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Abstract  

Protective efficacy of vaccines and pharmaceutical products for prevention of infectious 

diseases usually vary over time. Information on the trajectory of the level of protection is 

valuable. We consider a parsimonious, non-linear and non-monotonic function for modelling 

time-varying intervention effects and compare it with several alternatives. The cumulative 

effects of multiple doses of intervention over time can be captured by an additive series of the 

function. We apply it to the Andersen-Gill model for analysis of recurrent time-to-event data. 

We re-analyze data from a trial of intermittent preventive treatment for malaria to illustrate 

and evaluate the method by simulation.    

 

Keywords: Andersen-Gill model; infectious disease; non-linear function; protective efficacy; 

time-varying effect; recurrent events 

 

Word count: 4951 

 

  



3 
 

1. Introduction 

Protective efficacy of vaccines and pharmaceutical products for prevention of infectious 

diseases usually varies over time. There is a long-standing interest in the evaluation of the 

waning of protective efficacy. While some vaccines offer protection that last for years, some 

vaccines such as malaria and Covid-19 vaccines may have short-lived effects and booster 

doses are needed (Smith & Milligan 2005; RTS,S Clinical Trials Partnership 2015; 

Moghadas et al. 2021). Seasonal malaria chemoprevention and mass drug distribution such as 

preventive use of antibiotics have relatively time-limited effects and require regular re-

administration (Cairns et al. 2008; Porco et al. 2019; Phiri et al. 2021). Information on the 

time-course of the waning effect can guide the frequency and timing of booster doses or re-

administration. The pattern of initial changes in protective efficacy after dosing have received 

less attention. Vaccine studies typically consider 14 days after completion of the primary 

series as the start point of analysis time. That was the way large scale trials of, for example, 

pneumococcal, malaria and Covid-19 vaccines were analyzed (Cutts et al. 2005; RTS,S 

Clinical Trials Partnership 2015; Voysey et al. 2021). Disease risk between the first dose of 

vaccine and 14 days post completion of the primary series is typically not evaluated. 

However, the Covid-19 pandemic and global shortage of vaccines has drawn attention to the 

time course of the efficacy after the first dose (Moghadas et al. 2021; Skowronski & De 

Serres 2021). This is important with respect to the time during which a vaccinee should be 

assumed unprotected, and whether the second dose can be delayed such that the vaccine 

supply can be prioritized for distribution as the first dose to more people.  

 Individuals exposed to infectious diseases may acquire partial or complete immunity. 

A short-term success in the prevention of an infectious disease may lead to a reduced rate of 

acquisition of natural immunity and consequently an elevated disease risk in the long-term. 

This is known as (negative) event dependency in the statistics literature (Cheung et al. 2010; 
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Xu et al. 2012) and rebound effects in the infectious disease literature (Grobusch et al. 2009; 

Odhiambo et al. 2010). The concern for rebound effects delayed the widespread deployment 

of insecticide-treated bednets (Nahlen et al. 2003). Statistical analysis that can demonstrate 

the likelihood of a rebound effect is useful for clinical recommendation and policy making.  

Various attempts have been made to estimate “duration of protection” offered by 

disease prevention measures. However, the search for a duration of protection may be over-

simplifying because implicitly it assumes a pattern of a sharp change from a high to a low 

level of efficacy. How common such a pattern is has remained largely unknown. Studying the 

changes of protection level over time is more informative. One approach is to partition 

follow-up time into intervals (Cairns et al. 2008; Cheung et al. 2020; Lopez Bernal et al. 

2021; Phiri et al. 2021), assuming a step function. However, it suffers irregular fluctuations if 

the intervals are narrow, especially when sample size is not very large, and it loses 

informativeness if the intervals are wide. Some investigators resorted to comparing the 

densities of time from intervention or placebo to outcome event among those who did suffer 

the outcome event (Porco et al. 2019). This can be biased if there are different patterns of 

censoring between participants with different intervention status or if the intervention 

generates a non-susceptible fraction (Xu et al. 2012). In the studies of non-repeatable events, 

investigators have employed smooth, monotonic functions to capture time-varying effects 

(Cheung et al. 2001; Kanaan and Farrington 2002).    

 Many infectious diseases can recur, as opposed to diseases that offer lifetime 

immunity after one episode of the disease. Malaria and pneumonia are some examples of 

diseases of public health importance in which disease episodes can recur. In 2008, the World 

Health Organization Malaria Vaccine Advisory Committee called for methodology research 

on analysis of recurrent events (Moorthy et al. 2009). Around that time, the popular research 

practice was to analyse only the first disease episode even if multiple episodes were observed 
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from the same person. This practice risks over-emphasizing short-term efficacy and makes 

difficult the charting of waning effects. Various models for recurrent time-to-event data have 

been proposed and evaluated; some are difficult to interpret (EMA 2020; Kelly and Lim 

2000; Metcalfe and Thompson 2007). The Andersen-Gill (AG) model, which is an extension 

of the Cox model, has been found useful in clinical research (Cheung et al. 2010; Jahn-

Eimermacher et al. 2017; Rauch et al. 2018). Earlier simulation studies suggested that the AG 

model gave biased estimates and they did not recommend the use of this model. However, it 

has been shown that it was a common procedure in their simulation methods, not the AG 

model, that generated the bias (Cheung et al. 2010). Recent research has also highlighted that 

the choice of models depends on the target of estimation, i.e. the estimand (Cheung et al. 

2020; Jahn-Eimermacher et al. 2017; Rauch et al. 2018). The AG model provides unbiased 

estimation of the total effect, also called composite effect, which includes the secondary 

impact of the intervention via rebound effects (event dependency). It has been proposed that 

the total effect is an important estimand from a public health point of view. If rebound effects 

are considered a nuisance, alternative models are needed. In the present context, the AG 

model is the model of choice since rebound effects is a real-life concern in public health.   

 The basic form of the AG model (and other Cox-type models) assumes time-constant 

intervention effects applied to the hazard function, i.e. the proportional hazard (PH) 

assumption. A previous study proposed a 4-parameter function that captures a monotonic, 

non-linear pattern of time-varying effects in the AG model (Xu et al., 2017). An advantage of 

this function is that the four parameters are interpretable, representing the level of short-term 

effect, rate of waning, shape of the waning trajectory and level of long-term effect, 

respectively. Furthermore, an additive series of the function can be used to model the ups and 

downs of the protection level over re-administration of the intervention, with each element in 

the series capturing the impact of the latest dose. However, this function assumes protective 
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efficacy to change from zero to peak level practically immediately upon dosing. 

Alternatively, the application of the monotonic function should be limited to analysis that 

begins when the peak level is supposed to have been reached. While this may work for some 

fast-acting products such as monoclonal antibodies and the typical vaccine trial analysis that 

focuses on disease incidence at least 14 days after completion of the primary series, a non-

monotonic function that captures the whole trajectory from zero to peak to waning is useful 

for the evaluation of slower-acting products.  

 The aim of this study is to propose and evaluate a 4-parameter non-monotonic, non-

linear function of time-varying effects for the AG model for recurrent events, and to compare 

it with the 4-parameter monotonic function and more flexible but less interpretable or less 

parsimonious models using splines and step functions.     

2. Statistical Models 

2.1 Andersen-Gill model with time-varying effects and repeated dosing  

Let N be the number of subjects who belong to either an intervention group or a control 

group. Define 𝑧𝑖 to be an indicator variable with 𝑧𝑖 = 1 if the 𝑖-th subject is in the 

intervention group and 𝑧𝑖 = 0 otherwise. Let 0 < 𝑡𝑖1 < 𝑡𝑖2 < ⋯ < 𝑡𝑖,𝑛𝑖
 be the recurrent event 

times, 𝑛𝑖 be the number of events the 𝑖-th subject experiences, and 𝜏𝑖 be the subject’s total 

follow-up time or censoring time. The AG model for time-varying effect models the hazard 

of the outcome event for subject 𝑖 at time t as: 

𝜆𝑖(𝑡) = 𝜆0(𝑡) exp[𝜸𝑇𝒙𝑖(𝑡) + 𝑧𝑖𝐺(𝑡)],                      (1) 

where 𝜆0(𝑡) ≥ 0 is an unspecified baseline hazard function, 𝒙𝑖(𝑡) is a vector of possibly 

time-varying covariates, 𝜸 is the vector of coefficients for 𝒙𝑖(𝑡), and 𝐺(𝑡) is the function of 

the time-varying effect of the intervention that is the key interest (Xu et al. 2017). In 

infectious disease research, protective efficacy (PE) equals 1 – hazard ratio (HR). In the 

present context, 
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𝑃𝐸(𝑡) = 1 − exp[𝐺(𝑡)]. 

For an intervention regime that involves up to m doses, define 0 ≤ 𝑑𝑖1 < 𝑑𝑖2 < ⋯ <

𝑑𝑖𝑚 be the times at dosing, which in practice are variable across subjects because of non-

compliance or other real-life issues. Due to such variation, allowing the effect of 𝑧𝑖 to vary 

over time would not properly describe the effect of the doses of the intervention. To allow for 

the variation, 𝐺(𝑡) is individualized as: 

𝐺𝑖(𝑡) = ∑ 𝑔(𝑡 − 𝑑𝑖𝑗)𝐼(𝑑𝑖𝑗 < 𝑡)

𝑚

𝑗=1

, 

where 𝑡 is the time since enrolment or time since the first dose, and 𝑔(𝑡 − 𝑑𝑖𝑗) indicates the 

time-varying effect of the 𝑗-th dose the 𝑖-th subject has received on the log-hazard.  

2.2 Non-linear functions of time-varying effects 

Let 𝑔1(𝑡) be the monotonic function proposed by Xu et al. (2017):  

𝑔1(𝑡) = 𝐴𝑒−𝐵𝑡𝐶
+ 𝐷,     for 𝐵, 𝐶 > 0 and − ∞ < 𝐴, 𝐷 < ∞,                (2) 

where 𝐴 + 𝐷 represents the short-term effect, 𝐵 represents the rate of decay over time, 𝐶 

regulates the shape of the time trend, and 𝐷 represents the long-term effect. If 𝐶 = 1 and 𝐷 =

0, 𝑔1(𝑡) becomes the familiar exponential decay function. A large value of 𝐶 implies that the 

initial protection level has a duration that is quite stable before it shows a clear decline. 

Despite its being a non-linear function, 𝑔1(𝑡) has enough flexibility to capture various 

patterns well, including linear declines (Xu et al. 2017). To constrain 𝐵 and 𝐶 > 0, the 

parameters are replaced by exp(𝑏) and exp(𝑐), respectively, where 𝑏 = ln(𝐵) and 𝑐 =

ln(𝐶). The parameter for long-term effect, 𝐷, was proposed out of the concern of a rebound 

effect as discussed in the introduction.  

 We consider a non-monotonic function, which had its origin from a harmonic 

oscillator (Riley 2002), and was re-parameterized by Shaw et al. (2019) for the studies of gut 
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microbiota diversity (a continuous endpoint) before and after receiving a course of 

antibiotics. Let 𝑔2(𝑡) denotes this function:  

𝑔2(𝑡) =
𝛼𝛽1𝛽2

𝛽2 − 𝛽1
(𝑒−𝛽1𝑡 − 𝑒−𝛽2𝑡) + 𝛿(1 − 𝑒−𝛽1𝑡),

for 𝛽1, 𝛽2 > 0 and − ∞ < 𝛼, 𝛿 < ∞,              (3) 

where 𝛼 represents the magnitude of the initial perturbation. To constrain 𝛽1 and 𝛽2 > 0, the 

parameters are replaced by exp(𝛽1
∗) and exp(𝛽2

∗), respectively, where 𝛽1
∗ = ln(𝛽1) and 𝛽2

∗ =

ln(𝛽2). Individually, 𝛽1 and 𝛽2 do not have easy interpretations, whereas 𝜑1 = 𝛽1 + 𝛽2 and 

𝜑2 = 𝛽1𝛽2  represent, respectively, the damping and strength of the restoring force on the 

oscillator (Shaw et al. 2019). They determined the shape of the curve. Having estimated the 

model as parameterized in equation (3), standard errors of 𝜑1 and 𝜑2 can be obtained by the 

delta method. Finally, to allow for a long-term effect without adding too much complexity, 

Shaw et al. (2019) further proposed the additive term that allows a long-term effect to grow 

asymptotically over time to reach 𝛿. 

Here we derive the time to peak efficacy (𝑡∗) and peak level of efficacy [𝑔2(𝑡∗)]. The 

first derivative of 𝑔2(𝑡) with respect to 𝑡 is:  

𝜕𝑔2(𝑡)

𝜕𝑡
=

𝛼𝛽1𝛽2

𝛽2 − 𝛽1
(−𝛽1𝑒−𝛽1𝑡 + 𝛽2𝑒−𝛽2𝑡) + 𝛽1𝛿𝑒−𝛽1𝑡. 

Solving the equation 
𝜕𝑔2(𝑡)

𝜕𝑡
= 0 gives the time to peak efficacy, 

𝑡∗ =
1

𝛽2 − 𝛽1
log (

𝛽2
2

𝛽1𝛽2 −
𝛿
𝛼

(𝛽2 − 𝛽1)
) =

1

𝛽2 − 𝛽1
log(𝜓),             (4) 

where 𝜓 =
𝛽2

2

𝛽1𝛽2−
𝛿

𝛼
(𝛽2−𝛽1)

.  

Assume that there is enough time between consecutive doses such that 𝑡∗ is reached 

before the next dose is given. Then, plugging 𝑡∗ into the non-linear function 𝑔2(𝑡) gives a 

closed form expression of the peak efficacy, 
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𝑔2(𝑡∗) =
𝛼𝛽1𝛽2

𝛽2 − 𝛽1
(𝜓

−
𝛽1

𝛽2−𝛽1 − 𝜓
−

𝛽2
𝛽2−𝛽1) + 𝛿 (1 − 𝜓

−
𝛽1

𝛽2−𝛽1).          (5) 

If 𝛿 ≅ 0, the following simplifications can be made:  

𝑡∗ =
1

𝛽2 − 𝛽1
log (

𝛽2

𝛽1
),           (6) 

𝑔2(𝑡∗) =
𝛼𝛽1𝛽2

𝛽2 − 𝛽1
[(

𝛽2

𝛽1
)

−
𝛽1

𝛽2−𝛽1
− (

𝛽2

𝛽1
)

−
𝛽2

𝛽2−𝛽1
].           (7) 

 For intervention effects over m doses the 𝑖-th subject has received:  

𝐺ℎ𝑖(𝑡) = ∑ 𝑔ℎ(𝑡 − 𝑑𝑖𝑗)𝐼(𝑑𝑖𝑗 < 𝑡)

𝑚

𝑗=1

,             (8) 

where h = 1 or 2 specifies the use of the monotonic or non-monotonic function, respectively.  

 Furthermore, an extension of the models is to allow 𝐴 in 𝑔1(𝑡) and 𝛼 in 𝑔2(𝑡) to be 

dose-specific. That is, changing 𝐴 to 𝐴1, 𝐴2, ⋯ , 𝐴𝑚 and 𝛼 to 𝛼1, 𝛼2, ⋯ , 𝛼𝑚 for the m doses in 

equation (8). This provides more flexibility if the cumulative dosage or intervention history 

modifies the efficacy profile. For example, previous research had suggested that the third 

dose of the Haemophilus influenzae type b vaccine appears to offer little additional benefit 

(Griffiths et al. 2012). The investigators may need to allow for such dose-specific effect in 

the statistical modelling.  

2.3 Estimation 

Let 𝜽ℎ  (h = 1 or 2) be the unknown parameters in equation (1), the estimators of 𝜽ℎ can be 

obtained by maximizing the log-partial likelihood, 



10 
 

𝑙(𝜽ℎ) = ∑ ∑ 𝑙𝑖(𝜽ℎ|𝑡𝑖𝑗)

𝑛𝑖

𝑗=1

𝑁

𝑖=1

= ∑ ∑ {𝜸𝑇𝒙𝑖(𝑡𝑖𝑗) + 𝐺ℎ𝑖(𝑡𝑖𝑗)𝑧𝑖

𝑛𝑖

𝑗=1

𝑁

𝑖=1

− log (∑ 𝑌𝑘(𝑡𝑖𝑗) exp[𝜸𝑇𝒙𝑘(𝑡𝑖𝑗) + 𝐺ℎ𝑘(𝑡𝑖𝑗)𝑧𝑘]

𝑁

𝑘=1

)}, 

where 𝑌𝑘(𝑡) = 1 if the 𝑘-th subject is at risk at event time 𝑡, otherwise 𝑌𝑘(𝑡) = 0, 𝐺ℎ𝑖(𝑡𝑖𝑗) =

∑ 𝑔ℎ(𝑡𝑖𝑗 − 𝑑𝑖𝑗)𝐼(𝑑𝑖𝑗 < 𝑡𝑖𝑗)𝑚
𝑗=1  as described earlier, and 𝑑𝑖𝑗 is the time the 𝑖-th subject 

receives the 𝑗-th dose. 

Let 𝑈(𝜽ℎ) =
𝜕𝑙(𝜽ℎ)

𝜕𝜽ℎ
 be the score function and 𝐼(𝜽ℎ) = −

𝜕2𝑙(𝜽𝒉)

𝜕𝜽𝒉𝜕𝜽𝒉
𝑇 be the observed 

information matrix; h = 1 or 2 corresponds to the models using 𝑔1(𝑡) or 𝑔2(𝑡), respectively.  

The estimators 𝜽̂1 or 𝜽̂2 can be obtained by solving the equations 𝑈(𝜽1) = 𝟎 or 𝑈(𝜽2) = 𝟎.  

We used the quasi-Newton method (BFGS) available in the optim function of R (Delignette-

Muller and Dutang 2021). Under regularity conditions similar to VII.2.1 and VII.2.2 in 

Andersen et al. (2012), it can be shown that as the sample size N tends to infinity, the 

estimator 𝜽̂ℎ of 𝜽ℎ is consistent and asymptotically normally distributed.  

Their naïve standard errors can be calculated as the square root of diagonal terms in 

the inverse of 𝐼(𝜽̂1) or 𝐼(𝜽̂2), respectively. The AG model requires a robust sandwich 

estimator of variance for clustered data to deal with multiple observations per person (Cleves 

1999; Lin and Wei 1989):  

𝐼−1(𝜽̂ℎ) ∑ 𝑊𝑖(𝜽̂ℎ)𝑊𝑖
𝑇(𝜽̂ℎ)

𝑁

𝑖=1

𝐼−1(𝜽̂ℎ), 

where 
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𝑊𝑖(𝜽̂ℎ) = ∑ 𝑊𝑖(𝜽̂ℎ|𝑡𝑖𝑗)

𝑛𝑖

𝑗=1

= ∑ {
𝜕𝑙𝑖(𝜽ℎ|𝑡𝑖𝑗)

𝜕𝜽ℎ
|

𝜽ℎ=𝜽̂ℎ

𝑛𝑖

𝑗=1

− ∑ ∑
𝐼{𝑡𝑖𝑗 ≥ 𝑡𝑘𝑗′} exp[𝜸𝑇𝒙𝑖(𝑡𝑘𝑗′) + 𝐺ℎ𝑖(𝑡𝑘𝑗′)𝑧𝑖]

∑ 𝑌𝑖′(𝑡𝑘𝑗′) exp[𝜸𝑇𝒙𝑖′(𝑡𝑘𝑗′) + 𝐺ℎ𝑖′(𝑡𝑘𝑗′)𝑧𝑖′]
𝑁
𝑖′=1

𝜕𝑙𝑖(𝜽ℎ|𝑡𝑘𝑗′)

𝜕𝜽ℎ
|

𝜽ℎ=𝜽̂ℎ

𝑛𝑘

𝑗′=1

𝑁

𝑘=1

}. 

Our analysis used this robust sandwich estimator of variance for clustered data.  

3. A Case Study of Intermittent Preventive Treatment for Malaria 

3.1 Materials and Methods 

We re-analyzed data from a randomized placebo-controlled trial conducted in Ghana between 

2000 and 2004 for illustration (Xu et al. 2017). When the infants attended the immunization 

clinic at the age of about 2 months for a dose of diphtheria-pertussis-tetanus vaccine, they 

were enrolled and randomized to receive placebo or sulfadoxine-pyrimethamine (SP) for 

malaria prevention. Four doses of SP or placebo were scheduled over a duration of nine 

months, at 1, 2, 7 and 10 months after enrolment. The schedule was designed such that the 

dosing coincided with the time the infants would visit the health care facilities for 

vaccination. There was substantial individual variation in the actual timing of the 

administration of SP/placebo, with mean (SD) of the first to fourth doses at 1.03 (0.33), 2.11 

(0.52), 7.60 (0.87) and 10.75 (0.98) months after enrolment, respectively. The infants were 

monitored for up to 24 months. The primary endpoint, clinical malaria, was defined as a visit 

to a health care facility with malaria parasites in the blood confirmed by microscopy and 

temperature ≥ 37.5℃ or a parental report of fever. To avoid double-counting, malaria cases 

recorded within 7 days of a previous malaria episode in the same person were ignored (Xu et 

al. 2017). Approximately 90% of the infants completed the full follow-up; 2045 infants 
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received all four doses of SP/placebo. Totally there were 1442 malaria episodes among 1044 

infants in the SP group, and 1593 malaria episodes among 1001 infants in the placebo group.   

We set the origin of analysis time (𝑡 = 0) to be the date of receiving the first dose of 

SP or placebo for each infant. The covariates included in all models were age (at enrolment) 

and season (July to November was rainy season; dry season otherwise). Age is a time-

constant while season is a time-varying covariate.  

We first fitted the AG model with the intervention group versus placebo group as a 

time-constant exposure variable, i.e. a PH model. Then we replaced the time-constant 

intervention group versus placebo group variable by either 𝐺1(𝑡) or 𝐺2(𝑡) to capture the 

time-varying effects of the four doses of SP. For each model, we computed the Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC) (Royston and Lambert 

2011). BIC imposes heavier penalty on model complexity (number of parameters) than AIC. 

Since 𝐺1(𝑡) and 𝐺2(𝑡) have the same complexity, the results on comparison between them 

are expected to agree. To compare models with the same 𝐴 or 𝛼 across doses versus models 

with dose-specific 𝐴𝑚 or 𝛼𝑚, we considered both AIC and BIC.   

To challenge the performance of the 4-parameter functions, we fitted a model with 

𝑔(𝑡) being a step function with 8 steps (weeks 1, 2, 3, 4, 5-6, 7-8, 9-12 and ≥13), and a series 

of models with 𝑔(𝑡) represented by cubic B-splines. A cubic B-spline with 1 (inner) knot has 

the same complexity as 𝑔1(𝑡) or 𝑔2(𝑡), i.e. four coefficients to be estimated (Perperoglou et 

al. 2019). We consider cubic B-spline models with 1 to 4 knots. While the location of knots 

usually has limited impact to the model fit (Durrleman & Simon 1989; Royston and Lambert 

2011), it is appropriate to place them where flexibility is needed (Wei et al. 2006). Previous 

studies of SP have suggested that its efficacy tends to be limited within a duration of about 4 

to 6 weeks (Akbari et al. 2012; Cairns et al. 2008). Placing knots beyond this time frame is 

unnecessary. We fitted five 1-knot models, with the knots at 7, 14, 21, 28 or 35 days since 
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dosing, four 2-knot models, at (5, 20), (7, 21), (7, 28), or (14, 28) days, two 3-knot models, at 

(5, 15, 30) or (7, 21, 35) days, and one 4-knot models, at (5, 15, 25, 40). For each set of spline 

models with the same number of knots, we compared the AIC of the best fitting spline model 

(smallest AIC) and step function model with that of the models using the 4-parameter 

functions.  

The fitting of multiple spline models with knots at multiple sets of location increases 

the risk of over-fitting. It was used here only for the purpose of challenging the performance 

of the 4-parameter functions.  

Note that the model formulation assumed that the long-term, rebound effect, if any, 

accumulates over doses. To explore whether the assumption of cumulative rebound effect 

was valid, we further estimated an AG model that included only the follow-up time from 3 

months after receiving the second dose of SP/placebo till the third dose (period 1) and the 

follow-up time from 3 months after receiving the fourth (last) dose of SP/placebo till the end 

of follow-up (period 2). One AG model is fitted, with two terms to estimate the effects of SP 

group versus placebo group in period 1 and in period 2 (i.e. allowing interaction between 

group and time-period) and two terms to control for age and season. The focus on these two 

time-periods was motivated by (a) the longer spacing between the second and third dose in 

this trial and (b) the likely disappearance of the short-term SP effect by 3 months after 

dosing. That is, these are the time-periods that likely showed only the long-term effect. The 

HR estimates for the two periods were compared with each other and with the model 

estimates based on 𝐺1(𝑡) and 𝐺2(𝑡).  

3.2 Results 

The PH model gave AIC 44613.01 and BIC 44631.06 (Table 1). Infants in the SP group was 

estimated to have an HR of exp(−0.138) = 0.871 as compared to the placebo group. 

[Table 1 about here] 
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 The models with monotonic and non-monotonic function, 𝐺1(𝑡) and 𝐺2(𝑡), using the 

same 𝐴 or 𝛼 across doses, gave smaller AIC and BIC than the PH model (Table 1). Clearly 

the PH model was less adequate and the time-constant effect assumption was not tenable. 

Both AIC and BIC indicated the superiority of 𝐺2(𝑡) over 𝐺1(𝑡) for this dataset. Allowing 

dose-specific 𝐴𝑚 or 𝛼𝑚, i.e. using three more parameters in each of the respective models, 

led to larger AIC and BIC than the model with a constant 𝐴 or 𝛼. So we focused on the 

simple 4-parameter functions.    

The AIC and BIC of the step function model and the best fitting models within each 

set of spline models with the same number of knots are also shown in Table 1. (Results for all 

the spline models fitted are shown in Appendix 1.) According to both AIC and BIC, 𝐺2(𝑡)  

fitted the data best. According to BIC, 𝐺1(𝑡) was the second best. According to AIC, which 

imposed less penalty on model complexity, the step function was the second best. We 

focused on these top three models in further discussion.        

  Table 2 shows the regression coefficient estimates for the monotonic and non-

monotonic function models. Based on the estimates, we plotted the estimated time-varying 

HR in Figure 1. The estimated step function was also included in the figure. The graphing 

assumed that the four doses were received at 0, 1, 6 and 9 months (from dose 1) as scheduled. 

From the figure, it can be seen that the three series of estimates show approximately the same 

pattern. The main difference between them is in the first three weeks after dosing, where 

𝐺1(𝑡) deviates from the other two.    

[Table 2 about here] 

[Figure 1 about here] 

In the model using the monotonic function 𝐺1(𝑡), the short-term effect in terms of HR 

is exp(A+D) = exp(−1.504+0.022) = 0.227 (95% confidence interval, CI, 0.168 to 0.307). 

This high level of efficacy was maintained for about half a month, and then the HR changed 
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sharply towards zero. In contrast, the estimates for the model with non-monotonic function 

indicate that it took about 𝑡∗ = 0.321 months (~10 days) after dosing to reach the peak 

protective efficacy level, at HR = 0.093, according to equations (6) and (7). The HR’s 

estimated by the model with step function for weeks 1, 2, 3, 4, 5-6, 7-8, 9-12 and ≥ 13 were 

0.475, 0.077, 0.153, 0.289, 0.528, 0.862, 1.068 and 1.059, respectively.  

All three models showed a small rebound effect. The HR’s for the models with 

monotonic and non-monotonic functions were HR = exp(0.022) = 1.022 (0.997 to 1.048) and 

exp(0.027) = 1.027 (1.002 to 1.054), respectively. The HR for the last step of the step 

function was 1.059 (0.971 to 1.156) as aforementioned. Table 3 shows the results of further 

analyses that used only the data from the time-periods of 3-month after dose 2 till dose 3 and 

3-month after dose 4 till end of follow-up. The estimated HR’s for SP were 1.069 in the first 

and 1.106 in the second period (test for SP-by-period interaction, P=0.76). While there was 

no statistically significant level of rebound effect or interaction, the point estimates gave 

some support to the model assumption that the long-term rebound effect accumulated over 

doses. In comparison, the estimates of rebound effect over two doses obtained from the 

monotonic, non-monotonic and step functions were 1.022
2
  = 1.044, 1.027

2
 = 1.055, and 

1.059
2
 = 1.121, respectively. Over four doses, the rebound effect estimated by the monotonic, 

non-monotonic and step functions were 1.092, 1.116, and 1.258, respectively. The non-

monotonic function showed more agreement than the other two functions with the period 

specific estimates in Table 3.     

[Table 3 about here] 

If we used protective efficacy dropping from peak level to half of the peak level as 

indicative of the appropriate time-point for re-administration of the product, 𝑔1(𝑡) and 𝑔2(𝑡) 

indicate that the timing was about 37 days and 35 days since the previous dose, respectively. 

The step function suggested the timing to be about 5-6 weeks since the previous dose.  
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4. Simulation 

4.1 Methods 

We evaluated the point and interval estimation of the proposed non-monotonic model by 

simulation. We considered four patterns of protective efficacy defined by (𝛼, 𝛽1
∗, 𝛽1

∗, 𝛿): 

Pattern 1 = (-2,1,1.5,0)  

Pattern 2 = (-2,1,1.5,0.1) 

Pattern 3 = (-2,0.5,1,0)  

Pattern 4 = (-2,0.5,1,0.1) 

All patterns had the same initial perturbation (𝛼 = −2). Patterns 1 and 2 had earlier peak and 

sharper decline over time than patterns 3 and 4. Patterns 1 and 3 had no rebound effects 

(𝛿 = 0) while patterns 2 and 4 did.  We considered intervention schedules with a single dose, 

two doses and three doses, with intervals between doses in the two and three dose schedules 

independently following a Uniform(2,3) distribution. For each set of parameters, we 

simulated large, medium and small sample sizes (1300, 1000 and 700 persons per trial arm, 

respectively). There were 4×3×3=36 scenarios in total. The incidence level was set such that 

the scenarios with 1000 persons per trial arm resembled the case study of malaria 

chemoprevention not only in terms of number of persons per trial arm but also number of 

events in the control arm (about 1500 events). Further details of the simulation procedures are 

available in Appendix 2. For each scenario, we evaluated the relative bias of the estimator, 

ratio of mean standard errors to empirical standard deviation of estimates, and coverage 

probability of the 95% CI of the estimates of 𝛼, 𝜑1, 𝜑2 and 𝛿. For patterns 1 and 3 where 

there was no long-term effect (𝛿 = 0), we evaluated the absolute bias of the estimator for 𝛿 

because the use of relative bias would involve division by zero. Furthermore, we derived the 

time-to-peak PE and peak PE level from the parameter estimates using equations 4 and 5, and 
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present the mean ratio of time-to-peak PE and peak PE level to their respective true values as 

determined by the true model parameter values. 

4.2 Results 

Table 4 shows the simulation results on the estimation of model parameters. The key finding 

is that the proposed method worked well when, similar to the case study of malaria 

prevention, sample size was large or the intervention consisted of multiple doses. Conversely, 

the bias level was raised and coverage probability of confidence intervals was below target 

level when sample size was smaller, especially if there was only one single dose.  

Across all four patterns of PE, when sample size was 1300 and number of 

intervention doses was three, relative bias in the estimation of the four parameters was small, 

ranging from 1.2% to 3.6%. Absolute bias in the estimation of 𝛿 (when true 𝛿 = 0) was no 

more than 0.004. The ratios of average standard error to empirical standard deviation were 

close to one; the 95% CIs had coverage probability close to the target level. Among the 

scenarios with three doses of intervention, varying the sample size from 1300 to 1000 or 700 

did not make much impact on these properties. In the scenarios of two doses and sample size 

= 1000 or 1300, the performance of the method was similar to the aforementioned. In the 

scenarios of one dose only and in the scenarios of two doses and sample size was 700 only, 

except for the parameter 𝛿, there was more visible elevation of relative bias, under-estimation 

of standard error, and in some cases (one dose and N = 700) coverage probability of 95% CIs 

dropped to about 90% only.        

[Table 4 about here] 

[Figure 2 about here] 

 Figure 2 shows the mean ratio of peak PE level and mean ratio of time-to-peak PE to 

their respective true values, by pattern of PE, sample size and number of doses. The mean 

ratio of peak PE level was close to one across all the settings evaluated. The mean ratio of 
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time-to-peak PE was mostly close to one, but it declined as sample size or number of doses 

decreased. It dropped to about 0.9 in scenarios with only one dose and N=700 or 1000.  

5. Discussion 

Knowledge on the level of protective efficacy over time is important in the evaluation and 

deployment of interventions against infectious diseases. The time pattern of protective 

efficacy may be affected by local level of disease transmission intensity and drug resistance 

(Cheung et al. 2020; White 2005). It is useful to assess and monitor the pattern not only 

during product development but also in post-licensure surveillance where the products are 

deployed.  

 Recently, Xu et al. (2017) proposed a 4-parameter monotonic function for modelling 

the waning of protective efficacy in recurrent event times, allowing individual variation in the 

timing of dosing. We consider an alternative, using the same number of parameters but 

allowing for non-monotonic trend. We derived the expressions for time-to-peak efficacy and 

level of peak efficacy.  

In the case study of intermittent prevention treatment for malaria, the model with the 

4-parameter non-monotonic function outperformed models with the 4-parameter monotonic 

function. In this dataset, we subjected it to the challenges of multiple models based on spline 

or step functions. The non-monotonic function remained the best fitting.  

Simulations showed that the method worked well for studies that had sample sizes 

and number of doses similar to or larger than the case study of malaria prevention. For 

studies with smaller sample sizes and only one single dose, the estimation was not accurate. 

Researchers will need to be aware of the limitation when choosing to use the method. 

It is conceivable that the cumulative dose history may affect efficacy level. Therefore, 

we explored the models that allow dose-specific 𝐴𝑚 or 𝛼𝑚. In this study of SP, the timing of 

doses was planned such that the dosing coincided with visits for the Expanded Program on 
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Immunization. The doses were therefore quite separated over time. The effect of the latest 

dose might have mostly dissipated before the next dose was given. This may explain the lack 

of better fit when the additional parameters were introduced. We postulate that the more 

complex models may have better performance in situations that doses are given closer in 

time.  

   Following the previous study (Xu et al. 2017), in 𝑔1(𝑡) the parameter D is constant 

over time, making A+D the short-term effect. In light of the asymptotically growing long-

term effect in 𝑔2(𝑡), an adaption can be made in 𝑔1(𝑡), replacing D by D[1-exp(-B×t)], such 

that A alone is the short-term effect. However, given that D was a very small and statistically 

non-significant value in the malaria study, we did not consider the additional work.  

Our model formulation allows the long-term effect to accumulate over time, such that 

after m doses the long-term effect in terms of HR becomes exp(m×coefficient) for the two 

parametric functions. For clinical trials that involve multiple doses of intervention and have 

relatively short follow-up periods, this appears a reasonable formulation. Data from the 

malaria study was also consistent with it.  However, if m doses are spread over a long 

duration such that any effect of the previous dose could have mostly dissipated, further 

modification of the functions may be considered.  
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Table 1. Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) of 

Andersen-Gill models with time-constant intervention effect (proportional hazard, PH), 

monotonic function [𝐺1(𝑡)], non-monotonic function [𝐺2(𝑡)], step function (Step) and cubic 

B-splines with 1 to 4 knots (Spline 1 to Spline 4). *  

    Models     

 PH 𝐺1(𝑡) 𝐺2(𝑡) Step† Spline 1‡ Spline 2‡ Spline 3‡ Spline 4‡ 

AIC 44613.01 44433.90 44389.71 44421.07 44526.69 44511.96 44510.11 44511.75 

BIC 44631.06 44473.02 44428.83 44481.25 44562.80 44554.09 44558.26 44565.91 

* All models adjusted for age and season. 

† HR varied between eight time-intervals (weeks 1, 2, 3, 4, 5-6, 7-8, 9-12 and ≥13). 

‡ For each cubic B-spline model with k knots (k=1, 2, 3 or 4), several models with the k knots 

placed at different locations were fitted (see text for details). The table shows the results of 

the spline model that has the smallest AIC among all models with the same number of knots.  
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Table 2. Analyses using the AG model with 𝐺1(𝑡) and 𝐺2(𝑡). 

 Model with 𝐺1(𝑡)   Model with 𝐺2(𝑡) 

Parameter Estimate SE  Parameter Estimate SE 

A -1.504 0.155  𝛼 -2.106 0.168 

ln(B) -0.926 0.318  ln(𝜑1) 1.828 0.128 

ln(C) 1.354 0.287  ln(𝜑2) 2.258 0.079 

D 0.022 0.013  𝛿 0.027 0.013 

Age 0.108 0.040  Age 0.107 0.040 

Season 1.512 0.044  Season 1.512 0.044 
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Table 3. Analysis of long-term effect in period 1 (3 months after dose 2 till dose 3) and 

period 2 (3 months after dose 4). 

Exposure Hazard Ratio 95% CI 

SP group, period 1 1.069 [0.893, 1.280] 

SP group, period 2 1.106 [0.984, 1.243] 

Age 1.095 [1.006, 1.191] 

Season 4.634 [4.109, 5.225] 

 

 

 

  



30 
 

Table 4. Simulation results, by number of doses, sample size and PE patterns.*,†  

(Dose; N;    𝛼   ln(𝜑1)   ln(𝜑2)  𝛿  

pattern) Bias 

(%) 

ASE/

ESD 

CP  

(%) 

Bias 

(%) 

ASE/

ESD 

CP  

(%) 

Bias 

(%) 

ASE/

ESD 

CP  

(%) 

Bias 

(%) 

ASE/

ESD 

CP  

(%) 

(3; 1300; 1) 2.5 1.05 95.4 3.0 0.99 93.0 1.6 1.02 96.4 0.003† 1.00 94.4 

(3; 1300; 2) 2.2 1.07 96.0 2.5 1.02 92.6 1.2 1.02 95.6 2.3 1.00 94.8 

(3; 1300; 3) 2.4 1.07 96.0 3.6 1.01 95.2 1.8 1.01 95.6 0.004† 1.05 95.0 

(3; 1300; 4) 2.1 1.07 95.6 3.4 0.98 93.8 1.8 0.99 95.6 3.6 1.00 95.0 

(3; 1000; 1) 1.6 1.02 95.4 4.0 0.96 94.6 2.6 1.04 95.6 0.004† 1.00 95.4 

(3; 1000; 2) 1.5 1.02 95.8 3.6 0.96 93.4 2.4 1.05 95.0 3.0 1.00 95.6 

(3; 1000; 3) 2.0 1.01 93.6 5.8 0.97 95.2 3.8 1.03 95.8 0.005† 1.00 95.0 

(3; 1000; 4) 1.3 1.03 94.2 5.2 0.99 95.6 3.6 1.02 96.8 4.3 1.00 94.8 

(3; 700; 1) 3.1 0.97 94.2 3.9 1.07 94.4 1.8 1.04 95.2 0.005† 1.00 95.6 

(3; 700; 2) 3.5 0.96 94.6 3.7 0.99 93.8 1.9 1.00 94.4 3.5 0.96 94.6 

(3; 700; 3) 4.0 1.06 94.4 5.2 1.11 95.8 2.2 1.07 96.8 0.007† 1.04 96.0 

(3; 700; 4) 3.2 1.00 94.2 4.5 1.01 95.6 1.7 1.05 96.4 6.0 1.04 95.0 

(2; 1300; 1) 2.5 1.02 96.0 4.1 1.01 95.2 2.6 1.04 95.3 0.002† 1.00 95.2 

(2; 1300; 2) 2.4 1.01 96.0 3.9 1.04 96.2 2.5 1.05 95.6 1.9 1.00 94.2 

(2; 1300; 3) 2.2 1.06 96.0 5.6 1.02 95.6 3.6 1.06 96.6 0.003† 0.96 93.8 

(2; 1300; 4) 1.9 1.05 95.4 5.6 1.00 94.6 3.8 1.04 95.4 3.0 0.96 94.0 

(2; 1000; 1) 1.9 0.97 93.8 5.0 0.95 94.4 3.4 1.03 95.2 0.004† 0.96 93.6 

(2; 1000; 2) 1.9 0.99 94.8 5.2 0.99 94.2 3.5 1.05 95.8 3.7 1.00 94.2 

(2; 1000; 3) 2.1 0.98 94.4 8.1 0.88 93.8 5.8 0.95 95.6 0.005† 0.96 93.0 

(2; 1000; 4) 1.5 0.98 93.6 7.4 0.95 94.8 5.5 1.03 96.6 4.8 0.96 92.2 

(2; 700; 1) 3.8 0.98 96.0 6.1 0.82 92.4 3.6 0.85 93.8 0.003† 1.00 94.0 

(2; 700; 2) 3.6 0.97 95.2 6.0 0.81 93.0 3.8 0.85 93.8 2.9 0.96 95.2 

(2; 700; 3) 3.7 1.02 94.6 7.3 0.96 94.2 4.6 0.94 96.2 0.004† 1.00 94.4 

(2; 700; 4) 3.2 1.00 95.0 6.8 0.91 94.2 4.3 0.94 95.6 4.5 1.00 94.6 

(1; 1300; 1) 4.5 0.99 93.8 8.0 0.70 92.4 5.3 0.77 93.0 0.003† 0.97 94.6 

(1; 1300; 2) 4.3 0.96 93.2 7.3 0.82 91.8 4.8 0.89 93.4 3.7 0.97 95.0 

(1; 1300; 3) 4.4 1.02 94.4 9.2 0.91 92.2 6.3 0.96 93.4 0.006† 0.98 95.4 

(1; 1300; 4) 3.8 1.01 94.2 8.9 0.93 93.2 6.4 0.99 94.0 5.4 0.98 94.0 

(1; 1000; 1) 4.7 1.00 95.6 10.6 0.82 92.6 7.4 0.85 91.4 0.008† 1.00 94.2 

(1; 1000; 2) 4.7 1.00 96.6 10.0 0.72 91.8 6.9 0.76 91.8 7.5 0.98 94.6 

(1; 1000; 3) 5.2 0.99 95.0 15.1 0.64 92.8 11.3 0.70 93.4 0.011† 0.98 94.2 

(1; 1000; 4) 4.3 0.98 94.4 14.3 0.72 92.4 11.0 0.77 93.6 10.4 1.00 94.2 

(1; 700; 1) 7.5 0.94 95.8 13.4 0.59 91.2 9.0 0.63 90.0 0.005† 1.02 95.6 

(1; 700; 2) 6.9 0.93 96.4 12.8 0.57 90.4 8.8 0.60 90.8 4.9 1.00 95.0 

(1; 700; 3) 7.1 1.02 94.8 17.4 0.48 89.4 13.5 0.54 90.6 0.008† 1.00 94.6 

(1; 700; 4) 6.4 1.00 94.0 17.1 0.49 90.4 13.5 0.54 90.8 7.7 1.00 94.6 
* Bias is relative bias in percent (except for 𝛿 in patterns 1 and 3); ASE/ESD is ratio of mean standard error to 

empirical standard deviation of estimates; CP is coverage probability of 95% confidence interval in percent. 
† Absolute bias in the estimation of 𝛿 when true 𝛿 = 0 (patterns 1 and 3). 
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Appendix 1. Akaike Information Criterion and Bayesian Information Criterion of AG models 

with cubic B-spline models with 1 to 4 knots. *  

Number of knots Knot locations AIC BIC 

1 7 44530.29 44566.40 

1 14 44529.72 44565.83 

1 21 44528.78 44564.89 

1 28 44527.74 44563.85 

1 35 44526.69 44562.80 

2 5, 20 44511.96 44511.96 

2 7, 21 44516.19 44558.31 

2 7, 28 44516.28 44558.41 

2 14, 28 44515.10 44557.22 

3 5, 15, 30 44510.11 44558.26 

3 7, 21, 35 44513.05 44561.19 

4 5, 15, 25, 40 44511.75 44565.91 

* Adjusted for age and season. 

 

  

  



32 
 

Appendix 2. Simulation procedures.   

Since the model involved the time-dependent hazard function, we used the thinning approach 

for generation of the recurrent event times (Xu et al. 2017). For the 𝑖-th subject, generate 

recurrent event time 𝑡𝑖𝑗  (𝑗 = 1, 2 … ) in months from a model 𝜆𝑖(𝑡) = 𝜆0 exp(𝐺2𝑖(𝑡)𝑍𝑖)  

according to the following steps: 

i. Set the initial value of 𝑡∗ be 0 for subject 𝑖. 

ii. Draw a random number 𝑅~Exp(𝜆̅), where λ̅ is a fixed value such that 𝜆𝑖(𝑡) ≤

 𝜆̅, ∀ 𝑡. Update 𝑡∗ = 𝑡∗ +  𝑅. 

iii. Generate a random number 𝑉~Uniform(0,1).  

iv. Repeat steps (ii) and (iii) until ≤
𝜆𝑖(𝑡∗)

𝜆̅  
 , then 𝑡∗ become an event time, denoted 

as 𝑡𝑖𝑗  (𝑗 = 1, 2 … ).  

v. If 𝑡𝑖𝑗 is within the follow-up time, repeat the process from step (ii) to generate 

𝑡𝑖,𝑗+1. If 𝑡𝑖𝑗 is larger than the follow-up time, replace 𝑡𝑖𝑗 by the follow-up time. 

The follow-up period was 12 months from the time of receiving the first dose. Censoring was 

generated by having 80% of the participants completing the follow-up time and the remaining 

20% were uniformly censored between 0.8 to 1.0 of the planned follow-up time. We set 𝜆0 =

0.12 and λ̅ = 0.2 in the simulation algorithm. Under these settings, for the scenarios with 

1000 persons per trial arm, which was similar to the sample size in the case study of malaria 

chemoprevention, the number of events in the control arm was also similar to that in the case 

study (about 1500 events). We used 500 replicates per simulation scenario.  
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Legend to Figure 1.  

Estimated time-varying hazard ratios, assuming the timing of dosing were at 0, 1, 6 and 9 

months as scheduled. Dashed line (red): 𝐺1(𝑡); solid line (blue): 𝐺2(𝑡); dot-dashed line 

(black): step function; dotted (grey) reference line at HR = 1. 

 

Legend to Figure 2.  

Mean ratios of peak PE level (triangle) and time-to-peak PE (dot) to their respective true 

values, by pattern of PE, sample size and number of doses.  

 

 

 


