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Further remarks on permissible covariance
structures for simultaneous retention of BLUEs in

linear models

Stephen J. Haslett, Jarkko Isotalo, Augustyn Markiewicz, and
Simo Puntanen

Abstract. We consider the partitioned linear model M12(V0) = {y,
X1β1 + X2β2,V0} and the corresponding small model M1(V0) = {y,
X1β1,V0}. We define the set V1/12 of nonnegative definite matrices V
such that every representation of the best linear unbiased estimator,
BLUE, of µ1 = X1β1 under M12(V0) remains BLUE under M12(V).
Correspondingly, we can characterize the set V1 of matrices V such that
every BLUE of µ1 = X1β1 under M1(V0) remains BLUE under M1(V).
In this paper we focus on the mutual relations between the sets V1 and
V1/12.

1. Introduction and preliminaries

In this paper we consider the partitioned linear model y = X1β1+X2β2+
ε, sometimes called big or full model, shortly denoted

M12(V) = {y, Xβ, V} = {y, X1β1 +X2β2, V} ,
and the corresponding small model y = X1β1 + ε, denoted as

M1(V) = {y, X1β1, V}.
In the above linear models, y is an n-dimensional observable random vec-
tor, and ε is an unobservable random error vector with a known covari-
ance matrix cov(ε) = V = cov(y) and expectation E(ε) = 0. The matrix

X is a known n × p matrix, i.e., X ∈ Rn×p, partitioned columnwise as
X = (X1 : X2), Xi ∈ Rn×pi , i = 1, 2. Vector β = (β′

1,β
′
2)

′ ∈ Rp is a vector
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of fixed (but unknown) parameters; here symbol ′ stands for the transpose.
We will also denote µ = Xβ, µi = Xiβi, i = 1, 2.

As regards notations, the symbols r(A), A−, A+ and C (A), denote, re-
spectively, the rank, a generalized inverse, the Moore–Penrose inverse, and
the column space of the matrix A. Furthermore, we will write PA =
AA+ = A(A′A)−A′ to denote the orthogonal projector onto C (A) and
QA = Ia − PA where Ia is the identity matrix of order a with a being the
number of rows in A. In particular, we denote

M = In −PX , Mi = In −Pi , Pi = PXi
, i = 1, 2.

Under the model M12(V) = {y,Xβ,V}, the statistic Gy, where G is an
n × n matrix, is the best linear unbiased estimator, BLUE, of Xβ if Gy is
unbiased, i.e., GX = X, and it has the smallest covariance matrix in the
Löwner sense among all unbiased linear estimators of Xβ; shortly denoted

cov(Gy) ≤L cov(Cy) for all C ∈ Rn×n: CX = X ,

i.e., for all C ∈ Rn×n such that CX = X we have

cov(Cy)− cov(Gy) = AA′ for some A .

The BLUE of an estimable parametric function Kβ, where K ∈ Rk×p, is
defined in the corresponding way. Recall that Kβ is said to be estimable if it
has a linear unbiased estimator which happens if and only if C (K′) ⊆ C (X′).
In particular, µ1 = X1β1 is estimable in the partitioned model if and only
if

C (X1) ∩ C (X2) = {0} . (1)

For the proof of the following fundamental lemma, see, e.g., Rao [13,
p. 282].

Lemma 1.1. Consider the partitioned linear model M12(V) = {y,Xβ,V}.
Then the statistic Gy is the BLUE for Xβ if and only if G satisfies the
equation

G(X : VM) = (X : 0) . (2)

The corresponding condition for By to be the BLUE of an estimable para-
metric function µ1 = X1β1 is

B(X1 : X2 : VM) = (X1 : 0 : 0) . (3)

Equation (2) has always a solution for G while (3) has a solution for B if
and only if µ1 is estimable in M12(V). Solutions are unique if and only if
C (X : VM) = Rn.

For later considerations, we collect some useful results into the following
lemma. As references, we may mention [14, Lemma 2.1] and [6, Cor. 6.2].
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Lemma 1.2. Consider the partitioned model M12(V) = {y,Xβ,V}, and
let “⊕” refer to the direct sum and “⊞” to the direct sum of orthogonal
subspaces. Then

(a) C (X1 : X2) = C (X1 : M1X2) , i.e., C (X) = C (X1)⊞ C (M1X2) ,
(b) C (X : V) = C (X : VM) = C (X)⊕ C (VM) = C (X)⊞ C (MV) ,
(c) M = In −PX = In − (PX1

+PM1X2
) = M1QM1X2

= QM1X2
M1 ,

(d) r(M1X2) = r(X2)− dimC (X1) ∩ C (X2) .

Consider now the linear model M1(V0) = {y,X1β1,V0}. Then it is well
known, see, e.g., Rao [12, Sec. 4], that one solution forG inG(X1 : V0M1) =
(X1 : 0) is

G1 = X1(X
′
1W

−
1 X1)

−X′
1W

−
1 , (4)

where W1 is any matrix of the form

W1 = V0 +X1U1U
′
1X

′
1 such that C (W1) = C (X1 : V0).

The choice of U1 is free subject to C (W1) = C (X1 : V0). In particular,
if C (X1) ⊆ C (V0), in which case we say that M1(V0) is a weakly singular
linear model, then we can choose U1 = 0 and one solution for G in G(X1 :
V0M1) = (X1 : 0) is

G2 = X1(X
′
1V

−
0 X1)

−X′
1V

−
0 . (5)

Correspondingly, one solution for B in (3) concerning the partitioned model
M12(V0) = {y,X1β1 +X2β2,V0} is

B1 = (X1 : 0)(X
′W−X)−X′W−,

where W is any matrix of the form

W = V0 +XUU′X′ such that C (W) = C (X : V0). (6)

Now the general solution for G in G(X1 : V0M1) = (X1 : 0) is

G0 = G1 +N(In −P(X1:V0)
) = G1 +NQ(X1:V0)

, (7)

where G1 is as in (4) and N ∈ Rn×n is free to vary. Thus, if we want that
every representation of the BLUE of µ1 under M1(V0) provides also the
BLUE of µ1 under M1(V) = {y,X1β1,V}, then by Lemma 1.1, the matrix
G0 in (7) has to satisfy

G0(X1 : VM1) = (G1 +NQ(X1:V0)
)(X1 : VM1) = (X1 : 0) for all N. (8)

As concluded by Rao [12, Th. 5.2] and [13, Th. 4.2] the statement (8) holds
if and only if

C (VM1) ⊆ C (V0M1) . (9)

Notice that in the consistent model the numerical value of G0y is unique
once the response vector y has been observed; the model M1(V0) is called
consistent if y ∈ C (X1 : V0) with probability 1.
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Next question: for a given V0 , how can we characterize the set, say V1,
of nonnegative definite matrices V that satisfy (9)? By Rao [12, Th. 5.3],
(9) is equivalent to the fact that V can be expressed as V = X1AA′X′

1 +
V0M1BB′M1V0 for some A and B, i.e.,

V ∈ V1 ⇐⇒ V = X1AA′X′
1 +V0M1BB′M1V0 for some A and B.

Further equivalent conditions appear in Lemma 1.3 below. It may be men-
tioned, as noted by Mitra and Moore [8, p. 148] and Rao [13, p. 289],
that Rao in Theorem 5.3 of his 1971 paper had an unnecessary condition
C (X1 : V0M1) = Rn which was not used in the proofs.

For the property that every representation of the BLUE of µ1 under
M1(V0) remains BLUE of µ1 under M1(V) we will use the notation

B(µ1 |M1(V0)) ⊆ B(µ1 |M1(V)) . (10)

It is worth emphasizing that the notation of the above type is merely sym-
bolic; we are interested in the multipliers of the response vector y which
have specific properties. The notation B(η |A ) refers to the set of all repre-
sentations of the BLUE of parametric function η under the model A .

Some equivalent statements to (10) are given as follows.

Lemma 1.3. Consider the linear models M1(V0) = {y,X1β1,V0} and
M1(V) = {y,X1β1,V}. Then the following statements are equivalent:

(a) B(µ1 |M1(V0)) ⊆ B(µ1 |M1(V)), i.e., V ∈ V1.
(b) C (VM1) ⊆ C (V0M1).
(c) V = X1AA′X′

1 +V0M1BB′M1V0 , for some A and B.
(d) V = V0 +X1CC′X′

1 +V0M1DD′M1V0 , for some C and D.
(e) V = V0 + X1ΛX′

1 + V0M1∆M1V0 , for some matrices Λ and ∆
such that V is nonnegative definite.

(f) V = X1ΣX′
1+V0M1ΓM1V0 , for some matrices Σ and Γ such that

V is nonnegative definite.

Later we shall utilise the representation (c) which is somewhat simpler
than those in (d), (e) and (f). For the proof of Lemma 1.3 and related
discussion, see, e.g., Mitra and Moore [8, Th. 4.1–4.2], Rao [11, Lemma 5],
[12, Th. 5.2, Th. 5.5], [13, p. 289], and Baksalary and Mathew [1, Th. 3].

Let us next consider the estimation of µ1 = X1β1 in the partitioned
model; we of course assume that the disjointness (1) holds so that µ1 is
estimable. Let V1/12 denote the set of nonnegative definite matrices V such
that every representation of the BLUE of µ1 under M12(V0) remains BLUE
under M12(V), i.e.,

V ∈ V1/12 ⇐⇒ B(µ1 |M12(V0)) ⊆ B(µ1 |M12(V)) .

In view of Haslett and Puntanen [3, Th. 2.1], see also Mathew and Bhi-
masankaram [7, Th. 2.4], the following holds:
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Lemma 1.4. Consider the partitioned linear models

M12(V0) = {y,X1β1 +X2β2,V0} and M12(V) = {y,X1β1 +X2β2,V} ,

where µ1 = X1β1 is estimable. Then the following statements are equivalent:

(a) B(µ1 |M1(V0)) ⊆ B(µ1 |M1(V)), i.e., V ∈ V1/12 .
(b) C (M2VM) ⊆ C (M2V0M).
(c) C (VM) ⊆ C (X2 : V0M) .

In this paper we focus on the mutual relations between the sets V1 and
V1/12.

Remark 1.1. Theorem 2.4 in the paper of Mathew and Bhimasankaram
[7] says the following: Every linear representation of the BLUE of estimable
parametric function Kβ under M12(V0) continues to be its BLUE under
M12(V) if and only if

C (VM) ⊆ C (X0 : V0M) , (11)

where X0 = X(Ip −K−K). Thus using K+, we have X0 = X(Ip −PK
′) =

XQK
′ . In particular, if K = (X1 : 0), then Kβ = µ1 and

QK
′ = Ip −PK

′ =

(
Ip1 −PX

′
1

0

0 Ip2

)
,

and so X0 = (X1 : X2)QK
′ = (0 : X2). This confirms the equivalence of (c)

of Lemma 1.4 and (11) when Kβ = µ1. □

Remark 1.2. If C (X2) ⊆ C (V0M), then by the equivalence of (a) and (b)
of Lemma 1.4,

C (M2VM) ⊆ C (M2V0M) ⇐⇒ C (VM) ⊆ C (V0M) ,

which further means an interesting relation:

If C (X2) ⊆ C (V0M) then V ∈ V1/12 ⇐⇒ V ∈ V12 ,

where V12 refers to the set of V satisfying

B(µ |M12(V0)) ⊆ B(µ |M12(V)) ,

i.e.,

V ∈ V12 ⇐⇒ V = XCC′X′ +V0MDD′MV0 for some C and D.

The relations between the sets V1 and V12 were studied by Haslett et al. [2]
and Haslett and Puntanen [4]. □
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Remark 1.3. Before leaving this section, let us consider the model

M12(W) = {y,Xβ,W} ,
where W is defined as in (6), i.e.,

W = V0 +XUU′X′ such that C (W) = C (X : V0). (12)

Now it is clear that

G(X : V0M) = (X : 0) ⇐⇒ G(X : WM) = (X : 0)

so that the BLUE of µ under M12(V0) remains BLUE under M12(W), i.e.,
W ∈ V12. By (12) the model M12(W) is a weakly singular linear model
since C (X) ⊆ C (W). The weakly singular linear model M12(W) has such
a property, cf. (5) regarding a weakly singular M1(V0), that the BLUE of
µ can be expressed as

BLUE(µ |M12(W)) = X(X′W−X)−X′W−y,

which of course is one representation for the BLUE of µ under M12(V0);
see the corresponding representation (4) for the BLUE of µ1 in M1(V0).

For weakly singular linear models, see, e.g., Mitra and Rao [9] and Zyskind
and Martin [16]. □

2. Main results

Haslett et al. [2] showed the following result (Theorem 4.1 therein):

Lemma 2.1. The matrix V belongs to V1/12 if and only if it can be
expressed as

V = X1L11X
′
1 +X2L22X

′
2 +V0ML33MV0 + Z+ Z′

= XLL′X′ +V0ML33MV0 +X2L23MV0 +V0ML32X
′
2 (13)

for some L′ = (L′
1 : L

′
2), L3, Lij = LiL

′
j, i, j = 1, 2, 3, and

Z = X1L12X
′
2 +X2L23MV0 .

Remark 2.1. According to Mathew and Bhimasankaram [7, Th. 2.4], every
representation of the BLUE of estimable parametric function Kβ under
M12(V0) continues to be its BLUE under M12(V) if and only if V can
be expressed as

V = XU1X
′ +V0MU2MV0 +X0U3MV0 +V0MU′

3X
′
0 , (14)

where X0 is defined as in Remark 1.1, i.e., X0 = XQK
′ , and U1,U2,U3 are

arbitrary subject to the condition thatV is nonnegative definite. Noting that
if K = (X1 : 0), we have X0 = (0 : X2), and (13) is essentially the same
as (14), the representation (13) yielding “automatically” to a nonnegative
definite V. □
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Let us next study when does an arbitrary V ∈ V1/12 belong also to V1.
In other words, if we have an arbitrary V of the form (13), what is needed
that V can be expressed in the form

V = X1AA′X′
1 +V0M1BB′M1V0

for some A and B? Shortly said, we want to find a necessary and sufficient
condition for the inclusion V1/12 ⊆ V1 . We can also express our aim so that
we want to characterize the set of nonnegative definite matrices V which
satisfy the following implication:

C (M2VM) ⊆ C (M2V0M) =⇒ C (VM1) ⊆ C (V0M1) .

Let V ∈ V1/12 be of the form (13). Then V ∈ V1 if and only if C (VM1) ⊆
C (V0M1), i.e.,

C (VM1) = C
[
(XLL′X′ +V0ML33MV0 +X2L23MV0 +V0ML32X

′
2)M1

]
= C

[
(XLL′X′ +X2L23MV0)M1 +V0MR

]
⊆ C (V0M1) , (15)

where R = (L33MV0 + L32X
′
2)M1. Now in light of

C (V0M) = C (V0M1QM1X2
) ⊆ C (V0M1) ,

the inclusion (15) holds if and only if

C
[
(XLL′X′ +X2L23MV0)M1

]
⊆ C (V0M1) ,

i.e.,

C
[
(X1L12X

′
2 +X2L22X

′
2 +X2L23MV0)M1

]
⊆ C (V0M1) .

Thus we have proved the following.

Theorem 2.1. The inclusion V1/12 ⊆ V1, i.e., the implication

C (M2VM) ⊆ C (M2V0M) =⇒ C (VM1) ⊆ C (V0M1) ,

holds if and only if the matrix V ∈ V1/12 can be expressed as

V = X1L11X
′
1 +X2L22X

′
2 +V0ML33MV0 + Z+ Z′

= XLL′X′ +V0ML33MV0 + F+ F′ , (16)

with

Z = X1L12X
′
2 +X2L23MV0 , F = X2L23MV0 ,

for some L′ = (L′
1 : L

′
2), L3, Lij = LiL

′
j, i, j = 1, 2, 3, where

C
[
(X1L12X

′
2 +X2L22X

′
2 +X2L23MV0)M1

]
⊆ C (V0M1) . (17)
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Consider then the special case when

C (X2) ⊆ C (V0M1) . (18)

Then, under (18), obviously

C
[
(X2L22X

′
2 +X2L23MV0)M1

]
⊆ C (V0M1) ,

and thereby the inclusion (17) holds if and only if

C (X1L12X
′
2M1) ⊆ C (V0M1) ,

which, in view of the disjointness of C (X1) and C (V0M1), holds if and only
if X1L12X

′
2M1 = 0 which further, by the disjointness of C (X1) and C (X2),

is equivalent to
X1L12X

′
2 = 0 . (19)

In light of (19) the expression (16) becomes as (20) in the following theorem.

Theorem 2.2. If C (X2) ⊆ C (V0M1), then V1/12 ⊆ V1 if and only if
matrix V ∈ V1/12 can be expressed in the form

V = X1L11X
′
1 +X2L22X

′
2 +V0ML33MV0 + F+ F′ , (20)

where F = X2L23MV0, for some L1,L2,L3, Lij = LiL
′
j .

What about the reverse inclusion V1 ⊆ V1/12? Take an arbitrary V ∈ V1

so that
V = X1AA′X′

1 +V0M1BB′M1V0

for someA and B. NowV ∈ V1/12 if and only if C (M2VM) ⊆ C (M2V0M),
which obviously holds if and only if

C (M2V0M1BB′M1V0M) ⊆ C (M2V0M) . (21)

Thus we have the following.

Theorem 2.3. The inclusion V1 ⊆ V1/12, i.e., the implication

C (VM1) ⊆ C (V0M1) =⇒ C (M2VM) ⊆ C (M2V0M) ,

holds if and only if an arbitrary V ∈ V1 can be expressed as

V = X1AA′X′
1 +V0M1BB′M1V0 ,

for some A and B, where (21) holds.

What about the equality V1 = V1/12? Consider such a situation when

C (X2) ⊆ C (V0M1) , i.e., X2 = V0M1S for some S ∈ Rn×p2 . (22)

In other words, we should combine Theorems 2.2 and 2.3, i.e., our request
is that the following two expressions are both holding:

(i) V = X1L11X
′
1 +X2L22X

′
2 +V0ML33MV0 + F+ F′,

where F = X2L23MV0 ,
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(ii) V = X1AA′X′
1 +V0M1BB′M1V0 , subject to (21).

Thus our aim is to characterize the set of matrices V belonging to V1∩V1/12.
To clarify the situation: for any choice of L1,L2,L3, the matrix V in (i)

should be possible to express as in (ii) for some A and B; correspondingly,
as a reverse relation, for any choice of A and B the matrix V in (ii) should
be possible to express as in (i) for some L1,L2 and L3.

In the comparison described above, it is clear that the matrix X2 may be
causing problems: it has no role in (ii) at all. To overcome this problem we
have made the assumption (22).

Let us denote V in (i) as

V = X1L11X
′
1 +V∗ .

Then using (22) and denoting M = M1Q , where Q = QM1X2
, the matrix

V∗ can be expressed as

V∗ = X2L22X
′
2 +V0ML33MV0 +X2L23MV0 +V0ML32X

′
2

= V0M1(SL22S
′ +QL33Q)M1V0 +V0M1(SL23Q+QL32S

′)M1V0

= V0M1(SL22S
′ +QL33Q+ SL23Q+QL32S

′)M1V0

= V0M1TM1V0 , (23)

where T = (SL2 +QL3)(SL2 +QL3)
′. Thus by (23) the matrix V given in

(i) can be expressed as in (ii) but we still need to check that the condition
corresponding to (21) is holding. This is indeed true since

C (M2V∗M) = C (M2V0ML33MV0M) ⊆ C (M2V0M) .

As a matter of fact, the development in (23) is not necessary as we know
that the matrix V in (i) belongs to V1, i.e., V has a representation of the
type V = X1AA′X′

1 + V0M1BB′M1V0 for some A and B. However, we
find it instructive to go through (23).

Thus we can conclude that the set of matrices V satisfying both (i) and
(ii) is the set defined by (i) and so the following holds.

Theorem 2.4. Suppose that C (X2) ⊆ C (V0M1). Then V1/12 = V1 holds,
i.e., V ∈ V1/12 ∩ V1 if and only if V is of the form

V = X1L11X
′
1 +X2L22X

′
2 +V0ML33MV0 + F+ F′ , (24)

where F = X2L23MV0, for some L1,L2,L3, Lij = LiL
′
j . In other words,

V1/12 ⊆ V1 =⇒ V1/12 = V1 .

Remark 2.2. What happens if C (X2) ⊆ C (V0M1) is not holding? For
example, is it then possible that

V1 ∩ V1/12 = {∅}?
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Putting L2 = 0 in (16) yields the following representation:

Va = X1L11X
′
1 +V0ML33MV0 ∈ V1/12 .

Now it is clear that Va belongs also to V1 , so that V1 ∩ V1/12 ̸= {∅}.
Let U be a matrix satisfying

C (U) = C (X2) ∩ C (V0M1) .

Then there exist L2 and H such that

C (X2L2) = C (U) = C (V0M1H)

and thereby there exists J so that

X2L2 = V0M1HJ .

It can be shown that substituting the above expression into (20) provides
one expression for V which belongs to V1 ∩ V1/12. □

3. Conclusions

In this article we consider the partitioned linear model

M12(V0) = {y, X1β1 +X2β2, V0}

and the corresponding small model

M1(V0) = {y, X1β1, V0} .

Following Rao [12, Sec. 5], we can characterize the sets V1, V1/12 and V12 of
nonnegative definite matrices V so that

V ∈ V1 ⇐⇒ B(µ1 |M1(V0)) ⊆ B(µ1 |M1(V)) ,

V ∈ V1/12 ⇐⇒ B(µ1 |M12(V0)) ⊆ B(µ1 |M12(V)) ,

V ∈ V12 ⇐⇒ B(µ |M12(V0)) ⊆ B(µ |M12(V)) ,

where µ1 = X1β1, µ = Xβ, and

M12(V) = {y, X1β1 +X2β2, V} and M1(V) = {y, X1β1, V} .

The notation B(η |A ) ⊆ B(η |B) means that every representation of the
BLUE for parametric vector η under model A remains BLUE for η under
B.

It appears that V belongs to the class V1 if and only if

C (VM1) ⊆ C (V0M1) ,

which further holds if and only if V can be expressed in form

V = X1AA′X′
1 +V0M1BB′M1V0 ,

for some matrices A and B; above M1 = In − PX1
. Corresponding char-

acterizations can be done for V12 and V1/12. In this article we focus on
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characterizing the mutual relations between the sets V1 and V1/12. The re-
lations between the sets V1 and V12 were studied by Haslett et al. [2] and
Haslett and Puntanen [4].

We may complete this paper by mentioning briefly the special case when
V0 = I, the identity matrix of order n. This means that we have the model
M12(I) = {y,Xβ, I} so that the BLUEs under M12(I) are ordinary least
squares estimators, OLSEs. For example,

B(µ |M12(I)) =
{
By : B(X : M) = (X1 : X2 : 0)

}
=

{
PXy

}
,

B(µ1 |M12(I)) =
{
Cy : C(X : M) = (X1 : 0 : 0)

}
=

{
PX1·X2

y
}
,

where PX1·X2
= X1(X

′
1M2X1)

−X′
1M2. Thus the inclusion

B(µ |M12(I)) ⊆ B(µ |M12(V))

can be interpreted as the equality OLSE(µ) = BLUE(µ) under M12(V) .
For the extended review of this problem area, see Markiewicz et al. [5] and
the references therein like Rao [10] and Zyskind [15].
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