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Summary
Background Early neurodevelopmental care and research are in urgent need of practical methods for quantitative
assessment of early motor development. Here, performance of a wearable system in early motor assessment was
validated and compared to developmental tracking of physical growth charts.

Methods Altogether 1358 h of spontaneous movement during 226 recording sessions in 116 infants (age 4–19
months) were analysed using a multisensor wearable system. A deep learning-based automatic pipeline quantified
categories of infants’ postures and movements at a time scale of seconds. Results from an archived cohort
(dataset 1, N = 55 infants) recorded under partial supervision were compared to a validation cohort (dataset 2,
N = 61) recorded at infants’ homes by the parents. Aggregated recording-level measures including developmental
age prediction (DAP) were used for comparison between cohorts. The motor growth was also compared with
respective DAP estimates based on physical growth data (length, weight, and head circumference) obtained from
a large cohort (N = 17,838 infants; age 4–18 months).

Findings Age-specific distributions of posture and movement categories were highly similar between infant cohorts.
The DAP scores correlated tightly with age, explaining 97–99% (94–99% CI 95) of the variance at the group average
level, and 80–82% (72–88%) of the variance in the individual recordings. Both the average motor and the physical
growth measures showed a very strong fit to their respective developmental models (R2 = 0.99). However, single
measurements showed more modality-dependent variation that was lowest for motor (σ = 1.4 [1.3–1.5 CI 95] months),
length (σ = 1.5 months), and combined physical (σ = 1.5 months) measurements, and it was clearly higher for the
weight (σ = 1.9 months) and head circumference (σ = 1.9 months) measurements. Longitudinal tracking showed
clear individual trajectories, and its accuracy was comparable between motor and physical measures with longer
measurement intervals.

Interpretation A quantified, transparent and explainable assessment of infants’ motor performance is possible with a
fully automated analysis pipeline, and the results replicate across independent cohorts from out-of-hospital
recordings. A holistic assessment of motor development provides an accuracy that is comparable with the
conventional physical growth measures. A quantitative measure of infants’ motor development may directly
support individual diagnostics and care, as well as facilitate clinical research as an outcome measure in early
intervention trials.
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Research in context

Evidence before this study
An uncompromised infantile neurodevelopment is
fundamental for a lifelong success. More than every tenth
newborn infant has a medically identified
neurodevelopmental risk that calls for an early
neurodevelopmental follow-up and consideration of
therapeutic interventions. An evidence-based development of
neurodevelopmental care is critically dependent on measures
of early motor development that should be reliable, objective
and ecologically valid; however, there is scarcity of such
methods in both clinical practice and in clinical research. It is
well established that early gross motor development is
characterized by acquiring new skills, which are commonly
observed in an infant as reaching discrete motor milestones.
Measuring infants’ spontaneous motor activity over longer
times in a native environment, such as the home, can provide
a more extensive and detailed account of motor performance.
Our recent development of infant wearables, comprising a
multisensor garment with an automated, deep learning
-based algorithmic assessment, has made it possible to
quantify infant’s motor performance at high accuracy. If
successful, such measures could even support construction of
“motor growth charts” to complement the world widely used
physical growth charts based on weight, height or head
circumference measurements. It is currently not known,
however, whether measures from infant wearables are
replicable across cohorts from different recording settings, or
how do they compare in interpretative potential with the
physical growth charts.

Added value of this study
We show a detailed validation of prior results from a
controlled study setting by recruiting a prospective cohort of

infants recorded at infant’s homes by their parents. The novel
cohort compares closely to a scenario of future clinical
practice where infants’ gross neuromotor performance is
measured without supervision by the healthcare workers, and
the recorded data is analysed using fully automated pipelines
located in a cloud server. The findings show remarkable
consistency in all measures between the cohorts. Moreover,
we show that the accuracy of developmental measurements,
estimated as prediction error of age, is highly comparable
between measures of function (motor) and physical size
(height, weight, head circumference; individually or
combined). All of these measures support the idea that a
longitudinal and quantitative tracking of infants’ motor
development is feasible at high accuracy.

Implications of all the available evidence.
A wearable solution of this kind can be readily implemented
into health care or clinical research practice. Its automatically
generated results offer intuitive, transparent, explainable, and
quantified interpretation of motor development. The overall
accuracy of such a chart of holistic gross motor development
is comparable with the widely used physical growth charts.
Individual metrics from the automated analysis outputs, such
as measures of different posture and movement times,
provide evolving potential for establishing reference charts in
the future. These findings together support a vision that
functional growth charts could be constructed as a
complement to physical growth charts, implying significant
improvement in tracking functional, or neuromotor
development at an individual level. Such early outcome
measures hold also promise for facilitating both clinical
research and therapeutic trials.
Introduction
Improvements in neurodevelopmental care are globally
challenged by a scarcity of objective, reliable and scal-
able solutions for a quantitative assessment of early
development.1 A particular challenge in the clinical
research and practice is to track functional development
of an individual infant in the presence of the large intra-
and inter-individual variations. In the current practice,
infant’s motor abilities are assessed with an array of
screening tools, such as questionnaires for motor
milestones2,3 which are mostly qualitative and readily
compromised by the natural variability in infant’s motor
development.4,5 The gold standard assessment is pro-
vided by standardized neurodevelopmental assessment
batteries performed by trained professionals. They offer
more fine-grained information6–9 by collating sets of
clinically observable or testable items. All of these
methods are unavoidably subjective and at least partly
qualitative; In addition, most tests are performed by
professionals in unnatural situations from an infant’s
perspective, compromising their ecological validity.
There is hence a demand to develop methods for early
neurodevelopmental tracking that are robust to vari-
ability in infant physiology, the skills of the assessor,
and the testing environment.1,8,10 One possible solution
could be with an objective measurement of intrinsic
movement behaviour at the home, the ecologically most
valid environment.
www.thelancet.com Vol 92 June, 2023
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Recent progress in sensor technology and signal
analysis methods have made it possible to monitor
extended periods of infants’movements during sessions
of spontaneous free play, even in out-of-hospital
settings.11–14 Most previous studies have shown that
quantitation of the total amount of movements is
possible out-of-hospital,12 and classification of infants’
posture can be done reliably though practical challenges
may remain in at-home recordings.14 However, more
recent development of comfortable multisensory wear-
ables coupled with machine learning classification al-
gorithms have enabled quantification of gross motor
performance at an accuracy that compares with human
observers.11 Before implementing such methodology in
wider clinical or research use, however, there is a need
to confirm its replicability, accuracy, as well as practical
feasibility and utility. These should be evaluated in set-
tings that closely compare with the expected out-of-
hospital user scenario: The wearable recordings are
ideally performed by the parents without close supervi-
sion of research or clinical staff, and the analysis pipe-
lines should provide results in a fully automatic manner
from data collection to final scoring to avoid errors or
biases by the human(s) in the loop.

Here, we aimed to study how well the early develop-
ment of gross motor performance can be assessed out-of-
hospital using wearable recordings15 that are analysed
with a fully automated pipeline. This wearable solution is
compared to an algorithmic analysis that detects both six
postures (supine, prone or side lying, crawl, sitting,
standing) and seven types of movement (still proto,
elementary, fluent, pivot, roll, transition) for each second
of infant recordings.15 These gross motor abilities link to
many milestones16–18 though they represent only a low-
resolution sub-selection of the vast array of possible mo-
tor abilities seen in infants; however, they are represented
and reliably detected from such a multisensory wearable
recording.15 The present study investigated three core
questions: 1) How do the results replicate across infant
cohorts. 2) How accurately can we estimate gross motor
development as a function of infants’ age, and how does it
compare with the accuracy seen in the universally used
physical growth charts19 at the population level and 3) at
the individual level. In order to allow comparison of the
qualitatively different measures, motor performance and
physical growth, we first transformed them into a com-
mon measure, developmental reference age prediction
(DAP). Such transparent and direct comparison of func-
tional vs. physical growth assessments could pave the way
to using functional growth as a credible outcome measure
in future clinical and scientific work.
Methods
Overview
The overall study design is presented in Fig. 1. We
performed serial home recordings using a recently
www.thelancet.com Vol 92 June, 2023
constructed multisensor wearable, MAIJU (Motor
Assessment of Infants with a JUmpsuit).15 A novel
dataset (DS2) was obtained using at-home recordings
from a cohort of N = 61 typically developing infants (age
4.1–18.4 months), and the results were compared with a
previously collected cohort of healthy infants (DS1;
N = 55 infants, age 4.5–19.5 months).15 The MAIJU
recordings were analysed using a fully automatic pipe-
line with deep learning -based classifiers15 to provide
estimates of postures, movements, and carrying of the
child at a timescale of seconds during time periods of
the recording that were classified as “playtime” by
another classifier based on parental reports. The statis-
tical distributions of these measures can be aggregated
to obtain a global measure of motor abilities, here
expressed as developmental reference age prediction
(DAP). The age-related changes in postures and move-
ments were compared between cohorts (Fig. 2a), and the
cross-validated DAP estimates were also compared after
training on the different datasets alone or together
(Fig. 2b; Appendix A1.3). Finally, the functional DAP-
derived growth charts were compared with a large
cohort (N = 17,838 infants) of dataset used for the
Finnish national physical growth charts of length,
weight and head circumference20; this aimed to directly
compare measurement domains. In particular, we
wanted to evaluate their relative accuracy in growth as-
sessments, in order to facilitate future complementary
use of both physical and functional measures.

Recordings and analyses with the MAIJU wearable
Study cohorts (datasets, DS)
This study compares a novel prospectively collected
cohort (DS2; N = 61 infants) to a previously collected
dataset (DS1; N = 55 infants)15 which was used for
training of the published posture and movement clas-
sifiers. Both datasets were recruited as a convenience
sample from the volunteering population, and hence
they cannot be considered as representative cohorts of
the Finnish population. DS1 contains N = 55 typically
developing infants (N = 60 recordings; total 79 h, age
range 4.5–19.5 months). The novel cohort (DS2) was
obtained from consecutively recruited infants into a
study on the use of infant wearables for neuro-
developmental assessment (PILKE; clinicaltrials.gov
#NCT05527080). DS2 included a total of N = 166
sequential recordings from N = 61 typically developing
infants (mean number of recordings 2.8 per infant;
range 1–7) between 4.1 and 18.4 months of age. DS1
included multiple recordings from 5 infants (range 2–2,
average 2), whereas DS2 included multiple recordings
from 43 infants (range 2–7, average 3.3; Appendix
A1.12). The recordings lasted from 1.4 to 16.9 h
(average 7.8 h), with a total recording time in the cohort
corresponding to 1279 h. Out of this time, 1025 h
(0.5–16.8 h per infant, average 6.2 h) was deemed to
have good enough signal quality (due to valid Bluetooth
3
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Fig. 1: Study overview. a) A photograph of the MAIJU wearable in use by a 10-month-old infant and an overview of MAIJU’s automatic data
processing pipeline through a real-time data stream into mobile device, offline upload to computational server, and download of analysis results
by the user. b) A block diagram of the study design. The coloured circles denote the respective datasets used in the experiments. Photograph is
published with parental consent.
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connection) for further analysis. A total of 328 h
(0.1–6.4 h per infant, average 2 h) was depicted by the
parents as “playtime”, which was used for the data
analysis in the first phase; automated detection of free
play time was used in the final results (see below).
Playtime means periods where the infant is acting pre-
dominantly by him/herself, with minimal physical
interference by the adults; however, adults or other
children were allowed to be around and encourage the
child in his/her typical spontaneous behaviour. Please
see Appendix A1.1 for a detailed comparison of the
datasets.

MAIJU recordings
We used an infant wearable, MAIJU (Motor ability
Assessment of Infants with a Jumpsuit; Fig. 1a) that is
essentially a commonplace full body overall garment
equipped with four movement sensors, one in each
sleeve.11,15 The sensors stream inertial measurement
unit (IMU) data (3-axis accelerometer and gyroscope) at
52 Hz sampling frequency over a low-energy Bluetooth
(BLE, v5.0) connection to a nearby mobile phone using
a custom-built iOS application, “MAIJU logger” (Kaasa
GmbH, Düsseldorf, Germany). There was a difference
in the recording settings between DS1 and DS2: Re-
cordings in DS1 were performed by trained personnel
either at infants’ homes or at the lab in a playroom-like
setting,11,15 hence considered a partly supervised
setting. Only time periods of infants’ free play were
recorded and analysed in DS1. In contrast, all infants
in DS2 were recorded at home by the parents without a
direct supervision by research personnel, hence
considered a minimally supervised setting. The first
recording of the infant was typically initiated during a
visit to the lab (BABA center; affiliation a) to inform the
parents about the study and to obtain a signed
informed consent. The infants would then go home
with the suit kept on until the evening. For the sub-
sequent recordings, the sensor data collection in the
MAIJU wearable was started in the lab and the wear-
able with the datalogger iPhone was sent to home in a
bag (tablet sleeve) using an ordinary courier service.
The parents dressed MAIJU on their infants and kept
recording until evening sleep time. The parents were
only given three instructions: i) to keep the recording
mobile phone at a Bluetooth range, typically in the
same room; ii) to allow and encourage the infant to play
freely in the home environment without interruptions
by the adults; iii) to write down approximate time
windows of free play, which was later used for tech-
nical data verification and development of the pre-
processing in our analytic pipelines.
www.thelancet.com Vol 92 June, 2023
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Fig. 2: Assessing replicability between MAIJU cohorts. a) Comparison of age-group average distributions between DS1 and DS2 for posture (left)
and movement (right). Pearson’s r (* denotes statistical significance at p < 0.05) and the mean absolute error (MAE) are reported as per-
formance metrics. b) Above: Comparison of DAP scores (small dots) as a function of age between DS1 (blue) and DS2 (red). A four-parameter
logistic sigmoid regression (solid lines) and its ±1SD curves (coloured areas) are fit to the data. Goodness-of-fit of the regression model is
estimated with R2 for the age-group averages (large dots) and all data points (small dots). Below: Count histograms for the number of re-
cordings in each age group in DS1 (red line) and DS2 (solid blue). c) The measurement noise estimated as DAP score variability between
consecutive full-hour epochs during a recording session. The histogram (left) shows all recording sessions together (N = 184), and the graph
(right) presents the relationship of noise level with infants’ Age.
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Taken together, the study aimed to reach an ecolog-
ically relevant assessment of infants’ spontaneous motor
activities. While the home is typically the ideal setting
for each child, it is also apparent that substantial dif-
ferences may exist between homes in terms of physical
layout, family size, or child-relevant objects such as toys.

Automatic analysis pipeline of the wearable recordings
After the recordings, the data was uploaded from the
recording device into a custom-built computational
cloud using a web browser interface (link/resource
available from the authors at request) which functions
as a combined data storage and analysis platform.
Detailed description of the deep learning -based classi-
fier is published earlier.15 In brief, the data is first pre-
processed, by segmenting into 2.3 s (120 sample)
www.thelancet.com Vol 92 June, 2023
frames with 50% overlap (1.15 s; 60 samples), and
segments of low signal quality are discarded from later
analysis. These frames are then fed into three parallel
operating neural network classifiers to make classifica-
tions for posture (7 categories), movement (9 cate-
gories), and carrying (i.e., free vs. caregiver assisted
movement; binary). Free play time was finally classified
with a binary support vector machine (SVM) classifier
based on 10-min (520 frame) super segments (with 50%
overlap) accumulated from the frame-level classifica-
tions outputs (see Appendix A1.4). The frames detected
as low quality, infant carrying, or non-playtime were
removed from further analyses. Finally, recording-wise
distributions of postures and posture-conditioned
movement categories were calculated and used as fea-
tures in subsequent analyses.
5
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Our preliminary analyses showed that the results are
more reliable when the analysis pipeline is executed in a
fully automated fashion without operator inputs (see
Appendix A1.4 Fig. S4), such as manual addition of free
play times taken from the parental notes. Therefore, the
results hereafter are reported using analysis outputs
from the fully automated pipeline, including an auto-
mated detection of infants’ free play.

Summarized measurement metrics with developmental age
prediction (DAP)
It is well recognized that gross motor development is a
multidimensional process where infants may acquire
different abilities in varying order and varying times in a
process that includes both individual and cultural fac-
tors.21 For the purpose of comparing between motor
(functional) and physical growth charts, however, it was
necessary to transform both motor and physical mea-
sures into a comparable quantity. Age is the key
benchmark in all developmental assessments, hence it
is intuitive to summarize measurements by using
developmental age prediction (DAP; see Appendix
A1.5). DAP was defined as the statistical expectation of
age that has most likely generated the given measurement.
In the present study, DAP was implemented with
Gaussian Process Regression (GPR22). The DAP values
can be then compared to the true chronological age at
the time of the given measurement, and conversely,
differences between DAP and chronological age reflect
individual variation in infant development.

Statistics
Pearson’s r was used to measure correlation in Experi-
ment 1 (Fig. 2a and c), where statistically significant
correlation is considered as p < 0.05. A four-parameter
logistic sigmoid function (Appendix A1.6) with a least-
squares fit was used to obtain average models between
age and DAP. The goodness-of-fit of the sigmoid models
was measured with the R2 and standard deviation (σ)
(Appendix A1.7) relative to the raw data, age-group (by
month) averages, and serial-measurement corrected
version of the raw data. Linear mixed effects (LME)
modeling was used for the serial-measurement correc-
tion (Appendix A1.8). The bootstrap method with
N = 10,000 was used to obtain the 95% confidence in-
tervals for the goodness-of-fit measures. The one-sample
Kolmogorov–Smirnov (K–S) test was used to test for the
null hypothesis that the data comes from a standard
normal distribution (Fig. 2c).

Experiment 1: assessing replicability between
MAIJU cohorts
To validate our previously published results with DS1,15

we compared the MAIJU findings from DS1 and DS2 as
a function of age. First, the average age dependent dis-
tributions of different movement categories were
compared visually (Fig. 2a), as well as by computing
mean absolute error (MAE) and Pearson’s correlation (r)
between the findings from DS1 and DS2. Second, we
compared the DAP measures (Fig. 2b) by computing the
average regression model (four-parameter logistic sig-
moid function; Appendix A1.6) between age and DAP
for both datasets. The R2 measure was used to estimate
the goodness-of-fit of the model against the raw data as
well as age-group (by month) averages, including 95%
confidence intervals using bootstrapping. The results in
Fig. 3a are shown from Leave-One-Subject-Out (LOSO)
cross-validated DAP scores trained with pooled DS1+2
data (see Appendix A1.3 for full results with cross-
dataset DAP training).

Additionally, we estimated the inherent measure-
ment noise level, or situational variability, in the DAP
results from the DS2 recordings that contained >2 h of
free playtime data (N = 75 recordings). These data were
split into independent 1-h long segments to provide
corresponding DAP estimates, from which the intra-
session differences in DAP estimates were obtained
(Fig. 2c; Appendix A1.9). The age dependency of the
measurement noise level was examined by correlation
with infant’s age (Pearson; Fig. 2c). This test can be
though to simulate test-retest variability. The effect of
the recording length has been studied in a previous
study,15 based on which the 1-h segment length was
selected.

Physical growth data
Serial growth data of healthy infants were collected from
the public primary care in the city of Espoo, Finland.
The full database contained 561,392 length, weight and
head circumference (HC) measurements from 75,810
subjects aged 0–24 months,20 and it can be considered
representative of the paediatric population as it was
collected to construct physical growth charts for the
national health care use. Here, we used a subset of
N = 77,737 serial measurements from N = 17,838 chil-
dren aged 4–18 months that contained all three mea-
sures. Measurements were performed by primary
nurses trained for auxological measurements during the
regular, free-of-charge visits to public primary care child
health clinics. Infants have regular visits at child health
clinics at the ages of 1–2 weeks; 3–6 weeks; 6–8 weeks;
at 2, 3, 4, 5, 6, 8, 10, 12, 18, and 24 months. Length,
weight, and head circumference are measured using
standardized techniques and calibrated equipment.
Permission for the current study was obtained from
Espoo Municipality Institutional Review Board. No
contact was made with the study subjects since the data
were handled anonymously.

Comparison of physical and motor growth data
For a direct comparability with the MAIJU-derived
measurements, we constructed DAP scores also from
all individual physical measures (length, weight, head
circumference) as well as from the combination of all
www.thelancet.com Vol 92 June, 2023
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Fig. 3: Growth charts of Developmental Age Prediction (DAP) scores for motor (a) and physical measures (b–e) between ages 4–18 months. The
growth data are grouped into monthly bins and four-parameter logistic sigmoid regression models (solid lines; ±1SD depicted in colour) are
fitted to growth data, followed by estimating goodness-of-fit in terms of R2 and standard deviation (σ) of the DAP scores. These measures are
given in each plot for the age-group averages (blue), the raw data (black), and ID-controlled data (green). f) The effect of measurement interval
on the developmental change measured by DAP. The upper graph shows how the observed advance in DAP scores generally correlates with the
measurement interval with HC and is nearly identical for motor and length. The lower graph shows how, the variance (σ) in the DAP advance is
higher with motor measures when using short measurement intervals; however, all modalities are comparable with longer measurement
intervals.
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three measures. The direct physical measurements are
presented in the Appendix A1.2 for comparison.

Experiment 2: comparison of growth charts of
motor and physical measures
We considered the chronological age of the typically
developing children as the most accurate and unbiased
benchmark for comparing growth charts from
different measurement modalities.19,20 Therefore, we
reasoned that the relative goodness of a measure in
charting growth can be estimated by the fit of DAP
scores to the age dependent regression model. It is
important to note here that the nature of the underly-
ing growth measure affects the shape of relationship
www.thelancet.com Vol 92 June, 2023
between DAP and the chronological age, and that is not
necessarily linear. For example, the motor scale in
MAIJU saturates after the infant is fully able to walk
fluently; such a motor growth chart is best modelled by
a sigmoid function (see Figs. 2b and 3a), while length
is an example of almost linear growth during the
observation period. The goodness-of-fit is reported in
terms of R2 with its standard deviation (σ) relative to
the mean model. The analysis was first done using
every measurement individually, but subsequent anal-
ysis with linear mixed effects modelling (see Appendix
A1.8) considered serial recordings within an infant
(N = 74,192 for physical, N = 162 for MAIJU), which
accounts for the fact that infants typically develop in
7
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their own pace showing a consistent offset of the mean
curve.

Experiment 3: feasibility of individual-level
longitudinal tracking
We investigated the behaviour of longitudinally obtained
DAP scores for all measurement modalities as a func-
tion of the age difference between each two measure-
ments. For all subjects with longitudinal recordings,
each pair with measurement interval Δage = t1−t0,
ΔDAP = DAPt1−DAPt0 was recorded (with t1 > t0), and
we computed the means and standard deviations of
ΔDAP in each monthly bin. The means represent the
overall modelling capability of longitudinal measures in
individuals, whereas the standard deviation reflects the
level of noise in the overall trends.

Ethics
The study was approved by the Ethics Commission and
fully executed by the Children’s Hospital, Helsinki
University Hospital, Helsinki, Finland. Written
informed consent was obtained from the parents for all
MAIJU recordings.

Role of funders
The funders did not have any role in study design, data
collection, data analyses, interpretation or writing of the
report.
Results
Experiment 1: assessing replicability between
MAIJU cohorts
Distributions of postures and movement types
showed expected,15 clear developmental changes
(Fig. 2a). The characteristic evolution of posture types
was: first a rapid decline of supine lying, followed by a
comparable decline in prone lying, then a transient
period with prominent occurrence of crawl posture,
followed by a more persistent increase in sitting and
standing, respectively. Conversely, evolution of the
movement types within each posture context were
clearly characterized by a transition from an initial
“proto” movements towards more tentative elemen-
tary movements, until a fluent movement type is
achieved.

Statistical comparison of age distributions of pos-
tures and movements showed a significant correlation
(p < 0.05) between DS1 and DS2 in 16 out of the 17
measured motor categories (Fig. 2a; Posture categories:
mean r = 0.9 range 0.74–0.97; Posture-conditioned
movement categories: mean r = 0.78, range
0.24–0.98). The overall MAEs for posture categories
were 5.2%-points (range 1.4–12.0) and posture-
conditioned movement categories 1.1%-points (range
0.3–4.2). The largest discrepancies between DS1 and
DS2 in terms of MAE were found within the posture
category “sitting” and the movement category “stand-
ing-proto” (12%-p and 4%-p, respectively), though they
still exhibited considerable correlation (r = 0.95 and
0.92, respectively). The only category with lower cor-
relation between DS1 and DS2 was “prone-fluent”
movement (r = 0.24, p = 0.4), which is likely due to its
scarcity in the data (MAE = 0.3%-p). The comparison of
age-grouped DAP measures (Fig. 2b) obtained from
DS1 and DS2 show a striking resemblance with almost
perfect overlap between the mean and ±1SD curves.
The Pearson correlation between the age-group means
was r = 0.98 (p = 10−11, N = 15) and all four regression
model parameters overlapped within their 95% confi-
dence intervals. The regression models explain 97%
(R2; 94–99% CI 95) and 99% (98–99%) of the variance
of age group means of DS1 and DS2, respectively. For
DAP estimates from all the individual measurements,
the corresponding values are 82% (R2; 74–85%) and
80% (72–88%). Taken together, these findings support
the idea that MAIJU recordings provide measures of
motor development that are highly replicable across
datasets.

Finally, we assessed measurement noise by taking all
available non-overlapping 1-h epochs (N = 39 infants,
average 2.6 epochs (range 2–6) per recording) for which
we computed intra-recording DAP variance (Fig. 2c;
N = 184 combinations, average 2.5 combinations (range
1–15) per infant). The measurement noise was normally
distributed (K–S test; p = 0.2), and the standard devia-
tion of DAP measurement noise per recording is
σ = 1.2/

̅̅̅

2
√

that equals 0.85 months (see Appendix
A1.9). The amount of measurement noise showed a
small but significant age-dependent increase (Fig. 2c;
Pearson’s r = 0.21, p = 0.005), which likely reflects the
increased variance of motor performance repertoire in
the older infants.

Experiment 2: comparison of growth charts of
motor and physical measures
Inspection of the full cohort data (Fig. 3) shows that
monthly mean values of all measurement modalities
(motor, length, weight, HC, and physical combined)
exhibit a very high goodness-of-fit (R2 = 0.99–1.00) be-
tween DAP and infant’s age; however, there is also
conspicuous variation in the shape of the overall growth
trajectories between all measures.

Conversely, correlations of the individual growth
measures with age were lower than population average
measures: They were essentially comparable between
motor, length and physical combined (Fig. 3a–c;
R2 = 0.8, 0.85 and 0.87, respectively), and clearly lower
(both R2 = 0.68) for weight and HC. Similarly, the
variation of DAP against the average regression model
was substantially lower for motor and combined phys-
ical measures (σ = 1.4 months in both) as compared to
weight and HC (σ = 2.0 months in both). These results
suggest that the measured modalities have the largest
www.thelancet.com Vol 92 June, 2023
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normal variability in weight and HC measurements. As
the infants are well known to develop along their indi-
vidual trajectories, implying a subject-specific offset
relative to the population mean, we then estimated these
age correlations by accounting for serial measures
within an individual via introducing subject ID as a
random variable using linear mixed effects modelling
(see Appendix A1.8). This improved DAP goodness-of-
fit against age in all modalities, with somewhat stron-
ger effect in the physical measures (σ range 0.68–0.72
months, R2 range 0.92–0.96) than the motor measure
(σ = 0.97 months, R2 = 0.85). Full details are shown in
Fig. 3. Finally, we assessed the effect of sample size that
differed by several orders of magnitude between motor
and physical measures. Random sub-sampling of the
physical measures for 500 iterations with sample size
comparable to the available motor measures (N = 50
individuals; average 217 measurements (range
159–262)) showed that variation in the smaller sample
sizes renders the age-correlations more comparable to
those seen in the motor measures (see Appendix A1.10).
Taken together, these results suggest that the statistics
of gross motor performance can be represented as
developmental trajectories despite the many sources of
individual variance; thereby, the age-dependent tracking
can be by and large comparable in accuracy with the
established physical growth charts. However, as ex-
pected, there is somewhat higher measurement noise in
the motor assessments, likely due to the situational
variance in human behaviour.

Experiment 3: feasibility of individual-level
longitudinal tracking
Growth charts are typically used for longitudinal
tracking of an individual’s development over several
time points, therefore we wanted to estimate how well
each measure is able to reflect the respective growth
between two consecutive measurements. Comparison of
intervals from one to ten months shows that, on
average, serial measures reflect development within in-
dividual infants in all cases (Fig. 3f, upper graph), seen
as a monotonic relationship between average DAP
scores and the time interval between measurements.
However, motor measures have considerably higher
variance compared to physical measures when the in-
terval is less than four months (Fig. 3f, lower graph),
while the variance becomes comparable between mo-
dalities with longer measurement intervals. In addition
to the measurement noise (σ = 0.85 months in motor
DAP; see Experiment 1 above), this difference between
motor and physical measures may be also related to the
sigmoid-like shape in the MAIJU growth charts (Fig. 3a;
Appendix A1.11): It indicates a sequence with slow-
rapid-slow motor development, and consequently,
measurements with shorter intervals may give more
relative variance during the age ranges with a slower
motor development.
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Discussion
We showed that objective and quantitative out-of-
hospital assessment of infants’ developing motor abili-
ties is possible by combining a multisensor wearable
recording to a fully automated analysis pipeline. The
findings from a novel cohort recorded without direct
supervision validate previously published findings from
a cohort recorded under partly controlled settings.
Moreover, we show that the measures of gross motor
abilities and DAP scores can be aggregated to motor
growth charts at the population level, with an overall age
modelling accuracy that is comparable to childhood
physical growth charts.19,20 In the individual level, how-
ever, the assessment of growth trajectories of motor
measures exhibits somewhat higher noise compared to
the physical measures. The practical impact of this
observation needs to be tested in different user sce-
narios. These findings together are perfectly aligned
with the common knowledge that infant development
follows a qualitatively predictable trajectory.19,23 We
extend all prior literature by describing a widely scalable
solution with automatic analysis pipelines that allows
quantitative tracking of motor development at an indi-
vidual level.

The analysis outputs from the automated pipeline
provide a transparent, intuitive, and clinically explain-
able summary of gross motor behaviour. It also supports
direct prediction of “motor age” in months, such as the
DAP score in the present study, or it can be converted to
a unitless score of motor performance, such as from 0 to
100 as in our previous study.15 A direct comparison of
age-based modelling between motor and physical
growth measures indicates largely comparable develop-
mental trajectories in all measures despite their
expectedly wide interindividual variance. Here, we
found physical length to show the tightest link with age,
which is compatible with the well-established use of
stunted growth as a hallmark of compromised physical
development.24 Age prediction from the other routinely
used physical measures, weight, and HC, was closer to
the modelling accuracy seen with measures of motor
abilities, supporting its use as a complementary mea-
sure in developmental assessments. A particular chal-
lenge for any developmental tracking is to measure the
rate of change over varying time intervals as many
technical and biological factors may introduce “mea-
surement noise” that obscure estimates of develop-
mental progress. Our present findings suggest that such
measurement noise may significantly interfere with
assessing progress in motor abilities over brief time
intervals up to few months; however, measurement
noise becomes comparable between motor and physical
assessments when longer intervals are used between
assessments. Future studies are needed to standardize
measurement practices to minimize any controllable
noise, as well as to further evaluate its practical impact
in different kinds of use cases.
9
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Currently available clinical assessment of motor
abilities is based on observing or surveying motor
milestones2,3,6 or on performing standardized neuro-
logical assessment batteries, such as Hammersmith
Infant Neurological Examination7 or Alberta Infant
Motor Score.3 Milestones are practical in large scale
population screening to obtain a rough and qualitative
summary of a child’s performance.2,3,6 However, motor
milestones represent only a limited set of discrete per-
formance categories with widely ranging reference
values,16 which by nature compromises their utility in
quantitative assessments and developmental tracking.
The standardized assessment batteries, in turn, need
trained professionals to collate empirical sets of motor
items that can be clinically observed in a controlled
environment, such as a doctor’s appointment.6–9 The
results of these test batteries may show acceptable test-
retest reliability,6 however they are resource-intensive,
and always both partly subjective and semi-qualitative
in nature, which inherently compromise their use in
quantitative assessment and wider scale-up. The stan-
dardized assessments do also suffer from a lack of
ecological validity because the study situations are typi-
cally unnatural from the infant’s perspective. First re-
ports have suggested that MAIJU-derived metrics
correlate well with expert-driven neurological assess-
ment,11,15 however future studies are needed to system-
atically validate and establish the links between the
presently used motor metrics and many of the existing,
established neurological assessment scales. It is also
important to recognize that the MAIJU-derived metrics
are qualitatively and phenomenologically different from
the conventional assessment methods. Therefore, a
direct comparison between MAIJU and the conventional
methods may be useful for a general benchmarking
purpose, whereas the actual utility of MAIJU is best
determined by comparing MAIJU-derived results to the
target clinical courses or situations.

Child’s chronological age is the most important
single benchmark in all paediatric assessments. All
physical and functional development of a child is ex-
pected to follow predictable trajectories, and growth
charts of many measures19,25 have been established to
allow a standardized categorization in developmental
assessment: delayed vs. typical vs. advanced. Recently,
several machine learning -based measures of struc-
tural, functional, and molecular development have
been proposed.26–31 Our study shows that age predic-
tion is feasible from both the physical and motor
measures in a similar manner and at a comparable
accuracy during at least the first two years of life. The
accuracy of DAP from the motor growth chart was
only marginally lower than the DAPs from the con-
ventional physical growth measures. Prediction of
child’s age was clearly improved in all modalities
when considering successive recordings of an indi-
vidual, which is fully compatible with the clinical
concept that individuals exhibit their own, trackable
growth trajectories.

In the context of modelling individuals’ develop-
ment, it is important to recognize the different shapes
in childhood physical and motor development. While
physical growth continues monotonically throughout
childhood, motor growth is best viewed as a series of
developmental phases with their characteristic motor
categories and qualitative transformations between such
periods. For instance, the motor description scheme
underlying our current analysis pipeline15 will saturate
around 18 months of age in typically developing infants;
tracking further motor development will hence need
training of new algorithms for motor abilities that are
characteristic of an older age, such as running and
jumping, or that altogether reflect different qualities of
movement phenomena (e.g., macro activity type, fine-
grained kinesiological qualities). The present imple-
mentation of motor growth charts should, therefore, be
only considered for assessing motor behaviours that
characterize typical progress during the first 18 months
of life. Within these constraints, our work reports
straightforward motor performance metrics for studying
developmental cross–domain interactions, including
physical growth, later neurocognitive outcomes, and/or
environmental enrichment interventions.32 Recent
studies have emphasized the important, likely causal
role of early motor abilities in later emerging neuro-
cognitive performance,17,18 suggesting that metrics of
early motor abilities could be potentially used as a more
comprehensive proxy measure of early neurocognitive
development.

Our work has some limitations. The study describes
a fully functional solution for at-home tracking of motor
abilities, and it is already being used in some clinical
trials; however, several technical, practical, and regula-
tory steps need attention before routine clinical use.
First, wider user experience is needed from different
environments and user groups to assess practical issues
encountered during infant recordings or analysis pipe-
lines. For instance, more prospective studies are needed
to establish standardized recording guidelines (cf.19) to
minimize confounding factors, such as the variability
between homes and infants’ daily schedule, as well as to
further evaluate their practical impact in different use
cases. The test-retest variability within a recording frame
of days, although simulated in the present study, still
need proper investigation. Further studies are also
needed to test the utility of MAIJU in early diagnostics
and follow-up of neurodevelopmental compromise, or
in measuring efficacy of early therapeutic interventions.
A particular attention is needed to establish recom-
mendations for detecting deviant development in suc-
cessive recordings; for instance, prospective studies are
needed to explore how MAIJU could be utilized in an
early detection of cerebral palsy. Notably, the presently
published cohorts cannot be regarded as normative data
www.thelancet.com Vol 92 June, 2023
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due to their limited size and uneven age distribution.
Establishing reference charts of motor development will
require concerted efforts and much larger data collec-
tion to ensure generalizability and replicability33 even if
the overall findings may not necessarily change by
inflating the cohort size per se.34 Such work is only
possible via prospective, multicentre data collection,
preferably from many cultural contexts.6,8,35 It is also
essential to evaluate the need for culture-specific
normative charts2,36 or possible updates over time.37

Additionally, an independent analysis is needed to
assess the cost-benefit questions specifically in different
health care settings; that is tightly linked to the broad
need to build understanding about the added clinical or
scientific value of this methodology relative to all the
existing clinical methods and practices. Finally, pro-
spective routine use requires registration of MAIJU as a
medical device, which mandates an accurate definition
of intended use cases,38 and building of trust among
relevant communities in neurodevelopmental research
and medical care.

Taken together, MAIJU solution overcomes many of
the key bottlenecks in a scalable, objective, and quanti-
fied measuring of infants’ motor development. First, it
provides an ecologically valid assessment by bringing
the recordings to a child’s native environment, the
home. Second, the recordings can be analysed with a
fully automated analysis pipeline that removes user-
related errors and harmonizes analytics across centres.
Third, the results are transparent and intuitively mean-
ingful, allowing for heuristic and evidence-based further
use in many ways. Fourth, the analysis outputs were
validated here with a prospective cohort acquired in a
setting that closely corresponds to an intended out-of-
hospital use case. Fifth, the motor measures were
shown to be stable enough at individual level to allow for
building motor growth charts akin to the physical
growth charts that are now used as a proxy of paediatric
health. Quantitative measures of early motor develop-
ment may become a component in future clinical deci-
sion support systems,39 and a key outcome measure to
benchmark any clinical trials during early childhood.
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