

REFUGE1 (all) 1200 10 0.952 [0.925–0.979] 0.871 0.892 0.58

(test set only) 400 10 0.986 [0.974–0.999] 0.963 0.925 0.61

ODIR 6193 4.70 0.917 [0.900–0.933] 0.845 0.842 0.75

REFUGE2 (val) 400 10 0.914 NA NA NA

REFUGE2 (test) 400 10 0.867 NA NA NA

GAMMA (all) 100 50 0.987 [0.973–1.000] 0.940 0.920 0.64

(early) 76 34.21 0.986 [0.969–1.000] 0.940 0.885 0.64

(advanced) 74 32.43 0.988 [0.969–1.000] 0.960 0.917 0.67

RIM-ONE r3 (w/o suspects) 124 31.45 0.973 [0.942–1.000] 0.882 0.897 0.66

(with suspects) 159 24.53 0.934 [0.889–0.978] 0.850 0.846 0.71

RIM-ONE DL (all) 485 35.46 0.972 [0.957–0.986] 0.914 0.913 0.66

(test set only) 174 32.18 0.952 [0.924–0.980] 0.881 0.857 0.70

PAPILA (eye) (susp. referable) 488 31.76 0.769 [0.722–0.815] 0.694 0.690 0.64

(susp. non-referable) 488 17.83 0.882 [0.840–0.923] 0.803 0.782 0.70

PAPILA (participant) (susp. referable) 244 33.20 0.813 [0.753–0.874] 0.767 0.728 0.71

(susp. non-referable) 244 19.26 0.924 [0.878–0.969] 0.878 0.851 0.78

ACRIMA* 705 56.17 0.884 [0.860–0.908] 0.793 0.790 0.64

LAG* 4854 35.25 0.926 [0.918–0.934] 0.853 0.853 0.62
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with more than 5000 cases. Calibration curves seem to follow a
sigmoidal shape, with a constant fraction of positives until a mean
predicted value of 0.6 in the large data sets. Evaluation on ACRIMA
provided the best calibrated predictions, with its calibration curve
approaching the optimal dotted diagonal.

Outperforming VCDR as a risk score
To better understand the differences between the G-RISK output
and VCDR ground truth measured from the fundus image, both
AUC values were computed for sets that contained a reliable
VCDR. G-RISK outperformed VCDR in all five data (sub)sets, with an
AUC disparity of 0.09 and 0.12 on REFUGE2 and RIM-ONE r3 data,
respectively. AUC obtained with G-RISK did not differ significantly
at an alpha of 0.05 (overlapping confidence intervals) in BMES and
complete REFUGE1 data. This comparison is given in Table 3.

Benchmarking against related work
Table 4 provides an overview of published reports on glaucoma
detection with external testing. In principle, methods that used
part of the data set for training were excluded from this
comparison, as this presents an unfair advantage. The results on
the REFUGE challenges are one exception to this. These data sets
represent a prominent benchmark in the topic of glaucoma
detection from fundus images. Therefore, a distinction is made
between (1) pure external validation, and (2) trained on other
parts of the same data set. G-RISK obtained the best results on
ACRIMA (AUC= 0.88) and LAG (AUC= 0.93) data as external test
sets reported in the literature. For REFUGE1 and REFUGE2, we limit
the overview to the top five results. G-RISK would have obtained
2nd place on the 2018 REFUGE1 challenge, with a negligible
difference in AUC with the best submitted result: only 0.003. The
winning method relied on three models, while G-RISK only
consists of one model. The second edition of REFUGE (2020)
would have resulted in 3rd place for G-RISK, with AUC 0.016 lower
than the winning submission (not significant).

G-RISK output association with clinical metadata
The PAPILA data set allowed for assessing the association between
G-RISK predictions and clinical metadata relevant to glaucoma. As
shown in Table 5, only age and mean deviation (MD) of the 30–2
visual field exam were found to have a significant association. The
results showed that as age increased, or MD became more severe,

G-RISK predictions increased (Pearson correlation coefficient=
0.48 or −0.56, respectively). However, no significant association
was found between G-RISK predictions and other metadata such
as intra-ocular pressure, central corneal thickness, sex, and optical
lens characteristics.

Glaucoma risk regression generalizes better than binary
detection
A previously trained binary classification model with similar network
architecture as G-RISK was evaluated on two selected test sets,
REFUGE1 and BMES. The results showed that the binary classification
model obtained an AUC of 0.87 [95% CI: 0.83–0.91] on REFUGE1,
which was significantly lower than the AUC obtained using the
G-RISK regression model (0.95 [95% CI: 0.93–0.98]). Similarly, on the
BMES data, the binary classification model yielded an AUC of 0.76
[95% CI: 0.72–0.80], while the G-RISK model achieved an AUC of 0.97
[95% CI: 0.96–0.98]. These results confirm that the G-RISK model
performed better than the binary classification model.

Image processing pipeline for improved generalization
The importance of the 30° disc-centering procedure developed in
this manuscript was investigated on REFUGE1 and AIROGS data.
G-RISK performed worse, but still considered good, on the original
45° macula-centered images in both data sets: AUC dropped from
0.952 to 0.937 on REFUGE1, and from 0.972 to 0.921 on a subset of
the AIROGS set. This result indicates that G-RISK is robust and can
deal with macula-centered images with a larger FOV, while it
never encountered this modality during training. An extreme
zoom on ONH (crop factor of 0.4) led to drastic performance
drops, falling to 0.840 and 0.764 in REFUGE1 and AIROGS,
respectively. The absolute difference in AUC value following the
normalization of all images to have a disc ratio of 0.23 or
normalization by disc ratio computed per image dimension was
not significant (differences of 0.003 and 0.004). Hence, natural
heterogeneity in optic disc size may not affect G-RISK perfor-
mance. The complete analysis is in Table 6.

Analysis of misclassified cases
All FP and FN, or a random selection if more than 20 cases exist, of
the two population-based studies’ sets were reviewed by three
glaucoma experts from three different countries. The number of
FN was lower than 20 when thresholding at 0.70 for both sets. As a
result, the total number of reviewed cases was equal to 33 and 27
for BMES and GHS data, respectively. Agreement between the
reference standard available in both data sets and the majority
vote of the independent glaucoma expert panel based on fundus
images reading was only fair by a slight margin (κ= 0.217 and
0.229). Inter-rater agreement ranged from 0.104 to 0.335,
indicating that there was little consensus on these misclassified
cases. The consensus was higher on image quality scoring, with
half of the comparisons achieving substantial agreement (κ
between 0.61–0.80). The glaucoma expert review panel did seem
to favor the inclusion of preprocessed images in their analysis.
One expert even indicated that the preprocessed images were
better for glaucoma diagnosis in all cases. This quantitative
analysis is communicated in Table 7. Figure 4 is a composite image
that features the top three most extreme FP and FN cases per
evaluated data set. Supplementary Fig. 3 plots the same
composite information with saliency maps overlaid for interpret-
ability analysis. Recurrent features in extreme FP cases were
extensive (non)physiological ONH cupping, visible lamina cribrosa,
vessel bayoneting, vessel baring, peripapillary atrophy, and lack of
visible RNFL bundles. For the FN cases, the most recurring pattern
is noticeable localized RNFL defects in infero- and/or super-
otemporal sector, without matching glaucomatous ONH damage
in the form of cupping/notching. One case featured a disc

Table 2. Specificity and sensitivity values per data set when TV is fixed
at 0.70.

Data Specificity [95% CI] Sensitivity [95% CI]

BMES (eye) 0.95 [0.95–0.96] 0.81 [0.74–0.87]

BMES (individual) 0.93 [0.92–0.93] 0.89 [0.82–0.94]

GHS (individual) 0.94 [0.93–0.94] 0.94 [0.89–0.97]

PAPILA (individual) 0.70 [0.63–0.76] 0.94 [0.83–0.98]

AIROGS 0.85 [0.85–0.85] 0.94 [0.93–0.95]

ORIGA 0.86 [0.83–0.89] 0.68 [0.61–0.75]

REFUGE1 0.99 [0.98–0.99] 0.77 [0.68–0.83]

ODIR 0.74 [0.73–0.75] 0.89 [0.85–0.92]

GAMMA 0.98 [0.90–1.00] 0.90 [0.79–0.96]

LAG 0.95 [0.94–0.95] 0.74 [0.72–0.76]

RIM-ONE r3 0.83 [0.76–0.89] 0.87 [0.73–0.94]

RIM-ONE DL 0.96 [0.93–0.97] 0.85 [0.79–0.89]

ACRIMA 0.87 [0.83–0.90] 0.73 [0.69–0.77]

Evaluation was done on image (eye) level unless otherwise stated.
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hemorrhage at the inferior sector. The number of FN cases was
very limited in all evaluated data sets.

DISCUSSION
This study confirms the excellent performance of a trained CNN
for glaucoma detection14 when applied to thirteen external data

sets. To the best of our knowledge, this represents the greatest
effort to date towards generalizability analysis by validating with
data from two large population cohorts and eleven publicly
available data sets. Moreover, results on the latter allow other
researchers to benchmark their approach, an important aspect
currently missing in research tackling glaucoma detection from
fundus images. Given the wide variety of image types and

Fig. 3 Combined ROC curve, calibration curve, and prediction histogram plots per data set that featured an available glaucoma ground
truth. The top plot area features (1) the ROC curve (light green) with false positive rate and true positive rate on the x and y axis, (2) as well as
the calibration curve (dark green) with mean predicted value and the fraction of positives on the x and y axis. A diagonal dotted black line
between (0,0) and (1,1) indicates the ROC curve of random prediction and optimal calibration. The vertically flipped histogram of G-RISK
predictions is aligned with the calibration curve in the bottom plot, with prediction value on the x axis, and prediction count on the y axis.
Best viewed in color.
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glaucoma reference standards, we demonstrated the robustness
of G-RISK for glaucoma risk prediction from color fundus images.
Evaluation on both BMES and GHS data resulted in an AUC of

0.976 and 0.984, respectively. At 95% specificity, sensitivities of
87.3% and 90.3% are obtained. This result satisfies the minimum
criteria of 85% sensitivity and 95% specificity set by Prevent
Blindness America24. For BMES, this represents a significant
improvement over the screening results obtained using the
Heidelberg Retina Tomograph (HRT), with specificity and sensitiv-
ity at 85.7% and 64.1% on participant level25. Of note, this
comparison is not exact because the latter analysis was conducted
on the ten-year follow-up data of BMES, with fewer participants
than the population included in the present study. On AIROGS
data, containing a diabetes population with realistic glaucoma
prevalence, G-RISK obtained 80% sensitivity at 95% specificity,
reaching the minimum requirements for human graders set by the
data owners. G-RISK could have been used as a reliable grader
during the labeling effort of more than 100,000 fundus images.
Only a few studies described external validation on fundus images
sourced from a population-based data set26,27. The glaucoma
detection CNN by Liu and colleagues26 obtained an AUC of 0.964
on images from 6702 participants in the Handan Eye Study, of
whom 2% had signs of glaucoma according to ISGEO criteria.
Reported sensitivity and specificity were 91.0% and 92.5%. Their
CNN was exposed to images captured by three different camera
types during training, facilitating the extraction of domain-
invariant features important to accurate glaucoma detection.
The model evaluated in the current study did not leverage multi-
source data at training time but still has excellent generalizability.
G-RISK achieved state-of-the-art results on publicly available

data sets. Fan et al28. reported an AUC of 0.79 [95% CI: 0.78–0.81]
on LAG data using a binary classification CNN trained using
images of the Ocular Hypertension Treatment Study29, which is
considerably lower than the 0.93 value in the present study.
Christopher et al.30 reported an AUC of 0.86 [95% CI: 0.83–0.89] on
ACRIMA data, which is two percentage points lower than the
result of G-RISK. The glaucoma risk regression CNN would have
obtained a second and third place on the two editions of the
international REFUGE challenge17. This presents quite an achieve-
ment, as G-RISK did not train on part of that data, unlike the
challenge participants. Training on part of a data set has the
advantage that the model can familiarize itself with the data-
specific imaging and ground truth characteristics. This advantage
does not exist in prospective screening data.
The obtained excellent generalizability is predominantly due to

the regression nature of the model. It could learn more about the
continuous disease severity spectrum during training than with a
standard binary classification approach. Empirical research

pointed out that deep modeling with soft labels outperforms
conventional classification CNNs in generalization and conver-
gence speed31. Regression approaches have recently found their
way in the field of semantic segmentation, a task that is
conventionally achieved using pixel-based classification with hard
labels. In semantic segmentation, the most uncertain areas are
typically found at the edges of tissue delineation, where multiple
domain experts may have different interpretations. The SoftSeg32

approach, introduced in 2020, addressed this issue by advocating
for the use of soft labels (values between 0 and 1) at these edges
to incorporate the label uncertainty. This approach has been
shown to significantly improve the state-of-the-art on three
medical imaging data sets by using a regression loss and linear
activation. In the present study, G-RISK was able to select the most
relevant domain-invariant features relevant to glaucoma detection
due to a rich ground truth label, as well as a modeling framework
that optimizes the learning of the information present in the label.
G-RISK performance was also directly compared to a previously
trained binary glaucoma detection model, featuring the exact
same network architecture, except for the loss and final activation
function. Extreme performance drops on REFUGE1 and BMES data
of 0.08 and 0.21 in AUC values provide further evidence for the
improved generalizability when training a CNN using soft labels.
The learning of domain-invariant features at the optic nerve

head is highlighted by the performance on images that featured
severe ONH crop in their original format. After scaling to a disc size
that approaches the one found in 30° FOV images, G-RISK
obtained excellent performance for glaucoma referral. Another
proof of model robustness due to regression is the high
performance on original data that features 45° FOV. AUC on
original 45° REFUGE1 data was not significantly lower than the
AUC obtained on preprocessed disc-centered 30° images. On
AIROGS data, the difference was significant, probably due to the
more extensive heterogeneity in image types present in the data
set. That is where the proposed image processing pipeline can
improve the performance even more. By minimizing the shift
between training images and external testing images, the risk of
faulty predictions due to outliers or OoD data is reduced.
Regression approaches in the context of glaucoma imaging

have been described previously13,22,27. Medeiros et al.13 intro-
duced Machine-to-Machine (M2M), a type of regression CNN that
estimates the average OCT-measured circumpapillary RNFL
thickness from disc-centered fundus images as a proxy for neural
loss. Pearson’s correlation coefficient between OCT-measured
ground truth and prediction was 0.83. In follow-up studies, their
research group revealed that M2M could discriminate glaucoma in
a population-based screening program in Brazil. It may outper-
form human experts in detecting eyes with repeatable visual field

Table 3. Comparison of G-RISK performance versus image-measured VCDR as glaucoma detection proxy.

Data #images AUC
G-RISK
[95% CI]

AUC
VCDR 1
[95% CI]

AUC
VCDR 2
[95% CI]

BMES 6927 0.967 [0.956–0.979] 0.958 [0.940–0.976] NA

PAPILA (suspect referable) 488 0.769 [0.722–0.815] 0.748 [0.699–0.798] 0.743 [0.691–0.795]

PAPILA (suspect non-referable) 488 0.882 [0.840–0.923] 0.789 [0.728–0.851] 0.782 [0.716–0.847]

REFUGE1 test 400 0.986 [0.974–0.999] 0.946 [0.907–0.984] NA

REFUGE1 all 1200 0.952 [0.925–0.979] 0.929 [0.902–0.956] NA

REFUGE2 test 400 0.867 [NA] 0.757 [0.693–0.815] NA

RIM-ONE r3 159 0.934 [0.889–0.978] 0.810 [0.723–0.897] NA

VCDR was either retrieved from the cup and disc segmentation ground truth available (PAPILA, REFUGE data, RIM-ONE r3), or directly provided by the data set
owners (BMES). For PAPILA, G-RISK results are compared against two independent human experts who segmented disc and cup. Best performance (AUC) per
row is highlighted in bold text.
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loss33,34. It would be interesting to see M2M’s performance on
some publicly available data, to get an idea of how it benchmarks
with related work. Although average RNFL thickness may be an
objective parameter to quantify neural damage, it also has its
imperfections. First, wrong RNFL segmentation or anatomical

variants can lead to exams being labeled as potentially abnormal
and an erroneous glaucoma diagnosis. This ‘red disease phenom-
enon’ is well-known among OCT users, and OCT results should
therefore be carefully reviewed by a glaucoma expert, which
introduces human subjectivity. Next, RNFL thinning is no
pathognomonic sign of glaucoma only35. RNFL defects have been
associated with other ocular36,37 and systemic38 diseases.
Although such cases should be referred to an ophthalmologist
anyhow, it might be unclear whether RNFL defects without
matching ONH damage indicates the presence of glaucoma or a
different condition.
Recent research has also investigated deep learning approaches

for the joint segmentation of the optic cup and disc from fundus
images. This includes implementing various modifications to the
U-Net architecture39, which have yielded competitive results on
both tasks. By segmenting the optic cup and disc, VCDR values
can be derived and calculated. However, relatively few published
segmentation approaches have specifically evaluated the general-
izability of glaucoma detection. The REFUGE1 participating team
CUHKMED obtained 3rd place when thresholding the
segmentation-based VCDR against the glaucoma ground truth
as reported in Table 4. Additionally, Fu et al.40 tested a VCDR
prediction from a polar-transformed fundus image externally on
1676 fundus photos of the Singapore Chinese Eye Study (SCES),
reporting a competitive AUC of 0.90. However, since SCES data is
not publicly available, no benchmarking was possible within the
current study. In contrast, G-RISK takes a different approach by
directly estimating the VCDR from the fundus image without the
need for segmentation, bypassing the need for joint segmentation

Table 4. Comparison of G-RISK performance with results in the literature that used the data sets as (external) test data to assess the generalizability.

Data Method (challenge team) Description AUC [95% CI when
available]

Pure external validation

LAG G-RISK Proposed model 0.93 [0.92–0.93]

Fan et al. (2021) Glaucoma detection CNN (binary) trained with OHTS fundus images 0.79 [0.78–0.81]

ACRIMA G-RISK Proposed model 0.88 [0.86–0.91]

Christopher et al. (2020) Glaucoma detection CNN (binary) trained with fundus images from various private
sources

0.86 [0.83–0.89]

Diaz-Pinto et al. (2019) Glaucoma detection CNN (binary) trained with various small publicly available
data sets

0.77 [0.68–0.82]

Fan et al. (2021) Glaucoma detection CNN (binary) trained with OHTS data 0.74 [0.70–0.77]

Trained on other part of the same data set

REFUGE1 test Son et al. (2018) Glaucoma detection CNN (binary), supplemented by CNN for glaucomatous disc
changes, and CNN for RNFL defects

0.989

G-RISK (pure external
validation)

Proposed model 0.986

SDSAIRCa Glaucoma detection CNN (binary) fused with VCDR prediction from optic cup/disc
segmentation using logistic regression

0.982

CUHKMEDa Cup/disc segmentation CNN, derived VCDR values normalized as glaucoma
prediction

0.964

NKSGa Glaucoma detection CNN (binary) 0.959

VCDR ground truth From official cup/disc segmentation labels 0.946

REFUGE2 test Son et al. (2020) Pretrained commercial system that was designed for 12 retinal aberrations 0.883 [0.844–0.919]

MIGb Five glaucoma detection CNNs (binary), trained with fundus images from various
small publicly available data sets, multi-scale input

0.876 [0.832–0.916]

G-RISK (pure external
validation)

Proposed model 0.867 [NA]

MAIb Glaucoma detection CNN with auxiliary task (test-time training61) 0.861 [0.816–0.904]

Cheeronb Glaucoma detection CNN with attention modules 0.856 [0.811–0.900]

VCDR ground truthb From official cup/disc segmentation labels 0.757 [0.693–0.815]

Best performance (AUC) per data set is highlighted in bold text.
aTeam names, methods and AUC values retrieved from the REFUGE1 publication.
bTeam names, methods and AUC values retrieved from the REFUGE2 publication.

Table 5. Association between G-RISK predictions and clinical data in
the PAPILA data set.

Clinical parameter Pearson r [95% CI] N° of data points

Age 0.48 [0.41; 0.55] 488

Sex 0.02 [−0.07; 0.11] 488

Dioptre 1 0.05 [−0.04; 0.14] 461

Dioptre 2 −0.04 [−0.13; 0.05] 480

Astigmatism −0.01 [−0.10; 0.08] 479

Pseudophakic 0.05 [−0.04; 0.14] 477

IOP (pneumatic) 0.05 [−0.05; 0.14] 396

IOP (perkins) −0.05 [−0.22; 0.12] 128

Pachymetry 0.06 [−0.03; 0.15] 474

Axial length 0.08 [−0.01; 0.17] 479

MD (30–2 exam) −0.56 [−0.66; −0.45] 164

Pearson correlation coefficient, and number of data points are given per
parameter. Parameter naming was based on the datasheet included in
PAPILA.
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of the optic cup and disc. Similarly, Alipahani et al.27 recently
developed a regression CNN that directly estimates VCDR from
fundus images in AI-based phenotyping of ONH morphology.
Pearson’s correlation coefficient between VCDR ground truth and
prediction was 0.89 on a small subset of UK Biobank fundus
images. Their approach obtained an AUC of 0.76 [95% CI:
0.74–0.78] when thresholding the VCDR prediction against a
glaucoma label based on patient self-reporting and codes of the
International Classification of Diseases (ICD). While we do not
report on UK Biobank data, it is worthwhile to explore any
performance differences between G-RISK and the model devel-
oped by Alipahani et al. Moderate AUC values for glaucoma
detection could be caused by a weak ground truth, as self-
reporting is likely to be associated with the lower limit of 50%
undetected cases present in the general population. The
difference in methodology resides in the ground truth during
model development, as G-RISK relied on VCDR estimation during
ophthalmoscopy, while Alipahani et al. measured the ground truth
from the images directly. Their research also pinpointed the
strong association between VCDR and glaucoma risk, reporting a
correlation of 0.91. G-RISK comprises more than VCDR estimation,
backed by an analysis on five sets that objectively proves that
G-RISK predictions outperform image-measured VCDR as a proxy
for glaucoma risk. Furthermore, analysis on PAPILA clinical data
suggests that G-RISK correlates well with glaucoma. Both G-RISK
and glaucoma exhibit a significant association with age and visual
field defects, while only weak correlations exist with factors such
as sex, and central corneal thickness outside of intraocular
pressure measurements. Optical lens characteristics are known
to have no association with glaucoma.
Powerful disease detection algorithms should have calibrated

predictions41, a characteristic in which the prediction is repre-
sentative of the disease likelihood. Conventional classification
CNNs with sigmoid activation are known to be poorly calibrated42.
The G-RISK prediction value can be interpreted as a risk score
between 0.2 and 1. Up until values around 0.7, G-RISK overpredicts
(calibration curve below the optimal calibration line). Data sets
with a prevalence lower than 10% follow the same calibration
curve. A uniform calibration operation might lead to transformed
predictions between 0 and 1 that can be interpreted as calibrated
glaucoma risk across population data. This exercise was out of the
scope of the current study but will be covered in the future.
The explainability of the G-RISK model was evaluated through

two setups. Firstly, a thorough examination of the most extreme
false positive (FP) and false negative (FN) cases by glaucoma
experts revealed instances with large (non-)physiological optic
nerve head cupping, peripapillary atrophy, and missing RNFL
bundles for the FP group. On the other hand, FN cases featured
repeated RNFL defects without corresponding ONH damage. In

addition to manual expert analysis, Supplementary Fig. 3 presents
the same FP and FN images, overlaid by salient maps generated
using gradient analysis. Individual inspection did not reveal a
recurrent salient region. For more information on CNN-based
glaucoma detection from fundus images and objective explain-
ability analysis, the reader is referred to our previous work14. In the
latter, Fig. 3, second row, first image on the left, illustrates
recurrent saliency patterns obtained by averaging over a test set
of more than 4000 fundus images. The saliency of G-RISK is
concentrated in the infero- and supero-temporal areas inside and
outside of the ONH.
This study advances the research area of generalizable

glaucoma detection CNNs through the external testing on
population cohorts and heterogeneous publicly available data.
There are still important knowledge gaps left. Using a fixed
threshold value did not result in consistent specificity values
across the 13 data sets (ranging from 0.70 to 0.99). Therefore,
further model calibration is necessary to achieve uniform
sensitivity and specificity levels. It is worth noting that the
heterogeneity of the glaucoma ground truth definition also plays
a significant role in this behavior. Next, the two population cohorts
feature people with predominantly European ancestry (Germany
and Australia). Hence, generalization on screening populations
from other ethnic backgrounds is unknown. Still, performance
remained high on publicly available data collected in countries
such as China and Singapore, but feature prevalence levels higher
than in the general population. In addition, performance across
glaucoma severity was not assessed, as these labels were not
available in the data sets. One exception is GAMMA, on which
G-RISK obtained an excellent AUC of 0.99 in the early glaucoma
class. Finally, G-RISK fails in rare cases with subtle RNFL defects or
disc hemorrhages without matching ONH damage. Future
updates aim to implement changes that decrease the false-
negative rate further.
The strengths of this study are significant. First, we addressed

the issue of generalizability in fundus-based glaucoma detection
models through extensive validation on thirteen external sets,
totaling 149455 images. We tackled a significant challenge
because the data sets have considerable heterogeneity in
glaucoma ground truth, camera type, and population type. Next,
we analyzed the influence of factors such as natural ONH size
variability and image scale. Results were benchmarked against the
literature, highlighting state-of-the-art performance by G-RISK. We
demonstrated that G-RISK was trained on VCDR estimates from
ophthalmoscopy but performs better than image-measured VCDR
in the task of glaucoma referral.
Excellent generalizability of AI-based glaucoma detection from

fundus images has been demonstrated in this work, both on large
screening sets and various publicly available data sets. In

Table 6. Effect of optic disc size correction during image preprocessing on G-RISK performance on REFUGE1 data and a random sample of AIROGS
data (10%).

Image preprocessing approach REFUGE1
2 camera types
45° macula-centered
AUC [95% CI]

AIROGS 10% sample
Multiple camera types
45° macula-centered
AUC [95% CI]

Main method developed in this manuscript:
30° crop with disc ratio grouped per camera type/setting

0.952 [0.93–0.98] 0.972 [0.97–0.98]

Original 45° image resized, no cropping 0.937 [0.91–0.97] 0.921 [0.91–0.93]

30° crop with standard crop factor of 0.65 (45° to 30° value) 0.952 [0.92–0.98] 0.961 [0.95–0.97]

Crop with random crop factor between 0.40 and 0.80 0.930 [0.90–0.96] 0.934 [0.92–0.95]

18° crop with crop factor of 0.40 0.840 [0.80–0.88] 0.764 [0.74–0.79]

30° crop with all optic discs rescaled to same size (=23% of image height) 0.955 [0.93–0.98] 0.968 [0.96–0.97]

Best performance (AUC) per column is highlighted in bold text.
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retrospective glaucoma screening, G-RISK complies with the
minimum requirements set by Prevent Blindness America. Further
validation of G-RISK using prospective studies is warranted.

METHODS
Study design
This study adheres to the STARD 2015 guidelines for the
standardized reporting of evaluation of a diagnostic test, as well
as to the tenets of the Declaration of Helsinki. The training
material for G-RISK was retrospectively collected from the
University Hospitals Leuven, and approved by the Ethics
Committee Research UZ / KU Leuven under study number
S60649. Informed consent was waived due to the retrospective
nature of the research project, and all fundus images were
deidentified before use. For informed consent of the data used for
external testing, we refer to the administrators of the respective
data sets.

Study population—Model development
Glaucoma detection was achieved using a custom ResNet-5043

CNN model described in our previous work14 that focused on the
explainability of the CNN in two glaucoma applications. In that
study, 23,930 stereoscopic fundus images (12,265 eyes, 6486
individuals) were selected for training, validation, and internal
testing. Fundus images were captured at the glaucoma depart-
ment of the University Hospitals Leuven (UZL), Belgium, between
2010 and 2018. Hence, the majority of images feature signs of
glaucoma. Inclusion criteria for this set were the availability of a
matching 30° fundus photo (imaged with a Zeiss VISUCAM® at
1620 × 1444). Glaucoma was based on evaluation by a glaucoma
expert using perimetry, IOP, fundoscopy, and retinal imaging. This
clinical evaluation included VCDR estimation during fundoscopy,
which was selected as the reference risk label during G-RISK
development. This continuous value between 0 and 1 was
thresholded against a binary glaucoma ground truth to obtain

glaucoma detection results. The benefits of using a continuous
versus a binary target variable are well-studied in the literature
under soft labels. In glaucoma detection, an approach with soft
labels allows the model to leverage the richer information of
expert annotations during training. The CNN can grasp differences
in disease severity, going from no cupping to an optic nerve that
has completely cupped. In binary detection, both early symptoms
(e.g. RNFL defect, notching, vessel baring) and extreme cupping
are bundled in the glaucoma category, which does not
accommodate the learning of intermediary severities. To quantify
the improved generalizability when using a regression approach,
we also validated a binary classification CNN for glaucoma
detection on two test sets. This CNN was trained in a similar
setup, with the only changes in the glaucoma ground truth
(defined by glaucoma expert based on multimodal exam), cross-
entropy as loss function instead of mean squared error, and
sigmoid activation instead of a linear activation at the end of the
ResNet-50 architecture. It was described in detail in our previous
work14.

Study population—Model testing (external validation)
We evaluated our model using fundus images from two major
population studies and eleven publicly available data sets.
External fundus image data sets were eligible for evaluation given
the following conditions: (1) availability of a (suspected) glaucoma
label, and (2) majority (>50%) of images containing the optic
nerve head (ONH). Both the imaging protocol and the definition of
glaucoma varied considerably across the test sets.

BMES. The Blue Mountains Eye Study (BMES) is a large
population-based study for ocular diseases held three decades
ago in an urban area in Australia2. 3654 individuals aged 49 or
older participated in the eye examination from 1992–1994.
Fundus images were captured using an analog Zeiss FF3 film
camera with subsequent digitization of the images. Open-angle
glaucoma (OAG) was diagnosed in case of (1) visual field loss of

Table 7. Analysis of sampled misclassified images of BMES and GHS sets by three glaucoma expert graders, with additional analysis on image quality
and image preprocessing impact.

BMES (n= 33) GHS (n= 27)

GLAUCOMA DETECTION
Options: no glaucoma, suspect, definite

κ κ

κ | G-RISK, majority vote experts (definite as referable) −0.189 −0.143

κ | G-RISK, majority vote experts (suspect as referable) 0.004 −0.198

κ | Reference standard, majority vote experts (definite as referable) 0.217 0.229

κ | Reference standard, majority vote experts (suspect as referable) −0.003 0.133

κ | Expert 1, Expert2 (definite as referable) 0.104 0.335

κ | Expert 1, Expert3 (definite as referable) 0.333 0.147

κ | Expert 2, Expert3 (definite as referable) 0.031 0.115

IMAGE QUALITY
Options: ungradable, poor, good

κ κ

κ | Expert 1, Expert2 (Good quality as positive class) 0.550 0.250

κ | Expert 1, Expert3 (Good quality as positive class) 0.672 0.658

κ | Expert 2, Expert3 (Good quality as positive class) 0.714 0.204

IMAGE PREPROCESSING AID
Options: yes, no

Expert 1 (proportion of cases where image processing had added value) 97% 89%

Expert 2 (proportion of cases where image processing had added value) 38% 50%

Expert 3 (proportion of cases where image processing had added value) 100% 100%

For glaucoma detection and image quality assessment, there were three options available as answer. Majority vote was defined as the agreement of at least
two independent experts.
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Fig. 4 Overview of top three most extreme false-positive cases (three first images from the left per row) and false-negative cases (three
rightmost images per row) per evaluated data set (name printed in the left corner of the first image per row). GHS data was left out as
there exists no ground truth on image level. The predicted risk score is at the bottom right for each image. Best viewed in color and high
resolution for optimal review by the reader. See Supplementary Fig. 3 for a view with overlaid saliency map.
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Humphrey Field Analyzer 30–2 exam, (2) matching neuroretinal
rim thinning, (3) VCDR exceeding or equal to 0.7, (4) asymmetric
cupping between eyes (>0.3), (5) and when gonioscopic results
indicated no angle closure.

GHS. The Gutenberg Health Study (GHS) is a large population-
based study held in mid-western Germany, with a baseline
encompassing 15010 participants between 35 and 74 years23. 30°
optic disc-centered images were collected using a Zeiss VISUCAM
fundus camera. Glaucoma diagnosis was established using a
modification of the International Society for Geographic and
Epidemiological Ophthalmology (ISGEO) guidelines including disc
size adjustment44. Final grading considered VCDR, asymmetric
cupping between eyes, and rim narrowing (<10% of the
corresponding disc diameter). ISGEO grading was available for at
least one eye in 12089 individuals examined at baseline.

AIROGS. The Rotterdam EyePACS AIROGS data set consists of
113893 fundus images of 60357 individuals who visited numerous
centers of the EyePACS network in the United States45–47. The
training set of 101442 images was made available in late 2021 in
the context of an international challenge on glaucoma detection
from fundus images. The optic discs in the fundus images were
assessed by a team of 22 glaucoma experts (at least two graders
per image), who had at least a sensitivity of 80% and a specificity
of 95%. Referable glaucoma was defined using ten structural
features or biomarkers, and when the annotator expected
corresponding visual field damage.

ORIGA. The Online Retinal Fundus Image Database for Glaucoma
Analysis and Research (ORIGA) contains 650 randomly selected
images from the Singapore Malay Eye Study (SiMES), a population-
based study conducted between 2004 and 200748. The glaucoma
labeling procedure was not defined. Images were captured at a
wider angle than 30° using an unspecified camera device.

REFUGE1. The Retinal Fundus Glaucoma Challenge (REFUGE) was
held at MICCAI 2018, to provide a unified evaluation framework for
objective comparison of glaucoma detection models using fundus
images49. 400 images were captured with a Zeiss VISUCAM, the
remaining 800 with a Canon CR-2 of a glaucoma clinic located in
China. All images are macula-centered at a 45° viewing angle. The
glaucoma reference standard was obtained after a multimodal
assessment of clinical records, including IOP, OCT, visual fields, and
follow-up examinations. 120 cases of the data set are glaucoma-
tous (POAG or NTG), representing 10% of the data.

LAG data. The large-scale attention-based glaucoma detection
database (LAG) consists of 4854 fundus images sourced from a
Chinese hospital16. The reference standard was established using
IOP, visual field exams, and manual ONH assessment by qualified
specialists. Glaucoma was diagnosed in 1711 images, representing
35% of the data set. All images contain a visible ONH and were
captured using an unspecified mix of fundus cameras at varying
angles. Given the inconsistent image-altering procedure the data
set creators used, it is impossible to use the disc ratio as a proxy
for correct 30° cropping.

ODIR. The Ocular Disease Intelligent Recognition (ODIR) chal-
lenge was organized in 2019 to stimulate research on multi-
disease classification from fundus images50. The complete set
encompasses 10000 images from 5000 patients (one image per
eye), of which 7000 are currently available to download. Macula-
centered images were captured using different devices from
manufacturers such as Canon, Zeiss, and Kowa. Next to glaucoma
cases (4.7%), expert-annotated labels exist for diabetic retino-
pathy, cataract, age-related macular degeneration, hypertension,
and myopia.

REFUGE2. Following the successes of the first REFUGE challenge
in 201817, the organizers organized a second edition as part of
MICCAI 202049. In a similar setup, 800 additional images were
added to the data set. The new fundus images had been acquired
using fundus cameras manufactured by Kowa (validation) and
Topcon (test).

GAMMA. The Glaucoma Grading from Multi-Modality Images
(GAMMA) challenge invited participants to develop and validate
models for glaucoma detection using fundus images and OCT
scans51. The available training data contains 50 non-glaucoma
cases, 25 cases with early glaucoma, and 25 cases featuring mild
or advanced glaucoma. Similar to REFUGE data, specialists
assigned the glaucoma reference standard based on fundus
photography, IOP, VF, and OCT.

RIM-ONEr3. The Retinal IMage databases for Optic Nerve
Evaluation (RIM-ONE), first shared in 2011, were initially intended
to evaluate algorithms for optic disc segmentation52. The third
revision in 2015 contains 85 images of healthy eyes and 74 images
of glaucoma patients. Images were captured using a Kowa WX 3D
stereo fundus camera at a single center in Spain. The FOV spans
20° horizontally and 27° vertically.

RIM-ONE DL. Launched in 2020, the creators of RIM-ONE data
sets updated their fundus images to evaluate deep learning
algorithms for glaucoma detection53. All of the images were re-
evaluated by two experts and originated from different hospitals,
captured with different cameras. The total set encompasses 313
non-glaucoma fundus images and 172 fundus images with
confirmed glaucoma (photo evaluation by glaucoma expert).
The images are characterized by standardized cropping operation
around the optic disc.

ACRIMA. In total, 705 images of the ACRIMA project, founded by
the government of Spain for automated retinal disease assess-
ment, were made available in 201954. Images were captured with
a Topcon TRC fundus camera at a 35° FOV. Images were labeled
for glaucoma by two experts and cropped around the optic disc
using a bounding box of 1.5× the optic disc radius. Notably, the
glaucoma images are characterized by a larger image size than the
non-glaucoma images.

PAPILA. Recently made available to the research community,
PAPILA is the first data set providing color fundus images and
clinical data of both eyes of the same study participant. Being able
to use the joint information of both eyes for glaucoma detection
approaches real-life screening scenarios. PAPILA consists of 488
fundus images belonging to 244 individuals, captured with a non-
mydriatic Topcon TRC-NW400 device with an FOV of 30°. The
glaucoma ground truth label is presented in three categories:
glaucomatous, non-glaucomatous, and suspect, based on the
evaluation of clinical data by trained ophthalmologists. All images
contain the optic disc, with expert segmentation of disc and cup
provided.

Image quality control
Image quality was assessed through the segmentation of the ONH
using a generalizable CNN developed and validated14. In case of
availability of a ground truth ONH segmentation mask in the data
set, this step was skipped (ORIGA, REFUGE1, GAMMA, RIM-ONEr3,
and PAPILA). The CNN-generated optic disc segmentation image
was tested against two criteria for a realistic optic disc. First, the
vertical optic disc size per object candidate in the segmentation
image was divided by the image height to obtain a disc ratio. This
disc ratio should be between 0.10 and 0.40 for images with a FOV
of at least 30°. Next, the optic disc candidate was selected based
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on the first central Hu moment55, a value invariant to the
transformation that equals 0.159 when the shape is a perfect
circle. The candidate with the Hu moment closest to 0.159 was
selected to discard oblong non-circular segmented objects. The
image was discarded from the analysis if no candidate matched
the criteria. There was no human intervention in this automated
process. Supplementary Fig. 1 describes the removal rate per
data set.

Image transformation to 30° disc-centered fundus image:
original FOV exceeding 30°
Each image with a CNN-detected or human-verified optic disc
underwent multiple processing steps to minimize the covariate
shift between the external and original training data. First, the
image underwent a 30° cropping/extension operation centered on
the localized optic disc following ONH segmentation. Original FOV
per data set could be determined based on the optic disc size
concerning the vertical image dimension (disc ratio) or through
the information present in the data set description. In the
development set, which contains exclusively 30° disc-centered
images, the disc ratio was equal to 0.23 averaged over 23930
images.

crop factor ¼ discratiooriginal
discratio30�

¼ discratiooriginal
0:23

Disc ratios were averaged per image size per data set. For a data
set with fundus images featuring a 45° FOV, the average disc ratio
will be around 0.15, which would imply a crop factor of 0.65. Using
a uniform crop factor per data set is essential, as crop factor per
image would remove the natural heterogeneity in optic disc size.
Two data sets (ACRIMA, LAG) made it impossible to preserve this
normal variation due to the cropping procedure already present in
the original data. Therefore, they are marked with an asterisk in
the results table. In data sets that feature multiple image sizes
(AIROGS, ODIR, REFUGE1, REFUGE2), disc ratios were averaged per
image size and set to the global data set average if there were less
than ten cases of specific image size. The crop factor was
multiplied by the vertical image size to obtain a 30° disc-centered
image. Zero padding was applied to the cropped image if the disc-
centered crop exceeded the original image boundaries in a
specific direction, as can be expected in macula-centered images
where the ONH is situated at the image border. We analyzed the
importance of the proposed 30° disc-centered image cropping
through a sensitivity analysis on REFUGE1 data and a random 10%
subset of AIROGS data. These sets feature multiple image
dimensions, next to a well-defined glaucoma label.

Image transformation to 30° disc-centered fundus image:
original FOV smaller than 30°
Some data sets feature images with smaller FOV values (RIM-ONE
r3, LAG), or were cropped around the optic disc (ACRIMA, RIM-ONE
DL). Image extension or padding was applied to ensure correct
optic disc scale and lighting correction in this case. This was done
by copying the original image’s border value in both height and
width directions until the average disc ratio equals 0.23. After
lighting correction, the image area with copied value (synthetic
image information) was replaced by black pixels prior to G-RISK
evaluation. See Supplementary Fig. 2 for an example of the
proposed image extension procedure.

Further processing
Processed images were subjected to a filtering operation to
counter unequal lighting due to the curvature of the retina56.
Finally, images were resized to 512 × 512 and 3 RGB color
channels, and divided by 255 to match the input requirements

of the trained G-RISK model. All image operations per data set are
explained and visualized in detail in Supplementary Fig. 2.

Evaluation procedure
All predictions by the G-RISK were evaluated against the reference
glaucoma label using thresholding. The area under the receiver
operating characteristic (ROC) curve (AUC) was selected as the
primary performance metric, accompanied by balanced sensitivity
and specificity by minimizing the difference between the two.
Harmonized sensitivity and specificity was selected as the costs
associated with FP and FN can vary depending on the deployment
setting. For the three data sets that featured a prevalence that
approaches general population scenarios (BMES, GHS, and
AIROGS), additional sensitivities were reported at 90%, 95%, and
97.5% levels of specificity. This choice was motivated by the
importance of specificity in the context of glaucoma screening.
There exists a general consensus that specificity should be as high
as possible, to prevent a large inflow of individuals who do not
actually have the disease. Additionally, predictions were thre-
sholded at a fixed value of 0.7 to assess glaucoma detection
performance uniformly across data sets. 0.7 was selected as this is
a common VCDR threshold for glaucoma detection. Evaluation
was also conducted on participant level for the two population
cohorts (BMES and GHS) and publicly available PAPILA set, as
glaucomatous damage can be unilateral in a glaucoma patient. In
order to mimic expert referral as closely as possible, the maximum
predicted risk score of the two eyes (when available) was
evaluated against the reference standard. 95% confidence
intervals for AUC were computed using fast DeLong’s algorithm57.
All statistical analyses were performed using the SciPy Python
library58. One exception to this is REFUGE2, for which the
reference standard is currently not accessible to researchers. The
AUC value for this set was retrieved from the online evaluation
server hosted by the challenge organizers and through direct
e-mail communication. For data sets that contained a VCDR
ground truth label (REFUGE1, BMES, RIM-ONEr3, REFUGE2 test set,
and PAPILA), we compared the performance of G-RISK with VCDR
by thresholding the VCDR variable against the glaucoma ground
truth. Furthermore, we report on the association between G-RISK
predictions and clinical metadata including IOP, mean deviation of
the visual field (MD), axial length, refractive error, and corneal
thickness using the PAPILA data set. ROC curves were comple-
mented with a calibration curve (10 bins)59 and the histogram of
predictions in the same plot. Results from related work on deep
learning-based glaucoma detection and generalizability were
included to compare where possible (LAG, ACRIMA, REFUGE1 test
set, REFUGE2 test set). To better understand the decision-making
process of G-RISK, three independent glaucoma experts manually
evaluated randomly selected false positives (n= 20) and false
negatives (n= 20) of both the BMES and GHS data. In case there
were less than 20 cases, the total number of FP or FN were
analyzed. Expert graders assessed image quality (good, poor, bad),
glaucoma (no, suspect, definite), listed the reasons for glaucoma
diagnosis, and indicated whether the processed image aided in
their diagnosis. Cohen’s kappa coefficient (κ) assessed inter-grader
agreement and agreement with glaucoma ground truth. The three
most extreme FP and FN for all data sets were plotted (with and
without overlaid saliency map) with accessible ground truth label
and images. Saliency maps were generated using the gradient
method provided by the iNNvestigate library v2.0.160.
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