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Abstract  Aging is a major risk factor for many 
chronic diseases. This study aimed to examine the 
effects of antihypertensive, lipid-lowering, and anti-
diabetic drugs on biological aging. We included 672 
participants and 2746 repeated measurements from 
the Swedish Adoption/Twin Study of Aging. Self-
reported medicine uses were categorized into anti-
diabetic, antihypertensive, and lipid-lowering drugs. 
A total of 12 biomarkers for biological aging (BA 
biomarkers) were included as outcomes. Conditional 

generalized estimating equations were applied con-
ditioning on individuals to estimate the drug effect 
on BA biomarker level within the same person when 
using or not using the drug. Chronological age, body 
mass index, smoking status, number of multiple med-
ication uses, blood pressure, blood glucose level, and 
apoB/apoA ratio were adjusted for as covariates in 
the model. Overall, using antihypertensive drugs was 
associated with a decrease in one DNA-methylation 
age (PCGrimAge: beta = − 0.39, 95%CI = − 0.67 
to − 0.12). When looking into drug subcategories, 
calcium channel blockers (CCBs) were associated 
with a decrease in several DNA-methylation ages Supplementary Information  The online version 

contains supplementary material available at https://​doi.​
org/​10.​1007/​s11357-​023-​00784-8.
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(PCHorvathAge beta = − 1.28, 95%CI = − 2.34 to − 
0.21; PCSkin&bloodAge beta = − 1.34, 95%CI = − 
2.61 to − 0.07; PCPhenoAge beta = − 1.74, 95%CI = 
− 2.58 to − 0.89; PCGrimAge beta = − 0.57, 95%CI 
= − 0.96 to − 0.17) and in functional biological ages 
(functional age index beta = − 2.18, 95%CI = − 3.65 
to − 0.71; frailty index beta = − 1.31, 95%CI = − 
2.43 to − 0.18). However, the results within other 
drug subcategories were inconsistent. Calcium chan-
nel blockers may decrease biological aging captured 
by the BA biomarkers measured at epigenetic and 
functional level. Future studies are warranted to con-
firm these effects and understand the underlying bio-
logical mechanisms.

Keywords  Antihypertensive · Antidiabetic · Lipid-
lowering medications · Biomarkers of biological aging

Introduction

Aging is a strong risk factor for many chronic disor-
ders [1]. With rapidly aging populations worldwide, 
particular attention has been paid to the concept of 
geroprotection, which is an intervention targeting 
biological aging processes to prevent multiple age-
related diseases [2]. Today, more than 400 chemicals 
have been reported to slow down aging or increase 
lifespan in various laboratory model organisms [3, 4], 
but there are limited data available for humans. One 
major reason is that studies examining human longev-
ity are extremely lengthy and costly. An alternative 

approach is to use a surrogate endpoint, such as bio-
markers that are capable of predicting remaining 
lifespan and tracking changes in the biological aging 
process, which are accordingly termed biomarkers of 
biological aging (BA biomarkers) [5].

In the recognition of the complex aging 
mechanisms [1], a variety of BA biomarkers 
have been developed, including telomere length, 
algorithms applied to genome-wide DNA methylation 
data, and composites of multiple physiological or 
functional measures [6]. So far, these BA biomarkers 
have been examined extensively and have  shown 
good,  but heterogeneous, performance in predicting 
mortality and age-related disorders including 
cancers, cardiovascular diseases, type 2 diabetes, 
and Alzheimer’s disease [5–7]. In contrast to 
chronological age (CA) that increases at the same rate 
and is irreversible, BA biomarkers have been found 
to be modifiable in intervention studies [8–11]. In 
particular, these studies found that reduction in BA 
biomarkers was accompanied by decreased number of 
senescent immune cells [9], protective immunological 
changes, and improved risk indices for many age-
related diseases [10]. This synchronization between 
changes in BA biomarkers and hallmarks of aging 
supports the validity of BA biomarkers as predictors 
of biological aging process and their practical use in 
the discovery of geroprotectors.

Antihypertensive, antidiabetic, and lipid-lowering 
drugs are three of the most commonly used drugs 
among middle-aged and older individuals [12]. In 
addition to their primary roles in regulating blood 
pressure and metabolism of glucose and lipids, the use 
of these medications has also been shown to reduce 
the risk for age-related diseases such as dementia and 
cancers [13–15]. Particularly, some of these medi-
cations have been reported to extend the lifespan of 
laboratory model organisms [16–20], whereas their 
effects on human aging are still understudied. So 
far, only two studies have investigated the relation-
ship between medications and DNA-methylation 
ages (DNAmAges) [21, 22]. However, both studies 
relied on longitudinal data collected in two measure-
ments with a mean follow-up duration of five years, 
which might not be sufficient to capture the change 
of DNAmAges caused by medication use. In addition, 
BA biomarkers constructed by various approaches 
may capture different aspects of the aging process [7, 
23]. DNAmAges by itself may not provide a complete  
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picture of the impact of these drugs on aging, making 
it necessary to consider multiple BA biomarkers that 
have been measured using different approaches.

Therefore, this study aimed at investigating the 
associations between antihypertensive, antidiabetic, 
and lipid-lowering medication use and 12 BA bio-
markers. These BA biomarkers were measured lon-
gitudinally from molecular to functional levels in the 
Swedish Adoption/Twin Study of Aging (SATSA) 
across 20 years of follow-up. We applied a statisti-
cal method conditioning on individuals to estimate 
the drug effect on BA biomarker level within the 
same person when using or not using the drug. The 
approach is similar to a case-crossover or self-con-
trolled design, thereby avoiding comparison between 
different groups of individuals and controlling for 
individual-constant confounders [24].

Methods

Study population

SATSA is a longitudinal cohort consisting of pairs 
of twins in Sweden that have been reared together 
or apart [25]. The participants aged 50 years old or 
above in SATSA were invited to an in-person testing 
(IPT) administrated approximately every 3 years. A 

questionnaire interview, a health examination (fast-
ing blood and morning urine samples were collected), 
and tests on functional and cognitive abilities were 
performed in each IPT, except for IPT4 which was 
performed through telephone interview. A total of 
10 IPTs were completed from 1986 to 2014, which 
generated 4,043 IPT measurements from 860 par-
ticipants. After exclusions, 672 individuals with 2746 
measurements were included in the analysis. See 
study design and exclusion criteria in Fig. 1.

Assessment of biological age biomarkers

At each IPT in SATSA, multiple BA biomarkers were 
measured to quantify different aspects of biological 
aging, from the molecular (telomere length and DNA 
methylation ages), to the physiological (physiological 
ages), and functional levels (cognitive score, func-
tional age index, and frailty index).

Telomere length

Relative telomere length (RTL) was measured from 
blood leukocytes as a T/S ratio by comparing the tel-
omere sequence copy number in each participant’s (T) 
against a single-copy reference gene from β-hemoglobin 
(S) [26]. The T/S ratios were scaled to 10%.

Fig. 1   Study design and exclusion criteria for the present 
study. a A conceptual plot for the study design. The arrows 
in the outcome panel indicates the biological structure levels 
at which different BA biomarkers were measured. b Exclu-

sion criteria for the present study. BA biomarkers indicates 
biomarkers of biological aging; FAI, functional age index; FI, 
frailty index; IPT, in-person testing; BMI, body mass index
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DNA methylation ages

Genome-wide methylation levels were assessed from 
leukocytes using Illumina’s Infinium HumanMethylation 
450K BeadChip. Previous studies have developed various 
algorithms to calculate DNAmAges by aggregating the 
weighted averages of methylation level at specific GpG 
sites identified in a prediction model of CA and/or aging-
related phenotypes. However, measurements of individual 
CpGs could be rather unreliable due to technical noise 
[27]. Herein. we adopted an advanced approach to 
construct principal-component version of DNAmAge 
(PCDNAmAges), which involves performing principal 
component analysis (PCA) on the CpG-level data and 
using PCs as input to predict various DNAmAges. 
Compared with traditional DNAmAges, PCDNAmAges 
have been shown to minimize random noise from 
individual CpGs and produce more stable trajectories 
in longitudinal measurements [28]. In this study, we 
included six PCDNAmAges that were trained on cross-
sectional measurements of aging-related phenotypes, 
which were PCHorvathAge, PCSkin&bloodAge, 
PCHannumAge, PCPhenoAge, PCDNAmTL, and 
PCGrimAge. We additionally included DunedinPACE 
which is a novel DNAmAge trained on the longitudinal 
measures of 19 biomarkers that tracks organ-system 
integrity [29]. See more information regarding these 
DNAmAges in Supplementary Table 1.

Physiological age

The physiological age (PhysioAge) in SATSA was 
constructed using the biomarkers assessed from 
immediate blood test, blood test in lab, urine strip 
test, and physical examination data [30]. A subsample 
in SATSA consisting of one random measurement for 
each participant was used to select biomarkers in cor-
relation with CA (Pearson correlation > 0.1), which 
resulted in nine and five CA-correlated biomarkers 
for men and women respectively. Then, a single phys-
iological age score was calculated by aggregating the 
loadings of these biomarkers and CA. The details of 
computation can be found elsewhere [30].

Cognitive ability

Four cognitive domains, including verbal, spatial, 
memory, and processing speed abilities, were assessed  

in IPTs [31]. Scores on all measures were recoded 
into percentage of the total possible points for each 
test. A PCA-based approach was applied to derive an 
overall cognitive ability score. Namely, component 
scoring coefficients from the first component extracted 
at IPT1, excluding individuals with dementia, were 
used to construct a cognitive function measure at each 
IPT using test scores standardized to the mean and SD 
of each test at IPT1. T-score scaling (M = 50, SD = 
10) was then applied to the components [30].

Functional age index

Functional age index (FAI) was constructed based on 
four types of specific functional measures [7], includ-
ing sensory abilities (vision and hearing) that were 
self-reported, and muscle strength, gait speed, and 
lung function that were measured by trained nurses. 
The four measures were standardized respectively 
based on the values from IPT2 and then summed to 
compose a general FAI.

Frailty index

The Rockwood frailty index (FI) was conceptualized 
as a multidimensional indicator of vulnerability to a 
range of age-related adverse outcomes. In SATSA, 
FI was calculated as a ratio of the number of deficits 
present in a participant to a total of 42 health deficits. 
The 42 health deficits in SATSA were self-reported 
and covered various health outcomes, such as symp-
toms, diseases, disability, mood, and activities in 
daily living [32]. The FI ratios were scaled to 100%.

Drug classifications and other covariates

Information regarding medication use was collected 
by questionnaires asking the participants to provide 
the names of drugs they were recently using. The 
Anatomical Therapeutic Chemical (ATC) classifica-
tion system was applied to codify the self-reported 
drug names. At the therapeutic level, we catego-
rized antihypertensive (ATC codes: C02, C03, C07, 
C08, and C09), lipid-lowering (C10A), and anti-
diabetic (A10) drugs according to the first two or 
three level of ATC codes. Within these three major 
categories, we identified five subcategories with ≥ 
50 ever-users, including diuretics (C03, n = 234), 
calcium channel blockers (CCBs) (C08C, C08D, 
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C08E, n = 137), agents acting on the renin-angio-
tensin system (RAS) (C09A, C09C, n = 172), beta 
blockers (C07A, n = 240), and statin (C10AA, n = 
125), with exclusion of drugs belonging to these 
subcategories but containing multiple active sub-
stances. Medication use status for each drug cat-
egory was defined as a binary variable, indicating 
use/no use of any drugs within the category during 
each IPT.

Because medication use data in SATSA were 
self-reported, we validated the data by comparing 
reported usage with the information from the Swed-
ish Prescribed Drug Registry (SPDR). SPDR is a 
national register established in July 2005 and collects 
all the prescribed drugs dispensed at pharmacies in 
Sweden (coded in ATC with dispensation date) [33]. 
We extracted the self-reported medication data in 
SATSA since 2005 (including IPT7-10) and retrieved 
the drugs purchased by SATSA participants within 1 
year before the IPT date from SPDR. In comparison 
with purchase information from SPDR, 98–100% of 
the SATSA participants who reported using the drugs 
purchased the corresponding drugs within 1 year 
before the IPT data, while 88–99% of the participants 
who did not report using the drugs did not purchase 
the drugs (Supplementary Table 2).

Chronological age was ascertained by linking 
SATSA to the Swedish Population Registry. Smok-
ing and fasting status were self-reported and classi-
fied as binary (yes/no). The number of medications 
currently used was counted as the number of dif-
ferent drugs identified at the fifth ATC level. Body 
mass index (BMI, kg/m2), systolic blood pressure 
(SBP, mmHg), and diastolic blood pressure (DBP, 
mmHg) were obtained from the physical exami-
nation at IPTs. Blood glucose level (mmol/L) and 
apoB/apoA ratio were obtained from lab testing of 
blood samples. Hypertension was defined as SBP 
> 140 mmHg or DBP > 90 mmHg or taking any 
antihypertensive drugs. For each individual, miss-
ing values for BMI were imputed with the average 
of the available measurements, while missing val-
ues for smoking status were imputed with the most 
recent available value.

Statistical analysis

We first categorized the participants according 
to use of any antihypertensive, anti-diabetic, and 

lipid-lowering drugs during the follow-up (ever-user/
never-user) or at the first available measurement 
(user/non-user). We described the characteristics 
within these subgroups and examined the differences 
using t-tests for qualitative factors and chi-square 
tests for categorical factors. To illustrate the relation-
ship between different BA biomarkers, we obtained 
the BA residuals by regressing out the CA-related 
effects in a linear mixed model with fixed effects of 
CA and sex and random effects of individuals and 
twin pairs. Then, the correlations between BA residu-
als were calculated using a Pearson method with con-
trol for repeated measurements [34]. To examine the 
correlation patterns between uses of multiple drugs, 
we quantified the association between pairs of drug 
categories by fitting generalized equation estimation 
(GEE) models with one drug category as exposure 
and the other as outcome [35]. In these GEE models, 
we used logit link functions, thereby estimating the 
odds ratio relating the two medications.

We used conditional generalized estimating equa-
tions (cGEE) for estimating and testing the asso-
ciations between drugs and BA biomarkers. When 
conditioning on the individual, cGEE includes an 
individual-specific intercept to model the effects of 
individual-constant factors and provides estimates 
that are protected against bias due to individual-
constant confounders [36]. For each BA biomarker, 
a cGEE model was constructed with medication use 
as exposure and BA biomarker as outcome, condi-
tioning on the individual to control for individual-
constant confounders and adjusting for important 
individual-varying factors including CA, BMI, smok-
ing status, and number of medications being cur-
rently used. In these cGEE models, we used identity 
link functions, thereby estimating the difference in 
mean BA biomarker (beta-coefficient) between users 
and non-users of the medication. To account for uses 
of multiple drugs, we included the three major drug 
categories (antihypertensive, antidiabetic, and lipid-
lowering drugs) or their subcategories (diuretics, 
CCBs, beta blockers, agents acting on RAS, statins, 
insulin analogues, and non-insulin antidiabetic drugs) 
in a multivariable model. Because medication users 
necessarily had the relevant disorders to obtain the 
prescription, it is important to consider the possible 
confounding from participants’ disease status. We 
therefore included blood biomarkers underlying the 
indication disorders (systolic blood pressure (SBP) 
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for hypertension, apoB/apoA ratio for hyperlipidemia, 
blood glucose level for diabetes, and fasting status) 
into the multivariable model.

We conducted a sensitivity analysis for the four 
antihypertensive drug subcategories using a subset 
of participants who had hypertension or developed 
hypertension during the follow-up. We included 
measurements since their first detectable hyperten-
sion. Because hypertension is considered an incur-
able chronic disorder, we assumed that these partici-
pants would live with hypertension afterwards. This 
analysis is expected to provide estimation independ-
ent of hypertension by comparing the change in BA 
biomarkers after hypertension onset. To demonstrate 
the presence of confounding by individual-constant 
factors, we repeated the analyses for the three major 
drug categories using a GEE model that does not con-
dition on the individual. Possible selection bias could 
arise from our exclusion of the participants who only 
contributed with one IPT measurement. Therefore, 
we described the baseline characteristics of 12 BA 
biomarkers and medication use of participants who 
participated in one IPT against those who participated 
more. We also estimated the odds ratio for baseline 
BA biomarkers and medication use predicting the 
participation in IPTs with adjustment for CA using 
logistical regression. All the analyses were conducted 
in R 4.0.5, and the cGEE models were fitted using 
the drgee package [36]. To account for the related-
ness between twin pairs in our data, all the confidence 
intervals (CIs) were constructed by bootstrapping that 
involved random resampling of pairs of twins 10,000 
times (two-sided with P < 0.05). More details about 
cGEE models and bootstrapping are described in 
Supplementary Methods.

Results

Characteristics of participants in SATSA

As shown in Table  1, a total of 672 participants 
were included in the final analysis. At the first 
available measurement, 189 participants were using 
antihypertensive, antidiabetic, or lipid-lowering drugs. 
The category with most users was antihypertensive 
drugs (n = 179). The 189 medication users were 
older (P < 0.001) and had higher measures of FI 
score (P < 0.001), FAI (P = 0.0015), PCHorvathAge 

(P = 0.022), PCSkin&bloodAge (P = 0.029), 
PCHannumAge (P = 0.012), PCPhenoAge (P = 
0.0069), PhysioAge (P < 0.001), and lower cognitive 
scores (P = 0.049). Moreover, the medication users 
tended to have higher BMI (P < 0.001); smoke less (P 
= 0.012); use more medications overall (P < 0.001); 
and have higher blood pressure (P for SBP < 0.001; 
P for DBP = 0.0028), lipids (apoB/apoA: P = 0.048), 
and blood glucose (P < 0.001). During follow-up, 
410 individuals ever used any antihypertensive drugs, 
followed by lipid-lowering drugs (n = 132) and anti-
diabetic drugs (n = 63); meanwhile, the ever-users 
were likely to participate in more IPTs (P < 0.001).

Correlation between biomarkers of biological aging 
and patterns of medication uses

The correlations between the 12 BA biomarkers after 
ruling out the effects from CA are presented in Sup-
plementary Fig.  1. Generally, two correlation clus-
ters were observed for six PCDNAmAges and for 
three functional age predictors, respectively. The six 
PCDNAmAges were generally correlated with each 
other (P < 0.05/78, corrected for 78 pairs of BA bio-
markers), with coefficients ranging from 0.33 to 0.92 
(absolute values); meanwhile, the three functional age 
predictors (FI, cognitive score, and FAI) were cor-
related with each other to a lesser extent (absolute 
values of coefficients ranging from 0.18 to 0.30, P 
< 0.05/78). Additionally, DunedinPACE was corre-
lated with PCGrimAge (r = 0.20) and PCPhenoAge 
(r = 0.42). No distinct correlation patterns for other 
pairs of BAs were observed. When investigating the 
relationship between uses of multiple medications 
(Supplementary Figure 2), we observed strong asso-
ciations either between antihypertensive, anti-dia-
betic, and lipid-lowering drug categories or between 
the seven subcategories (20 correlations with P < 
0.05/24, corrected for 24 pairs of drug categories).

Associations between medication use and biological 
ages

We first assessed the association between 
antihypertensive, anti-diabetic, or lipid-lowering 
drugs and 12 BAs. Model 1 is adjusted for important 
within-individual covariates including BMI, smoking 
status, age, number of drugs, SBP, apoB/apoA ratio, 
blood glucose level, and fasting status, while model 2 
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is further conditioning on the individual to adjust for 
or individual-constant factors. As shown in Fig.  2, 
the estimates changed markedly in model 2 after 
taking individual-constant factors into account, which 
indicated substantial bias from individual-constant 
factors. In model 2, taking lipid-lowering drugs 
was associated with shortening of TL (RTL: beta = 
− 0.52, 95%CI = − 0.87 to − 0.17) but reduced frailty 

(FI: beta = − 1.55, 95%CI =− 2.64 to − 0.46), while 
taking antihypertensive drugs was associated with a 
reduced PCGrimAge (beta = − 0.39, 95%CI = − 0.67 
to − 0.12). No associations between taking antidiabetic 
drugs and any BA biomarkers were observed, possibly 
due to the limited size of ever-users.

We subsequently analyzed five drug subcatego-
ries with at least 50 ever-users (Table 2). The point 

Table 1   Characteristics of participants and the uses of antihypertensive, anti-diabetic, and lipid-lowering drugs. The bold font indi-
cates that the corresponding P-value is less than 0.05

Characteristics At baseline (first available) IPT measurements P

Users (n = 189) Non-users (n = 483)

Drug categories (n)
  Antihypertensive drugs 179
  Anti-diabetic drugs 10
  Lipid lowering drugs 15
Age (mean, SD) 66.62 (7.55) 62.78 (7.86) < 0.001
Frailty index (ratio, %) 12.71 (8.25) 9.44 (6.96) < 0.001
Cognitive score 50.87 (10.52) 52.65 (10.16) 0.049
Functional age index 51.30 (11.53) 48.05 (11.68) 0.0015
Physiological age (year) 69.48 (8.92) 63.63 (9.42) < 0.001
Relative telomere length (ratio, 10%) 7.52 (2.84) 7.36 (2.12) 0.53
PCHorvathAge (year) 62.49 (8.34) 60.45 (9.08) 0.022
PCSkin&bloodAge (year) 58.89 (7.97) 57.02 (8.81) 0.029
PCHannumAge (year) 66.07 (8.02) 63.89 (8.84) 0.012
PCGrimAge (year) 78.67 (6.55) 77.79 (7.19) 0.21
PCPhenoAge (year) 64.49 (7.44) 62.27 (8.85) 0.0069
DunedinPACE (year) 1.07 (0.15) 1.05 (0.15) 0.12
PCDNAmTL (kilobase) 6.87 (0.18) 6.89 (0.19) 0.29
BMI 27.09 (4.22) 25.21 (3.58) < 0.001
Currently smoking (n, %) 24 (13) 102 (21) 0.012
Number of drugs being used currently 3.16 (1.84) 1.39 (1.53) < 0.001
SBP (mmHg) 161.36 (23.30) 148.57 (22.22) < 0.001
DBP (mmHg) 89.15 (11.70) 86.31 (9.72) 0.0034
apoB/apoA ratio 1.06 (0.35) 1.00 (0.30) 0.048
Blood glucose (mmol/L) 5.46 (2.20) 4.69 (1.31) < 0.001
Fasting before taking blood sample (n, %) 84 (44) 202 (42) 0.54

During follow-up
Ever users(n = 445) Never users(n = 227)

Drug categories (n)
  Antihypertensive drugs 410
  Anti-diabetic drugs 63
  Lipid lowering drugs 132
Number of IPT measurements 1964 782
Mean number of IPT measurements (mean, SD) 4.41 (1.74) 3.44 (1.50) < 0.001
Women (n, %) 268 (60) 127 (56) 0.29
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Fig. 2   Associations between uses of antihypertensive, anti-
diabetic, and lipid-lowering drugs and biomarkers of biologi-
cal aging. The associations were estimated using cGEE model. 
All the models were adjusted for within-individual factors, 
including body mass index, currently smoking, age, number of 
drugs being currently used, SBP, apoB/apoA ratio, blood glu-
cose level, fasting status, and three medication use variables 
(antihypertensive drugs, antidiabetic drugs, and lipid-lower-
ing drugs). Model 1 is not conditioning on individuals, while 

model 2 is conditioning on individuals to additionally control 
for effects from individual-constant factors. N.eff stands for 
effective sample size, which is the number of participants who 
at some point used the medication during follow-up, therefore 
contributed to the estimation of drug effects. A bold font indi-
cates that the corresponding P-value is less than 0.05. RTL, 
relative telomere length; PhysioAge, physiological age; FAI, 
functional age index; FI, frailty index
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estimates for CCBs indicated a decrease in seven 
DNAmAges (a decrease of 0.57 to 1.74 years in 
five PCDNAmAges, a 0.03-year decrease of aging 
rate in DunedinPACE, and an elongation of 0.01 
in PCDNAmTL), among which the estimates for 
PCHorvathAge (beta = − 1.28, 95%CI = − 2.34 to 
− 0.21), PCSkin&bloodAge (beta = − 1.34, 95%CI 
= − 2.61 to − 0.07), PCPhenoAge (beta = − 1.74, 
95%CI = − 2.58 to − 0.89), and PCGrimAge (beta 
= − 0.57, 95%CI = − 0.96 to − 0.17) excluded the 
null. In addition to DNAmAges, CCBs was also 
associated with decreased functional biological 
ages, shown in FAI (beta = − 2.18, 95%CI = − 3.65 
to − 0.71) and FI (beta = − 1.31, 95%CI = − 2.43 
to − 0.18). Among other antihypertensive drugs, 
uses of diuretics, beta blockers, and agents acting 
on RAS were associated with an increased cognitive 
score (diuretics: beta = 0.94, 95%CI = 0.31 to 1.58; 
beta blockers: beta = 0.63, 95%CI = 0.01 to 1.25; 
agents acting on RAS: beta = 0.73, 95%CI = 0.04 
to 1.42), despite their adverse associations with 
other BA biomarkers, such as FAI (beta blockers: 
beta = 1.52, 95%CI = 0.35 to 2.68), PCHorvathAge 
(diuretics: beta = 1.06, 95%CI = 0.10 to 2.01), 
PCSkin&bloodAge (diuretics: beta = 1.26, 95%CI 
= 0.09 to 2.42; agents acting on RAS: beta = 1.58, 
95%CI = 0.26 to 2.90), PCHannumAge (agents act-
ing on RAS: beta = 1.36, 95%CI = 0.02 to 2.69), 
and PCGrimAge (agents acting on RAS: beta = 
0.61, 95%CI = 0.16 to 1.06). Among lipid-lowering 
drugs, statin use was associated with decreased FI 
(beta = -1.08, 95%CI = − 2.01 to − 0.15).

In the sensitivity analysis performed in a subset of 
participants who had hypertension, the associations 
observed for four antihypertensive drugs were largely 
unchanged (Supplementary Table  3). In the sensi-
tivity analysis testing the potential selection bias by 
excluding participants who only participated in one 
IPT (Supplementary Table 4), only baseline CA and 
three functional BA biomarkers (FAI, cognition, and 
FI) differed significantly between participants who 
participated in one IPT and who participated in more 
IPTs (P values ranging from < 0.001 to 0.85). Simi-
larly, in the regression model with adjustment for CA, 
only three functional BA biomarkers at baseline (FAI, 
cognition, and FI) predicted the future participation 
in IPTs (P values ranging from 0.002 to 0.01), while 
other BA biomarkers as well as all medication uses 
showed no associations (all P values > 0.05).

Discussion

In this study, we observed potential georoprotective 
effects, indexed by lower biological aging 
measures at the epigenetic and/or functional 
level, particularly for calcium channel blockers 
(CCBs) and weaker findings for antihypertensive 
and lipid lowering medications. Specifically, 
we found that treatment with antihypertensive 
drugs was associated with lower GrimAge. 
When considering drug subtypes, the use of 
CCBs consistently corresponded to a decrease in 
DNAmAges, particularly for PCGrimAge (a 0.57-
year decrease), PCSkin&bloodAge (a 1.34-year 
decrease), PCPhenoAge (a 1.74-year decrease), and 
PCHorvathAge (a 1.28-year decrease), as well as a 
2.81-year decrease in FAI and a decrease of 1.31 
in FI, revealing a putative geroprotective effect by 
CCBs at molecular and functional level. The results 
for other drug subtypes were however inconsistent. 
Uses of diuretics, beta blockers, and agents acting 
on RAS were associated with a higher cognitive 
ability while yielding adverse associations with 
DNAmAges and FAI. Statin use was associated 
with decreased FI, but no associations with other 
BA biomarkers was observed.

To our knowledge, few studies have investigated the 
relationship between medication use and biological 
aging. Two studies have examined associations 
between medication use and DNAmAge accelerations 
(residuals for DNAmAges regressing on CA, similar 
to our results after adjusting CA in the model) based 
on longitudinal data examined over two visits. In 
the Genetic Epidemiology Network of Arteriopathy 
(GENOA) study consisting of 226 American Africans, 
the participants who started antihypertensive drugs 
in the second visit had a 0.96-year lower GrimAge 
acceleration as compared with those who never 
took any antihypertensive drugs in either visit 
[21]. Meanwhile, similar to our finding of CCBs in 
association with decreased DNAmAges, the GENOA 
study observed that initiation of CCBs was negatively 
associated with PhenoAge acceleration (beta = − 1.40, 
P = 0.089). However, in the Normative Aging Study 
(NAS) comprising 546 older white men, initiation 
of CCBs was associated with increased DNAmAge 
acceleration (HorvathAge: beta = 0.41, P = 0.062) 
[22]. The present study differs from these two studies 
in several important aspects, including the population  
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age (mean age at baseline in SATSA, 67.9 years 
old; GENOVA, 54.0; NAS, 71.6) and ancestry 
(SATSA and NAS, European ancestry; GENOVA, 
African ancestry), sex composition (SATSA and 
GENOVA, men and women; NAS, men), number 
of measurements (mean in SATSA, 2.6; GENOA 
and NAS, 2), follow-up duration (mean in SATSA, 
13.7 years; GENOA, 5.4; NAS, 3.86), DNAmAge 
measures (SATSA, six PCDNAmAges; GENOA 
and NAS, up to four traditional DNAmAges), and 
statistical models (SATSA, cGEE model adjusting for 
unmeasured individual-constant factors; GENOA and 
NAS, linear mixed model adjusting for measured base-
line factors). Overall, compared with these two studies, 
the present study provided novel evidence supporting 
the epigenetic effects of CCBs on aging under the 
context of advanced measures of multiple DNAmAges 
(six PCDNAmAges), additional longitudinal 
measurements, and longer follow-up duration.

The effects of CCBs on functional capabilities 
or frailty remains poorly understood. A cross-
sectional study assessed frailty prevalence among 
138 individuals aged 60 to 90 years old and found 
that CCB use was associated with a 70% lower risk 
for frailty (95%CI = 0.09 to 0.77) [37]. However, in 
a cohort study that followed 1394 participants aged ≥ 
70 years up for 5 years, CCB use at baseline was not 
associated with frailty (HR = 1.10, 95%CI = 0.76 to 
1.60) [38]. Of note, frailty in the prior two studies was 
defined using five physical components, including 
weight loss, exhaustion, low physical activity, slow 
walking speed, and weakness, which differed from 
FI defined in the present study that incorporated 42 
health deficits including physical abilities, diseases, 
and mood. Indeed, CCBs have been shown to reduce 
the risk of developing age-related diseases that 
severely impair functional capabilities, such as stroke 
and neurodegenerative diseases [39–43]. In particular, 
several large retrospective studies have found that 
the use of CCBs was associated with a lower risk 
of developing Parkinson’s disease [41–43]. The 
potential pathways might be through CCBs blocking 
neuronal voltage-gated L-type calcium channels to 
rejuvenate substantia nigra dopamine neurons that are 
critical in psychomotor functions [44]. Overall, these 
mechanisms might benefit functional capabilities 
in old age and link CCBs to a slowed functional 
biological age as observed in the current study.

In this study, the decreasing pattern of DNAmAges 
and functional biological ages associated with CCBs 
is distinct from the results for other antihyperten-
sive drug subtypes. This might imply that these 
observed effects are specific to CCBs and not a 
result of the common action of lowering blood pres-
sure. In fact, previous evidence have revealed that 
high intracellular Ca2+ concentration promotes cel-
lular senescence and death [45]. CCBs, through their 
regulation of Ca2+ levels, have been found to trigger 
AMP-activated protein kinase signaling and increase 
autophagic flux, thereby suppressing cellular senes-
cence [46]. On an organismal level, verapamil, an 
L-type CCB, has also been found to extend lifespan 
and improve age-related physiological parameters, 
such as locomotion, trashing, and thrashing, in C. 
elegans. Furthermore, this study examined the life-
extending mechanisms and proposed that verapamil 
extended C. elegans lifespan by modulating intracel-
lular Ca2+ concentration, which subsequently inhib-
ited calcineurin activity and activated autophagy [18].

A notable advantage of this study is the longitu-
dinal study design allowing the use of a cGEE model 
conditioning on individuals. This analysis estimated 
the drug effect by comparing change of BA biomark-
ers within the same individual when taking a drug or 
not. As a result, we were able to control for unmeasured 
individual-constant confounders and provide more reli-
able estimation of drug effects. Second, we included 12 
BA biomarkers from the molecular to the functional 
level, which allows this study to capture the influence of 
medication use on different aspects of biological aging. 
Moreover, instead of traditional DNAmAges calculated 
on individuals CpGs, we used the newly developed 
PCDNAmAges, which reduce the random noise from 
individual CpGs and produce more stable DNAmAge 
measures across longitudinal measurements. Third, 
considering that the medication use data in SATSA 
were self-reported and could result in misclassification, 
we performed validation using information from the 
national register database and found a high consistency 
rate between the two data sources for the drugs ana-
lyzed in this study. Finally, the mean follow-up duration 
among the participants included in this study is 13.7 
years, which is long enough to capture the change of 
BA biomarkers caused by medication use.

This study also has some limitations. First, 
participants who contributed to only one IPT 
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measurement were excluded from the analysis, 
which might lead to selection bias when medication 
uses and biological age both affect the drop-out. 
However, the results from our sensitivity analysis 
showed that use of antihypertensive, antidiabetic, 
or lipid-lowering drugs and a majority of the BA 
biomarkers (except for FAI, cognition, and FI) were 
not associated with the participants’ participation in 
more than one IPT. Second, since antihypertensive, 
antidiabetic, and lipid-lowering drugs were usually 
used for the treatment of hypertension, diabetes, 
and hyperlipidemia, our results might indeed cap-
ture the effects of these disorders on aging (indi-
cation bias). However, these disorders are usually 
thought to accelerate aging [47], which would drive 
the association estimates towards the null or adverse 
direction, in contrast to our findings of geroprotec-
tive effects for CCBs. Moreover, we adjusted for 
biomarkers underlying the continuum of these dis-
orders in all models and performed sensitivity anal-
ysis for antihypertensive drugs by comparing the 
change of BA biomarkers after hypertension onset. 
Unfortunately, regarding the drugs demonstrat-
ing adverse associations with aging in this study, 
it remains difficult to ascertain whether the asso-
ciations are due to drug effects or indication bias. 
Third, participants might modify their lifestyle after 
being diagnosed with hypertension, diabetes, or 
hyperlipidemia, which would likely affect biological 
aging and confound the association between medi-
cation uses and BA biomarkers. In our analysis, we 
adjusted for smoking status as an indicator for the 
change of lifestyles. Indeed, regular habits to con-
trol these disorders after diagnosis, such as low-carb 
diet for diabetes, could be considered approximately 
individual-constant factors, thus being controlled 
for in our cGEE models to some extent. Finally, the 
generalizability of this study could be limited to 
the older Swedish population. Also, the results for 
other drug subtypes except CCBs were inconsistent, 
and further studies with larger sample size are war-
ranted to reexamine our results.

In conclusion, our results suggest that CCBs may 
hamper biological aging captured by the BA biomark-
ers measured at epigenetic and/or functional level and 
future intervention studies are warranted to confirm 
our findings.
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