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Abstract

Advanced integrative analysis of DNA methylation and transcriptomics data may provide deeper insights into
smoke-induced epigenetic alterations, their effects on gene expression and related biological processes, linking
cigarette smoking and related diseases. We hypothesize that accumulation of DNA methylation changes in CpG
sites across genomic locations of different genes might have biological significance. We tested the hypothesis
by performing gene set based integrative analysis of blood DNA methylation and transcriptomics data to iden-
tify potential transcriptomic consequences of smoking via changes in DNA methylation in the Young Finns
Study (YFS) participants (n = 1114, aged 34–49 years, women: 54%, men: 46%). First, we performed epigenome-
wide association study (EWAS) of smoking. We then defined sets of genes based on DNA methylation status
within their genomic regions, for example, sets of genes containing hyper- or hypomethylated CpG sites in their
body or promoter regions. Gene set analysis was performed using transcriptomics data from the same partici-
pants. Two sets of genes, one containing 49 genes with hypomethylated CpG sites in their body region and
the other containing 33 genes with hypomethylated CpG sites in their promoter region, were differentially
expressed among the smokers. Genes in the two gene sets are involved in bone formation, metal ion transport,
cell death, peptidyl-serine phosphorylation, and cerebral cortex development process, revealing epigenetic–
transcriptomic pathways to smoking-related diseases such as osteoporosis, atherosclerosis, and cognitive impair-
ment. These findings contribute to a deeper understanding of the pathophysiology of smoking-related diseases
and may provide potential therapeutic targets.
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Introduction

C igarette smoking, referred to as smoking hereafter, is
the leading preventable risk factor for numerous diseases

and affects almost every organ in the body such as heart,
blood vessels, lungs, brain, liver, mouth, and bones (Bergen,
1999). Smoking induces diseases through pathogenic mech-
anisms such as inflammation, oxidative damage, endothelial
dysfunction, and alterations in the immune system and epi-
genetics (Zhou et al., 2016).

However, the molecular cascade underlying these
mechanisms is not well understood. Availability of high-
throughput multi-omics data and advanced statistical
techniques for integrative analysis makes it possible to
investigate the interrelationships of the involved molecules
and their functions in a biological system across multiple
molecular layers.

Understanding the underlying molecular mechanism of
smoking-related disease induction is crucial for the devel-
opment of interventions, treatments, and pharmacological
agents aimed at reducing smoking-related health burden. For
instance, knowledge of the epigenetic and consequent tran-
scriptomic effects of smoking may aid in the development of
drugs targeting specific epigenetic mechanisms to prevent
consequences at transcriptomic level.

Such an approach is already in use for cancer treatment
(Tzika et al., 2018). The drugs, when used along with the
existing evidence-based therapies for treating smoking (Fiore
et al., 2000), may play a crucial role in smoking-related
health risks management.

Several studies have shown smoking-related alterations in
DNA methylation ( Joehanes et al., 2016; Kaur et al., 2019;
Mishra et al., 2020; Zeilinger et al., 2013). Smoking can
affect DNA methylation via several mechanisms. For
example, carcinogenic contents of cigarette smoke such as
arsenic, chromium, formaldehyde, polycyclic aromatic hyd-
rocarbons, and nitrosamines can damage DNA. The DNA
damage leads to recruitment of DNA methyltransferase 1
(DNMT1) at the repair site, consequently affecting DNA
methylation (Lee and Pausova, 2013). Also, nicotine in cig-
arette smoke can affect DNA methylation by directly down-
regulating DNMT1 expression.

Cigarette smoke may also alter DNA methylation indi-
rectly through the modulation of expression and activity of
DNA-binding factors. The largest epigenome-wide associa-
tion study (EWAS) of smoking identified 18,760 active
smoking-related CpG sites annotated to 7201 genes with
false discovery rate (FDR) <0.05 ( Joehanes et al., 2016).

This study was based on the Infinium HumanMethylation
450 K BeadChip that measures methylation at about 450,000
CpG sites throughout the genome instead of the >850,000
CpG sites measured by the newer Illumina HumanMethyl-
ationEPIC BeadChip (EPIC). A recent EWAS of smoking
habit using EPIC chip identified 952 CpG sites in 500 genes
differentially methylated between current and never smokers
at a genome-wide significance threshold ( p = 6.25 · 10-8)
(Christiansen et al., 2021).

The impact of smoking on DNA methylation ( Joehanes
et al., 2016; Kaur et al., 2019; Mishra et al., 2020; Zeilin-
ger et al., 2013) and genome-wide expression (Charlesworth
et al., 2010; Huan et al., 2016; Vink et al., 2017) have
previously been studied mainly independently. Integrative

studies on consequences of the altered DNA methylation on
genome-wide expression on the same set of individuals in
blood have been based on 450 K chip (Maas et al., 2020; Tsai
et al., 2018).

A few multi-omic integrative studies on smoking are based
on EPIC chip-based DNA methylation data; however, they
are based on specific cell types such as bronchoalveolar
lavage cells (Ringh et al., 2019) and monocytes (Wan et al.,
2018) but not on whole blood. While the earlier mentioned
integrative multi-omic studies on smoking have crucial
contributions to understanding of smoking-related disease
mechanisms, integrative analysis of DNA methylome and
transcriptome from whole blood using EPIC array is an
important scientific gap that needs to be addressed.

Further, the previous integrative analyses were based on
traditional one-to-one association analysis between genes
and methylation sites, which is likely to suffer from lack of
sufficient statistical power.

Small changes in individual gene expression levels asso-
ciated with smoking-related methylation pattern in their
genomic regions can be missed by one-to-one association
analysis of methylation sites and corresponding genes due
to lack of statistical power. Combining genes with smoking
specific CpG sites and analyzing them as a set increases the
probability of finding transcriptomic consequence of smok-
ing via epigenetic route due to increased statistical power.

Small but coordinated changes in gene expression due
to smoking-related DNA methylation changes in their geno-
mic regions can have major biological effects even if the
changes are not statistically significant for individual genes.
Gene set analysis can capture such results as we have shown
in our previous study using 450 K chip-based methylation
data analysis (Mishra et al., 2020).

In the present study, we performed advanced gene set
based integrative analysis of DNA methylome with 850 K
methylation sites and transcriptome from whole blood col-
lected from a cohort of European ancestry to test whether sets
of genes containing smoking specific CpG sites within their
genomic region (cis-regulation) are differently expressed
among smokers, as compared with non-smokers (Fig. 1). In
addition to the gene set based integrative analysis, we also
conducted individual omics data analysis for the DNA meth-
ylation and transcriptome data to identify smoking-related
CpG sites and genes respectively (Fig. 1).

Materials and Methods

Cohort description

This study was based on the Young Finns Study (YFS), one
of the largest existing prospective multicenter follow-up
studies assessing cardiovascular risk factors from childhood
to adulthood (Raitakari et al., 2008). The study began in 1980
with 3596 children and adolescents aged 3–18 years ran-
domly selected from 5 university hospital areas in Finland
(Turku, Tampere, Helsinki, Kuopio, and Oulu) and they have
been followed in regular intervals for over 40 years until
2020.

The study was approved by the Ethics Committee of the
Hospital District of Southwest Finland on June 20, 2017
(ETMK: 68/1801/2017). All participants gave their writ-
ten informed consent, and the studies were conducted in
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accordance with the Declaration of Helsinki. Data protection
will be handled according to current regulations as noted next.

This study involved a subpopulation of 1114 partici-
pants from the YFS with DNA methylation, transcriptomics,
smoking habit, alcohol consumption, and occupation-based
socio-economic status data available. Variable for smoking
habit was based on self-reported information on whether
the participants are daily smokers or never or less than daily
smokers. Variable for the participants’ alcohol consumption
information was generated from their self-reports on their
alcohol consumption during the previous week where 1 unit
is equivalent to 14 g of alcohol ( Juonala et al., 2009).

DNA methylation profiling, pre-processing,
and normalization

DNA was obtained from EDTA-blood samples collected
during the YFS 2011 follow-up using a Wizard� Genomic
DNA Purification Kit (Promega Corporation, Madison, WI,
USA) according to the manufacturer’s instructions. DNA
integrity was tested by analyzing a subset of the samples
with Agilent’s Fragment Analyzer. Genome-wide DNA
methylation levels were obtained using Illumina Infinium
MethylationEPIC BeadChips, following the protocol by
Illumina (Marttila et al., 2021). All pre-processing steps
were performed using functions implemented in the minfi R/
Bioconductor package (Fortin et al., 2017).

All analyzed samples have a sum of detection p-values
<0.01 across all the probes. Only the samples with logged
(log2) median of the methylated and unmethylated intensities
clustering well based on default threshold of plotQC function
in minfi R package were included. Samples for which the
actual sex did not match the predicted sex were excluded.

Background subtraction and dye-bias normalization were
performed via the noob method (Triche et al., 2013),
followed by stratified quantile normalization using pre-

processQuantile function in minfi. Probes with a detection
p-value of more than 0.01 in more than 99% of the samples
were filtered out.

CpG loci on sex chromosomes were excluded from the
analysis to avoid gender-based methylation bias. Also, cross-
reactive probes (McCartney et al., 2016; Pidsley et al., 2016)
and probes with single nucleotide polymorphisms were ex-
cluded from the analysis. After quality control, the total
number of autosomal CpGs was 769,683 in 1114 samples (150
active smokers and 964 never or less than daily-smokers).

Transcriptome profiling pre-processing
and normalization

RNA isolation was performed from whole-blood sam-
ples collected from the YFS participants during the 2011
follow-up. Expression levels were analyzed with Illumina
HumanHT-12 version 4 Expression BeadChip (Illumina,
Inc.), containing 47,231 expression and 770 control probes.
Raw Illumina summary probe-level data were exported from
Beadstudio and processed in R (www.r-project.org) using a
nonparametric background correction, followed by quantile
normalization with control and expression probes, with the
neqc function in the limma package (Smyth et al., 2005) and
a log2 transformation. The pre-processing details are also
described elsewhere (Mishra et al., 2021).

Biostatistical analysis

All statistical analyses were performed using R statistical
software (v.4.1.0) (R Core Team, 2021).

Availability of data and materials

The dataset supporting the conclusions of this article
was obtained from the Cardiovascular Risk in YFS, which
comprises health-related participant data. The use of data is

FIG. 1. Schematic representation of the overall study design.
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restricted under the regulations on professional secrecy (Act
on the Openness of Government Activities, 612/1999) and
on sensitive personal data (Personal Data Act, 523/1999,
implementing the EU data protection directive 95/46/EC).
Due to these restrictions, the data cannot be stored in public
repositories or otherwise made publicly available.

Data access may be permitted on a case-by-case basis on
request only. Data sharing outside the group is done in col-
laboration with the YFS group and requires a data-sharing
agreement. Investigators can submit an expression of interest
to the chairperson of the publication committee, Prof Mika
Kähönen (Tampere University, Tampere, Finland) and Prof
Terho Lehtimäki (Tampere University).

DNA methylation data analysis. Beta values, calculated
as the ratio of intensities between methylated and unmeth-
ylated probe, were used as measures of methylation level.
Differentially methylated positions (DMPs) for smoking
status were identified using moderated t-test implemented
in limma package in R (Smyth et al., 2005). The analysis was
adjusted for age, sex, body mass index (BMI), alcohol con-
sumption, socioeconomic status, and blood cell type pro-
portions by adding them as covariates in the linear model
implemented in limma.

Blood cell type proportions consisted of proportions of
CD8T, CD4T, natural killer cells, B cells, monocytes, and
granulocytes in white blood cells estimated through the
reference-based Houseman method (Houseman et al., 2012)
using the estimateCellCounts function in the minfi Biocon-
ductor package in R (Aryee et al., 2014). Population structure,
batch effects, and technical covariates were corrected for by
including the first 30 principal components based on both
control probes and methylation beta values each as covariates
in the multiple linear regression model (Lehne et al., 2015).

Physical activity index, measured as weekly metabolic
equivalent task hours (MET-h/week) calculated from infor-
mation on the frequency, intensity, and duration of physical
activity including leisure-time physical activity and com-
muting to the workplace (Pälve et al., 2018), was significantly
associated with smoking habit with odds ratio (OR) of 0.88
and p-value of 2.8 · 10-09. Alcohol consumption was also
significantly associated with smoking habit but with less
statistical significance (OR = 1.13, p = 1.9 · 10-05) as com-
pared with that of the physical activity index.

Therefore, as our main objective was to accurately esti-
mate the individual effect of smoking habit on DNA meth-
ylation, we did not adjust the analysis with physical activity
index to avoid the collinearity-related problem. Genomic
control to reduce the number of false positive results was
done by calculating genomic inflation factor (k) as the ratio of
the median of the empirically observed distribution of the test
statistic to the expected median.

Novelty of the identified DMPs was assessed through a
literature review, including a comparison of the results with
the largest ( Joehanes et al., 2016) and the latest (Christiansen
et al., 2021) studies at FDR <0.05. Differentially methylated
CpGs with genome-wide significance of p < 6.5 · 10-8 (0.05/
769,683) that are annotated to genes were used to define sets
of genes.

A total of 16 gene sets were defined with genes containing
hypo- or hypermethylated CpG sites in their: (1) transcription
start site (TSS) 1500 region (200–1500 bases upstream of the

TSS), (2) TSS200 region (0–200 bases upstream of the
transcriptional start site), (3) 5¢UTR region (within the 5¢
untranslated region, between the TSS and the ATG start site),
(4) first exon region (first exon of the gene), (5) body region
(between the ATG and stop codon irrespective of the pres-
ence of introns, exons, TSS, or promoters), (6) 3¢UTR region
(between the stop codon and poly A signal), (7) exon bound-
ary region, and (8) promoter region (TSS200, TSS1500,
5¢UTR, and first exon regions combined).

Definitions of the gene regions were based on Human
Methylation 850 K array and were obtained from Illumina
Human Methylation EPICanno. ilm10b2. hg19 R/Bioconductor
package (Hansen et al., 2016). Differentially expressed genes
(DEGs) among the smokers identified with transcriptome
data analysis in this study (Section transcriptome data anal-
ysis) as well as in previous studies were removed from the
defined gene sets because the aim of gene set analysis in this
study was to test whether the method can identify transcriptomic
consequences of smoking-related alterations in DNA meth-
ylation that is missed by traditional univariate methods.

Transcriptome data analysis. The DEGs between smok-
ers and non-smokers were identified using moderated t-test
implemented in limma R package. The analysis was adjusted
for age, sex, BMI, alcohol usage, socioeconomic status, and
the first 10 principal components of the transcriptomic data.
Enrichment analysis of the statistically significant DEGs
with FDR <0.05 with biological process terms of gene
ontology (GO) database (Ashburner et al., 2000; Carbon
et al., 2021) was done using clusterProfiler R package
(Wu et al., 2021; Yu et al., 2012).

The enrichment analysis was done for up- and down-
regulated genes separately. Summarization and interpretation
of the biological process GO terms was done using REVIGO
using default parameters (Supek et al., 2011).

Integrative DNA methylation and transcriptomic data
analysis. Integrative analysis of DNA methylation and
transcriptomics data concerning the effects of smoking habit
was done by conducting self-contained gene set analysis of
the differentially methylated gene sets using rotation gene
set test (ROAST) (Wu et al., 2010) implemented in limma
R/Bioconductor package (Fig. 2).

Results

Study participants

The characteristics of the YFS cohort participants of this
study are shown in Table 1. Only 150 out of the total 1114
participants were daily smokers. The proportion of male par-
ticipants was higher among daily smokers (53%) as compared
with the non-smokers group (45%). Daily smokers were less
involved in physical activity and had higher alcohol con-
sumption as compared with never or less than daily smokers.

DMPs between active smokers and never smokers

In EWAS comparing active smokers (N = 150) and never
or less than daily smokers (N = 964), we identified 272 sta-
tistically significant CpG sites or DMPs with methylome-
wide significance ( p < 6.5 · 10-8) and 1206 DMPs with a
more liberal threshold of FDR <0.05 (Fig. 3). The genomic
inflation factor (k) for these results was 1.08, which is lower
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than that reported in other studies (Christiansen et al., 2021;
Joehanes et al., 2016). The 272 statistically significant DMPs
in our results constituted 36 novel smoking-related DMPs
(Table 2) and replicated 236 DMPs from previous studies
(Christiansen et al., 2021; Joehanes et al., 2016) (Supple-
mentary Table S1). The number of DMPs replicated in our
study based on FDR <0.05 was 663.

DEGs between active smokers and never smokers

Differential gene expression (DGE) analysis of transcripto-
mics data identified 371 genes upregulated and 312 genes
downregulated (683 DEGs) among daily smoking participants
with FDR <0.05 (Fig. 4) (Supplementary Table S2). While GO
based gene set enrichment analysis of the 371 upregulated
genes identified 105 biological processes with FDR <0.05

(Supplementary Table S3), only 87 biological processes were
identified to be enriched in the 312 downregulated genes
with FDR <0.05 (Supplementary Table S4).

Majority of the significantly enriched biological process
GO terms in the upregulated genes were related to immune
system, metabolism of carbohydrate, metabolism of fat,
and signaling cascade. Similarly, GO terms enriched in the
downregulated genes included biological processes such as
regulation of cell killing, leukocyte-mediated cytotoxicity,
lymphocyte proliferation, T cell activation, T cell receptor
signaling pathway, immunological memory process, heart
trabecula formation, immune response to tumor cell, pyr-
optosis, and interferon-gamma production.

Among the 683 smoking-related DEGs identified in this
study, only 11 genes (6 up- and 5 downregulated) had altered
methylation level in their genomic regions. While three of the

FIG. 2. Schematic diagram representing the overall gene set based integrative multi-omics analysis for studying the
impact of cigarette smoking on DNA methylation and its transcriptomic consequences. DMPs, differentially methylated
positions; GSA, gene set analysis.

Table 1. Population Characteristics of the Young Finns Study Participants

Characteristics Daily smokers Never or less than daily smokers

Number of subjects 150 964
Sex (% women and % men) 47% and 53% 55% and 45%
Age, years 41 – 5 (Range 34–49) 42 – 5 (Range 34–49)
Body mass index, kg/m2 26.1 – 4.1 26.6 – 5.1
Total cholesterol (mmol/L) 5.0 – 0.9 5.0 – 0.9
Low-density lipoprotein (LDL)

cholesterol (mmol/L)
3.0 – 0.8 3.1 – 0.8

High-density lipoprotein (HDL)
cholesterol (mmol/L)

1.3 – 0.3 1.3 – 0.3

Systolic blood pressure (mmHg) 120.4 – 12.7 120.4 – 14.4
Diastolic blood pressure (mmHg) 73.9 – 10.7 75.8 – 11.4
Alcohol consumption, units/day 1.4 – 1.6 0.7 – 1.1
Physical activity index (MET h/week) 12.3 – 15.5 20.6 – 22.2
Socioeconomic status Low: 29% Low: 18%

Medium: 43% Medium: 39%
High: 28% High: 43%

Data are mean – SD or proportions.
MET-h, metabolic equivalent task hour; SD, standard deviation.
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FIG. 3. (A) Manhattan plot showing the p-values of genome-wide CpG sites. X-axis represents the position of the CpG
sites on each chromosome. Y-axis represents the negative log10 of the p-values for the association. The solid horizontal line
represents the genome-wide significance threshold ( p = 6.5 · 10-8). (B) Quantile-quantile plot showing genomic inflation
factor (k = 1.08) of the epigenome-wide association study. The genomic inflation factor (ratio of the median of the em-
pirically observed distribution of the test statistic to the expected median) represents the extent of inflation and false positive
rate in the results.

Table 2. List of 36 Novel Cigarette Smoking-Related CpG Sites Identified in This Study

with Genome-Wide Significance of p-Value <6.5 · 10-8 (0.05/769,683), Their Corresponding Genomic

Location, Corresponding Genes, Coefficients, Standard Error, and p-Values

ProbeID Chromosome Position Genes Coefficients SE p

cg12637027 chr5 56690874 -0.026 0.003 4.4 · 10-15

cg14486033 chr2 54643636 -0.018 0.002 1.9 · 10-14

cg19136686 chr16 17464401 XYLT1 -0.009 0.001 8.6 · 10-14

cg00592949 chr9 112680911 PALM2; PALM2-AKAP2 -0.032 0.004 2.7 · 10-13

cg12739216 chr12 131706350 -0.025 0.004 1.7 · 10-12

cg15775568 chr2 54643284 -0.013 0.002 7.1 · 10-11

cg24947681 chr15 39760933 -0.021 0.003 1.3 · 10-10

cg16485845 chr8 141802466 PTK2 -0.014 0.002 1.8 · 10-10

cg24087280 chr17 48193712 SAMD14 0.015 0.002 2.3 · 10-10

cg15548246 chr6 13121401 PHACTR1 0.013 0.002 3.6 · 10-10

cg02511321 chr5 32098574 PDZD2 0.015 0.002 3.9 · 10-10

cg10682119 chr15 93182494 FAM174B -0.034 0.005 3.9 · 10-10

cg22311669 chr16 30466567 -0.016 0.003 6.4 · 10-10

cg06563667 chr1 58016025 DAB1 -0.019 0.003 7.2 · 10-10

cg04481318 chr9 134282053 -0.022 0.004 8 · 10-10

cg26823705 chr1 145435523 NBPF20; NBPF10 -0.024 0.004 1.3 · 10-9

cg15102575 chr3 124510809 ITGB5 -0.021 0.003 2.2 · 10-9

cg11075883 chr7 146658441 CNTNAP2 0.013 0.002 3.9 · 10-9

cg07815896 chr15 40385132 BMF -0.017 0.003 5.7 · 10-9

cg26894575 chr1 153518054 S100A4 -0.006 0.001 7.8 · 10-9

cg13518852 chr1 212892006 0.026 0.005 8.7 · 10-9

cg18734657 chr7 139420591 HIPK2 -0.023 0.004 1 · 10-8

cg00442581 chr9 130733834 FAM102A -0.022 0.004 1.2 · 10-8

cg08151621 chr19 28995456 LOC100420587 -0.017 0.003 2.4 · 10-8

cg01990910 chr16 12207648 SNX29 -0.016 0.003 2.9 · 10-8

cg06467473 chr9 127054510 NEK6 -0.011 0.002 3.1 · 10-8

cg19467605 chr11 94349883 PIWIL4 0.030 0.005 3.4 · 10-8

cg07411532 chr20 56266785 PMEPA1 0.013 0.002 3.7 · 10-8

cg09465516 chr2 54751985 SPTBN1 -0.021 0.004 4.2 · 10-8

cg16762439 chr7 146795245 LOC101928700; CNTNAP2 0.013 0.002 4.3 · 10-8

cg20430809 chr19 2089006 MOB3A -0.014 0.003 4.4 · 10-8

cg05702597 chr3 154829011 MME -0.025 0.004 4.7 · 10-8

cg11786988 chr17 8826387 PIK3R5 -0.012 0.002 5.6 · 10-8

cg21811986 chr3 5053132 -0.012 0.002 6 · 10-8

cg17340043 chr10 13202710 MCM10 0.021 0.004 6.4 · 10-8

cg11674355 chr2 65610261 SPRED2 -0.024 0.004 6.4 · 10-8

Full list of smoking-related CpG sites identified in this study can be found in Supplementary Table S1.
SE, standard error.
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six upregulated genes (leucine rich repeat neuronal 3 [LRRN3],
MGAT3 and G protein-coupled receptor 15 [GPR15]) had
hypomethylated CpGs in their promoter region, the other three
(claudin domain-containing protein 1 [CLDND1], FAM102A,
and EPHA4) had hypomethylation in their body region.

Among the five downregulated genes, two (PRSS23 and
SLAMF7) had hypomethylation in their promoter region and
the other three (MTSS1, GFI1, and CCM2) had hypomethy-
lation in their body region.

Association between transcriptomic level gene expression
and smoking-related alterations in DNA methylation

The gene set containing 49 genes with hypomethylated
CpG sites in their body region was differentially expressed
among smokers for both mixed hypothesis (the genes are

up- or downregulated) and up hypothesis (the genes are
upregulated) with FDR.mixed = 0.0005 and FDR.up = 0.03,
respectively. The three most statistically significant upregulated
genes (based on DGE analysis) in the gene set were SIN3B
(FDR = 0.06), BMF (FDR = 0.08), and PDE1C (FDR = 0.19).

Difference in expression levels of all the 32 upregulated
genes in this gene set is shown in Figure 5. Similarly, the
three most DGE analysis-based downregulated genes in the
gene set were ITPK1 (FDR = 0.49), CDH23 (FDR = 0.49),
and NBR1 (FDR = 0.59). Difference in expression levels of
all the 17 downregulated genes in this gene set is shown in
Figure 6. Overall, genes in the gene set were enriched in GO
terms related to biological processes such as ossification,
metal ion transport, response to oxygen levels, fat cell dif-
ferentiation, cell death, and peptidyl-serine phosphorylation
(Supplementary Table S5).

FIG. 4. Volcano plot of differentially expressed genes between active smokers and non-smokers. The dots on the right and
left sides of the dashed vertical line represent 371 up and 312 downregulated genes, respectively, among active smokers
with FDR <0.05. The grey dots represent statistically not significant genes with FDR >0.05. The five most significant
differentially expressed genes are labeled. The y-axis represents negative log (base10) of FDR and the x-axis represents log
(base 2) of the fold change between active smokers and non-smokers. FDR, false discovery rate.

FIG. 5. Box plots for gene expression changes for the 32 upregulated genes with hypomethylated CpG sites in their body
region between daily smokers and never or less than daily smokers.
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The other gene set containing 33 genes with hypomethy-
lated CpG sites in their promoter region was differentially
expressed among smokers only for mixed hypothesis with
FDR.mixed = 0.001. The three most DGE analysis-based
statistically significant upregulated genes in the gene set were
SLC23A2 (FDR = 0.09), ANPEP (FDR = 0.16), and NEC6
(FDR = 0.28). Difference in expression levels of all the 19
upregulated genes in this gene set is shown in Figure 7.

The three most downregulated genes in the gene set were
NCALD (FDR = 0.07), INPP4A (FDR = 0.21), and BACH2
(FDR = 0.25). Difference in expression levels of all the 14
downregulated genes in this gene set is shown in Figure 8.
Member genes of this gene set were enriched in the biological
process GO term related to the cerebral cortex development
process.

None of the gene sets containing genes with hyper-
methylated genomic positions were differentially expressed
among smokers with a statistical significance threshold of
FDR <0.05.

Discussion

In the present study, we performed a novel advanced
gene set based integrative analysis of DNA methylomic and
transcriptomic data to identify epigenetic alterations associ-
ated with smoking and its transcriptomic consequences. The
integrative system-level approach allowed us to identify sets
of novel genes that have smoking-related alterations in DNA
methylation within their genomic regions and are also dif-
ferentially expressed among smokers.

FIG. 6. Box plots for gene expression changes for the 17 downregulated genes with hypomethylated CpG sites in their
body region between daily smokers and never or less than daily smokers.

FIG. 7. Box plots for gene expression changes for the 19 upregulated genes with hypomethylated CpG sites in their
promoter region between daily smokers and never or less than daily smokers.
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The novelty of this study rests in the usage of both a novel
data platform and a novel advanced system-level statistical
method to study epigenetic and transcriptomic consequen-
ces of smoking. To our knowledge, this is the first multi-
omics integrative study of smoking that is based on EPIC
BeadChip-based DNA methylation and transcriptomic data
from whole blood.

The number of measured CpG sites in EPIC BeadChip is
nearly twice as many the number in HumanMethylation450
BeadChip (450 K), generating an important scientific gap
that needs to be addressed. On the statistical method side,
we propose a novel system-level integrative approach that
pools and analyzes together all the genes based on their
genomic regions where smoking-related DNA methylation
alterations have occurred. Our results showed that this ap-
proach is statistically more powerful as compared with
traditional one-to-one association analysis between genes
and methylation sites such as the study by Maas et al.
(2020).

Gene sets containing genes with hypomethylated CpG
sites in body as well as in promoter regions were significantly
differentially expressed among smokers. While the gene set
containing genes with hypomethylated CpG sites in their
body region was upregulated among smokers, the one with
hypomethylated CpG sites in the promoter region contained
both up- and downregulated genes among smokers. Inter-
estingly, genes from the gene sets based on both promoter and
body regions were not found to be differentially expressed
using the traditional gene-wise differential gene expression
analysis in this study.

Similarly, to the best of our knowledge, the effects of
smoking-related differentially methylated genes on gene
expression have not been identified in any of the previous
transcriptome-wide studies despite the pronounced associa-
tion of smoking with DNA methylation in the genomic
regions of some of the member genes such as AHRR and
F2RL2 reported by several studies such as Joehanes et al.
(2016), Kaur et al. (2019), and Zeilinger et al. (2013).

The novel genes within the gene sets identified in this
study are enriched in biological processes that are known in
literature to have associations with smoking; however, the
underlying molecular mechanisms remain mostly unexplai-
ned. This study revealed the epigenetic mechanisms through
which these biological processes are affected by smoking.
For example, smoking is a well-known risk factor for osteo-
porosis (Yoon et al., 2012); this study identified the smoking-
triggered epigenetic mechanism that affects genes involved
in the process of bone formation.

Similarly, this study identified that genes involved in metal
ion transport are affected by smoking-related alterations in
DNA methylation. Imbalance in metal ion concentration
in cerebrospinal fluid caused by smoking can lead to cogni-
tive impairment (Li et al., 2021). Similarly, alterations in
metal ion transport system can affect copper homeostasis,
which, in turn, can lead to dyslipidemia and low-density
lipoprotein oxidation (Meyer et al., 2014) and its related
diseases such as osteoporosis (Poiana et al., 2013) and ath-
erosclerosis (Linton et al., 2019).

Despite being one of the most important and prevent-
able risk factors for atherosclerosis, the underlying molecular
mechanism linking smoking and atherosclerosis remains
largely unknown. Our findings support the hypothesis that
the atherogenic effect of smoking might involve endothelial
cell death (Messner et al., 2012). We identified that genes
involved in cerebral cortex development are differentially
expressed among smokers through the epigenetic mecha-
nism. Our finding supports a previous study that reported an
association between smoking and accelerated cortical thin-
ning that causes cognitive decline in adults (Karama et al.,
2015).

Univariate analysis of DNA methylation and transcrip-
tomic data separately concerning smoking also generated
novel results in this study. Biological implications of the
novel DMPs along with the replicated ones from DNA
methylation data analysis were studied with the downstream
integrative approach as described earlier.

FIG. 8. Box plots for gene expression changes for the 14 downregulated genes with hypomethylated CpG sites in their
promoter region between daily smokers and never or less than daily smokers.
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The largest transcriptomic study of smoking so far by
Huan et al. (2016) reported 1270 DEGs between active
smokers and never smokers at FDR <0.1, out of which 289
were replicated in this study at the same statistical signifi-
cance threshold (FDR <0.1). Similarly, we also replicated 69
smoking-related genes reported by another study (Vink et al.,
2017).

Considering the smoking-related genes reported in both
the studies (Huan et al., 2016; Vink et al., 2017), there were
428 new genes at FDR <0.05 and 694 new genes at FDR <0.1
reported in this study. The most significant smoking-related
genes identified in this study such as LRRN3, CLDND1,
PID1 (phosphotyrosine interaction domain-containing pro-
tein 1), GPR15, and S1PR5 (sphingosine-1 phosphate re-
ceptor 5) were consistent in all other recent studies reviewed
here.

Biological processes linked to the DEGs from transcrip-
tomic data analysis such as immune system, cell death, fat
metabolism, and signaling cascade are known to play a
central role in the development of atherosclerosis (Hultén
and Levin, 2009; Kong et al., 2022; Messner et al., 2012;
Wolf and Ley, 2019).

This study has several limitations, one of them being
the self-reported smoking status. However, this study repli-
cated the most consistent findings across the literature from
both DNA methylation and transcriptomics data indicating
the robustness of the data and analysis approach. Another
limitation is that the study was based on Infinium Methyl-
ationEPIC (EPIC) BeadChips for DNA methylation and
Illumina HumanHT-12 version 4 Expression BeadChip
for transcriptome, which provide suboptimal coverage of
regulatory elements as compared with sequencing-based
platforms such as whole-genome bisulfite sequencing and
RNA-Seq.

The study was based on cross-sectional data, and, there-
fore, changes in DNA methylation after cessation of smoking
could not be studied. Also, the participants of this study are
of European origin and therefore further studies with popu-
lations of different ethnicities are needed. However, this
study contributed a novel gene-set based integrative DNA
methylome and transcriptome analysis approach. The appro-
ach is statistically more powerful as compared with the
traditional single-molecule analysis methods and can allow
identification of small but coordinated changes in gene
expression associated with DNA methylation.

Conclusions

Using system-level integrated analysis of DNA methyla-
tion and transcriptomics data, we identified novel sets of
genes associated with smoking through epigenetic alter-
ations, uncovering the potential molecular cascade under-
lying the disease induction mechanism by smoking. The
genes and their epigenetic regulation explain the underlining
mechanism of how smoking affects different biological
processes such as those related to the immune system, metal
ion transport, osteoblast differentiation, hypoxia, cell death,
and the cerebral cortex development process and can lead
to related diseases such as atherosclerosis, osteoporosis, and
cognitive impairment.

Importantly, this study proposes an alternative system-
level integrative multi-omics analysis method that can

uncover small but coordinated changes in gene expression
potentially due to DNA methylation changes in their geno-
mic regions. Such small and coordinated changes in gene
expression can be missed by traditional linear association
analysis methods due to lack of sufficient statistical power.
The proposed integrative method can be applied to study a
wide range of biological problems, for example, to uncover
epigenetic alterations associated to a disease or a trait of
interest, their effects on gene expression and related biolog-
ical processes.
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