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Abstract 

Background 

Quantification of metabolic changes over the human life course is essential to understanding ageing 

processes. Yet longitudinal metabolomics data are rare and long gaps between visits can introduce 

biases that mask true trends. We introduce new ways to process quantitative time-series population 

data and elucidate metabolic ageing trends in two large cohorts. 

Methods 

Eligible participants included 1,672 individuals from the Cardiovascular Risk in Young Finns Study 

and 3,117 from the Northern Finland Birth Cohort 1966. Up to three time points (ages 24-49) were 

analysed by nuclear magnetic resonance metabolomics and clinical biochemistry (236 measures). 

Temporal trends were quantified as median change per decade. Sample quality was verified by 

consistency of shared biomarkers between metabolomics and clinical assays. Batch effects between 

visits were mitigated by a new algorithm introduced in this report. The results below satisfy multiple 

testing threshold of P < 0.0006. 

Results 

Women gained more weight than men (+6.5% vs. +5.0%) but showed milder metabolic changes 

overall. Temporal sex differences were observed for C-reactive protein (women +5.1%, men +21.1%), 

glycine (women +5.2%, men +1.9%) and phenylalanine (women +0.6%, men +3.5%). In 566 

individuals with ≥+3% weight gain versus 561 with weight change ≤−3%, divergent patterns were 

observed for insulin (+24% vs. −10%), very-low-density-lipoprotein triglycerides (+32% vs. −6%), 

high-density-lipoprotein2 cholesterol (−6.5% vs. +4.7%), isoleucine (+5.7% vs. −6.0%) and C-reactive 

protein (+25% vs. −22%).  

Conclusions 

We report absolute and proportional trends for 236 metabolic measures as new reference material 

for overall age-associated and specific weight-driven changes in real-world populations. 
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Key messages 

• We developed new statistical techniques that allowed us to investigate temporal trends in 

circulating biomarkers in their physical measurement units on population scale. 

• We report previously unavailable quantitative trends for over 200 circulating metabolic 

measures, including lipoprotein subclass lipids, branched-chain amino acids and 

cardiometabolic biomarkers. 

• We isolated associations between metabolic changes and weight gain in a carefully 

constructed design where weight loss and weight gain subgroups were matched at baseline. 

• Our analyses revealed that weight change explains much of the metabolic variation (e.g. 

insulin, amino acids, lipoprotein subclass lipids), however, indicators such as waist-hip ratio, 

low-density-lipoprotein cholesterol and creatinine may reflect an overall ageing trend that 

affects all individuals.  
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Introduction 

Increased longevity and falling birth rates across the world are creating an unprecedented situation 

in human history where the old will outnumber the young [1]. As age is the primary driver of chronic 

disease, understanding the nature of ageing within human populations is a prerequisite for 

mitigating the health consequences from shifting demographics. Age-driven change in metabolism 

is particularly topical due to the high burden of cardiometabolic diseases, the responsiveness of 

metabolism to personal and societal interventions, and recent advances in metabolomics profiling 

of morbidity and mortality [2–6]. There is, however, a knowledge gap: large-scale metabolomics 

studies of ageing in human populations have remained out of reach due to the rarity of long-term 

longitudinal data and technical challenges from long time gaps between sample collections [7]. 

A cross-sectional survey of young and old people is the easiest to organize, but it yields the weakest 

epidemiological evidence [8]; only longitudinal designs can provide well-grounded information on 

life course trajectories [9–15]. So far, most metabolomics ageing studies have been cross-sectional 

[16–20]. Given the caveats of cross-sectional modelling, the value of longitudinal data is well 

recognized [7,14,15,21–23]. Metabolic profiling across multiple time points produces more robust 

evidence and longitudinal designs allow for better detection and control of confounders [24]. On 

the other hand, new biases may arise when samples are collected from surveys separated by 

decades, including updates to collection protocols, storage effects and changes in biochemical assay 

methodology [9,10,24,25]. Hence new statistical methods that can remove the biases are essential 

for longitudinal designs. 

In this study, we developed new methods to manage the biases and analysed two longitudinal 

cohorts that included altogether 4,789 participants with at least two time points that were a decade 

or more apart. To get an accurate picture of metabolic health and how it changed during follow-up, 

we investigated more than 200 variables that included anthropometric indicators, clinical 

biomarkers and nuclear magnetic resonance (NMR) metabolomics. We also used advanced 

sampling techniques to isolate metabolic associations with weight change and to characterize sex 

differences in temporal trends. Combined, our extensive results comprise a useful resource to 

understand how the metabolome changes due to aging in human populations. 
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Materials and Methods 

Cardiovascular Risk in Young Finns Study (YFS) 

The Cardiovascular Risk in Young Finns Study (YFS) is a population based prospective cohort study 

[26]. It was conducted at five medical schools in Finland (Turku, Helsinki, Kuopio, Tampere and Oulu), 

with the aim of studying the levels of cardiovascular risk factors in children and adolescents in 

different parts of the country. The baseline study in 1980 included 3,596 children and adolescents 

aged between 3 and 18 years. Results from clinical examination and fasting samples were used in 

the present study. Metabolomics data were available from three visits in 2001 (1,239 women and 

1,007 men), 2007 (1,186 women and 974 men) and 2011 (1,112 women and 927 men). 

Northern Finland Birth Cohort 1966 (NFBC1966) 

The NFBC1966 is a longitudinal birth cohort established to study factors affecting preterm birth and 

consequent morbidity in the two northernmost provinces of Finland, Oulu and Lapland [27]. The 

NFBC1966 includes 12,231 births (12,058 alive) covering 96% of all eligible births in this region 

during January-December 1966. Data collections in 1997 (at age of 31) and 2012 (age 46) including 

clinical examination and fasting serum sampling was used in the present study. Metabolomics data 

were available from the 31-year (2,962 women and 2,749 men) and 46-year visits (3,237 women 

and 2,549 men). 

Metabolomics and clinical biomarkers 

A high-throughput NMR spectroscopy metabolomics platform was used to quantify over 200 lipid 

and metabolite measures from serum samples collected during the visits [28]. The platform applies 

a single experimental setup, which allows for simultaneous quantification of standard clinical lipids, 

14 lipoprotein subclasses and individual lipids (triglycerides, phospholipids, free and esterified 

cholesterol) transported by these particles, multiple fatty acids, glucose and various glycolysis 

precursors, ketone bodies and amino acids in absolute concentration units. In addition, glucose, 

insulin, triglycerides, low-density-lipoprotein (LDL) cholesterol, high-density-lipoprotein (HDL) 

cholesterol, C-reactive protein and creatinine were assessed by standard clinical assays. 

Sample quality control 

To ensure the best possible estimates for age-associated changes in absolute concentrations, we 

employed a two-stage pre-processing protocol. First, we constructed multi-variate regression 

models of biomarkers that were available both from metabolomics and clinical assays (glucose, 

triglycerides, total cholesterol, HDL cholesterol and serum creatinine). Each of the five NMR 

measures was predicted from the combination of the five clinical biomarkers; our rationale was that 
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the biological correlations between the biomarkers [29,30] provides an additional source of 

consistency that would be broken by poor quality. The residuals from these models were then 

collected into a matrix of five columns (one column per model). The final quality score was defined 

as the first principal component of the residual matrix (Supplementary Figure S1). Hence samples 

with unusual and correlated residuals in multiple biomarkers were likely to get an extreme quality 

score. The cutoffs for acceptable deviation were set at the points where there was greater than 5% 

chance that the observed quality score was from the expected normal distribution. Consequently, 

1,765 (9.8%) samples out of a total of 16,177 available in the YFS and NFBC1966 were excluded. 

Calibration between visits 

The second pre-processing step was aimed at bias between visits. We exploited longitudinal 

biomarker data in YFS to calibrate consecutive visits. We assumed a priori that subpopulations of 

the same sex, average age and body mass have identical average metabolic profiles. This means that 

if subsets of individuals from two consecutive visits have identical average features, we expect the 

subset averages of the biochemical data to be identical as well. Similarly, we expect that controlling 

for body mass and waist circumference simultaneously controls metabolically relevant lifestyle 

exposures at the population level. We chose body mass for matching due to its strong associations 

with metabolic measures and aging [12,31] and easy and standardized method of measurement. 

Given consecutive visits A and B in the YFS cohort, a subset of participants was selected from visit A 

and another mutually exclusive subset from visit B. The selection was optimized so that the subsets 

had matching age, sex (225 men and 225 women) and body mass (Supplementary Table S1). We 

then defined a scaling factor C = exp(mean(log(subset of B) − log(subset of A))) for each metabolic 

variable that was not a ratio. It is plausible that batch effects manifest in the form of constant 

multipliers of concentrations since all the samples within a batch would have been collected, 

handled, stored and measured the same way. Lastly, the scale factor was applied to all data from 

visit B to equalize the measurement scale (Supplementary Figure S2). The procedure was applied 

first to the 2001 and 2007 visits, then to the 2007 and 2011 visits. The same procedure was not 

possible within the NFBC1966 due to the birth cohort design (i.e., no age spread). Instead, we 

calibrated the NFBC1966 data according to the YFS 2001 (NFBC1966 31-year visit) and YFS 2011 

(NFBC1966 46-year visit). 

Statistical analyses 

Longitudinal associations were quantified based on pair-wise differences that were calculated 

separately for every individual between consecutive visits. Statistical significance was estimated by 
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10,000 permutation cycles and 95% confidence intervals (CI95) by 10,000 bootstrapping samples. 

The permutation analysis was summarized by the Z-score that indicates the distance between the 

observed difference and the simulated random differences in standard deviations of the simulated 

null distribution. Two-tailed P-values were calculated from the Z-scores by inverse standard normal 

distribution. These techniques were used throughout the study unless otherwise indicated. 

To elucidate associations with body weight changes, we stratified men and non-pregnant women, 

respectively, into those who maintained their weight change within ±3% per decade and waist-hip-

ratio (WHR) change between −0.05 and +0.015 (Stable), those who lost weight beyond the stable 

definition (Loss) and those who gained weight (Gain). To mitigate confounding from baseline status, 

we matched the weight gain and loss subsets according to baseline body mass index (BMI), WHR 

and clinical assays for insulin, glucose, C-reactive protein, triglycerides, LDL and HDL cholesterol 

(Supplementary Table S2). 

Multiple testing 

Principal component analysis (PCA) of the biochemical data revealed that the first 48 principal 

components explained 99% of the total variance when all data were pooled. These results were 

compatible with earlier work [32]. For consistency, we set the multiple testing threshold at the more 

conservative P < 0.0006 to match the previous paper (equivalent to Bonferroni adjustment for 83 

independent tests at 5% type 1 error rate). All statistical analyses were conducted in the R 

environment (https://www.R-project.org).  
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Results 

The age structure of the participants is illustrated in Figure1A and the basic characteristics are listed 

in Supplementary Table S3. The numbers of individuals included in different study settings after 

excluding participants with missing or low-quality samples are listed in Figure 1B. Women who were 

pregnant at the time of sample collection were excluded (N = 202 in NFBC1966, N = 107 in YFS). 

Mean BMI varied between 24.2 and 25.9 kg/m2 across the cohorts and visits. Smoking was more 

prevalent in the first visit (21.2% in NFBC1966 and 24.7% in YFS) compared to the last visit (17.9% 

in NFBC1966 and 14.8% in YFS, P = 5.8 × 10−14 for the combined difference between visits over both 

cohorts). The prevalence of diabetes was ≤3.0% across the visits. 

Sample quality 

Biochemical sample quality was verified by comparing the clinical and NMR assays as described in 

Methods. Briefly, we used measures that were available from both clinical and NMR assays to 

determine if the aggregate discrepancy across multiple biomarker concentrations from the two 

sources was greater than could be expected by random measurement noise (Figure 2A,B). 

Importantly, the residuals from multiple biomarkers were analysed together to emphasize sample 

quality over isolated measurement errors in a single biomarker: if there is a consistent difference 

between NMR and clinical assays over multiple biomarkers, then it is likely that the biological 

material of the sample had been altered in some way rather than a technical error in a specific NMR 

quantity or biochemical assay. 

To quantify the aggregate discrepancy, we developed a quality score that follows the standard 

normal noise distribution when all samples are of high quality (indicated as solid curves in Figure 

2C-G). Samples that were deemed too far from the normal model were excluded. Of note, the 2012 

collection of NFBC1966 was designed specifically to accommodate NMR metabolomics and the 

observed quality score distribution was almost identical with the predicted curve (Figure 1G). 

Calibration between visits 

Preliminary comparisons between the two follow-up periods within YFS revealed systematic bias 

between time points that was extreme (>3 median absolute deviations) and biologically implausible 

(Figure 3C). For this reason, we applied a calibration procedure according to non-biochemical 

characteristics (age, sex, BMI, weight, height and WHR) to remove bias between visits from the 

biochemical data (Figure 3A,B, technical details in Methods). We assumed that two subsets of 

people picked from the population who are identical in these characteristics (Supplementary Table 



9 
 

S1) would also have the same average metabolic profiles. This makes it possible to calculate a scaling 

factor between visits and use it to remove batch effects (Figure 3B). 

The metabolic changes in calibrated concentrations were coherent and biologically meaningful, 

including consistent increases in glucose, triglycerides, cholesterol and glycoprotein acetyls, and 

consistent adjustments between NMR and clinical assays (Figure 3C). Please note that the results in 

the next section represent the combined trends over both YFS periods. The impact of calibration on 

temporal trends calculated this way are included in Supplementary Figure S3. 

Age-associated changes 

Temporal changes in selected metabolic measures are presented in Figure 4 and full statistics and 

confidence intervals for all measures are available in Supplementary Table S4. To strengthen 

conclusions about longitudinal changes, we used robust pair-wise median statistics (details in 

Methods) and developed further evaluation criteria to summarize the evidence obtained from four 

types of analyses. Firstly, we required that age-associations within the calibrated YFS data satisfied 

P < 0.0006. Secondly, we checked the concordance between calibrated and non-calibrated 

associations within the YFS. Thirdly, we checked the concordance between calibrated and non-

calibrated associations within the NFBC1966. Lastly, we checked the concordance between 

longitudinal change and cross-sectional age correlation within the YFS. These four criteria were 

incorporated visually into Figure 4A-M. All findings mentioned in the main text represent calibrated 

median rates of change per decade in the combined YFS and NFBC1966 dataset and satisfy P < 

0.0006 unless otherwise indicated. 

The majority of the YFS participants (71%) and NFBC1966 participants (83%) gained weight during 

the follow-up period and the combined median rate was +4.0 kg (+5.9%) per decade. Accordingly, 

both BMI (+1.35 kg/m2) and WHR (+0.048) increased. Simultaneously, clinical biomarkers 

deteriorated with increases in blood pressure (systolic +5 mmHg and diastolic +5 mmHg), glucose 

(+0.23 mmol/L, +4.6%), triglycerides (+0.16 mmol/L, +17%) and LDL cholesterol (+0.35 mmol/L, 

+12%). 

The general pattern of increasing circulating lipids was reflected in NMR-based measures. These 

included lipoprotein measures related to apolipoprotein B such as medium LDL lipids (+0.086 

mmol/L, +11%, Figure 4B,D), lipoprotein triglycerides such as VLDL-TG (+0.12 mmol/L, +23%, Figure 

4F) and fatty acids such as omega-3 (+0.059 mmol/L, +11%, Figure 4H). The lipids in the large HDL 

subclass decreased (−0.055 mmol/L, −7.9%, Figure 4B), however, the association was not consistent 

across the evaluation criteria. We observed increases in most of the amino acids (Figure 4J) including 
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alanine (+0.0254 mmol/L, +6.3%), glutamine (+0.0074 mmol/L, +1.3%), glycine (+0.0103 mmol/L, 

+3.5%) and tyrosine (+0.0041 mmol/L, +7.8%). 

Metabolic changes stratified by weight change 

To isolate associations with weight change, we stratified the study participants into those who 

gained or lost weight, or who were stable (definitions in Methods). The weight loss and gain 

subgroups were matched at baseline (Supplementary Table S2). Body weight decreased −2.5 kg 

(−3.5%) in the former while increased +6.0 kg (+8.2%) per decade in the latter. Both subgroups 

showed an increase in waist-hip ratio, but weight gain was associated with a faster increase (+0.031 

vs. +0.058 per decade, Figure 5A). Insulin decreased with weight loss but increased with weight gain 

(−10% vs. +24%, Figure 5K) and the pattern was similar for C-reactive protein (−22% vs. +25%, Figure 

5L). Triglycerides, cholesterol, other lipids and most amino acids showed similar separations in the 

rate of change, albeit small increases rather than decreases were observed in the weight loss 

subgroup. The opposite pattern was observed for large HDL lipids (Figure 5B) and HDL cholesterol 

(Figure 5E). 

In the stable subgroup (Supplementary Figure S4), clinical measures for total cholesterol (+0.35 

mmol/L, +7.2% per decade), HDL cholesterol (+0.052 mmol/L, +4.5%), glucose (+0.20 mmol/L, +4.0%) 

and blood pressure increased (systolic +4.0 mmHg and diastolic +3.5 mmHg). The NMR data 

revealed increases in the two smallest VLDL, intermediate-density-lipoprotein (IDL) and all LDL 

subclass lipids and most fatty acids. Alanine increased (+3.1%), whereas histidine (−3.3%) and 

creatinine (−2.9 µmol/L, −4.1%) decreased. 

Differences between sexes 

To compare men and women, we visualized proportional changes with respect to the baseline 

(Figure 6A-L). Women gained more weight (+6.5% per decade vs. +5.0% in men), but experienced 

milder changes in multiple clinical biomarkers including insulin (+10.1% vs. +17.7%, Figure 6J), 

triglycerides (+14.9% vs. +20.1%, Figure 6F) and C-reactive protein (+5.1% vs. +21.1%, Figure 6K). 

Substantial divergence was observed in the absolute levels of circulating lipoprotein lipids 

(Supplementary Figure S5), however, most of these differences disappeared when normalized by 

baseline concentrations (Figure 6B,E-H). Diverging trends was observed in multiple amino acids 

(Figure 6I): glutamine (+1.9% vs. +0.8%) and glycine (+5.2% vs. +1.9%) increased more in women, 

whereas leucine (+0.6% vs. +3.4%) and phenylalanine (+0.6% vs. +3.5%) increased in men. 
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Interactions between sex and weight change 

We used multi-variate linear regression to investigate interactions between sex and weight change 

(Supplementary Figure S6). For most metabolic measures, the baseline value (due to regression 

towards the mean) was the strongest regressor over baseline body mass, change in weight or sex 

(Supplementary Table S5). Interaction effects were observed for 35 measures and the regression 

coefficients revealed distinct patterns of associations. Changes in insulin were explained by weight 

change rather than sex (Figure 6V). Changes in VLDL and HDL lipids were mainly explained by weight 

change but with substantial sex effects (Figure 6M). Changes in isoleucine and leucine were 

associated with both weight change and sex (Figure 6U). Finally, changes in creatinine were mainly 

associated with sex (Figure 6W).  
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Discussion 

In this study, we investigated ageing trends of metabolic measures in two large longitudinal cohorts 

of young and middle-aged adults. We developed new statistical techniques that allowed us to 

investigate how circulating biomarkers changed over time and we report previously unavailable 

quantitative trends for over 200 measures, including lipoprotein subclass lipids, branched-chain 

amino acids and cardiometabolic biomarkers. Furthermore, we isolated associations between 

metabolic changes and body mass in a carefully constructed design where weight loss and weight 

gain subgroups were matched at baseline. Our analyses revealed that weight change explains much 

of the metabolic variation especially regarding insulin, VLDL and HDL particles, amino acids and C-

reactive protein. On the other hand, other indicators such as waist-hip ratio, blood pressure, LDL 

cholesterol and creatinine may represent an underlying stable trend that affects all individuals. 

Confounding in longitudinal population data 

Longitudinal designs are superior to cross-sectional ageing studies [7,9–13,24], but long gaps in 

sample collection (i.e., batch effects) can lead to severe confounding as we observed in the YFS. 

Batch correction is typically focused on non-biological variation that results from instrument drift 

and other technical variation within workflows, and sample stability that depends on the collection, 

handling, storage and human operators [25,33]. These effects can be minimized by rigorous 

workflows (e.g., the automated NMR pipeline has excellent reproducibility [28]), by including 

standardized control aliquots at regular intervals within a measurement series, by adding known 

concentrations of stable reference molecules or by applying statistical adjustment techniques [33]. 

Batch effects from study visits separated by long time gaps cannot be corrected by any of the 

previously mentioned statistical techniques if there are only two or three time points available. 

Furthermore, if the trait of interest (change in metabolite concentration between two 

measurements) and the source of the batch effect (differences between the two measurements due 

to non-biological factors) are perfectly correlated – which they are in this study – removing batch 

effects the usual way will also remove all biological trends from the concentration values. 

New methodology for longitudinal studies 

To address the challenge of batch effects that are correlated with the trait of interest, we developed 

an approach that first removes as much of the biological difference between the visits as possible 

(matched subsets in Figure 3A). This step allows for conventional batch correction to be applied as 
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if the traits and batches were uncorrelated (Figure 3B). The fundamental idea is widely applicable 

to studies that suffer from batch effects that are correlated with clinical outcomes. 

Ageing trajectories and weight change 

We estimated temporal rates for over 200 metabolic measures in large longitudinal population-

based cohorts, which provides new understanding on the direction and magnitude of age-

associated metabolic changes and how some of these changes may be driven by weight change. 

Reliable literature on longitudinal metabolic trajectories is scarce and direct comparisons are 

difficult, but the observed changes in insulin, glucose, various lipid measures and most of the amino 

acids are compatible with the previously reported patterns in young and middle-aged individuals 

[9,10,12,34]. We also observed consistent patterns between NMR-based and clinical assays. The 

combination of sample quality control, calibration and robust pair-wise median-based statistics that 

we developed proved to be a reliable framework to determine temporal trends in physical 

measurement units in omics studies that involve long time gaps. 

When we controlled for weight change, waist-hip ratio and creatinine emerged as covariates of 

ageing (possibly pointing to loss of muscle vs. adipose [35]). We also observed consistent increases 

in cholesterol and blood pressure that are two classical cardiovascular risk factors. These shifts can 

be explained by modifiable life circumstances such as reduced physical activity [36,37], but they also 

fit with the genetic program of ageing and the molecular clock concept as observed in laboratory 

settings [38]. 

Strengths and weaknesses 

Two independent cohorts of matching ethnicity, socioeconomics and time period provide us with 

robust data and high statistical power, but these strengths also mean that the results may not 

generalize outside the Northern European context. Furthermore, the results apply to adults under 

the age of 50 and further studies are needed to establish explicit links to late-life phenomena or 

how diet, exercise and genetics may influence the ageing trajectories of metabolite concentrations 

[13,36,39]. 

The combination of clinical and NMR assays gives us confidence that the data are coherent and of 

high technical quality across decades. We are also confident that the quality control method we 

introduced can detect non-informative samples accurately, as was demonstrated by the notable 

difference between the 2012 visit of NFBC1966 (short storage period, sample collection was 

designed to support metabolomics) and the other collections that were not specifically optimized 

for metabolomics studies (Figure 2). We used a two-layer approach to assess sample quality 
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(Supplementary Figure S1) since it gave us additional information on whether an outlier was due to 

a single extreme measurement in a single biomarker, or if all the biomarkers were systematically off 

by a small amount. This qualitative information may not be always necessary, and direct calculation 

of multi-variate metrics such as the Mahalanobis distance may be a more practical choice [40]. 

There is less clear evidence on how well the calibration technique works, although the consistency 

between statistical tests in Figure 4 is promising. Our matching procedure is likely to be highly 

effective against technical cohort effects. On the other hand, matching by body mass may miss some 

period effects such as diet trends and changing environmental exposures, however, studies that 

have these data available can use them for matching, which makes the calibration concept broadly 

applicable for epidemiological research. We have to wait for further studies with more numerous 

time points to fully assess the accuracy of the reported ageing trends and until such data become 

available, we urge caution when interpreting population-wide temporal shifts in absolute 

measurement units due to the inherent biases that come with samples separated by decades. 

Conclusions 

We solved technical and analytical challenges regarding longitudinal omics studies and the new 

techniques allowed new ways to study temporal trajectories in large-scale human populations. We 

found that weight gain drives most of the changes in systemic metabolism and the good news is 

that these changes are likely to be reversable by life-style adjustments as opposite trends were 

observed in the weight loss subgroup. This study also provides new reference information on how 

absolute concentrations of these and other indicators change over time in humans and what 

magnitude of changes are typical and achievable in real-world populations.  
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Supplementary Figure S1

Consistency between shared biomarkers across NMR metabolomics and clinical assays was
modelled by linear regression and principal component analysis (PCA). First, we predicted NMR
measures from the clinical assays. The rationale behind the method goes as follows. Comparing just
NMR and clinical glucose values will capture situations where the two measurements disagree,
however, if the sample material itself was somehow compromised, both measurements would still be
consistent. By including other biomarkers in the modelling, we were able to detect if there
are biological inconsistencies in the clinical data, thus capturing issues related to the sample itself.
In the second step, we collect the residuals from the linear regression models and then analyse them
with principal component analysis. This step detects inconsistencies in the NMR data, that is, if the
residuals across the NMR measures are repeatedly far from zero, their expected value.

Supplementary Figure S2



Calibration of metabolic measures between two cohort visits (batches) was achieved by matching
according to basic characteristics and scaling based on mean values. First, we chose one of the visits
as the reference dataset (e.g. YFS 2001) and another as the dataset to be calibrated (e.g. YFS 2007).
Next, we identified pairs of individuals across the datasets that had the same age, sex and basic
characteristics. Not all individuals would have a good match, therefore we chose the best matching
225 pairs of men and 225 pairs of women. We were thus able to define a reference subset of 450
individuals and a corresponding sample subset of 450 individuals. We then made the assumption that
since these two subset had the same ages and basic characteristics, they also have the same average
profile of the 168 metabolic measures that were directly measured in the study. Consequently, any
observed differences between the profiles will be due to the batch effects rather than biology. To
remove those batch effects, we calculated the ratio of the average metabolite concentration in the
sample subset with respect to the reference subset. These scaling factors were then applied to the
original dataset. Lastly, derived measures such as fatty acid ratios were updated using the calibrated
concentration values.
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