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Abstract
Emergency department (ED) crowding is a well-recognized threat to patient safety and it has been repeatedly associated 
with increased mortality. Accurate forecasts of future service demand could lead to better resource management and has the 
potential to improve treatment outcomes. This logic has motivated an increasing number of research articles but there has 
been little to no effort to move these findings from theory to practice. In this article, we present first results of a prospective 
crowding early warning software, that was integrated to hospital databases to create real-time predictions every hour over 
the course of 5 months in a Nordic combined ED using Holt-Winters’ seasonal methods. We show that the software could 
predict next hour crowding with an AUC of 0.94 (95% CI: 0.91-0.97) and 24 hour crowding with an AUC of 0.79 (95% CI: 
0.74-0.84) using simple statistical models. Moreover, we suggest that afternoon crowding can be predicted at 1 p.m. with 
an AUC of 0.84 (95% CI: 0.74-0.91).
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Introduction

Emergency department (ED) crowding is a well-recognized 
threat to patient safety and it has been repeatedly associated 
with increased mortality [1–5]. Crowding is both a chronic 
and an international issue but despite a multitude of studies 
and media coverage, the problem seems to be getting worse 
[6]. According to a conceptual model, causes of ED crowd-
ing can be divided into three high-level components: input, 
throughput and output [7]. The importance and persisting 
relevance of this model was highlighted in a recent review 
article by Morley et al 2018, in which three respective phe-
nomena were identified as the most important underlying 
causes for crowding: 1) increased number of patients with 
more urgent and complex care needs, 2) nursing staff short-
ages and 3) access block (i.e. difficulty to move patients 

from the ED to follow-up care after initial assessment and 
immediate treatment) [8]. From the point of view of an indi-
vidual ED administrator, it is difficult to influence these fac-
tors, since majority of the required interventions are locked 
behind slow political processes scattered throughout the 
health care system.

For these reasons, there is a continued interest aiming 
to enhance the use of the limited resources that are readily 
available. One notable manifestation of this effort is emer-
gency department forecasting, which has established itself 
as a small but persistent research niche [9]. The rationale 
of the forecasting work is simple: 1) forecast future service 
demand, 2) enable proactive administrative decisions, 3) 
ensure sufficient resources and 4) improve treatment out-
comes. Despite many recent advancements in forecasting 
methodology [10–13], several gaps in the literature remain.

First, there is little to no knowledge about the perfor-
mance of the forecasting models in predicting future crowd-
ing in binary terms. This is because models have been pre-
dominantly assessed using continuous error metrics such 
as mean absolute percentage error (MAPE) or root mean 
squared error (RMSE) [9], which are useful when models are 
compared between one another. However, these metrics are 
not transferrable between facilities and they are hard to com-
municate to ED administration, who are often more familiar 
with categorical metrics that are widely used in diagnostics. 
We thus argue that the performance of proposed forecasting 
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models should be increasingly reported using discrete met-
rics that are easily interpretable by administrative stakehold-
ers of the ED.

Categorization is also important when the association 
between crowding and patient outcomes is investigated. 
In fact, many of the studies that have documented an asso-
ciation between mortality and crowding have done so by 
comparing the most crowded quartile between less crowed 
ones [1–3]. Although the underlying association between 
increased occupancy and mortality is likely a continuous 
one, this kind of categorization is beneficial from practi-
cal standpoint, since decision-making is known to benefit 
from actionable, simple output [14]. We argue that the most 
relevant definition for crowding is mortality-associated  
crowding, which is increasingly defined in categorical terms. 
As such, categorical crowding should be the primary target  
variable of an ED forecasting system.

In Tampere University Hospital, following the rationale 
above, the ED is considered crowded when a certain occu-
pancy threshold is exceeded. This is coupled with a catch-
ment-area-wide protocol that aims to resolve the observed 
crowding. The protocol mandates the shift-supervising 
physician to call-in additional staff and obligates follow-
up care facilities to accept patients even if their nominal 
capacity has been exceeded. The obvious problem with this 
approach is the delay between actions and outcomes, which 
leads to prolonged crowded state, increased length of stay 
and decreased quality of care. Our ultimate goal is to move 
these administrative manoeuvres from reactive space into 
proactive space by offering accurate forecasts about the 
future status of the ED.

Second, vast majority of previous work has been based 
on historical simulations [9]. A prominent exception to this 
rule was offered by Hoot et al 2009 in which a prospec-
tive ED forecasting system ForecastED was presented and 
validated with promising results[15]. Ever since, the interest 
towards conducting prospective studies has for some reason 
withered. This is unfortunate, because although retrospective 
studies are obviously useful in identifying potential fore-
casting models their impact will remain limited unless the 
findings are confirmed prospectively in real-life setting. We 
believe it is time to return to prospective evaluation and aim 
to offer an easily interpretable baseline to compare more 
advanced models against.

Third, ED forecasting models have been under examined 
in the Nordic countries with few notable exceptions [16, 
17]. We also note that increasingly complex solutions are 
reported retrospectively [10–12] but since they are only eval-
uated in continuous terms, it is difficult to assess whether 
these models have practical utility. Meanwhile, even the 
most rudimentary statistical models remain unassessed in 
discrete terms.

In this study, we aim to fill the gaps identified above. 
We developed an early warning software that was integrated 
to Tampere University hospital databases to make hourly 
predictions of ED arrivals and occupancy 24 hours ahead 
using established statistical models. In this study, we report 
the performance of the system in predicting discrete future 
crowding along with its reliability.

Materials and Methods

Study Setting

Tampere University Hospital is an academic hospital located 
in Tampere, Finland. It serves a population of 535,000 in the 
Pirkanmaa Hospital District and, as a tertiary hospital, an 
additional population of 365,700, providing level 1 trauma 
centre capabilities. The hospital ED, Acuta, is a combined 
ED with a nominal capacity of 106 patients, with 65 beds 
and 41 seats for walk-in patients. Approximately 90,000 
patients are treated annually making Acuta one of the larg-
est EDs in Scandinavia.

For the purposes of this study, we developed a forecast-
ing software that had following requirements: 1) it had to be 
able to forecast both future arrivals and occupancy, 2) it had 
to operate with hourly data, making predictions 24 hours 
ahead, 3) the predictions had to be stored in a database for 
later accuracy evaluation and 4) it had to have a rudimentary 
user interface for debugging purposes. The software was 
deployed to an Azure cloud computing service (Microsoft 
Corporation, USA) on January 15, 2022 and predictions 
were made until May 26, 2022 constituting a total of 3145 
hours. To ensure safety of sensitive patient information the 
virtual machine was isolated from hospital databases and 
only the high-level statistics required to make predictions 
were provided to a dedicated database.

Definition of Crowding

In this study, our main goal is to assess model performance in 
predicting binary crowding. Unfortunately, international and 
commonly accepted standard definition for crowding does 
not exist. The proposed crowding metrics such as NEDOCS 
[18] or EDWIN [19] are too complex to be used here and they 
are difficult to apply to a Nordic combined ED. For these 
reasons we will define the most crowded quartile of days to 
be crowded similiar to the way was done by Richardson et al 
2006 [1] with most crowded shifts. This is done using a proxy 
metric called daily peak occupancy (DPO) which is defined 
as the highest recorded occupancy of the day.
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Models

The software included three forecasting models: Holt-
Winter’s additive method (AHWM), Holt-Winters’ mul-
tiplicative method (MHWM) and Holt-Winters’ damped 
method (DHWM) [20]. These models were selected due 
to their established status, capability to process seasonal 
data and efficiency in terms of computing power. The mod-
els, later referred collectively to as ETS models (E stands 
for error term, T for trend component, and S for seasonal 
component) were trained with all available historical data 
and implemented with Statsmodels Python module [21]. 
ETS model parameters were determined using maximum 
likelihood estimation.

Performance Metrics

The performance of these algorithms are reported in four 
distinct phases: (1) aggregated continuous performance, (2) 
performance per horizon (3) performance per origin and (4) 
performance with pairwise origin and horizon combina-
tions. Only out-of-sample performance results (i.e. results 
obtained with test data) are presented in this study. In the 
first phase, the continuous performance of the models is 
reported using mean absolute error (MAE) and root mean 
squared error (RMSE). The errors are averaged over all the 
forecast horizons.

In phases 2-4, we evaluate the performance of the mod-
els as binary predictors of future crowding. Area under the 
receiver operating characteristics curve (AUROC/AUC) 
were used as the main error metric in both phases and 
detailed unadjusted binary metrics, such as F1, are provided 
in the Appendix. F1 is an unweighted harmonic mean of pre-
cision and sensitivity (recall), which is often recommended 
as a performance measure under class imbalance [22]. Due 
to class-imbalance between crowded and noncrowded states, 
the noncrowded states were randomly downsampled to 
match the number of crowded ones. This was done to elimi-
nate potential positive bias in AUC values. 95% confidence 
intervals (CI) were calculated for AUC values using bootrap 
method with 250 iterations [23].

Performance per horizon (PPH) is documented in phase 
two. This allows the reader to assess how well the model is 
able to predict whether the ED will be crowded exactly t 
steps ahead. For example, t + 2 PPH for predictions made 
at 1 p.m. tells whether the ED will be crowded between 
3 p.m. and 4 p.m. Each horizon from 1 to 24 hours are 
independently assessed. The issue with PPH metric is that 
the results are aggregated over different forecast origins 
although performance can vary significantly depending on 
the said origin.

Performance per origin (PPO) in phase three resolve 
this issue. In this phase we assess whether the models are 

able to tell whether the next 24 hours will be overcrowded 
as the forecast origin moves from 0 a.m. to 23 p.m. We 
hypothesize that the accuracy is lowest at midnight and 
gradually increases throughout the day when the models 
is given new information about the status of the ED. The 
approach aims to simulate the way the forecasts would be 
used in practice if offered to ED administration. In this 
phase, the future is considered crowded if the occupancy 
reaches the highest quartile for one or more hours within 
the 24 hour forecast window.

AUC matrix is provided in phase four, showing pairwise 
AUC results for different origin and horizon combinations. 
This aims to further eliminate the confounding impact of 
changing forecast origin in aggregated PPH metrics.

Results

Descriptive Statistics

Hourly target variables followed a clear seasonality. On 
average there were only 2 hourly arrivals between 5-7 a.m. 
with gradual increase over the course of the morning and 
throughout the day. Arrivals peaked at 4 p.m. with median 
of 13 patients and maximum of 23. Occupancy followed 
a similar sinusoidal shape with slight delay compared to 
arrivals. The occupancy was lowest between 6-8 a.m. with 
median of 23 patients and peaked between 5-6 pm. with 
median of 74 and maximum of 107 patients as shown in 
Fig. 1a.

Temporal distribution of crowding events, shown in 
Fig. 1b, was a direct result of the seasonality described 
above. On hourly resolution, all the crowding events were 
observed after 2 p.m. and most of them at 6 p.m. (22 %).

Distributions of the daily peak occupancy and hourly 
occupancy are provided in the Appendix “Occupancy Dis-
tributions”. Based on DPO statistics, the highest quartile was 
observed at occupancy of 88. This annotates, by definition,  
25 % of days as crowded and 3 % of the highest occupancy hours  
as crowded.

The ED visit statistics were delivered reliably to the dedi-
cated database and there were no missing data as regards to 
target variables. This was not the case with the predictions. 
There was a downtime of two weeks from February 14th to 
27th and three days from April 12th to 14th due to a creden-
tials issue. This resulted in total missing data of 397 hours 
(12%) for all of the models. In addition, due to an unresolved 
issue with memory management, the software experienced 
sporadic downtime resulting in missing data. This contrib-
uted to an additional modelwise data loss ranging between 
82-108 ( ∼ 3 %). Temporal distribution of missing data is 
shown in Fig. 3 in Appendix.
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Continuous Performance

Continuous accuracy metrics are provided in Table 1. AHWM 
was the most accurate model in terms of continuous occu-
pancy with MAE of 10.22 and RMSE of 176.59. The RMSEs 
of HWDM and MHWM were 35% and 24% higher than that 
of AHWM likely because of their negative bias as demon-
strated in Fig. 2, which unquestionable favours AHWM. In 
contrast, when it comes to the prediction of arrivals, the mod-
els were almost of equal performance, HWDM being slightly 
the most accurate with MAE of 2.10 and RMSE of 7.58. An 
example of the predictions is provided in Fig. 2.

Binary Performance

Binary performance results as measured by AUC are provided 
in Tables 2 and 3. In addition, unadjusted and more detailed 
metrics are provided in Figs. 4 and 5 in Appendix. The AUCs 
of one-step ahead PPH predictions were high 0.94 (95% CI: 
0.91-0.96) for all the forecasting models. The accuracy of the 
ETS models decreased monotonically as a function of forecast 

horizon and bottomed at 0.79 (95% CI: 0.75-0.84) at t + 24 . 
PPO was low at 0 a.m. with AUC ranging between 0.50-0.52 
but the performance increased gradually over the course of 
the day. HWDM reached an AUC 0.72 (95% CI: 0.60-0.82) 
at 11 a.m., 0.78 (95% CI: 0.67-0.87) at 12 a.m., 0.84 (95% CI: 
0.74-0.91) at 1 p.m. and finally 0.88 (95% CI: 0.80-0.95) at 
3 p.m. Differences between HWDM and other ETS models 
were small. AUC matrix showing results based on different 
origin and horizon combinations is provided in Table 4. Only 
AHWM results are provided here for brevity.

While AUC is calculated over all thresholds, there are 
metrics, such as F1, that are calculated with a single thresh-
old. While the models seem to have equal accuracy in terms 
of AUC, F1 shows clear differences: In comparison to 
HWDM and MHWM, AHWM performs relatively poorly 
when the forecast horizon is longer than four hours or when 
the forecast origin is between 0 a.m. and 3 p.m. (see Figs. 4 
and 5 in Appendix). This is because in these cases, the sen-
sitivity (also known as recall and true positive rate) is low, 
meaning that only a small fraction of crowding cases were 
correctly predicted in these cases.

Fig. 1  Hourly target variable 
seasonalities. The grey area 
shows the overcrowded state

(a) (b)

Fig. 2  Example predictions 
on 2022, February 13th at 4 
a.m. Note the almost identical 
performance when forecasting 
arrivals, which is also reflected 
in the overall accuracy results. 
In case of occupancy, AHWM 
is closest to the ground truth 
whereas other ETS models a 
clear negative bias
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Discussion

In this study, we had three main findings. First, we showed 
that it is possible to build a prospective ED crowding early 
warning software using simple statistical forecasting models 
and with very limited resources. Second, we showed that 
even simple univariable models can provide excellent binary 
accuracy and potentially provide actionable information 
to ED stakeholders with modest computing and software 

requirements. Third, we showed that clinically adequete 
accuracy is reached with sufficient margin for preventive 
measures.

The PPO metric provides a simple and easily interpret-
able perspective into model performance. As shown in 
Table 3, the models had no discrimatory power at 0 a.m. 
but the AUC gradually increased over the course of the day, 
reaching 0.72 (95% CI: 0.60-0.82) at 11 a.m. and excellent  
level of 0.84 (95% CI: 0.74-0.91) at 1 p.m. This improvement  
is expected because, in this setting, the effective forecast 
horizon decreases as a function of increasing forecast origin. 
This means that the models are iteratively presented with 
the most recent occupancy statistics and are able to correct 
the prediction based on the status of the ED at prediction 
time. In fact, looking at the unadjusted accuracy metrics 
in Fig. 5, the specificity of the ETS models increases over 
the course of the day whereas sensitivity remains constant. 
Regardless, the system reached an acceptable level of accu-
racy as early as at 11 a.m. If the predictions were used to 
guide administrative decisions and since the vast majority 
of crowding events were observed after 6 p.m. as shown in 
Fig. 1b, there would have been a several hour margin for 

Table 1  Continuous aggregated error metrics reported with Mean 
Absolute Error (MAE) and Root Mean Squared Error (RMSE)

MAE RMSE
Target Model

Occupancy HWDM 11.69 273.47
MHWM 10.87 233.38
AHWM 10.22 176.59

Arrivals AHWM 2.13 7.64
MHWM 2.11 7.59
HWDM 2.10 7.58

Table 2  The performance of the models over different forecast hori-
zons (PPH) Area Under Curve (AUC). 95 % confidence interval in 
the parenthesis

Horizon AHWM HWDM MHWM

t+1 0.94 (0.91-0.97) 0.94 (0.91-0.96) 0.94 (0.91-0.97)
t+2 0.93 (0.89-0.95) 0.93 (0.90-0.96) 0.92 (0.89-0.95)
t+3 0.91 (0.88-0.95) 0.90 (0.86-0.93) 0.89 (0.85-0.93)
t+4 0.90 (0.86-0.94) 0.89 (0.84-0.93) 0.90 (0.86-0.94)
t+5 0.90 (0.86-0.93) 0.88 (0.84-0.92) 0.90 (0.85-0.93)
t+6 0.90 (0.86-0.93) 0.86 (0.81-0.90) 0.89 (0.86-0.92)
t+7 0.90 (0.86-0.94) 0.85 (0.81-0.90) 0.86 (0.81-0.90)
t+8 0.89 (0.85-0.93) 0.85 (0.81-0.90) 0.85 (0.80-0.90)
t+9 0.86 (0.81-0.90) 0.87 (0.82-0.91) 0.88 (0.83-0.92)
t+10 0.90 (0.86-0.94) 0.86 (0.81-0.90) 0.86 (0.81-0.91)
t+11 0.82 (0.76-0.87) 0.85 (0.81-0.89) 0.81 (0.75-0.86)
t+12 0.84 (0.79-0.88) 0.84 (0.79-0.89) 0.82 (0.78-0.87)
t+13 0.83 (0.77-0.87) 0.83 (0.78-0.88) 0.82 (0.77-0.87)
t+14 0.82 (0.77-0.87) 0.80 (0.74-0.86) 0.78 (0.73-0.84)
t+15 0.81 (0.76-0.87) 0.78 (0.71-0.84) 0.77 (0.70-0.83)
t+16 0.80 (0.74-0.85) 0.76 (0.70-0.81) 0.76 (0.70-0.83)
t+17 0.79 (0.73-0.84) 0.76 (0.69-0.82) 0.77 (0.71-0.83)
t+18 0.78 (0.73-0.84) 0.73 (0.66-0.79) 0.77 (0.71-0.83)
t+19 0.79 (0.72-0.84) 0.76 (0.70-0.81) 0.76 (0.70-0.82)
t+20 0.79 (0.73-0.83) 0.75 (0.69-0.81) 0.76 (0.70-0.81)
t+21 0.78 (0.71-0.83) 0.75 (0.69-0.80) 0.80 (0.74-0.85)
t+22 0.79 (0.73-0.84) 0.74 (0.68-0.80) 0.82 (0.77-0.87)
t+23 0.78 (0.72-0.83) 0.74 (0.68-0.80) 0.79 (0.72-0.84)
t+24 0.79 (0.74-0.85) 0.75 (0.70-0.81) 0.79 (0.74-0.84)

Table 3  The performance of the models over different forecast ori-
gins (PPO) Area Under Curve (AUC). 95 % confidence interval in the 
parenthesis

Origin AHWM HWDM MHWM

0 0.52 (0.38-0.65) 0.50 (0.39-0.63) 0.50 (0.38-0.63)
1 0.46 (0.32-0.58) 0.51 (0.37-0.65) 0.51 (0.39-0.62)
2 0.50 (0.38-0.62) 0.53 (0.40-0.66) 0.51 (0.39-0.64)
3 0.46 (0.33-0.58) 0.51 (0.38-0.62) 0.55 (0.44-0.66)
4 0.46 (0.35-0.59) 0.55 (0.44-0.69) 0.60 (0.48-0.71)
5 0.60 (0.46-0.73) 0.53 (0.44-0.65) 0.56 (0.43-0.71)
6 0.56 (0.43-0.69) 0.57 (0.44-0.69) 0.58 (0.45-0.70)
7 0.60 (0.49-0.71) 0.63 (0.51-0.76) 0.56 (0.44-0.68)
8 0.70 (0.57-0.81) 0.53 (0.40-0.66) 0.69 (0.56-0.81)
9 0.70 (0.57-0.82) 0.67 (0.56-0.79) 0.58 (0.48-0.70)
10 0.67 (0.53-0.78) 0.66 (0.55-0.78) 0.66 (0.54-0.78)
11 0.65 (0.52-0.78) 0.72 (0.60-0.83) 0.69 (0.58-0.79)
12 0.68 (0.55-0.80) 0.78 (0.69-0.88) 0.76 (0.64-0.85)
13 0.74 (0.64-0.84) 0.84 (0.75-0.92) 0.80 (0.71-0.89)
14 0.81 (0.71-0.89) 0.83 (0.75-0.91) 0.84 (0.76-0.91)
15 0.87 (0.78-0.95) 0.88 (0.80-0.94) 0.90 (0.84-0.96)
16 0.82 (0.73-0.90) 0.79 (0.71-0.87) 0.85 (0.76-0.92)
17 0.75 (0.63-0.85) 0.78 (0.67-0.86) 0.75 (0.64-0.83)
18 0.74 (0.64-0.82) 0.72 (0.62-0.81) 0.73 (0.62-0.83)
19 0.60 (0.50-0.71) 0.59 (0.48-0.69) 0.57 (0.47-0.69)
20 0.56 (0.45-0.67) 0.60 (0.49-0.71) 0.56 (0.46-0.68)
21 0.61 (0.51-0.73) 0.63 (0.50-0.74) 0.59 (0.48-0.69)
22 0.59 (0.47-0.71) 0.55 (0.44-0.67) 0.58 (0.45-0.70)
23 0.55 (0.41-0.65) 0.53 (0.42-0.65) 0.51 (0.38-0.62)
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preventive measures. These measures could include calling 
in additional staff, obligate follow-up care facilites to accept 
patients over their nominal capacity, and in rare cases adjust 
triage on arrival.

As mentioned in the introduction, binary performance 
metrics have been rarely reported in previous work which 
makes it difficult to compare our results with that of the 
others. Somewhat similiar setting was used by aforemen-
tioned Hoot et al [15] in which AUC was used to determine 
the accuracy with which ambulance diversions would have 
been performed correctly up to 8 hours ahead. This is not 
directly comparable to Nordic ED setting, in which legisla-
tion does not warrant ambulance diversions regardless of 
the current crowding status. It is thus difficult to assess if 
the resulting threshold for crowding was similiar to that of 
ours. With these caveats in mind, Hoot et al reported t + 2 , 
t + 4 , t + 6 and t + 8 AUC values of 0.93, 0.90, 0.88, 0.85 
respectively. We matched or slightly exceeded these results 
with respective AUC values of 0.93, 0.90, 0.90 and 0.89. It 
is also noteworthy, that their forecasting horizon was limited 
to 8 hours compared to 24 hours used here. We were able to 
forecast t + 24 crowding with an AUC of 0.79.

In terms of PPH, all the models demonstrated constantly 
high specificity with lower and incrementally decreasing 

sensitivity as shown in Fig. 4. We believe this to be a result 
of the univariable nature of the dataset; since the models in 
this study did not have access to relevant exogenous variables 
(such as calendar variables, weather forecasts, availability of 
follow-up care beds etc.), the models were unable to account 
for sudden surges in future occupancy, which leads to false 
negatives and to suboptimal sensitivity. It is possible that the 
sensitivity of the models could be enhanced by including 
these variables, preferrably covering all three aspects of the 
Asplin’s model, and it warrants futher investigation.

Before the models are introduced to clinical practice, 
it is important to carefully adjust them based on clinical 
requirements by either raising or lowering the discrimina-
tory threshold. This is because high number of false nega-
tives results in repeated underresourcing and compromised 
quality of care. On the other hand, false positives result in 
overresourcing, increased operating costs and introduce the 
risk of developing an alarm fatigue to the end users [24]. 
In this article, we do not prioritize specificity or sensitivity 
at the cost of the other, as the optimal balance may vary 
based on each facility’s unique requirements and should be 
determined on a hospital-by-hospital basis. Technically, this 
could be done by weighting classes, changing the threshold, 
or by data sampling.

Table 4  AUC matrix for 
AHWM. Only horizons up to 
t + 12 are provided for brevity. 
AUC values can be calculate 
only if there is at least one 
recorded crowding event in the 
sample, which results in missing 
values marked with "-" symbol

Horizon t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12
Origin

0 - - - - - - - - - - - -
1 - - - - - - - - - - - -
2 - - - - - - - - - - - -
3 - - - - - - - - - - - 0.33
4 - - - - - - - - - - 1.00 0.74
5 - - - - - - - - - 1.00 0.65 0.68
6 - - - - - - - - 1.00 0.94 0.76 0.56
7 - - - - - - - 1.00 0.96 0.81 0.62 0.52
8 - - - - - - 1.00 0.97 0.85 0.66 0.62 0.53
9 - - - - - 1.00 0.96 0.90 0.61 0.67 0.56 0.78
10 - - - - 1.00 0.91 0.78 0.51 0.49 0.58 0.70 0.62
11 - - - 1.00 1.00 0.85 0.60 0.64 0.73 0.84 0.73 0.52
12 - - 1.00 0.98 0.93 0.66 0.75 0.75 0.80 0.71 0.80 1.00
13 - 0.67 0.85 0.80 0.62 0.73 0.66 0.77 0.84 1.00 1.00 -
14 1.00 0.83 0.87 0.73 0.78 0.69 0.82 0.86 0.60 1.00 - -
15 0.92 0.76 0.73 0.94 0.74 0.89 0.75 0.74 1.00 - - -
16 0.90 0.82 0.95 0.82 0.92 0.83 0.80 1.00 - - - -
17 0.90 0.99 0.87 0.90 0.85 0.80 1.00 - - - - -
18 0.97 0.90 0.93 0.90 0.88 1.00 - - - - - -
19 0.93 0.97 0.83 0.94 0.00 - - - - - - -
20 0.93 0.96 0.92 1.00 - - - - - - - -
21 1.00 1.00 1.00 - - - - - - - - -
22 0.96 1.00 - - - - - - - - - -
23 1.00 - - - - - - - - - - -
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Further, it would be interesting to evaluate the perfor-
mance of these models when trained on daily resolution. For 
example, in terms of forecasting crowding, the real targets of 
interest are not the hourly occupancy statistics, but the peak 
occupancy of the afternoon. The same models could poten-
tially perform better, if trained with series of these daily 
peak occupancies, which likely demonstrate clear weekly 
seasonality and potential trends. Moreover, it would be 
likely beneficial to estimate classification techniques, such 
as logistic regression or support vector machines. After all, 
we are only marginally interested in the underlying numbers 
of the patients and very much interested in the binary future 
state of the ED and it might make sense to incorporate this 
logic to model cost function as well. We presume that the 
use of classification techniques can potentially enhance the 
sensitivity of the system.

The focus of this study was deliberately on building the 
software and integrating it into hospital information infra-
structure, which was not a trivial task. For this reason, the 
models used were simple well-established statistical mod-
els. However, several novel machine learning based time 
series forecasting models have been introduced over the 
course of the last few years [25, 26], and these models 
would likely provide better accuracy in this context, espe-
cially if supplemented with relevant multivariable exog-
enous data.

The definition of crowding used here annotated the top 
3 % of hours as crowded. Currently, in our ED, crowding 
protocol is triggered at even lower occupancy level of 8 %. 
Our threshold is thus higher than current local clinical prac-
tice and could be easily integrated to established operating 
culture. However, we do acknowledge that ED’s differ signi-
cantly and these thresholds do not necessarily apply to other 
facilites. Further work is required to validate these findings 
in other centers.

Conclusions

To conclude, we showed the ability of a prospective crowd-
ing early warning system to predict next hour crowding with 
an AUC of 0.94 (95% CI: 0.91-0.96) and 24 hour crowding 
with an AUC of 0.79 (95% CI: 0.75-0.84). We also propose 
a clinically oriented PPO metric and using this approach 
suggest that afternoon crowding can be predicted at 1 p.m. 
with an AUC of 0.84 (95% CI: 0.74-0.91)

Future work should 1) investigate the use of binary cost 
function optimally with a machine learning model, 2) inves-
tigate the accuracy of the system with stratified sample, 3) 
perform a pilot with the ED staff to validate the operational 
benefits of the system in clinical setting and 4) document the 
binary performance of other previously proposed multivari-
able ED forecasting models.

Appendix

Occupancy Distributions

(a) (b)

Missing Data

Unadjusted PPH Metrics

Unadjusted performance metrics as a function of fore-
cast horizon are shown in Fig. 4. Overall accuracy of the 
models was high and nearly identical ranging between 
88-97%. This was mostly explained by equally high speci-
ficity of 90-100%. AHWM had the highest one-step ahead 
sensitivity of 60%, but the difference compared to other 
models was small. The sensitivity declined as a function 
of increasing forecast horizon, but this effect was more 
prononounced with HWDM compared to AHWM and 
HWDM.

(b)

(a)

Fig. 3  Temporal distribution of missing data, marked with black 
color. Two week period of missing data during weeks seven and eight 
are due to a credentials issue
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Unadjusted PPO Metrics

Unadjusted performance metrics as a function of forecast 
origin are shown in Fig. 5. The sensitivity of AHWM 
was low, ranging between 0% and 20% before 1 p.m. 
HWDM and MHWM demonstrated identical and relatively 

constant sensitivity irrespective of the forecast origin with 
mean sensitivity of 35-38%. The specificity of AHWM 
was high and relatively constant with values ranging with 
means of 98% and 92% respectively. The specificity of 
HWDM and MHWM increased as a function of forecast 
origin from 63-65% at 1 a.m. to 94-95% at 1 p.m.

Fig. 4  Performance as function 
of forecast horizon

(a) (b)

(c) (d)
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